
Opleiding Informatica

Formal Specification and Analysis

of OpenJDK’s BitSet Class

Andy S. Tatman
S2946114

Supervisors:
Prof. dr. Marcello Bonsangue
drs. Hans-Dieter A. Hiep

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 25/07/2023

www.liacs.leidenuniv.nl

Abstract

In this thesis, we use a combination of formal specification, testing and formal verification
techniques to analyse OpenJDK’s BitSet class. This class stores a bit vector that grows when
required. We write a formal specification for the class in Java Modelling Language (JML),
with the intention of using the KeY theorem prover to formally verify the correctness of the
class. During our analysis, we discovered a number of bugs in the code. We describe how these
bugs occur using our formal specification. We then set out different possible solution directions
for these issues, and discuss the advantages and disadvantages of each. We discuss why we
chose KeY as our verification tool, and detail extensions that KeY requires in order to be able
to verify the correctness of the BitSet class. We provide some rules we have created, and use
these and our formal specification to verify BitSet’s set(int) method. We also discuss some
of the proof steps required to verify the correctness of the get(int,int) method, once the
bugs we discuss have been fixed.

Contents

1 Introduction 1

2 Related Work 3

3 The BitSet class 3

4 Formal Specification 6
4.1 Introduction to Java Modelling Language . 7
4.2 Class invariant for the BitSet class . 9
4.3 The wordsToSeq() model method . 10
4.4 The set(int) method . 11
4.5 The private expandTo(int) method . 12
4.6 The private ensureCapacity(int) method . 13
4.7 The clear() method . 13
4.8 The get(int,int) method . 14
4.9 A comparison with a different formal specification of BitSet 15

5 Issues in BitSet 16
5.1 A bug in get(int,int) . 16
5.2 Bugs resulting from the valueOf(..) methods . 17
5.3 Solution directions . 19

6 Towards Formal Verification 21
6.1 Background . 21
6.2 The KeY theorem prover . 22
6.3 Required extensions to KeY . 23
6.4 Verification of the set(int) method . 24
6.5 Proof sketch of the get(int,int) method . 29

7 Conclusions and Further Research 32

References 34

A Annotated BitSet class 34
A.1 Internal fields of the class . 34
A.2 Class invariant . 35
A.3 Annotated methods . 35

A.3.1 wordIndex(int) . 35
A.3.2 checkInvariants() . 35
A.3.3 recalculateWordsInUse() . 36
A.3.4 The public BitSet constructors . 36
A.3.5 ensureCapacity(int) . 37
A.3.6 expandTo(int) . 38
A.3.7 checkRange(int,int) . 38
A.3.8 set(int) . 39
A.3.9 clear() . 39
A.3.10 get(int,int) . 40
A.3.11 length() . 41

A.4 Our wordsToSeq() model method . 42
A.5 The unannotated methods relevant to the valueOf(long[]) discussion. 42

A.5.1 valueOf(long[]) . 42
A.5.2 toLongArray() . 42

B Rules added to KeY 43
B.1 andJLongDef . 43
B.2 orJLongDef . 43
B.3 PowTwoNeqZero . 44
B.4 PowTwoGreZero . 44
B.5 ModPowTwoNeqZero . 44
B.6 ModPowTwoGreZero . 44
B.7 orLongZero . 44
B.8 binaryOrSingleBit . 45
B.9 unsignedShiftRightJlongDef . 45
B.10 handleSignSHRLong . 46
B.11 handleUnSHRlong . 46

1 Introduction

An essential part of software development is ensuring that the software we have created is ‘correct’.
This can include making sure it does what it is meant to do, but also that it does not have any
unintended behaviour such as crashes or security issues. There are many different ways of checking
software, such as by using a debugger or by writing unit tests. These techniques will succeed in
finding many bugs in the software, but they do not guarantee that the software is actually correct.
In order to guarantee software’s correctness, we can instead use formal specification and formal
verification.
Formal specification involves writing exactly what a piece of code does and does not do, while
informal specifications (especially if they are only written in words) can sometimes be unclear or
contain contradictions. In order to do so unambiguously, formal specifications are often written with
a similar syntax to the code itself, but using logical and mathematical operators. As an example,
you might specify that ‘for all integers x and y, the method sum(x,y) will return the value x+y’. In
programming languages such as Java, there is no ‘for all integer ...’ construct, as this would involve
checking every possible value. Meanwhile, the ∀ operator is common-place in logical languages.
An advantage of formalising the programme’s specification, is that it forces you as for example a
programmer or as someone analysing the programme to determine exactly what the programme
does, and what it does not do.
Formal verification takes the formal specification and checks that the code correctly satisfies the
behaviour that the specification expects. The process of formal verification involves going through
every possible execution path of the programme (a process known as symbolic execution) and
determining whether the result of the programme matches up to the expected results in the
specification. This is done in the form of a formal proof, using proof rules to show that each path
and each proof case is correct.
Formal specification combined with formal verification is a more effective debugging technique
compared to for example unit tests, in the sense that a completed verification means you can
guarantee that execution a piece of code complies to the specified behaviour, meaning that no bugs
can occur which would break the specification. If a bug does exist, then you may find this in the
process of making the formal specification or while trying to verify the specification. A bug means
that the specified behaviour does not occur for legal instances in the specification. As a result, it
will be impossible to verify that the program satisfies its specification, which is a good indicator
that either the programme or the specification contains an error.
The traditional process of developing code involves (informally) specifying the code, followed by a
cycle of writing the code and testing/debugging the code. Usually, the testing/debugging go hand
in hand with writing the code. If you have discovered a bug using a unit test, you can change the
code to fix the bug and then immediately check that the issue is fixed with the unit test. While
testing/debugging techniques can be used to find bugs, they cannot be used to prove that no bugs
exist.
Using formal techniques, you may also initially have a similar process of writing and testing/de-
bugging. When you believe the code may be correct, you can then start drawing up a formal
specification, and then using this specification to carry out the verification. Unfortunately, formal
specification and verification are also more time-consuming than other techniques for ensuring code
quality. If the code is changed at all, e.g. because you discovered a bug, then the verification process
needs to be restarted, as the existing proof will not apply to the new code. A verification proof

1

of even a small section of code may require several thousand proof steps. While much of this can
be automated using proof assistants, this will still require intense effort from the user in order to
complete the verification.
Because it is so time-consuming, formal specification and verification efforts are generally reserved
for code that is either essential or very frequently used, such as standard library code. In this
thesis, we discuss and analyse OpenJDK’s BitSet class, which is part of in Java’s standard library.
To our knowledge, this is the first time the source code of OpenJDK’s BitSet class is analysed
using formal specification and verification. While writing this thesis, we discovered that part of
BitSet’s class has previously been specified prior to OpenJDK being released [Lea02]. However,
that specification appears to have been created without access to the source code, and thus does not
use the actual fields of the class. As a result, the previous analysis did not lead to the discoveries
we have made.
The original plan for this research was to formally specify and verify the correctness of a number
of BitSet’s methods. However, during our analysis we discovered a number of bugs in the class,
which appear to have been present in the class since OpenJDK first became public in 20071. We
first identified a bug in the BitSet’s get(int,int) method. Later on, we also discovered an issue
with the specification of the class’ static valueOf(..) methods, which results in bitset objects that
do not behave as expected.
For the formal verification, we use the KeY theorem prover. KeY is a proof assistant that can take
Java code annotated with a JML formal specification as input, and can perform formal verification
through symbolic execution. It is currently the best option for the formal verification of Java
programmes, due to its ease of use (it is designed to work directly on Java code) and because it
accurately models Java semantics, such as integer overflows. However, we have found that KeY
requires extensions before it can verify the BitSet class.

In Section 2 we will discuss prior work related to this topic. In Section 3 we will introduce the
BitSet class, including a number of its methods and an example use case, and discuss the existing
informal specification. In Section 4 we will introduce Java Modelling Language (JML), the language
we use to write our formal specification. We then write a formal specification for the class and a
selection of its methods in JML. Section 5 discusses the two bugs we discovered in the class. We
then offer two main directions towards solving the various issues we discovered, and discuss each
direction’s advantages and disadvantages. Section 6 introduces KeY, and explains why it requires
extensions in order to complete verification of the BitSet class. We provide some of these required
extensions, and explain how we use them to verify the correctness of the set(int) method, followed
finally by a partial sketch of a proof of the get(int,int) method.

This thesis was written as part of the Informatica (Computer Science) bachelor at Leiden University,
and was supervised by Prof. dr. Marcello Bonsangue and drs. Hans-Dieter A. Hiep. Together with
drs. Hiep and dr. Stijn de Gouw, this research also resulted in an article which we have submitted
to a conference.

1https://github.com/openjdk/jdk/blob/319a3b994703aac84df7bcde272adfcb3cdbbbf0/jdk/src/share/

classes/java/util/BitSet.java

2

https://github.com/openjdk/jdk/blob/319a3b994703aac84df7bcde272adfcb3cdbbbf0/jdk/src/share/classes/java/util/BitSet.java
https://github.com/openjdk/jdk/blob/319a3b994703aac84df7bcde272adfcb3cdbbbf0/jdk/src/share/classes/java/util/BitSet.java

2 Related Work

The Java Modelling Language (JML) is a language which extends the regular Java language and
allows users to write formal specifications for Java code [LBR99]. JML statements are written
in the comments of the Java code, and as such does not affect the behaviour of the code. One
important aspect of JML that we use in this paper is the ability to define model methods, which
exist outside of the actual programme and allow us to simplify the specification [CLSE05].
One way of using JML is through tools such as the KeY theorem prover to perform static verification
of the programme to ensure it satisfies its specification. The most useful resource for working with
the KeY theorem prover, is the KeY book [ABB+16]. Other papers have used JML and KeY to
analyse other parts of Java, and have also identified issues. Examples of this include an analysis
of OpenJDK’s LinkedList class [HBdBdG20] and of Java’s BigInteger class [Pfe17], as well as
various sorting algorithms implemented in Java [ABB+16, DGRdB+15].
While writing this thesis, we discovered that some previous work has been done in specifying the
BitSet class [Lea02]. We analyse this specification after introducing the notation and presenting
our own, so that we can make a comparison. See Section 4.9. We will also discuss why this previous
specification does not apply to the current version of the BitSet class.

In Section 6, we discuss issues KeY has with bitwise operators. Other theorem provers have
similarly worked on implementing bitwise operators. In the Coq proof assistant, a library has
been implemented that converts bitsets (as used in programming) to a finite set (as used by
Coq in proofs) [BDL16]. In the Isabelle proof assistant, a generalised collection of theories has
been developed to reason over machine words such as integers of arbitrary length [Daw09]. An
alternative technique for handling bitwise operators using SMT solvers (not discussed here) is
called ‘bit-blasting’, and is discussed in [Kro09]. Using this technique, our 64 bit integers may be
converted to a CNF formula, which can then solved using an SMT solver.

3 The BitSet class

The BitSet class is a standard library class of the Java language. It has been made open-source
through the Open Java Development Kit (OpenJDK). This is an open source implementation of
the Java standard library, and was released by the developers of Java back in 2007. The class allows
users to store bits in a bit vector, packing these bits into an array of type long. This is more
efficient than using an array of booleans, as the size of an individual boolean (and therefore by
extension an array of booleans) in Java is not “precisely defined” [jav].
Listing 1 showcases the various fields and methods of this class that are relevant to this thesis. The
/** ... */ comments written above the public methods are cited from Java’s specification of the
BitSet class [Bit].

Listing 1: Fields and methods of the BitSet class relevant to this thesis.

1 public class BitSet {
2 // The internal field storing the bits.

3 private long[] words;
4 // The number of words in the logical size of this BitSet.

5 private transient int wordsInUse = 0;
6

3

7 /** Creates a new bit set. */

8 public BitSet() { ... }
9 /** Creates a bit set whose initial size is large enough to explicitly represent bits with

indices in the range 0 through nbits -1. */

10 public BitSet(int nbits) { ... }
11 /** Returns a new bit set containing all the bits in the given long array. */

12 public static BitSet valueOf(long[] longs) { ... }
13

14 // Small methods used by a number of other methods:

15 // Returns (bitIndex / 64) if bitIndex >= 0, or -1 if bitIndex = -1.

16 private static int wordIndex(int bitIndex) { .. }
17 // Checks the invariant.

18 private void checkInvariants() { .. }
19

20 /** Sets the bit at the specified index to true. */

21 public void set(int bitIndex) { ... }
22 // Methods used by the set(int) method:

23 // Ensures that wordsInUse and words.length are both >= wordIndex+1.

24 private void expandTo(int wordIndex) { .. } // Helper method
25 // Ensures that words.length >= wordsRequired.

26 private void ensureCapacity(int wordsRequired) { .. }
27

28 /** Sets all of the bits in this BitSet to false. */

29 public void clear() { ... }
30

31 /** Returns the value of the bit with the specified index. */

32 public boolean get(int bitIndex) { ... }
33 /** Returns a new BitSet composed of bits from this BitSet from fromIndex (inclusive) to

toIndex (exclusive). */

34 public BitSet get(int fromIndex , int toIndex) { ... }
35 // Method used by the get(int,int) method:

36 // Lowers the value of wordsInUse , in order to ensure that the invariant holds after

termination.

37 private void recalculateWordsInUse() { .. } // Helper method
38

39 /** Returns the "logical size" of this BitSet: the index of the highest set bit in the

BitSet plus one. */

40 public int length() { ... }
41

42 /** Compares this object against the specified object. */

43 public boolean equals(Object obj) { .. }
44 }

We let false stand for the bit value 0, and true for the bit value 1.
The class stores its bits in an array of 64 bit long elements, called the words array. Every bit in a
word is used to pack bits, including the sign bit. Index 0 is the least significant bit of the first word,
and index 63 is the most significant bit of the first word (the sign bit).

4

Figure 1: A representation of the words array. Each individual word is depicted by a decimal
number inside a box. The third box contains the decimal number 261, which has exactly 1 bit set
to 1. wordsInUse is 3, as the words array has 3 elements and the last word has bits set.

Figure 2: The logical representation of the same bitset as depicted in Figure 1. Each bit is stored
separately. Every bit between the dots is set to 0. The bit in 189 is set to 1, because it is the bit set
in 261 in the third element of words.

Figure 1 shows an example of the words array for a bitset instance, while Figure 2 shows the logical
representation of this same bitset. The class uses an integer wordsInUse to keep track of the last
word that contains at least one bit set to 1. The class uses wordsInUse to approximate the logical
length of the bitset, such as when calculating the value of length().
The logical length of BitSet is defined by the last position of the most significant bit set to 1. This
most significant bit is stored in words[wordsInUse-1]. In the example above, the logical length is
190, as 189 is the last bit that is set to 1.
Initially every bit in a bitset is set to 0. If the user tries to retrieve the value of a bit with an index
outside of the logical length of a bitset, then this value is 0 by default. This allows the class to
handle accesses to any bit on a non-negative position, even if its index falls outside the actual
words array. When the user sets a bit outside of the logical length of a bitset, then the bitset is
expanded to ensure the index fits in the new logical length.

Informal specification of relevant public methods

• length(): Returns the position of the most significant bit set to 1, plus 1. If length()
returns a value > 0, then the bit at position length()-1 is set to 1. All bits at positions
strictly greater than length()-1 have the value 0.

• void set(int bitIndex): If bitIndex is non-negative (0 ≤ bitIndex), then the bit at
position bitIndex in the bitset is set to true. If bitIndex is larger than or equal to the
logical length of the bitset (length()), then the bitset expands in order to fit the bitIndex
bit. The new value of length() is bitIndex+1.

