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Abstract

Addressing data challenges, like data sparsity and the cold-start issue, remains

pivotal for enhancing recommender systems. Cross-domain recommendation emerges

as a solution to combat these data challenges. While contemporary single-target

Cross-Domain Recommendation (CDR) methods concentrate on various aspects of

transfer learning, there exists a research gap concerning the fusion of distinct tech-

niques. This study centers on integrating content-based and rating pattern-based

transfer strategies to gauge their potential impact on recommendation accuracy.

Starting with the DARec model developed by Yuan et al. (2019), this framework

is extended with content-based transfer based on text information. The resulting

hybrid model is evaluated across two distinct domain sets, including one featured in

the original DARec model. The experimental investigation unveils a small to adverse

impact on recommendation accuracy, providing novel insights into the combination

of techniques of cross-domain recommendation.
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1 Introduction

In the era of abundant information and rapid digitisation, recommender systems (RS)

have become indispensable tools that shape online experiences and influence users’ deci-

sions. These systems play a pivotal role in filtering vast amounts of content, products,

and services, tailoring personalised recommendations to each individual user. From e-

commerce platforms to entertainment streaming services, recommendation algorithms are

ubiquitous in modern-day digital ecosystems. Notable examples of recommender systems

include those used by online streaming platforms like Netflix1 and Disney+2, as well as

online webshops such as Amazon3 and Bol.com4. These services entice users to continue

watching or purchasing by suggesting films, series, or products based on their previous

interactions or current popularity.

1.1 Problem Statement

The development of accurate and effective recommender systems encounters challenges,

with data scarcity emerging as a prominent concern. In many domains, the insufficiency

of relevant user preferences and interactions hampers the training of robust recommender

models. Recommender systems encounter two distinct data-related challenges: the cold-

start problem and data sparsity. The cold-start problem emerges when novel users or

items are introduced, rendering accurate predictions difficult for the recommender algo-

rithm. Data sparsity, on the other hand, arises when only a small portion of the total

items in a database have received user ratings (Isinkaye et al., 2015). To address this

issue, the concept of cross-domain recommendation (CDR) has emerged as an intriguing

solution. CDR employs transfer learning to share knowledge between domains, aiming to

overcome data sparsity and the cold-start problem, ultimately enhancing recommendation

performance across diverse contexts.

It is proven that transfer learning works and has many benefits, as will be further

explained in Section 3. Within the domain of cross-domain recommendation, there are

several approaches, including single-target CDR. In this research, a novel and advanced

approach is taken by integrating two specific transfer learning methods: content-based

recommendation and rating pattern-based recommendation. By merging content-based

recommendation, which utilises additional item attributes and textual descriptions for per-

sonalisation (Berkovsky et al., 2007), with rating pattern-based recommendation, which

identifies user behaviour patterns across domains (Li et al., 2009), the research endeavours

to develop an intelligent, adaptable recommender system tailored to specific requirements

1www.netflix.com
2www.disneyplus.com
3www.amazon.com
4www.bol.com
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even when little data is available. The objective is to explore the synergy between these

approaches, aiming to improve the accuracy of cross-domain recommendations. Through

empirical evaluations, the compatibility of these two techniques is investigated.

The research commenced