• void clear(): The method sets every bit in the bitset to false. The value of length()
becomes 0.

• boolean get(int bitIndex): If bitIndex is non-negative (0 ≤ bitIndex), then the method
returns the value of the bit stored at position bitIndex in the bitset. If bitIndex is larger
than or equal to the logical length of the bitset (length()), then the method will always
return false.

5

• BitSet get(int fromIndex, int toIndex): fromIndex must be greater than or equal to
0 and toIndex must be greater than or equal to fromIndex (0 ≤ fromIndex ≤ toIndex). If
this is the case, then the method will return a new bitset, where the bits from fromIndex up
to but not including toIndex have been copied.
The bit at fromIndex in the original bitset is at position 0 in the new bitset, position 1 in
the new bitset equals the bit at fromIndex+1, etc..., until the bit at position toIndex-1 in
the original bitset which is stored at position toIndex-1-fromIndex in the new bitset.

Example use of the BitSet class

We provide a small example of the class being used in Listing 2.

Listing 2: An example of the BitSet class being used.

1 BitSet bset = new BitSet(64);
2 boolean value = bset.get(10); // value = false.
3 int len = bset.length(); // len = 0.
4 bset.set(10);

5 value = bset.get(10); // value = true.

6 len = bset.length(); // len = 11.

7

8 BitSet secondBSet = bset.get(10, 20);

9 value = secondBSet.get(10); // value = false.

10 value = secondBSet.get(0); // value = true.

11 len = secondBSet.length(); // len = 1.

12

13 bset.clear();

14 value = bset.get(10); // value = false.

15 len = bset.length(); // len = 0.

On line 1 we create an empty bitset. At this point, all the bits are set to 0. bset.get(i) will return
false for any integer i ≥ 0, including for i = 10 (line 2). Because no bits are set, the length()
method call on line 3 will return 0. On line 4, we set the bit at position 10. At this point, this bit is
now set to true (line 5), and the length() method indicates that the logical length is now one
higher than 10 (line 6).
On line 8, we create a new bitset using the get(int,int) method. We take a portion of the bset
bitset. We take the bit that is set to true in bset as the first bit, followed by a number of bits that
have not been set in the original bitset. (These bits are all 0, as is standard with BitSet.) The bit
that was set in bset (on position 10 in bset) is set in secondBSet on position 0 (line 10). Calling
secondBSet.get(10) (line 9) therefore returns false, as this bit is not set in the new bitset. The
length of the new bitset is 1, as only index 0 contains a bit that is set to true (line 11).
Finally, on line 13 we call the clear() method, which sets every bit in the bitset to false. As a
result, bset.get(10) once again returns false (line 14), and bset.length() once again returns 0
(line 15). The bset.clear() call has no effect on secondBSet, as the objects do not refer to each
other. secondBSet is therefore unchanged.

4 Formal Specification

Our formal specification is focused on the public methods discussed previously, specifically set(int),
clear(), and get(int,int), as well as smaller methods that these methods call.

6

When writing our specification for the public methods, we want to create a layer of abstraction
between the specification and implementation. If the implementation is changed, but the method
has the same purpose, then the contract should still apply to the new implementation. As an
example, say the BitSet class is entirely rewritten. As long as the specifications of the methods
and of the class do not change, then a user of the class should not notice any change. The more
abstract the specification is compared to the implementation, the easier it should be for users to
understand the purpose of the method, without having to worry over how the method achieves this
purpose.
We will write the method contracts based on the expected behaviour, which we determine by
looking at Java’s informal specification of the methods as well as the code and comments of the
method itself. In order to work with the logical representation of the bitset, we will introduce
the wordsToSeq() model method in Section 4.3. If the implementation of the BitSet class itself
changes significantly, then it might mean that the model method may also need to change, but the
method contracts are written in such a way that they should not need to change.

4.1 Introduction to Java Modelling Language

Java’s documentation already gives us a specification of the BitSet’s public methods 2. However,
this is an informal specification, and is not always as specific as we may want it to be. As an
example, the specification for the set(int bitIndex) is the following: “Sets the bit at the specified
index to true.” [Bit] While a human can reasonably infer that this means that other bits are not
changed, the documentation does not explicitly state this.
For our formal specification, we want to be able to describe exactly what does and does not happen.
For this, we use Java Modelling Language (JML) [LBR99]. JML is an extension of Java, and allows
us to write annotations, such as contracts or assertions, in the comments of Java.
We write method contracts to formally specify what a method does. We use Listing 3 as a simple
example:

Listing 3: An example of a simple contract.

1 /*@

2 @ public normal_behaviour
3 @ requires true;
4 @ ensures (a >= b) ==> \result == a;
5 @ ensures (a < b) ==> \result == b;
6 @ assignable \strictly_nothing;
7 @ // no_state // for future use

8 @*/

9 public static int max(int a, int b) { .. }

When making a method contract, we deal with two different states: the state before the method
was called, and the state after the method terminates. The pre-condition describes what must be
true before the method, and the post-condition describes what must be true after.
The pre-condition of a contract is defined using requires clauses. We assume these are true when
the method is called. In this case, the method can be called in any state, as true holds in any state.
The post-condition of a contract is defined using ensures clauses. When the method terminates,
these should be true. In this case, when the method terminates, the resulting value (\result)
should equal the largest value between a and b.

2https://docs.oracle.com/javase/8/docs/api/java/util/BitSet.html

7

https://docs.oracle.com/javase/8/docs/api/java/util/BitSet.html

In order to compare the pre-condition and post-condition, JML introduces the \old(..) clause.
As an example: for an integer x, ensures x == \old(x); says that the value of x should not have
changed during the execution of that method.
The normal_behaviour term indicates that, given the pre-condition, this method will always
terminate normally and will not raise an exception.
The assignable clause indicates what parts of the heap can be changed. In this case,
assignable \strictly_nothing; tells us that nothing can be created or changed on the heap.
One alternative is assignable \nothing;. Here, nothing that existed before has been changed,
but we can make new objects. This is used for example in constructors, where nothing pre-
existing is changed, but the constructor may make new objects as it initialises the class object.
Another option is specifying specific objects or variables that can be changed by the method, using
assignable x,y,z; for some objects x,y,z. If a method is denoted with /*@ strictly_pure @*/,
then the method never alters the heap of the programme. This is equivalent to every contract for
this method having assignable \strictly_nothing;.

Aside from method-specific contracts, there are also assertions that are true in both the pre- and
post-condition of (nearly) every method of the class. Instead of specifying these assertions in each
individual contract, these can instead be specified in the class invariant. These are implicitly added
to the contracts: the invariant is assumed to be true at the start of the method, and at termination
of the method the invariant must once again be true. It is possible that the method breaks the
invariant during its execution, as long as the invariant is reinstated before termination.
The exception to this is a helper method: A method where the contract contains the helper
term does not automatically have the invariant added to the pre-condition or post-condition. An
example of a helper method is a private method that is called internally to restore the invariant
broken by another method. In such a case, the invariant clearly will not always be true prior to
calling the method, but will be on termination. Here, the method is marked as a helper, but the
contract contains ensures \invariant_for(this); to indicate that the invariant does hold at
termination.

Loops provide a special challenge to programme verification. When our code has a loop, we need
to specify a loop invariant. A loop invariant is an assertion or a group of assertions which must
hold at the start and end of every iteration of the loop body. As part of the proof, you need to first
show that the loop invariant holds when the programme initially enters the loop. Assuming the
loop invariant initially held, you then need to show that the invariant holds after executing the
loop body once. This shows that the loop invariant will hold after an abstract number of iterations.
We provide a simple example of such a loop invariant in Listing 4:3

Listing 4: An example of a simple method that uses a loop invariant.

1 /*@ public normal_behaviour
2 @ requires a != null & a.length > 0;
3 @ ensures (\result == false) ==> (\forall \bigint i; 0 <= i < a.length; a[i] != x);
4 @ ensures (\result == true) ==> !(\forall \bigint i; 0 <= i < a.length; a[i] != x);
5 @*/

6 public boolean find(int[] a, int x) {

3Note: This method does not come from the BitSet class. This is an example we have created for this explanation.

8

7 int i = 0;
8

9 /*@

10 @ maintaining i >= 0 & i <= a.length;
11 @ maintaining (\forall \bigint j; 0 <= j < i; a[j] != x);
12 @ decreasing (a.length - i);
13 @ assignable i;
14 @*/

15 while (i < a.length && a[i] != x) {
16 i++;

17 }

18

19 return (i < a.length);
20 }

The method searches the array, and returns true if the integer x occurs in the array. The maintaining
clauses are the main part of the loop invariant. These must hold after every iteration of the loop.
The information in the loop invariant is used to detail the state both between iterations and once
the loop has terminated. The decreasing clause tells the prover that the loop will eventually halt:
every iteration, the value after decreasing must decrease by at least 1, and the value must always
be ≥ 0. The assignable clause works the same way as it does for method contracts.

Finally, in Section 4.3, we will introduce a model method that we have created. A model method is
a method that can only be used in JML specifications (and not in the actual Java programme),
and does not affect the actual state of the programme [CLSE05]. In this case, we use it to convert
the words array, where the bits are packed into the 64 bit longs, to a sequence of individual bits,
which is our logical representation where element i of the sequence corresponds to bit i of the
bitset. This also allows us to specify our contracts using the logical representation, which helps
preserve our separation between specification and implementation.

4.2 Class invariant for the BitSet class

Our starting point for determining the class invariant is the three assertions given in the checkInvariants()
method. These are the following:

• Firstly, either wordsInUse is 0, or the last word in the logically defined length of words, i.e.
words[wordsInUse-1], has at least one bit that is set to 1.

• Secondly, wordsInUse is in the range of [0, words.length], inclusive.

• Finally, either wordsInUse equals the length of words, or the first word outside the logical
length of the words array, i.e. words[wordsInUse], has no set bits and so is 0.

These assertions were given in the class, and they always hold at the beginning and end of BitSet’s
public methods. However, we have expanded the class invariant, as it can include more conditions:
First of all, the words array is allocated in every constructor, and therefore is never null. Next, the
third assertion from checkInvariants() appears to suggest that every word after words[wordsInUse-1]
should equal 0. This is backed up by the implementation of other methods. As an example, we
look at the recalculateWordsInUse() method. This helper method restores the invariant, by
lowering wordsInUse until (wordsInUse == 0 || words[wordsInUse - 1] != 0) is true. Here,
the method’s specification assumes that every element above words[wordsInUse - 1] equals 0.

9

We combine these assertions to get the partial class invariant in Listing 5:

Listing 5: The first part of the class invariant, written in JML.

1 /*@ invariant
2 @ words != null &
3 @ // The first three are from checkInvariants

4 @ (wordsInUse == 0 | words[wordsInUse - 1] != 0) &&

5 @ (wordsInUse >= 0 && wordsInUse <= words.length) &&

6 @ (wordsInUse == words.length || words[wordsInUse] == 0) &&

7 @ // Our addition to the invariant:

8 @ (wordsInUse < words.length ==>
9 @ (\forall \bigint i; wordsInUse <= i < words.length; words[i] == 0)) &&

10 @ ...

11 @*/ ;

Next, we want to look for potential upper bounds to words.length and wordsInUse. Bitsets gener-
ated by public constructors (i.e. not by the valueOf(..) methods, see Section 5.2) will allocate the
words array. When interacting with the class using methods such as set(..), the words array grows
as required using the expandTo(int) and ensureCapacity(int) methods, while the wordsInUse
variable is updated to reflect the largest word with a set bit. The largest position that a bit could
be set to 1 is at position Integer.MAX_VALUE, which is stored in words[Integer.MAX_VALUE/64].
This means that the upper bound to wordsInUse is Integer.MAX_VALUE/64 + 1.

Listing 6: The ensureCapacity(int) method.

1 private void ensureCapacity(int wordsRequired) {
2 if (words.length < wordsRequired) {
3 // Allocate larger of doubled size or required size

4 int request = Math.max(2 * words.length, wordsRequired);
5 words = Arrays.copyOf(words, request);

6 sizeIsSticky = false;
7 }

8 }

The ensureCapacity(int wordsRequired) method grows the words array if required, specifically
if wordsRequired is larger than the current length of words. As you can see in Listing 6, if
the array is made longer, then the new length will be at least twice as long as the original
length of the array. The bound for wordsRequired is the same bound as for wordsInUse, namely
Integer.MAX_VALUE/64 + 1. The largest word array that the BitSet constructors can make is
also Integer.MAX_VALUE/64 + 1. For the upper bound of the length of words, we take double
this value, giving us an upper bound of 2*(Integer.MAX_VALUE/64 +1).
These bounds are maintained when using BitSet’s methods to interact with the bits stored. However,
we will show in Section 5.2 that these do not always hold when using BitSet’s valueOf(..)
methods.

4.3 The wordsToSeq() model method

In order to reason with the contents of a bitset, we convert the array of 64 bit elements to a logical
sequence of individual booleans, such that position i in the sequence is corresponds to bit i in the
bitset. This allows us to write our contracts using the logical representation, while further obscuring
the actual implementation.
This conversion is done using our model method called wordsToSeq(), and is shown in Listing 7:

10

Listing 7: Our wordsToSeq() model method.

1 /*@ private model strictly_pure \seq wordsToSeq() {
2 @ return (\seq_def \bigint i;
3 @ 0; (\bigint)wordsInUse*(\bigint)BITS_PER_WORD;
4 @ // Note 1: Shifting is undefined for \bigint, hence why we cast (i % BITS_PER_WORD)

to int.

5 @ // Note 2: BITS_PER_WORD = 64.

6 @ (words[i / BITS_PER_WORD] >>> (int)(i % BITS_PER_WORD)) & 1);
7 @ }

8 @*/

Per word in the logical length of words (as defined by wordsInUse), the sequence isolates each of
the 64 individual bits and stores them as element i of the sequence. This converts the array as seen
in Figure 1 to the sequence as seen in Figure 2.
Unlike the logical length of a bitset, the length of our sequence is always a multiple of 64, as
BITS_PER_WORD equals 64 and the length of the sequence equals wordsInUse*BITS_PER_WORD.
However, as was discussed earlier, any bit outside the logical length of a bitset is set to 0, which is
also the case in this logical representation.

4.4 The set(int) method

The set(int bitIndex) method sets the specified bit to 1, provided that bitIndex is non-negative.
The value of all other bits remains unchanged. Listing 8 shows the method and its contract.

Listing 8: The contract for the set(int) method, as well as the method body.

1 /*@

2 @ normal_behaviour
3 @ requires bitIndex >= 0;
4 @ ensures wordsToSeq()[bitIndex] == 1;
5 @ ensures (\forall \bigint j; 0 <= j < \old(wordsToSeq()).length & j != bitIndex;
6 @ wordsToSeq()[j] == \old(wordsToSeq())[j]);
7 @ ensures \old(wordsToSeq()).length < wordsToSeq().length ==>
8 @ (\forall \bigint k;
9 @ \old(wordsToSeq()).length <= k < wordsToSeq().length & k != bitIndex;

10 @ wordsToSeq()[k] == 0

11 @);

12 @*/

13 public void set(int bitIndex) {
14 if (bitIndex < 0)
15 throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);
16

17 int wordIndex = wordIndex(bitIndex);
18 expandTo(wordIndex);

19

20 words[wordIndex] |= (1L << bitIndex); // Restores invariants

21

22 checkInvariants();

23 }

After the method terminates, the specified bit must equal 1. This is given by
wordsToSeq()[bitIndex] == 1;. The other two ensures clauses specify what the other bits
should be. First, all bits (except bitIndex) that were defined in the sequence prior to the method
being called should still be defined, and these should equal the value after the method terminates.
Similarly, if the new sequence is longer than the old sequence, then all these new bits that are
not at position bitIndex should equal 0, as this is the default value for a bit that was not in the
defined length of the (original) bitset.

11

The set(int)method calls two other large methods, which we have given contracts: expandTo(int)
and ensureCapacity(int). These are detailed below.

4.5 The private expandTo(int) method

The expandTo(int wordIndex) method is a helper method, and is called by methods that set
bits to 1. The invariant is true when it is called. expandTo(int wordIndex) makes sure that
wordIndex fits within both the logically defined length (by increasing wordsInUse) and the actual
length of the words array (by increasing words.length). The method’s contract and body are
visible in Listing 9:

Listing 9: The contract for the expandTo(int) method, as well as the method body.

1 /*@

2 @ normal_behaviour
3 @ requires
4 @ wordIndex >= 0 & wordIndex <= Integer.MAX_VALUE/BITS_PER_WORD; // BITS_PER_WORD = 64

5 @ requires \invariant_for(this);
6 @

7 @ ensures wordIndex < \old(wordsInUse) ==>
8 @ words == \old(words) & wordsInUse == \old(wordsInUse);
9 @ ensures wordIndex >= \old(wordsInUse) ==> wordsInUse == wordIndex+1;

10 @ ensures wordIndex < words.length; // Implies: wordsInUse <= words.length (invariant)
11 @ // Parts required to restore the invariant:

12 @ ensures (\forall \bigint i; 0 <= i < \old(wordsInUse); words[i] == \old(words[i]));
13 @ ensures (\forall \bigint i; \old(wordsInUse) <= i < words.length; words[i] == 0);
14 @ ensures words != null & words.length >= \old(words).length;
15 @ ensures wordsInUse <= (Integer.MAX_VALUE/BITS_PER_WORD + 1);
16 @ ensures words.length <= 2*(Integer.MAX_VALUE/BITS_PER_WORD + 1);
17 @ ensures (\forall \bigint i; 0 <= i < words.length; \dl_inLong(words[i]));
18 @ assignable words, wordsInUse , sizeIsSticky;
19 @ helper
20 @*/

21 private void expandTo(int wordIndex) {
22 int wordsRequired = wordIndex+1;
23 if (wordsInUse < wordsRequired) {
24 ensureCapacity(wordsRequired);

25 wordsInUse = wordsRequired;

26 }

27 }

The invariant is valid when expandTo(int) is called. wordIndex is the result of some integer
bitIndex divided by 64, meaning that it is at most Integer.MAX_VALUE/64. After the method
terminates, there are two different scenarios:
First, where wordIndex is smaller than wordsInUse before the method is called. In this case,
wordIndex already fitted in the logically defined length of words, and therefore nothing is changed
in words or wordsInUse. In this case, the invariant is still true.
Alternatively, the logically defined length of words has been increased. wordsInUse is increased, and
ensureCapacity(int) may increase the length of words.length to fit wordIndex. By increasing
wordsInUse without setting any new bits, words[wordsInUse-1] != 0 is no longer true, and
therefore the invariant is temporarily broken. The invariant is restored in set(int), as we set a bit
in words[wordIndex] (and wordIndex = wordsInUse-1). In order to prove that the invariant is
restored in set(int), we specifically add the clauses from the invariant here that are still true
once expandTo(int) terminates, such as the bounds of words.length (see Listing 20).

12

4.6 The private ensureCapacity(int) method

The ensureCapacity(wordsRequired) method expands the words array if wordsRequired does
not fit in the array. The method’s contract and body are visible in Listing 10:

Listing 10: The contract for the ensureCapacity(int) method, as well as the method body.

1 /*@

2 @ normal_behaviour
3 @ requires wordsRequired >= 0 & wordsRequired <= (Integer.MAX_VALUE/BITS_PER_WORD + 1);
4 @ ensures words.length >= wordsRequired;
5 @ ensures wordsToSeq() == \old(wordsToSeq());
6 @ ensures \old(words).length <= words.length;
7 @ ensures (\forall \bigint i; 0 <= i < \old(words).length;
8 @ \old(words[i]) == words[i]);
9 @ ensures \old(words.length) < words.length ==> (\forall \bigint i;

10 @ \old(words.length) <= i < words.length; words[i] == 0);
11 @ assignable words, sizeIsSticky;
12 @*/

13 private void ensureCapacity(int wordsRequired) {
14 if (words.length < wordsRequired) {
15 // Allocate larger of doubled size or required size

16 int request = Math.max(2 * words.length, wordsRequired);
17 words = Arrays.copyOf(words, request);

18 sizeIsSticky = false;
19 }

20 }

Unlike the expandTo(int) method, this method does preserve the invariant. The method may
make the words array longer, but does not change values: elements that already existed in words
remain the same, and all new elements are set to 0, as is default in BitSet.
By using assignable words, ...; the method contract shows to expandTo(int) that wordsInUse
is not changed, while the method contract shows that the values within the array are also not
altered.

4.7 The clear() method

The clear() method sets every bit in the bitset to 0. It is a simple method, but allows us to
demonstrate a loop invariant. The method and its contract are visible in Listing 11:

Listing 11: The contract for the clear() method, as well as the method body.

1 /*@

2 @ normal_behaviour
3 @ requires true;
4 @ ensures (\forall \bigint i; 0 <= i < wordsToSeq().length; wordsToSeq()[i] == 0);
5 @*/

6 public void clear() {
7 /*@

8 @ maintaining wordsInUse <= words.length;
9 @ maintaining (\forall \bigint i; wordsInUse <= i < words.length; words[i] == 0);

10 @ maintaining wordsInUse >= 0;
11 @ decreasing wordsInUse;
12 @ assignable words[*], wordsInUse;
13 @*/

14 while (wordsInUse > 0)
15 words[--wordsInUse] = 0;

16 }

When the method terminates, wordsInUse equals 0. This means that the ensures clause is trivial:

13

wordsToSeq().length equals wordsInUse*64, which means that 0 <= i < wordsToSeq().length;
is equivalent to 0 <= i < 0. Provided that we reach the normal point of termination of the method
(and no exception is raised), the ensures clause will always be true.
Before the loop is started, the class invariant is true. This tells us that 0 <= wordsInUse <= words.length
and that all words[i] from words[wordsInUse] onwards equal 0. As the loop iterates, wordsInUse
is lowered by 1 per iteration, and another element of words equals 0. We use decreasing wordsInUse;
to show that the loop eventually halts.
Unlike the loop invariant, the method contract does not specify that all elements of words equals 0.
This has two reasons.
First of all, to create the a layer of abstraction between implementation and specification, as discussed
before. But secondly, this is implicit in the class invariant: all elements of the wordsToSeq()
sequence, and thus by extension the bitset, equal 0. This means that wordsInUse must equal 0,
else (wordsInUse == 0 | words[wordsInUse - 1] != 0) would not hold. The class invariant
further tells us that all elements from words[wordsInUse] onwards must equal 0. This then tells
us that indeed every element of words must equal 0.
Verification of this method is largely trivial: KeY can verify the correctness of this method with
almost no human interactions, and unlike methods such as set(int), KeY can do so without
requiring extensions. (See Section 6.3.) As such, we do not discuss the verification of clear() in
Section 6. A proof file for this verification is provided in [Tat23].

4.8 The get(int,int) method

The get(int,int) method returns a subsequence of the current BitSet, containing all bits from
the fromIndex up to but not including the toIndex. Both fromIndex and toIndex must be
non-negative integers, and fromIndex must be less than or equal toIndex.
As we will show in Section 5.1, the get(int,int) method has a bug in it in its current form.
Assuming that this bug is resolved, get(int,int) is an interesting method to look at for formal
verification. It is one of the larger methods in the BitSet class, and verification requires a loop
invariant. Furthermore, the proof involves comparing two different sequences, namely the original
sequence and the sequence of a new BitSet.
The contract for this method can be seen in Listing 12:

Listing 12: The contract for the get(int,int) method.

1 /*@ normal_behaviour
2 @ requires fromIndex >= 0 && fromIndex <= toIndex;
3 @ ensures \result != this && \invariant_for(\result);
4 @ ensures (\forall \bigint i; 0 <= i < \result.wordsToSeq().length;
5 @ (fromIndex + i < wordsToSeq().length ? wordsToSeq()[fromIndex + i]

6 @ : 0) == \result.wordsToSeq()[i]);
7 @ ensures (\result.wordsToSeq().length < (toIndex-fromIndex)) ==>
8 @ (\forall \bigint i; \result.wordsToSeq().length <= i < (toIndex-fromIndex);
9 @ (fromIndex + i < wordsToSeq().length ? wordsToSeq()[fromIndex + i]

10 @ : 0) == 0);

11 @ assignable \nothing;
12 @*/

13 public BitSet get(int fromIndex , int toIndex) { .. }

The invariant must hold for the resulting bitset once the method has terminated. This is specified
with ensures \invariant_for(\result);.

14

The last two ensures clauses specify that the resulting bitset contains the bits it should. Firstly,
every element in result.wordsToSeq() should correspond with the same element in the original
this.wordsToSeq(). Next, if an element i is out of the scope of either sequence, then that element
should equal 0 in the other sequence. As an example: Say the user calls get(0, 100), and the
method returns a bitset with result.wordsToSeq().length = 64. This means that the bits at
positions 64-99 in the original bitset should equal 0, as this the default value of a bit that is outside
of the logical length of the BitSet.
Finally, the assignable \nothing; clause indicates that the current object is not changed in any
way.

4.9 A comparison with a different formal specification of BitSet

As mentioned in the introduction, a formal specification for the BitSet class was previously made
by Gary Leavens [Lea02]. We will briefly discuss some of the interesting similarities and differences
between the old specification and our specification.
Leavens’ specification was written between 1998 and 2002, which was before OpenJDK was released.
As a result, the specification has been written without access to the implementation details of the
BitSet class.
This specification represents the bitset using a mathematical set of integers called trueBits, a
model variable4. The trueBits sets contains an integer i if and only if i is set to true in the bitset.
In order to ensure that the set can only feature integers the normal bitset could store, the class
invariant states that each integer i in trueBits must be greater than or equal 0 and smaller than
some integer capacity, also a model variable.
The approach used with trueBits is fundamentally similar to our approach using wordsToSeq().
In both cases, the actual contents of the bitset are represented in some logical representation, where
a bit can only be set in the logical representation if and only if it is also set in the actual bitset.
Both approaches have set a limit to the size of the logical representation: the largest integer that
could be contained within trueBits must be smaller than capacity, while wordsToSeq()’s length
is wordsInUse*BITS_PER_WORD.
Interestingly, Leavens’ specification does not appear to be correct for the version of the BitSet
class discussed in this thesis.
First of all, the range of values that trueBits can store does not match the range that BitSet can
store. The class invariant states that each integer i in trueBits must be smaller than the model
integer capacity. However, capacity is a normal Java integer, and therefore must comply with
regular Java bounds of Integer.MIN_VALUE and Integer.MAX_VALUE. As a result, the largest
integer that can be stored in trueBits is Integer.MAX_VALUE-1, while BitSet can also store
Integer.MAX_VALUE. In Section 5 we will discuss issues this causes, but in BitSet’s current form
setting the Integer.MAX_VALUE bit is still possible, and thus it should also be possible in the
logical representation of BitSet.
Next, Leavens’ specification of the get(int,int) method is not satisfied by the current implemen-
tation of the method. In Leaven’s specification, the get(int, int) method returns a bitset where
the requested bits are in the same position in the resulting bitset (\result) as they were in the

4A model variable is a variable that only exists in the JML specification, and is used in a similar way to how a
model method is used.

15

original bitset. However, as we showed in the example in Section 3, this is not the case: When we
call bset.get(10,20), the value of the bit stored at index 10 in bset is now stored at position 0
in \result, not position 10 as specified by Leavens.

5 Issues in BitSet

Through the use of formal specification combined with testing, we discovered a number of issues
that are currently present in the BitSet class. We discuss these issues here, and suggest potential
solution directions.

5.1 A bug in get(int,int)

The first bug occurs in the get(int fromIndex, int toIndex) method5. The first set of lines
from this method are visible in Listing 13:

Listing 13: Beginning of the get(int, int) method, where the first bug occurs.

1 public BitSet get(int fromIndex , int toIndex) {
2 checkRange(fromIndex , toIndex);

3

4 checkInvariants();

5

6 int len = length();
7

8 // If no set bits in range return empty bitset

9 if (len <= fromIndex || fromIndex == toIndex)
10 return new BitSet(0);
11

12 // An optimization

13 if (toIndex > len)
14 toIndex = len;

15 ...

The length() method returns the position of the most significant bit set to 1 plus 1.6 For example,
if the user sets bit 200 in a previously empty BitSet, then the length() method will return 201.
If the user sets the bit at index Integer.MAX_VALUE, then the length() method will return
the integer Integer.MAX_VALUE+1, which overflows to Integer.MIN_VALUE. This is by itself not
necessarily an issue, depending on your interpretation of the specification of length(), but does
cause an issue in the get(int,int) method.

Listing 14: Example of how the bug can occur with get(int,int).

1 BitSet bset = new Bitset(0);
2 bset.set(Integer.MAX_VALUE);

3 bset.set(999);

4 BitSet result = bset.get(0,1000);

Listing 14 shows an example of this bug occurring in get(int,int). The expected behaviour
would be that result is a bitset with with logical length 1000 and which has bit 999 set. Instead,
result has logical length 0 and has no bits set.

5This bug report has been accepted by Oracle, see JDK-8305734.
6This is the intended behaviour. This is not true if wordsInUse is set incorrectly, see Section 5.2.

16

https://bugs.openjdk.org/browse/JDK-8305734

bset.length() returns Integer.MIN_VALUE, because Integer.MAX_VALUE is set. The check
len <= fromIndex on line 9 in the get(int,int) method then always evaluates to true, as
Integer.MIN_VALUE is smaller than any non-negative signed integer in Java. This means that
result is the empty bitset. The actual behaviour of bset.get(x,y) is that the method always
returns the empty bitset when 0 <= x <= y, regardless of the value of x and y.

Interestingly, this bug does not appear to be an issue in other methods where length() is called.
As an example, we show a section of BitSet’s public previousSetBit(int) method in Listing 15:

Listing 15: A part of the previousSetBit(int) method, length() is also called but this bug does
not occur.

1 public int previousSetBit(int fromIndex) {
2 ...

3 int u = wordIndex(fromIndex);
4 if (u >= wordsInUse)
5 return length() - 1;

length() is only called when u is larger than or equal to wordsInUse. When length() over-
flows, the bit at position Integer.MAX_VALUE is set, in words[Integer.MAX_VALUE/64]. This
means that wordsInUse equals Integer.MAX_VALUE/64+1, which is the upper bound we gave
wordsInUse in Section 4.2. fromIndex is an integer, and thus is at most Integer.MAX_VALUE. As
wordIndex(fromIndex) returns fromIndex/64 here, u is at most Integer.MAX_VALUE/64. If the
value of length() overflows, then u will always be smaller than wordsInUse, as u is always smaller
than Integer.MAX_VALUE/64+1.
get(int,int) is the only method where length() is called without checking wordsInUse, and
thus the only method where the length() may overflow when being called.

5.2 Bugs resulting from the valueOf(..) methods

The next issue stems from the valueOf(..) methods7. We focus on the long[] method, but the
same bug exists for the overloaded methods for LongBuffer, ByteBuffer and byte[]. The code
for this method is visible in Listing 16.

Listing 16: The valueOf(long[]) method and the private constructor it uses.

1 private BitSet(long[] words) {
2 this.words = words;
3 this.wordsInUse = words.length;
4 checkInvariants();

5 }

6 ...

7 public static BitSet valueOf(long[] longs) {
8 int n;
9 for (n = longs.length; n > 0 && longs[n - 1] == 0; n--)

10 ;

11 return new BitSet(Arrays.copyOf(longs, n));
12 }

The valueOf(long[] longs) method takes in the longs array. Before calling the private con-
structor, valueOf(long[]) lowers n until either n equals 0 or longs[n-1] contains at least 1 set
bit. The first n elements of longs are then copied to and stored in the new bitset instance. The

7This bug report has been accepted by Oracle, see JDK-8311905.

17

https://bugs.openjdk.org/browse/JDK-8311905

value n is then used as wordsInUse. Because either n = 0 or longs[n-1] != 0, the condition
(wordsInUse == 0 || words[wordsInUse - 1] != 0) of the invariant made true. Similarly,
this also ensures that the other two conditions of checkInvariants() are true. As a result, the call
to checkInvariants() in the private constructor will always pass. The valueOf(long[] longs)
method does not have any specific requirements for longs: Any non-null array longs will be
converted to a BitSet.
While checkInvariants() passes, this method can create bitset instances that cause issues in other
methods. Specifically, this occurs when the method passes a longs array to the private constructor
that is larger than our defined bounds for words.length and wordsInUse. (See Section 4.2.) In
Listing 17 we show an example of bitset created with such a longs array.

Listing 17: Example of how the bug can occur with valueOf(long[]).

1 static final int MAX_WIU = Integer.MAX_VALUE/64 + 1;
2 BitSet normal = new BitSet();
3 normal.set(0);

4 long[] largeArray = new long[2*MAX_WIU + 1];
5 largeArray[largeArray.length - 1] = 1;

6 BitSet broken = BitSet.valueOf(largeArray);

7 broken.set(0); // to ensure that broken.get(0) equals normal.get(0).

The MAX_WIU is the bound of wordsInUse as defined in Section 4.2. The BitSet class can
only access elements of the array up to largeArray[MAX_WIU-1]. As a result, the bit set in
largeArray[2*MAX_WIU] on line 5 is not accessible to broken.
The equals(Object obj) method is specified to say that two bitsets are equal ”if and only
if ... for every non-negative int index k, ((BitSet)obj).get(k) == this.get(k), must be
true.” [Bit] However, this is not the case here: the method returns false, yet for every non-negative k,
normal.get(k) equals broken.get(k). Furthermore, the length() method says both bitsets have
the same logical length 1.
When we examine the resulting value from length() of broken, we find that the return value did
not only overflow to Integer.MIN_VALUE (as we discussed previously), but has then gone back up
to 1. This phenomenon is not limited to this example: an array with length 4*MAX_WIU+1 with the
same bit set in the last word will also state that the logical length is 1, as in this case the resulting
value of the length() has wrapped around twice. In fact, with this overflow it is possible to to
have length() return any value in the bounds of a 32 bit signed integer. This overflow will happen
whenever wordsInUse is higher than MAX_WIU, as wordsInUse is used to calculate the return value
of length(). (See Listing 18)

Listing 18: The length() method. The return value is calculated using wordsInUse.

1 public /*@ strictly_pure @*/ int length() {
2 if (wordsInUse == 0)
3 return 0;
4

5 return BITS_PER_WORD * (wordsInUse - 1) + (BITS_PER_WORD - Long.numberOfLeadingZeros(words[
wordsInUse - 1]));

6 }

The value of BITS_PER_WORD * (wordsInUse-1), where wordsInUse is greater than
Integer.MAX_VALUE/64 + 1 (and BITS_PER_WORD equals 64), will always be larger than the
maximum value that fits in an 32 bit signed integer.
This overflow issue in length() persists when interacting normally with the BitSet; if the user sets

18

a bit i > 0 in broken using broken.set(i), then the expected behaviour would be that length()
would return i+ 1. Instead it remains at 1, as the value of wordsInUse was not changed,because
the value of wordsInUse is higher than any value (MAX_WIU or lower) that BitSet would ever
normally assign to it.
This issue in the valueOf(..) methods does not appear to be a mistake in the implementation.
Based on the specification of the methods, a user could use the class to for example convert a
LongBuffer to a long array: the user uses the valueOf(LongBuffer) method to get a bitset based
on the valueOf(LongBuffer), and then uses BitSet’s toLongArray() method to then convert
it to a long array. The implementation of the methods also allows for this, provided that the last
element of the long buffer has at least one bit set.
Instead, this issue is caused by a mistake in the (informal) specification of the methods. It also nicely
demonstrates the usefulness of formal specifications: Having determined the (normal) bounds for
wordsInUse, we were able to spot that this was a potential issue with the valueOf(..) methods,
which we confirmed through testing, using these bounds.

5.3 Solution directions

Using the class invariant as discussed in Section 4.2, we can now discuss solution directions to the
issues discussed previously. We split the discussion up into two main directions: One where the
BitSet class still allows the user to set the Integer.MAX_VALUE bit, and one where that becomes
forbidden. We will also discuss the advantages and disadvantages of both approaches.

Permit using the Integer.MAX VALUE bit

In most cases, using the Integer.MAX_VALUE bit is fine. The main issues in the current implemen-
tation rise from length() and get(int,int).
First of all, Java’s documentation states that the length() method “[r]eturns the “logical size” of
this BitSet: the index of the highest set bit in the BitSet plus one” [Bit]. In the case of the “highest
set bit” being Integer.MAX_VALUE, this specification is at best ambiguous, as a negative value is
not generally expected for a “logical size”. The specification should clarify that either some special
value is returned for this scenario (such as Integer.MIN_VALUE), or for example that the resulting
value should be interpreted as an unsigned integer.
Next, a two-line addition to the code can fix the bug in get(int,int). We show this in Listing 19:

Listing 19: A possible solution to the bug in get(int,int).

1 ...

2 int len = length();
3 if (len < 0)
4 len = Integer.MAX_VALUE;

5

6 // If no set bits in range return empty bitset

7 if (len <= fromIndex || fromIndex == toIndex)
8 return new BitSet(0);
9

10 // An optimization

11 if (toIndex > len)
12 toIndex = len;

13 ...

19

Our fix is on the lines 3-4. This two-line change only corrects the internal implementation of the
method, and does not affect the method specification or the class specification. As a reminder, the
method goes up to but not including toIndex. As a result, the highest index that the method can ever
access is Integer.MAX_VALUE-1, as toIndex can never be higher than Integer.MAX_VALUE. Be-
cause of this, there is no difference to the method between length() returning Integer.MAX_VALUE
or returning Integer.MAX_VALUE+1 (assuming this would not cause an overflow). In both cases,
the comparison toIndex > len on line 11 will always evaluate to false.
Finally, in order to fix the issues caused by valueOf(..), the class should prevent wordsInUse be-
coming too large. One way of doing this is by having valueOf(..) throw an IllegalArgumentException
if the array is longer than MAX_WIU. Alternatively, the method either ignore or discard elements
after words[MAX_WIU-1]. Both of these changes require a change in the methods’ specification.

Forbid using the Integer.MAX VALUE bit

Forbidding setting the Integer.MAX_VALUE bit immediately prevents the length() method over-
flowing in normal bitset instances. As a result, the bug in get(int,int) is then also immediately
solved.
This change also solves an issue that exists between methods with one parameter, and those with two.
We take get(int) and get(int,int) as our example. Using get(int), we can access the bit at in-
dex Integer.MAX_VALUE. However, we cannot do the same in get(int fromIndex, int toIndex),
because the method does not access the toIndex bit. By forbidding access to the Integer.MAX_VALUE
bit, both one parameter and two parameter methods can access the same bits within the bitset.
The issue caused by valueOf(..) is not automatically solved by prohibiting access to the
Integer.MAX_VALUE bit. Instead, solutions can be used as discussed in the previous section.
In this case, the implementation of valueOf(..) may need to take extra care when loading in a
large array: if the Integer.MAX_VALUE bit is set in the array that is loaded in, then that would
still cause length() to overflow.

Discussion

The first solution direction represents the smaller change to the BitSet class. The get(int,int)
bug can be fixed internally without changing the method’s specification. The length() method’s
specification will change, but only to clarify behaviour that already existed. Assuming it is specified
that Integer.MAX_VALUE being set means Integer.MIN_VALUE is returned, it should not change
the way length() is currently used.
On the contrary, banning setting the Integer.MAX_VALUE bit represents a big change in the BitSet
class. It alters one of the most fundamental parts of the specification of the class, namely that
“[t]he bits of a BitSet are indexed by non-negative integers.”[Bit]. It requires a lot of methods to be
changed both in specification and implementation, such as by having them raise an exception when
the user tries to access the Integer.MAX_VALUE bit. This may also break existing code using the
BitSet class that relies on using all 231 bits. In our opinion, the main advantage of this alternative
direction, aside from preventing the overflow in length(), is that two parameter methods such as
get(int,int) can access the same set of bits as single parameter methods such as get(int) can.
The changes to the valueOf(..) methods prevents bitset instances being created that do not behave
as expected. The behaviour is not changed if the user calls the methods with a valid parameter, i.e.

20

such as an array that fits within the bounds of MAX_WIU. A user who uses a parameter that is too
big for the class will now see a change, such as an exception being raised or part of the parameter
being left out. In our view, this change is necessary, as the broken instance does not behave as
expected by the class specification.

6 Towards Formal Verification

Full formal verification of BitSet’s correctness is not currently possible. First of all, due to the bug
in get(int,int), BitSet is currently not correct. More importantly, a major issue with formal
verification is that any proofs obtained can be discarded if the code or the specification is changed.
In the BitSet class, this is very likely to happen.8 Not only does the get(int,int) method need
fixing, but larger parts of the class may change depending on the chosen solution direction from
the previous discussion.
That being said, our chosen theorem prover, KeY, also currently requires some improvements and
extensions before it can be used to fully verify this class. We will discuss why these are needed,
and then we will explain some of the rules we have come up with. We will use these rules to
verify the correctness of the current implementation of the set(int) method, to demonstrate their
usefulness. We also sketch out a proof for the get(int,int) method, by providing a loop invariant
and explaining part of what is required to complete the proof of the method.

6.1 Background

We add the bounds that we found in Section 4.2 for words.length and wordsInUse to the class
invariant. (See Listing 20.) For the rules we created, we need the information that each element of
the words fits in the primitive type long. We were not able to show this by itself in KeY. Instead,
we added this information to the invariant using the “escape-sequence”[ABB+16] \dl_inLong(..).
This is not an original part of JML, but is an extension that allows us to make short statements
that KeY can understand.

Listing 20: The full class invariant, including our bounds. An extension of Listing 5.

1 /*@ invariant
2 @ words != null &
3 @ // The first three are from checkInvariants:

4 @ (wordsInUse == 0 || words[wordsInUse - 1] != 0) &&

5 @ (wordsInUse >= 0 && wordsInUse <= words.length) &&

6 @ (wordsInUse == words.length || words[wordsInUse] == 0) &&

7 @ // Our addition to the invariant:

8 @ (wordsInUse < words.length ==>
9 @ (\forall \bigint i; wordsInUse <= i < words.length; words[i] == 0)) &&

10 @ // wordsInUse is bounded by the last word BitSet can set a bit in:

11 @ (wordsInUse <= (Integer.MAX_VALUE/BITS_PER_WORD + 1)) && // +1 is to round up.

12 @ // words.length is bounded by 2*wordsInUse’s bound (See ensureCapacity.)

13 @ (words.length <= 2*(Integer.MAX_VALUE/BITS_PER_WORD + 1)) &&

14 @ // For the various taclets we have added, we require the assumption that

15 @ // each array element of words is inLong. However, we were not able to

16 @ // automatically show this in KeY itself.

17 @ (\forall \bigint i; 0 <= i < words.length; \dl_inLong(words[i]));
18 @*/

8We have reported the bugs to Oracle, and opened a pull request with our two-line fix for get(int,int). See
https://github.com/openjdk/jdk/pull/13388.

21

https://github.com/openjdk/jdk/pull/13388

6.2 The KeY theorem prover

KeY is a theorem prover designed with Java formal verification in mind. It can take Java code
annotated with JML as input, and converts it to Java Dynamic Logic (JavaDL) [BKW16]. Using
this, we can then work to verify the correctness of the JML specifications.
When we load a method and contract into KeY, the first step is to run the ‘Finish Symbolic
execution’ macro. This macro goes through the method in the same way Java would execute the
method, but with generic parameters instead of specific values. The macro splits the proof goal up
whenever multiple options exist, usually depending on the values of the parameters. As an example,
when the macro encounters an if-statement in the code, it will split the proof into a goal where the
condition in the if-statement was true and one where it was false. Array accesses are also split into
three possible goals: one where the array is null (raising an NullPointerException), one where
the array access is out of bounds (raising an ArrayIndexOutOfBoundsException), and one where
the array access is valid and does not cause any issues.
Based on our selected settings (see Table 1), if another method is called (in the body of the current
method) and this method has a contract, the prover uses this contract: it needs to show that the
pre-conditions of the contract hold here, and then the post-condition of the contract is assumed to
be true and can be used to continue the proof. Because we assume the other contract is true when
we use it here, we should first verify that other contract before using it here.
In our selected settings, loop invariants are split off into two proof goals: The prover first needs to
show that the invariant is true when we initially reach the loop. Next, we then need to prove that
the loop holds after an abstract amount of iterations.
In Section 6.4, we discuss rules that we have added to the KeY ruleset. We show a simple example
in Listing 21, to explain the format:

Listing 21: An example of a rule we created for our proofs.

1 // x | y = 0

2 // This is true iff x = 0 and y = 0.

3 orLongZero {

4 \schemaVar \term int x;
5 \schemaVar \term int y;
6 \assumes(inLong(x), inLong(y) ==>)
7 \find(moduloLong(binaryOr(x, y)) = 0)
8 \sameUpdateLevel
9 \replacewith(x = 0 & y = 0)

10 \heuristics (userTaclets2)
11 };

The assumes clause contains terms or formulas that must be present in the current proof in order
to apply the goal. The user then clicks on the term or formula in the find(..) clause, and this
rule will appear as an option, provided that the assume clause is present. The replacewith(..)
clause then shows what the selected term or formula is replaced with. Alternatively, the rule could
have an add(..) clause, which adds extra information to the current goal.

For our verification, we use KeY version 2.10.0. The settings used are visible in Table 1.

22

Table 1: The Proof Search Strategy (left) and Taclet Options (right) used in KeY.
Max. Rule Applications Various values* JavaCard Off
Stop at Default Strings On
One Step Simplification Disabled Assertions Off*
Proof splitting Delayed Bigint On
Loop treatment Invariant (Loop scope) Initialisation disableStaticInitialisation
Block treatment Internal contract intRules javaSemantics
Method treatment Contract integerSimplification. Full
Merge point statements Merge javaLoopTreatment Efficient
Dependency contracts On mergeGenerateIsWeak. Off
Query treatment Off methodExpansion modularOnly
Expand local queries On modelFields treatAsAxiom
Arithmetic treatment Basic / DefOps* moreSeqRules On
Quantifier treatment No splits with progs permissions Off
Class axiom rule Off programRules Java
Auto induction Off reach On
User-specific taclet sets All off runtimeExceptions Ban

sequences On
wdChecks Off
wdOperator L

We will elaborate on the options marked with an asterisk (*):

• Max. Rule Applications: Depending on the situation, we want to use different amounts of rule
applications. If we want to have KeY work on a lot of different goals, but want to avoid KeY
getting stuck on one goal it cannot prove automatically for too long, then we may lower the
rule count. If we are working on one specific goal and know it can be proven automatically
from here, then we may increase the count.

• Arithmetic treatment: When using the ‘Finish Symbolic execution’ macro, we want to use
the Basic option. If the DefOps option is on, then the macro will try to simplify calculated
values, which results in proof goals being a lot less human-readable.
As an example: the bound MAX_WIU, which equals Integer.MAX_VALUE/64 +1, is simplified to
-2147483648 + (1 + (2147483648 + jdiv(2147483647, 64)) % 4294967296) % 4294967296.
This change makes little to no difference to KeY, but does make it a lot harder for us as users
to determine what we are working with.

• Assertions: The code features assertions made in Java (assert(..)) in checkInvariants().
However, these assertions have all been used in our class invariant. Therefore, by verifying
the correctness of the invariant, we prove that these assertions will also always pass.

6.3 Required extensions to KeY

In its current form, KeY does not support verification of code involving bitwise operations, such
as in the set(int) or get(int,int) methods. Firstly, bit shift operations such as the << used in

23

set(int), cause KeY’s ‘Finish Symbolic execution’ macro to get stuck in a loop, as it endlessly
applies rules to the shift term. Workarounds do exist for this, such as manually unfolding the shift
term or by hiding the term until the macro is done, but this comes at the cost of more manual
interactions.
More importantly, KeY’s ruleset is currently not complete for bitwise operators such as binaryAnd
or binaryOr.9 It has rules for simple cases such as binaryOr(0, x) or binaryAnd(1, x), but not
for two generic variables. As a result, it is not possible to verify the correctness of the set(int)
and get(int,int) methods in the current form of KeY.
There are different options for solving this problem. The terms could be translated to an SMT
solver (see Section 2), or we can add rules to KeY.
In our case, we chose for the second option, developing a set of narrow rules that allow us to verify
the correctness of the set(int) method. It may be possible to develop a general theory involving
binaryAnd and binaryOr operators, but in our case this does not appear to be necessary. As
discussed earlier, we use our wordsToSeq() model method to represent the bitset as a sequence of
individual bits. When talking about one element of the wordsToSeq(), we are discussing a single
bit. We can use this knowledge to make less general, but more simple rules. We will discuss these
rules below, as we discuss the verification of the set(int) method.

6.4 Verification of the set(int) method

As a reminder, the method body and contract of set(int) is listed in Listing 22, as well as the
method contract of expandTo(int):

Listing 22: The set(int) method, as well as the expandTo(int) method contract.

1 /*@ normal_behaviour
2 @ requires
3 @ wordIndex >= 0 & wordIndex <= Integer.MAX_VALUE/BITS_PER_WORD; // BITS_PER_WORD = 64

4 @ requires \invariant_for(this);
5 @

6 @ ensures wordIndex < \old(wordsInUse) ==>
7 @ words == \old(words) & wordsInUse == \old(wordsInUse);
8 @ ensures wordIndex >= \old(wordsInUse) ==> wordsInUse == wordIndex+1;
9 @ ensures wordIndex < words.length; // Implies: wordsInUse <= words.length (invariant)

10 @ // Parts required to restore the invariant:

11 @ ensures (\forall \bigint i; 0 <= i < \old(wordsInUse); words[i] == \old(words[i]));
12 @ ensures (\forall \bigint i; \old(wordsInUse) <= i < words.length; words[i] == 0);
13 @ ensures words != null & words.length >= \old(words).length;
14 @ ensures wordsInUse <= (Integer.MAX_VALUE/BITS_PER_WORD + 1);
15 @ ensures words.length <= 2*(Integer.MAX_VALUE/BITS_PER_WORD + 1);
16 @ ensures (\forall \bigint i; 0 <= i < words.length; \dl_inLong(words[i]));
17 @ helper
18 @*/

19 private void expandTo(int wordIndex) { .. }
20

21 ..

22

23 /*@

24 @ normal_behaviour
25 @ requires
26 @ bitIndex >= 0;

27 @ ensures wordsToSeq()[bitIndex] == 1;
28 @ ensures (\forall \bigint i; 0 <= i < \old(wordsToSeq()).length & i != bitIndex;
29 @ wordsToSeq()[i] == \old(wordsToSeq())[i]);

9This was also discussed in [Pfe17].

24

30 @ ensures \old(wordsToSeq()).length < wordsToSeq().length ==>
31 @ (\forall \bigint k;
32 @ \old(wordsToSeq()).length <= k < wordsToSeq().length & k != bitIndex;
33 @ wordsToSeq()[k] == 0

34 @);

35 @*/

36 public void set(int bitIndex) {
37 if (bitIndex < 0)
38 throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);
39

40 int wordIndex = wordIndex(bitIndex);
41 expandTo(wordIndex); // helper method -> may brake the invar.
42

43 words[wordIndex] |= (1L << bitIndex); // Restores invariants

44

45 checkInvariants();

46 }

The contract for expandTo(int) has been proven correct. The proof for this can be found at [Tat23].

Newly created rules

KeY allows users to verify newly created rules. This can easily be done for rules that simplify
specific cases. As an example, see Listing 23:

Listing 23: The PowTwoNeqZero rule, which adds additional information to the list of assumptions.

1 PowTwoNeqZero {

2 \schemaVar \term int i;
3 \assumes(i >= 0 ==>)
4 \find(pow(2, i % 64))
5 \sameUpdateLevel
6 \add(pow(2, i%64) != 0 ==>)
7 \heuristics(userTaclets1)
8 };

Rather than proving that this is true each individual time that comes up, we prove that the rule is
correct once and can then simply use this rule. In order to verify that this rule is correct, we make
use of KeY’s existing ruleset.10

However, it is not possible to verify the rules we introduce to handle the binaryOr and binaryAnd
operators inside of KeY, because we are extending KeY’s ruleset in order to reason with these
operators. When making these rules, we have attempted to limit their scope as much as possible,
while still allowing us to use them to verify set(int). This involves using the inLong(..) or
inInt(..) escape-sequences in the assumptions, as well as limiting our rules to setting a single bit
(as is done by set(int)).
This avoids the scenario where the rules may be correct when used in the context of a Java
programme, but are not correct when allowing any mathematical number (as is possible in KeY).
As an example, we look at the orLongZero rule (see Listing 21). In Java, the OR of two variables of
type long equalling zero must mean that both of these variables separately both equal 0. This rule is
used to verify part of the invariant, specifically wordsInUse = 0 | words[wordsInUse-1] != 0.
In Java, 2*Long.MAX_VALUE+2 will overflow to 0. As a result,
moduloLong(binaryOr(2*Long.MAX_VALUE+2, 0)) equals 0. However, it is false to state that
this implies that the mathematical integer 2*Long.MAX_VALUE+2 equals 0. By assuming inLong(x)
in orLongZero, we prevent this situation, as inLong(2*Long.MAX_VALUE+2) is false.

10We do not discuss such rules here. We have provided proof files for these rules in [Tat23].

25

The following three rules that we have created apply to the words[wordIndex] |= (1L << bitIndex);
operation. Note that words[wordIndex] is a 64 bit signed number, written in 2’s complement.
When this operation occurs, there are three different possible execution paths of the programme.
Our rule splits the current proof goal up into these three paths, and is visible in Listing 24:

Listing 24: The binaryOrSingleBit rule, which splits the current proof up into 3 possible goals.

1 binaryOrSingleBit {

2 \schemaVar \term int x;
3 \schemaVar \term int i;
4 \assumes(inLong(x), inInt(i), i >= 0, i <= 63 ==>)
5 \find(binaryOr(x, moduloLong(shiftleft(1, i))))
6 \sameUpdateLevel
7 // bit is already set -> OR has no effect.
8 "Bit already set": \replacewith(x) \add(unsignedshiftrightJlong(x, i)%2 = 1 ==>);
9 // Set the non-sign bit -> add the new bit = 2ˆi. i must be smaller than 63 for this.

10 "Bit not yet set": \replacewith(x + pow(2, i))
11 \add(unsignedshiftrightJlong(x, i)%2 = 0, inLong(x + pow(2, i)), (x + pow(2, i))

<= long_MAX , i < 63 ==>);
12 // Set the sign bit -> convert the number from positive to negative 2’s comp.
13 // This is also only the case iff i = 63, so we add this to the list of assumptions.

14 // Note: It is given that x >= 0, as otherwise the sign bit would already be set.

15 "Set the sign bit": \replacewith(long_MIN + x)
16 \add(unsignedshiftrightJlong(x, i)%2 = 0, x >= 0, inLong(long_MIN + x), (long_MIN

+ x) < 0, i = 63 ==>)
17 \heuristics (userTaclets2)
18 };

We will explain each case:

• Firstly, the bit may already be set. In this case, the value of this bit, and therefore
words[wordIndex] as whole, will the same as before the assignment. When we shift words[wordIndex]
to the right (including the sign bit) and only take the bit at position bitIndex, then we
know that it is 1.

• Next, if we set a bit that is not the sign bit, then we add 2(bitIndex%64) to the original
value of words[wordIndex]. This applies both if words[wordIndex] is positive and if it is
negative. Note also that no overflow will happen to words[wordIndex] here: the bit was not

previously set, so adding 2(bitIndex%64) will only flip the bit at position bitIndex %64 to
1, and thus will not trigger a larger cascade of bits being flipped within words[wordIndex].

Furthermore, because we specify that bitIndex %64 is smaller than 63, 2(bitIndex%64) also
does not overflow.

• Finally, if we set the sign bit, then words[wordIndex] goes from a positive number to a
negative number. A similar logic applies here as above. Note that 263 when stored in a
primitive long in Java will overflow to Integer.MIN_VALUE.
We know that the sign bit was not set previously, which tells us that words[wordIndex] was
non-negative before the |= .. operation.

We have specified our contract using wordsToSeq() and therefore our proof also involves wordsToSeq().
To access a bit k located within an element of words, we shift the element words[k/64] to the
right (including the sign bit) by k % 64, and then apply & 1 11 to this to get the specific bit k.

11Note: n & 1 is equivalent to n % 2 for an n that fits in a long. KeY’s binaryAndOne rule uses this equivalence.

26

Altogether this is (words[k/64] >>> (k%64)) & 1.
If the |= (1L << bitIndex) has been applied to this element words[k/64], then we need addi-
tional rules to deal with newly added + pow(2, k) or long_MIN from the binaryOrSingleBit
rule.

First, we look at the second case, where a bit other than the sign bit is set. We split this into two
new cases, see Listing 25:

Listing 25: The handleUnSHRlong rule, which splits the current proof up into 2 possible goals,
when a non-sign bit has been set.

1 handleUnSHRlong {

2 \schemaVar \term int x;
3 \schemaVar \term int i;
4 \schemaVar \term int j;
5

6 \assumes(inLong(x), inLong(x + pow(2, i)), inInt(i), i >= 0, i < 63, inInt(j),
7 j >= 0, j <= 63, unsignedshiftrightJlong(x, i)%2 = 0 ==>)
8 \find(unsignedshiftrightJlong(x + pow(2, i), j))
9 \sameUpdateLevel

10 // With the SHR and the AND later, we will ’forget’ the set bit.

11 "i != j": \add(unsignedshiftrightJlong(x + pow(2, i), j) % 2
= unsignedshiftrightJlong(x, j) % 2, i != j ==>);

12 // We are looking at the set bit -> it will be set to 1.
13 "i = j": \add(unsignedshiftrightJlong(x + pow(2, i), j) % 2 = 1, i = j ==>)
14 \heuristics (userTaclets2)
15 };

If our bit k does not equal bitIndex, then we know that this bit has not been changed with the
|= .. operation. Furthermore, shifting pow(2, i) by an amount that does not equal i will always
result in either an even number (i > j) or 0 (i < j). In both cases, this number % 2 will equal 0.
Therefore, isolating this bit will result in the same value as if this assignment was never made.
If our bit k equals bitIndex, then we know that this bit has been set by the |= ... As a result,
we know that shifting by k to the right and isolating the last bit will result in 1.
An important item in the list of assumptions is unsignedshiftrightJlong(x, i)%2 = 0. This
says that the bit that we are looking at (by shifting i positions) is not set in the x, in other words the
bit was not set in the original value of words[wordIndex]. Having used the binaryOrSingleBit,
this is a given. However, without this assumption, the handleUnSHRlong rule would not be correct.
As an example, we take x = 1 and i = 0. Here, the bit at position i is already set in x. When
adding pow(2, i), we get x+2i = 1+20 = 1+1 = 2. In the case of i = j (= 0), this would then
say that unsignedshiftrightJlong(2, 0) % 2 = 1, which is not correct. By assuming that the
bit was not set in x, we know that the bit i is set in x + pow(2, i) by the pow(2, i).

Next, we look at the third case, where we have set the sign bit. We again split this into two new
cases, see Listing 26:

Listing 26: The handleSignSHRLong rule, which splits the proof up into 2 possible goals when the
sign bit has been set.

1 handleSignSHRLong {

2 \schemaVar \term int x;
3 \schemaVar \term int j;
4 \assumes(inInt(j), j >= 0, j <= 63, inLong(x), x >= 0 ==>)
5 \find(unsignedshiftrightJlong(long_MIN + x, j))

27

6 \sameUpdateLevel
7 // We know that the sign bit has been set -> the bit = 0.
8 "j = 63": \replacewith(1) \add(j = 63 ==>);
9 // The sign bit has been set, but we not isolating the sign bit -> no change

10 // compared to the orignal value.

11 "j < 63": \add(unsignedshiftrightJlong(long_MIN + x, j) % 2 = unsignedshiftrightJlong(x,
j) % 2, j < 63 ==>)

12 \heuristics (userTaclets2)
13 };

Unlike in the handleUnSHRlong rule, we do not explicitly assume unsignedshiftrightJlong(x, i)%2 = 0
here. Instead, we assume x >= 0. By assuming this, we state that the sign bit was not set in x (else x
would be negative), and therefore we implicitly assume that unsignedshiftrightJlong(x, 63)%2 = 0.
It is also worth noting that long_MIN + x is smaller than 0. x is at most long_MAX, and
long_MIN + long_MAX = -1.
If our bit k equals bitIndex, then they both refer to the sign bit. By (unsigned) shifting a 64 bit
number by 63, the result equals the sign bit. As we have set the sign bit (and as long_MIN + x is
a negative number), it therefore equals 1.
If our bit k is not equal to bitIndex, then again this bit has not been altered, and thus equals the
value of the bit in the original words[wordIndex]. As with the handleUnSHRlong rule, shifting
long_MIN by less than 63 will result in an even number, and therefore long_MIN % 2 will again
equal 0.

Rules application in the set(int) proof

The first goal of the set(int) method is that the bit specified by bitIndex is set, or formally:
ensures wordsToSeq()[bitIndex] == 1;.
In the case of the bit already being set before set(int) was called, wordsToSeq()[bitIndex]
already equalled 1, and this will stay the case.
In the case of a non-sign bit being set, then the handleUnSHRlong rule is used. The goal of i != j
is automatically closed, as both i and j refer to bitIndex. The goal of i = j again results in
1 = 1, and so is closed.
Finally, if the sign bit is set, the rule handleSignSHRLong is used, and so the bit we refer to in this
element of words, in other words bitIndex % 64, equals 63. The goal j = 63 produces 1 = 1,
which is closed automatically. Similarly, the goal j < 63 is closed automatically, as we create a
contradiction when we we assume that bitIndex % 64 both equals and is smaller than 63.

The second goal is that all other bits that already existed in the wordsToSeq() sequence remain un-
changed, as specified with ensures (\forall \bigint j; 0 <= j < \old(wordsToSeq()).length
& j != bitIndex; wordsToSeq()[j] == \old(wordsToSeq())[j]);. Here, the |= .. has been
applied to the wordsToSeq(), while the \old(wordsToSeq()) refers to the sequence before
the set(int) method was called. For this goal, we use expandTo(int)’s contract: when the
method terminates, the new value of words[i] equals the original value of words[i] before
expandTo(int) was called, for all 0 ≤ i ≤ \old(wordsInUse). This means that the logically
defined elements of words, aside from words[wordIndex], have not been changed. For these ele-
ments, this goal is trivial to prove: the entire word has not been changed (and \old(wordsInUse)
≤ wordsInUse, per expandTo(int)’s contract), so by extension the bit has not been changed and
thus \old(wordsToSeq())[j] equals wordsToSeq()[j].

28

If bit j is located within words[wordIndex], then we need to show that this specific bit j has not
been altered.
In the first case of the bit already being set, the binaryOr(words[wordIndex], ..) is replaced
with words[wordIndex], as it has not been changed. In this case, the entire wordsToSeq() sequence
is the same as \old(wordsToSeq()), and bit j specifically is unchanged, leading to the goal being
closed.
In the case of a non-sign bit being set, we use the handleUnSHRlong rule. The i != j case says that
our bit at position j has not been changed, which is why the + pow(2, i) is removed. This then
shows that wordsToSeq()[j] equals the original value. The i = j case is closed automatically, as
we have specified in the initial goal that j != bitIndex.
In the case of the sign bit being set, we know that bit j in words[wordIndex] refers to a non-sign
bit, so we know that j % 64 is smaller than 63. This then automatically causes a contradiction with
j = 63 case from handleSignSHRLong, resulting in that case being closed automatically. In the
case with j < 63, we again can remove the added part from the binaryOr, in this case removing
the long_MIN, telling us that wordsToSeq()[j] remains unchanged.

The third goal is that all new bits in the wordsToSeq() sequence that equal 0, aside from the bit as
position bitIndex. Formally this is: ensures \old(wordsToSeq()).length < wordsToSeq().length
==> (\forall \bigint k; \old(wordsToSeq()).length <= k < wordsToSeq().length

& k != bitIndex; wordsToSeq()[k] == 0); As a reminder, bits that were not previously de-
fined in a bitset are set to 0 by default.
As with the previous goal, we use expandTo(int)’s contract: After expandTo(int) terminates,
words[i] equals 0 for all \old(wordsInUse) ≤ i ≤ words.length. As with the previous goal, if
bit k is not located in words[wordIndex], then the element of words it is in equals 0, and thus
bit k is also set to 0.
If the bit k is located within words[wordIndex], then we again need to show that bit k has not
been set and thus equals 0. This proof is analogous to the proof as explained for the second goal,
but in each case we now show that wordsToSeq()[k] equals 0.

6.5 Proof sketch of the get(int,int) method

We will now sketch out the proof of the correctness of the get(int,int) method. For the purposes
of this exposition, we assume the bug in the method has been fixed using our suggested fix. We
also assume that the valueOf(..) bug cannot occur, and therefore that we can use the bounds to
words and wordsInUse as shown in Listing 20. The contract and body of the method is visible in
Listing 27. We mainly focus on the parts of the proof not related to the bitwise operators, as these
are the parts that KeY in its current form can already verify.
A number of smaller methods are called in the get(int,int) method. These methods do not
change pre-existing objects, and we have given these methods contracts. With the exception of
the length() method, these contracts have all been verified in KeY with minimal or no human
interaction. The completed proofs for these methods can be found in [Tat23]. The length() method
uses shift operations, and as discussed previously this makes verification in the current form of
KeY more difficult.

Listing 27: The contract and body of the get(int,int) method, including our suggested fix and

29

our loop invariant.

1 /*@ normal_behaviour
2 @ requires fromIndex >= 0 && fromIndex <= toIndex;
3 @ ensures \result != this && \invariant_for(\result);
4 @ ensures (\forall \bigint i; 0 <= i < \result.wordsToSeq().length;
5 @ (fromIndex + i < wordsToSeq().length ? wordsToSeq()[fromIndex + i]

6 @ : 0) == \result.wordsToSeq()[i]);
7 @ ensures (\result.wordsToSeq().length < (toIndex-fromIndex)) ==>
8 @ (\forall \bigint i; \result.wordsToSeq().length <= i < (toIndex-fromIndex);
9 @ (fromIndex + i < wordsToSeq().length ? wordsToSeq()[fromIndex + i]

10 @ : 0) == 0);

11 @ assignable \nothing;
12 @*/

13 public BitSet get(int fromIndex , int toIndex) {
14 checkRange(fromIndex , toIndex);

15

16 checkInvariants();

17

18 int len = length();
19

20 // If no set bits in range return empty bitset

21 if (len <= fromIndex || fromIndex == toIndex)
22 return new BitSet(0);
23

24 if (len < 0) // Our proposed bug fix
25 len = Integer.MAX_VALUE;

26

27 if (toIndex > len) // An optimization
28 toIndex = len;

29

30 BitSet result = new BitSet(toIndex - fromIndex);
31 int targetWords = wordIndex(toIndex - fromIndex - 1) + 1;
32 int sourceIndex = wordIndex(fromIndex);
33 boolean wordAligned = ((fromIndex & BIT_INDEX_MASK) == 0);
34

35 // Process all words but the last word

36 /*@ // Adjusting wordsToSeq for result:

37 @ maintaining (\forall \bigint j;
38 @ 0 <= j < ((\bigint)i*(\bigint)BITS_PER_WORD);
39 @ ((result.words[j / BITS_PER_WORD] >>> (int)(j % BITS_PER_WORD)) & 1)
40 @ == (fromIndex + i < wordsToSeq().length ? wordsToSeq()[fromIndex + i] : 0));

41 @ // >>> is not defined for bigint.

42 @ maintaining i >= 0 & i <= targetWords - 1;
43 @ maintaining sourceIndex < wordsInUse;
44 @ maintaining (i < targetWords -1) ==> sourceIndex+1 < wordsInUse;
45 @ maintaining sourceIndex >= fromIndex / 64 && sourceIndex <= toIndex / 64;
46 @ maintaining (\forall \bigint j; 0 <= j < result.words.length;

\dl_inLong(result.words[j]));
47 @ assignable result.words[*];
48 @ decreasing targetWords - i;
49 @*/

50 for (int i = 0; i < targetWords - 1; i++, sourceIndex++)
51 result.words[i] = wordAligned ? words[sourceIndex] :

52 (words[sourceIndex] >>> fromIndex) |

53 (words[sourceIndex+1] << -fromIndex);

54

55 // Process the last word

56 long lastWordMask = WORD_MASK >>> -toIndex;
57 result.words[targetWords - 1] =

58 ((toIndex -1) & BIT_INDEX_MASK) < (fromIndex & BIT_INDEX_MASK)

59 ? /* straddles source words */

60 ((words[sourceIndex] >>> fromIndex) |

61 (words[sourceIndex+1] & lastWordMask) << -fromIndex)

62 :

63 ((words[sourceIndex] & lastWordMask) >>> fromIndex);

64

65 // Set wordsInUse correctly

30

66 result.wordsInUse = targetWords;

67 result.recalculateWordsInUse();

68 result.checkInvariants();

69

70 return result;
71 }

Local variables

After checking the parameters in lines 14-29, the method initialises a number of local variables.
First, the result bitset is created, with a words array explicitly large enough to fit every bit
between fromIndex and toIndex. result.wordsInUse is set to 0 until the get(int,int) method
has copied the bits. The integer targetWords is the number of words to copy into result.words,
and has the exact same value as result.words.length. sourceIndex is used to index elements
of this.words. It initially refers to the element of this.words that contains the fromIndex bit.
Finally, the boolean wordAligned indicates if result is aligned to the current bitset or not. If this
is not the case, then copying the bits is made more complicated, as each element of result.words
is spread across two elements of this.words.

Loop invariant

The clause on line 37 is an adjusted version of wordsToSeq(): as result.wordsInUse is set to 0,
we cannot use result.wordsToSeq() to refer to bits that have been copied. Instead, we use the
loop iterator i to keep track of the bits that have been copied.
In order to verify the clauses from line 42 onwards, we use a number of lemmas.
First, the number of words that the method copies (targetWords) is less than or equal to the
number of logically defined elements of this.words (wordsInUse):

targetWords =
toIndex − fromIndex − 1

64
+ 1 ≤ wordsInUse

The largest value toIndex can have is wordsInUse*64, as the get(int,int) method reduces
toIndex so that it is within the logically significant length of the BitSet (line 28). Hence, the
largest value targetWords can have is wordsInUse, in the case of:12

toIndex − fromIndex − 1

64
+ 1 =

wordsInUse ∗ 64− 0− 1

64
+ 1 ≤ wordsInUse

Next, we can verify that the array accesses words[sourceIndex] and words[sourceIndex+1] in
the loop body do not exceed the logically defined length of words, and by extension also not the
actual length of words. For this, we make use of targetWords’s proven bound.
Firstly, we must prove the following:

sourceIndex + targetWords − 1 < wordsInUse.

This can be rewritten to:13

fromIndex

64
+

(
toIndex − fromIndex − 1

64
+ 1

)
− 1 < wordsInUse.

12Rounded using Java rules.
13Note that both sourceIndex and targetWords are calculated using wordIndex(x), which will return x/64 for

x ≥ 0.

31

We can write fromIndex as a multiple of 64 plus some offset, or fromIndex = 64 ∗ i+ j, where
0 ≤ i ≤ wordsInUse and 0 ≤ j < 64. fromIndex

64
then equals i, while toIndex−fromIndex−1

64
equals

toIndex−j−1
64

− i.12 Altogether, this results in:

fromIndex

64
+

(
toIndex − fromIndex − 1

64
+ 1

)
−1 = i+

toIndex − j − 1

64
−i−1 =

toIndex − j − 1

64
−1

Using the bound for targetWords, we show that sourceIndex + targetWords − 1 indeed must be
smaller than wordsInUse:

toIndex − j − 1

64
− 1 ≤ toIndex − 0− 1

64
− 1 <

toIndex − 0− 1

64
≤ wordsInUse

Finally, if ((toIndex-1) & BIT_INDEX_MASK) < (fromIndex & BIT_INDEX_MASK) (line 58) holds14,
then the boolean wordAligned must be false (as (fromIndex & BIT_INDEX_MASK) must be larger
than 0). The get(int,int) method then uses sourceIndex+1 to access the this.words array.
In this case, the bound is tighter, as sourceIndex + targetWords must now be smaller than
wordsInUse-1 (rather than just wordsInUse). The proof for this is similar to the previous inequal-
ity, and can be proven automatically in KeY. We have replaced n & 63 with n % 64 in our proof
file. These are analogous for non-negative n, but as discussed previously KeY does not support
binaryAnd operations.
These lemmas have been verified in separate proof files using KeY, which can be found at [Tat23].

End of the get(int,int) method

Once all bits have been copied from the original bitset to result, the method calls
the recalculateWordsInUse() method to establish the invariant in result. The
wordsInUse == 0 || words[wordsInUse - 1] != 0 and
wordsInUse == words.length || words[wordsInUse] == 0 assertions from the class invariant
may not be true for result when the method starts, as the method’s purpose is to establish the
invariant. Specifically, wordsInUse may be too high, which is the case if words[wordsInUse-1]
is zero. All other clauses from the class invariant hold when recalculateWordsInUse() is called.
To restore the class invariant, the method lowers wordsInUse to the most significant element of
result.words that is not zero, or to zero if there is none.
At this point, the symbolic execution should be complete. In order to complete the proof, further
bitwise operator rules are needed. These are needed to verify the loop invariant and to verify the
ensures clauses of the get(int,int) method contract.

7 Conclusions and Further Research

In this thesis, we have discussed OpenJDK’s BitSet class and formulated its formal specification.
In the process of analysing the class, we have discovered bugs caused by integer overflows, one
due to an error in the implementation in the code of the get(int,int) method, and one due to
an oversight in the specification of the various valueOf(..) methods. We proposed a number of

14BIT INDEX MASK is a constant integer equalling 63.

32

different solution directions for these issues. We then discussed KeY, and explained why KeY’s
ruleset requires extensions before it can be used to verify the BitSet class. We gave examples
of such extensions, and used them to verify the current version of the class’ set(int) method.
Finally, we discussed initial steps in order to verify the get(int,int) method.
The first big open question coming from this research is the future correctness of the BitSet class.
If there are no other issues with the class aside from the two identified in this thesis, then it should
be possible to verify the class’ correctness once the developers have fixed the bugs. If it is not
possible, then there may be more bugs yet to be discovered in the class. If the class does not
significantly change, then the proof for the set(int) method may still be valid after the bugs
are corrected, and then it should become possible to also verify the correctness of the (improved)
get(int,int) method using the provided specification and proof sketch.
This leads to the second point of future research, regarding KeY’s support for bitwise operators.
While we have developed some specific rules in this research, and further specific rules could be
developed for the verification of other methods such as get(int,int), a long-term solution would
be to implement generalised rules for bitwise operations within KeY, or through the use of an SMT
solver.

References

[ABB+16] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H.
Schmitt, and Mattias Ulbrich, editors. Deductive Software Verification - The KeY
Book - From Theory to Practice, volume 10001 of Lecture Notes in Computer Science.
Springer, 2016.

[BDL16] Arthur Blot, Pierre-Évariste Dagand, and Julia Lawall. From Sets to Bits in Coq. In
Oleg Kiselyov and Andy King, editors, Functional and Logic Programming - 13th
International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings,
volume 9613 of Lecture Notes in Computer Science, pages 12–28. Springer, 2016.

[Bit] BitSet (Java Platform SE 8). Last accessed 12 July 2023. https://docs.oracle.
com/javase/8/docs/api/java/util/BitSet.html.

[BKW16] Bernhard Beckert, Vladimir Klebanov, and Benjamin Weiß. Dynamic Logic for Java,
pages 49–106. Springer, 2016.

[CLSE05] Yoonsik Cheon, Gary Leavens, Murali Sitaraman, and Stephen Edwards. Model
Variables: Cleanly Supporting Abstraction in Design by Contract: Research Articles.
Softw. Pract. Exper., 35(6):583–599, May 2005.

[Daw09] Jeremy Dawson. Isabelle Theories for Machine Words. Electronic Notes in Theoretical
Computer Science, 250(1):55–70, 2009. Proceedings of the Seventh International
Workshop on Automated Verification of Critical Systems (AVoCS 2007).

[DGRdB+15] Stijn De Gouw, Jurriaan Rot, Frank S de Boer, Richard Bubel, and Reiner Hähnle.
OpenJDK’s Java.utils.Collection.sort() Is Broken: The Good, the Bad and the Worst
Case. In Computer Aided Verification: 27th International Conference, CAV 2015,

33

https://docs.oracle.com/javase/8/docs/api/java/util/BitSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/BitSet.html

San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I 27, pages 273–289.
Springer, 2015.

[HBdBdG20] Hans-Dieter A. Hiep, Jinting Bian, Frank S. de Boer, and Stijn de Gouw. A Tutorial
on Verifying LinkedList Using KeY, pages 221–245. Springer, 2020.

[jav] Primitive Data Types (The Java™ Tutorials). Last accessed 5 May 2023. https:
//docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html.

[Kro09] Daniel Kroening. Software verification. In Armin Biere, Marijn J. H. Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfiability, Frontiers in Artificial
Intelligence and Applications, chapter 16, pages 505–532. IOS Press, February 2009.

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A Notation for Detailed
Design. 523:175–188, 1999.

[Lea02] Gary T. Leavens. BitSet (JML and MultiJava documentation), 2002. Last accessed
5 May 2023. https://www.cs.ucf.edu/˜leavens/JML-release/javadocs/java/
util/BitSet.html.

[Pfe17] Wolfram Pfeifer. Specifying and verifying real-world java code with KeY - case study
java.math.BigInteger. Bachelor thesis, Karlsruhe Institute of Technology, May 2017.

[Tat23] Andy S. Tatman. Formal Specification and Analysis of OpenJDK’s BitSet class:
Proof files, 2023. https://doi.org/10.5281/zenodo.8172478.

A Annotated BitSet class

A.1 Internal fields of the class

Listing 28: The relevant member variables of the BitSet class.

1 /*

2 * BitSets are packed into arrays of "words." Currently a word is

3 * a long, which consists of 64 bits, requiring 6 address bits.
4 * The choice of word size is determined purely by performance concerns.

5 */

6 private static final int ADDRESS_BITS_PER_WORD = 6;
7 private static final int BITS_PER_WORD = 1 << ADDRESS_BITS_PER_WORD;
8 private static final int BIT_INDEX_MASK = BITS_PER_WORD - 1;
9

10 /* Used to shift left or right for a partial word mask */

11 private static final long WORD_MASK = 0xffffffffffffffffL;
12

13 /**

14 * The internal field corresponding to the serialField "bits".

15 */

16 private long[] words;
17

18 /**

19 * The number of words in the logical size of this BitSet.

20 */

21 private transient int wordsInUse = 0;

34

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://www.cs.ucf.edu/~leavens/JML-release/javadocs/java/util/BitSet.html
https://www.cs.ucf.edu/~leavens/JML-release/javadocs/java/util/BitSet.html
https://doi.org/10.5281/zenodo.8172478

22

23 /**

24 * Whether the size of "words" is user-specified. If so, we assume

25 * the user knows what he’s doing and try harder to preserve it.

26 */

27 private transient boolean sizeIsSticky = false;

A.2 Class invariant

Listing 29: Our full class invariant of the BitSet class.

1 /*@ invariant
2 @ words != null &
3 @ // The first three are from checkInvariants:

4 @ (wordsInUse == 0 || words[wordsInUse - 1] != 0) &&

5 @ (wordsInUse >= 0 && wordsInUse <= words.length) &&

6 @ (wordsInUse == words.length || words[wordsInUse] == 0) &&

7 @ // Our addition to the invariant:

8 @ (wordsInUse < words.length ==>
9 @ (\forall \bigint i; wordsInUse <= i < words.length; words[i] == 0)) &&

10 @ // wordsInUse is bounded by the last word BitSet can set a bit in:

11 @ (wordsInUse <= (Integer.MAX_VALUE/BITS_PER_WORD + 1)) && // +1 is to round up.

12 @ // words.length is bounded by 2*wordsInUse’s bound (See ensureCapacity.)

13 @ (words.length <= 2*(Integer.MAX_VALUE/BITS_PER_WORD + 1)) &&

14 @ // For the various taclets we have added, we require the assumption that

15 @ // each array element of words is inLong. However, we were not able to

16 @ // automatically show this in KeY itself.

17 @ (\forall \bigint i; 0 <= i < words.length; \dl_inLong(words[i]));
18 @*/

A.3 Annotated methods

Unless stated otherwise, the correctness of all of these method contracts have been verified, with
proof files for each provided at [Tat23].

A.3.1 wordIndex(int)

Listing 30: The annotated wordIndex(int) method.

1 /**

2 * Given a bit index, return word index containing it.

3 */

4 /*@ normal_behaviour
5 @ requires bitIndex >= -1;
6 @ ensures \old(bitIndex) >= 0 ==> \result == (\old(bitIndex) / 64);
7 @ ensures \old(bitIndex) == -1 ==> \result == -1;
8 @*/

9 private static /*@ strictly_pure @*/ int wordIndex(int bitIndex) {
10 return bitIndex >> ADDRESS_BITS_PER_WORD;
11 }

A.3.2 checkInvariants()

Listing 31: The annotated checkInvariants() method.

1 /**

35

2 * Every public method must preserve these invariants.

3 */

4 /*@ normal_behaviour
5 @ ensures true;
6 @ assignable \strictly_nothing; @*/
7 private void checkInvariants() {
8 assert(wordsInUse == 0 || words[wordsInUse - 1] != 0);
9 assert(wordsInUse >= 0 && wordsInUse <= words.length);

10 assert(wordsInUse == words.length || words[wordsInUse] == 0);
11 // By induction: forall i: wordsInUse <= i <= a.length(): words[i] = 0.

12 }

A.3.3 recalculateWordsInUse()

Listing 32: The annotated recalculateWordsInUse() method.

1 /**

2 * Sets the field wordsInUse to the logical size in words of the bit set.

3 * WARNING:This method assumes that the number of words actually in use is

4 * less than or equal to the current value of wordsInUse!

5 */

6 /*@

7 @ normal_behaviour
8 @ requires words != null;
9 @ requires wordsInUse >= 0 && wordsInUse <= words.length;

10 @ requires wordsInUse < words.length ==>
11 @ (\forall \bigint i; wordsInUse <= i < words.length; words[i] == 0);
12 @ requires (wordsInUse <= (Integer.MAX_VALUE/BITS_PER_WORD + 1));
13 @ requires (words.length <= 2*(Integer.MAX_VALUE/BITS_PER_WORD +1));
14 @ requires (\forall \bigint i; 0 <= i < words.length; \dl_inLong(words[i]));
15 @ ensures \invariant_for(this);
16 @ ensures wordsInUse <= \old(wordsInUse);
17 @ assignable this.wordsInUse;
18 @ helper
19 @*/

20 private void recalculateWordsInUse() {
21 // Traverse the bitset until a used word is found

22 int i;
23 /*@

24 @ maintaining (\forall \bigint j; i < j < words.length; words[j] == 0);
25 @ maintaining i < wordsInUse && i >= -1;
26 @ decreasing i+1; // +1: At the end of the loop (if !break), i=-1.
27 @ assignable \strictly_nothing;
28 @*/

29 for (i = wordsInUse -1; i >= 0; i--)
30 if (words[i] != 0)
31 break;
32

33 wordsInUse = i+1; // The new logical size

34 }

A.3.4 The public BitSet constructors

Listing 33: The public BitSet constructors, with both public and private constructors.

1 /**

2 * Creates a new bit set. All bits are initially {@code false}.

3 */

4 /*@ public normal_behaviour
5 @ requires true;
6 @ ensures wordsToSeq() == \seq_empty;
7 @ assignable \nothing;

36

8 @*/

9 /*@ private normal_behaviour
10 @ requires true;
11 @ ensures words.length == 1;
12 @ ensures wordsToSeq() == \seq_empty;
13 @ assignable \nothing;
14 @*/

15 public BitSet() {
16 initWords(BITS_PER_WORD);

17 sizeIsSticky = false;
18 }

19

20 /**

21 * Creates a bit set whose initial size is large enough to explicitly

22 * represent bits with indices in the range {@code 0} through

23 * {@code nbits -1}. All bits are initially {@code false}.

24 *

25 * @param nbits the initial size of the bit set

26 * @throws NegativeArraySizeException if the specified initial size

27 * is negative

28 */

29 /*@ public normal_behaviour
30 @ requires nbits >= 0;
31 @ ensures wordsToSeq() == \seq_empty;
32 @ assignable \nothing;
33 @*/

34 /*@ private normal_behaviour
35 @ requires nbits >= 0;
36 @ ensures nbits == 0 ==> words.length == 0;
37 @ ensures nbits > 0 ==> words.length == ((nbits -1) / 64) + 1;
38 @ ensures wordsToSeq() == \seq_empty;
39 @ assignable \nothing;
40 @*/

41 public BitSet(int nbits) {
42 // nbits can’t be negative; size 0 is OK

43 if (nbits < 0)
44 throw new NegativeArraySizeException("nbits < 0: " + nbits);
45

46 initWords(nbits);

47 sizeIsSticky = true;
48 }

49

50 private void initWords(int nbits) {
51 words = new long[wordIndex(nbits -1) + 1];
52 }

A.3.5 ensureCapacity(int)

Listing 34: The annotated ensureCapacity(int) method.

1 /**

2 * Ensures that the BitSet can hold enough words.

3 * @param wordsRequired the minimum acceptable number of words.

4 */

5 /*@

6 @ normal_behaviour
7 @ requires
8 @ wordsRequired >= 0 & wordsRequired <= (Integer.MAX_VALUE/BITS_PER_WORD + 1);

9 @ ensures words.length >= wordsRequired;
10 @ ensures wordsToSeq() == \old(wordsToSeq());
11 @ ensures \old(words).length <= words.length;
12 @ ensures (\forall \bigint i; 0 <= i < \old(words).length;
13 @ \old(words[i]) == words[i]);
14 @ ensures \old(words.length) < words.length ==> (\forall \bigint i;
15 @ \old(words.length) <= i < words.length; words[i] == 0);

37

16 @ assignable words, sizeIsSticky;
17 @*/

18 private void ensureCapacity(int wordsRequired) {
19 if (words.length < wordsRequired) {
20 // Allocate larger of doubled size or required size

21 int request = Math.max(2 * words.length, wordsRequired);
22 words = Arrays.copyOf(words, request);

23 sizeIsSticky = false;
24 }

25 }

A.3.6 expandTo(int)

Listing 35: The annotated expandTo(int) method.

1 /**

2 * Ensures that the BitSet can accommodate a given wordIndex ,

3 * temporarily violating the invariants. The caller must

4 * restore the invariants before returning to the user,

5 * possibly using recalculateWordsInUse().

6 * @param wordIndex the index to be accommodated.

7 */

8 /*@ normal_behaviour
9 @ requires wordIndex >= 0 & wordIndex <= Integer.MAX_VALUE/BITS_PER_WORD;

10 @ requires \invariant_for(this);
11 @

12 @ ensures wordIndex < \old(wordsInUse) ==>
13 @ words == \old(words) & wordsInUse == \old(wordsInUse);
14 @ ensures wordIndex >= \old(wordsInUse) ==> wordsInUse == wordIndex+1;
15 @ ensures wordIndex < words.length; // Implies: wordsInUse <= words.length (invariant)
16 @ // Parts required to restore the invariant:

17 @ ensures (\forall \bigint i; 0 <= i < \old(wordsInUse); words[i] == \old(words[i]));
18 @ ensures (\forall \bigint i; \old(wordsInUse) <= i < words.length; words[i] == 0);
19 @ ensures words != null & words.length >= \old(words).length;
20 @ ensures wordsInUse <= (Integer.MAX_VALUE/BITS_PER_WORD + 1);
21 @ ensures words.length <= 2*(Integer.MAX_VALUE/BITS_PER_WORD + 1);
22 @ ensures (\forall \bigint i; 0 <= i < words.length; \dl_inLong(words[i]));
23 @ helper
24 @*/

25 private void expandTo(int wordIndex) {
26 int wordsRequired = wordIndex+1;
27 if (wordsInUse < wordsRequired) {
28 ensureCapacity(wordsRequired);

29 wordsInUse = wordsRequired;

30 }

31 }

A.3.7 checkRange(int,int)

Listing 36: The annotated checkRange(int,int) method.

1 /**

2 * Checks that fromIndex ... toIndex is a valid range of bit indices.

3 */

4 /*@ normal_behaviour
5 @ requires fromIndex >= 0 && toIndex >= 0 && fromIndex <= toIndex;
6 @ ensures true;
7 @ assignable \strictly_nothing;
8 @*/

9 private static void checkRange(int fromIndex , int toIndex) {
10 if (fromIndex < 0)
11 throw new IndexOutOfBoundsException("fromIndex < 0: " + fromIndex);

38

12 if (toIndex < 0)
13 throw new IndexOutOfBoundsException("toIndex < 0: " + toIndex);
14 if (fromIndex > toIndex)
15 throw new IndexOutOfBoundsException("fromIndex: " + fromIndex +
16 " > toIndex: " + toIndex);

17 }

A.3.8 set(int)

Listing 37: The annotated set(int) method.

1 /**

2 * Sets the bit at the specified index to {@code true}.

3 *

4 * @param bitIndex a bit index

5 * @throws IndexOutOfBoundsException if the specified index is negative

6 * @since 1.0

7 */

8 /*@

9 @ normal_behaviour
10 @ requires
11 @ bitIndex >= 0;

12 @ ensures wordsToSeq()[bitIndex] == 1;
13 @ ensures (\forall \bigint i; 0 <= i < \old(wordsToSeq()).length & i != bitIndex;
14 @ wordsToSeq()[i] == \old(wordsToSeq())[i]);
15 @ ensures \old(wordsToSeq()).length < wordsToSeq().length ==>
16 @ (\forall \bigint k;
17 @ \old(wordsToSeq()).length <= k < wordsToSeq().length & k != bitIndex;
18 @ wordsToSeq()[k] == 0

19 @);

20 @*/

21 public void set(int bitIndex) {
22 if (bitIndex < 0)
23 throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);
24

25 int wordIndex = wordIndex(bitIndex);
26 expandTo(wordIndex);

27

28 words[wordIndex] |= (1L << bitIndex); // Restores invariants

29

30 checkInvariants();

31 }

A.3.9 clear()

Listing 38: The annotated clear() method.

1 /**

2 * Sets all of the bits in this BitSet to {@code false}.

3 *

4 * @since 1.4

5 */

6 /*@

7 @ normal_behaviour
8 @ requires true;
9 @ ensures (\forall \bigint i; 0 <= i < wordsToSeq().length; wordsToSeq()[i] == 0);

10 @*/

11 public void clear() {
12 /*@

13 @ maintaining wordsInUse <= words.length;
14 @ maintaining (\forall \bigint i; wordsInUse <= i < words.length; words[i] == 0);
15 @ maintaining wordsInUse >= 0;

39

16 @ decreasing wordsInUse;
17 @ assignable words[*], wordsInUse;
18 @*/

19 while (wordsInUse > 0)
20 words[--wordsInUse] = 0;

21 }

A.3.10 get(int,int)

Listing 39: The annotated get(int,int) method. Note: This contract has not been verified.

1 /**

2 * Returns a new {@code BitSet} composed of bits from this {@code BitSet}

3 * from {@code fromIndex} (inclusive) to {@code toIndex} (exclusive).

4 *

5 * @param fromIndex index of the first bit to include

6 * @param toIndex index after the last bit to include

7 * @return a new {@code BitSet} from a range of this {@code BitSet}

8 * @throws IndexOutOfBoundsException if {@code fromIndex} is negative,

9 * or {@code toIndex} is negative, or {@code fromIndex} is

10 * larger than {@code toIndex}

11 * @since 1.4

12 */

13 /*@ normal_behaviour
14 @ requires fromIndex >= 0 && fromIndex <= toIndex;
15 @ ensures \result != this && \invariant_for(\result);
16 @ ensures (\forall \bigint i; 0 <= i < \result.wordsToSeq().length;
17 @ (fromIndex + i < wordsToSeq().length ? wordsToSeq()[fromIndex + i]

18 @ : 0) == \result.wordsToSeq()[i]);
19 @ ensures (\result.wordsToSeq().length < (toIndex-fromIndex)) ==>
20 @ (\forall \bigint i; \result.wordsToSeq().length <= i < (toIndex-fromIndex);
21 @ (fromIndex + i < wordsToSeq().length ? wordsToSeq()[fromIndex + i]

22 @ : 0) == 0);

23 @ assignable \nothing;
24 @*/

25 public BitSet get(int fromIndex , int toIndex) {
26 checkRange(fromIndex , toIndex);

27

28 checkInvariants();

29

30 int len = length();
31

32 // If no set bits in range return empty bitset

33 if (len <= fromIndex || fromIndex == toIndex)
34 return new BitSet(0);
35

36 /* Our suggested bug fix: */

37 if (len < 0)
38 len = Integer.MAX_VALUE;

39

40 // An optimization

41 if (toIndex > len)
42 toIndex = len;

43

44

45 BitSet result = new BitSet(toIndex - fromIndex);
46 int targetWords = wordIndex(toIndex - fromIndex - 1) + 1;
47 int sourceIndex = wordIndex(fromIndex);
48 boolean wordAligned = ((fromIndex & BIT_INDEX_MASK) == 0);
49

50

51 // Process all words but the last word

52 /*@

53 @ // Adjusting wordsToSeq for result:

54 @ maintaining (\forall \bigint j; 0 <= j < ((\bigint)i*(\bigint)BITS_PER_WORD);

40

55 @ ((result.words[j / BITS_PER_WORD] >>> (int)(j % BITS_PER_WORD)) & 1)
56 @ == (fromIndex + i < wordsToSeq().length ? wordsToSeq()[fromIndex + i]

57 @ : 0));

58 @ // >>> is not defined for bigint.

59 @ maintaining i >= 0 & i <= targetWords - 1;
60 @ maintaining sourceIndex < wordsInUse;
61 @ maintaining (i < targetWords -1) ==> sourceIndex+1 < wordsInUse;
62 @ maintaining sourceIndex >= fromIndex / 64 && sourceIndex <= toIndex / 64;
63 @ maintaining (\forall \bigint j; 0 <= j < result.words.length; \dl_inLong(result.words

[j]));

64 @ assignable result.words[*];
65 @ decreasing targetWords - i;
66 @*/

67 for (int i = 0; i < targetWords - 1; i++, sourceIndex++)
68 result.words[i] = wordAligned ? words[sourceIndex] :

69 (words[sourceIndex] >>> fromIndex) |

70 (words[sourceIndex+1] << -fromIndex);

71

72 // Process the last word

73 long lastWordMask = WORD_MASK >>> -toIndex;
74 result.words[targetWords - 1] =

75 ((toIndex -1) & BIT_INDEX_MASK) < (fromIndex & BIT_INDEX_MASK)

76 ? /* straddles source words */

77 ((words[sourceIndex] >>> fromIndex) |

78 (words[sourceIndex+1] & lastWordMask) << -fromIndex)

79 :

80 ((words[sourceIndex] & lastWordMask) >>> fromIndex);

81

82 // Set wordsInUse correctly

83 result.wordsInUse = targetWords;

84 result.recalculateWordsInUse();

85 result.checkInvariants();

86

87 return result;
88 }

A.3.11 length()

Listing 40: The annotated length() method. Note: This contract has not been verified.

1 /**

2 * Returns the "logical size" of this {@code BitSet}: the index of

3 * the highest set bit in the {@code BitSet} plus one. Returns zero

4 * if the {@code BitSet} contains no set bits.

5 *

6 * @return the logical size of this {@code BitSet}

7 * @since 1.2

8 */

9 /*@ normal_behaviour
10 @ requires true;
11 @ ensures \result >= 0 || \result == Integer.MIN_VALUE;
12 @ ensures \result == 0 ==>
13 @ wordsToSeq().length == 0;

14 @ ensures \result != 0 ==> wordsToSeq()[\result -1] == 1 &
15 @ (\forall \bigint i; \result -1 < i < wordsToSeq().length; wordsToSeq()[i] == 0);
16 // Result is in the last word of the LOGICAL size of words[]. (words[wIU-1] != 0)

17 @ ensures \result != 0 ==> (\result -1 < wordsToSeq().length && \result -1 >= wordsToSeq().
length - BITS_PER_WORD);

18 @*/

19 public /*@ strictly_pure @*/ int length() {
20 if (wordsInUse == 0)
21 return 0;
22

23 return BITS_PER_WORD * (wordsInUse - 1) +
24 (BITS_PER_WORD - Long.numberOfLeadingZeros(words[wordsInUse - 1]));

41

25 }

A.4 Our wordsToSeq() model method

Listing 41: Our wordsToSeq() model method.

1 // Our method for converting the actual representation to the logical representation.

2 /*@ private model strictly_pure \seq wordsToSeq() {
3 @ return (\seq_def \bigint i; 0; (\bigint)wordsInUse*(\bigint)BITS_PER_WORD;
4 @ (words[i / BITS_PER_WORD] >>> (int)(i % BITS_PER_WORD)) & 1 // >>> is not

defined for bigint.

5 @);

6 @ }

7 @*/

A.5 The unannotated methods relevant to the valueOf(long[]) discus-
sion.

A.5.1 valueOf(long[])

Listing 42: The unannotated valueOf(long[]) method and constructor it uses.

1 /**

2 * Creates a bit set using words as the internal representation.

3 * The last word (if there is one) must be non-zero.

4 */

5 private BitSet(long[] words) {
6 this.words = words;
7 this.wordsInUse = words.length;
8 checkInvariants();

9 }

10

11 /**

12 * Returns a new bit set containing all the bits in the given long array.

13 *

14 * <p>More precisely ,

15 *
{@code BitSet.valueOf(longs).get(n) == ((longs[n/64] & (1L<<(n%64))) != 0)}

16 *
for all {@code n < 64 * longs.length}.

17 *

18 * <p>This method is equivalent to

19 * {@code BitSet.valueOf(LongBuffer.wrap(longs))}.

20 *

21 * @param longs a long array containing a little-endian representation

22 * of a sequence of bits to be used as the initial bits of the

23 * new bit set

24 * @return a {@code BitSet} containing all the bits in the long array

25 * @since 1.7

26 */

27 public static BitSet valueOf(long[] longs) {
28 int n;
29 for (n = longs.length; n > 0 && longs[n - 1] == 0; n--)
30 ;

31 return new BitSet(Arrays.copyOf(longs, n));
32 }

A.5.2 toLongArray()

42

Listing 43: The unannotated toLongArray() method.

1 /**

2 * Returns a new long array containing all the bits in this bit set.

3 *

4 * <p>More precisely , if

5 *
{@code long[] longs = s.toLongArray();}

6 *
then {@code longs.length == (s.length()+63)/64} and

7 *
{@code s.get(n) == ((longs[n/64] & (1L<<(n%64))) != 0)}

8 *
for all {@code n < 64 * longs.length}.

9 *

10 * @return a long array containing a little-endian representation

11 * of all the bits in this bit set

12 * @since 1.7

13 */

14 public long[] toLongArray() {
15 return Arrays.copyOf(words, wordsInUse);
16 }

B Rules added to KeY

The andJLongDef, orJLongDef, and unsignedShiftRightJlongDef rules have been directly
adapted from KeY’s Def rules for Int.
The various Pow rules have been proven correct, with proof files provided in [Tat23].
The other 4 rules, orLongZero, binaryOrSingleBit, handleSignSHRLong, and handleUnSHRlong
have been discussed in Section 6.4.

B.1 andJLongDef

Listing 44: The andJLongDef rule.

1 // Same as andJIntDef , but with moduloLong.

2 andJLongDef {

3 \schemaVar \term int left;
4 \schemaVar \term int right;
5

6 \find (andJlong(left, right))
7 \replacewith (moduloLong(binaryAnd(left, right)))
8 \heuristics (userTaclets1)
9 };

B.2 orJLongDef

Listing 45: The orJLongDef rule.

1 // Same as orJIntDef , but with moduloLong.

2 orJLongDef {

3 \schemaVar \term int left;
4 \schemaVar \term int right;
5

6 \find (orJlong(left, right))
7 \replacewith (moduloLong(binaryOr(left, right)))
8 \heuristics (userTaclets1)
9 };

43

B.3 PowTwoNeqZero

Listing 46: The PowTwoNeqZero rule.

1 PowTwoNeqZero {

2 \schemaVar \term int i;
3 \assumes(i >= 0 ==>)
4 \find(pow(2, i % 64))
5 \sameUpdateLevel
6 \add(pow(2, i%64) != 0 ==>)
7 \heuristics(userTaclets1)
8 };

B.4 PowTwoGreZero

Listing 47: The PowTwoGreZero rule.

1 PowTwoGreZero {

2 \schemaVar \term int i;
3 \assumes(i >= 0, i%64 < 63 ==>)
4 \find(pow(2, i % 64))
5 \sameUpdateLevel
6 \add(pow(2, i % 64) >= 0 & inLong(pow(2, i % 64)) ==>)
7 \heuristics(userTaclets1)
8 };

B.5 ModPowTwoNeqZero

Listing 48: The ModPowTwoNeqZero rule.

1 ModPowTwoNeqZero {

2 \schemaVar \term int i;
3 \assumes(i >= 0 ==>)
4 \find(moduloLong(pow(2, i % 64)))
5 \sameUpdateLevel
6 \add(moduloLong(pow(2, i%64)) != 0 ==>)
7 \heuristics(userTaclets1)
8 };

B.6 ModPowTwoGreZero

Listing 49: The ModPowTwoGreZero rule.

1 ModPowTwoGreZero {

2 \schemaVar \term int i;
3 \assumes(i >= 0, i%64 < 63 ==>)
4 \find(moduloLong(pow(2, i % 64)))
5 \sameUpdateLevel
6 \add(moduloLong(pow(2, i % 64)) >= 0 & inLong(moduloLong(pow(2, i % 64))) ==>)
7 \heuristics(userTaclets1)
8 };

B.7 orLongZero

44

Listing 50: The orLongZero rule.

1 // x | y = 0

2 // This is true iff x = 0 and y = 0.

3 orLongZero {

4 \schemaVar \term int x;
5 \schemaVar \term int y;
6 \assumes(inLong(x), inLong(y) ==>)
7 \find(moduloLong(binaryOr(x, y)) = 0)
8 \sameUpdateLevel
9 \replacewith(x = 0 & y = 0)

10 \heuristics (userTaclets2)
11 };

B.8 binaryOrSingleBit

Listing 51: The binaryOrSingleBit rule.

1 // We set a single bit in x using binaryOr.

2 binaryOrSingleBit {

3 \schemaVar \term int x;
4 \schemaVar \term int i;
5 \assumes(inLong(x), inInt(i), i >= 0 ==>)
6 \find(binaryOr(x, moduloLong(shiftleft(1, i))))
7 \sameUpdateLevel
8 // bit is already set -> OR has no effect.
9 "Bit already set": \replacewith(x) \add(unsignedshiftrightJlong(x, i)%2 = 1 ==>);

10 // Set the non-sign bit -> add the new bit = 2ˆi. i must be smaller than 63 for this.
11 "Bit not yet set": \replacewith(x + pow(2, i)) \add(unsignedshiftrightJlong(x, i)%2 =

0, (x + pow(2, i)) <= long_MAX, i < 63 ==>);
12 // Set the sign bit -> convert the number from positive to negative 2’s comp.
13 // This is also only the case iff i = 63, so we add this to the list of assumptions.

14 // Note: It is given that x >= 0, as otherwise the sign bit would already be set.

15 "Set the sign bit": \replacewith(long_MIN + x) \add(unsignedshiftrightJlong(x, i)%2 = 0,
x >= 0 , inLong(long_MIN + x), i = 63 ==>)

16 \heuristics (userTaclets2)
17 };

B.9 unsignedShiftRightJlongDef

Listing 52: The unsignedShiftRightJlongDef rule.

1 // UNSIGNED shift right long:

2

3 // The normal rule, adapted from unsignedShiftRightJintDef:

4 unsignedShiftRightJlongDef {

5 \schemaVar \term int left;
6 \schemaVar \term int right;
7

8 \find (unsignedshiftrightJlong(left, right))
9 \replacewith (

10 \if (left >= 0)
11 \then (shiftrightJlong(left, right))
12 \else (addJlong(shiftrightJlong(left, right),
13 shiftleftJlong(2,

14 63 - right % 64)))

15)

16 \heuristics (userTaclets1)
17 };

45

B.10 handleSignSHRLong

Listing 53: The handleSignSHRLong rule.

1 handleSignSHRLong {

2 \schemaVar \term int x;
3 \schemaVar \term int j;
4 \assumes(inInt(j), j >= 0, j <= 63, inLong(x), x >= 0 ==>)
5 \find(unsignedshiftrightJlong(long_MIN + x, j))
6 \sameUpdateLevel
7 // We know that the sign bit has been set -> the bit = 0.
8 "j = 63": \replacewith(1) \add(j = 63 ==>);
9 // The sign bit has been set, but we not isolating the sign bit -> no change

10 // compared to the orignal value.

11 "j < 63": \add(unsignedshiftrightJlong(long_MIN + x, j) % 2 = unsignedshiftrightJlong(x,
j) % 2, j < 63 ==>)

12 \heuristics (userTaclets2)
13 };

B.11 handleUnSHRlong

Listing 54: The handleUnSHRlong rule.

1 handleUnSHRlong {

2 \schemaVar \term int x;
3 \schemaVar \term int i;
4 \schemaVar \term int j;
5

6 \assumes(inLong(x), inLong(x + pow(2, i)), inInt(i), i >= 0, i < 63, inInt(j),
7 j >= 0, j <= 63, unsignedshiftrightJlong(x, i)%2 = 0 ==>)
8 \find(unsignedshiftrightJlong(x + pow(2, i), j))
9 \sameUpdateLevel

10 // With the SHR and the AND later, we will ’forget’ the set bit.

11 "i != j": \add(unsignedshiftrightJlong(x + pow(2, i), j) % 2
= unsignedshiftrightJlong(x, j) % 2, i != j ==>);

12 // We are looking at the set bit -> it will be set to 1.
13 "i = j": \add(unsignedshiftrightJlong(x + pow(2, i), j) % 2 = 1, i = j ==>)
14 \heuristics (userTaclets2)
15 };

46

	Introduction
	Related Work
	The BitSet class
	Formal Specification
	Introduction to Java Modelling Language
	Class invariant for the BitSet class
	The wordsToSeq() model method
	The set(int) method
	The private expandTo(int) method
	The private ensureCapacity(int) method
	The clear() method
	The get(int,int) method
	A comparison with a different formal specification of BitSet

	Issues in BitSet
	A bug in get(int,int)
	Bugs resulting from the valueOf(..) methods
	Solution directions

	Towards Formal Verification
	Background
	The KeY theorem prover
	Required extensions to KeY
	Verification of the set(int) method
	Proof sketch of the get(int,int) method

	Conclusions and Further Research
	References
	Annotated BitSet class
	Internal fields of the class
	Class invariant
	Annotated methods
	wordIndex(int)
	checkInvariants()
	recalculateWordsInUse()
	The public BitSet constructors
	ensureCapacity(int)
	expandTo(int)
	checkRange(int,int)
	set(int)
	clear()
	get(int,int)
	length()

	Our wordsToSeq() model method
	The unannotated methods relevant to the valueOf(long[]) discussion.
	valueOf(long[])
	toLongArray()

	Rules added to KeY
	andJLongDef
	orJLongDef
	PowTwoNeqZero
	PowTwoGreZero
	ModPowTwoNeqZero
	ModPowTwoGreZero
	orLongZero
	binaryOrSingleBit
	unsignedShiftRightJlongDef
	handleSignSHRLong
	handleUnSHRlong

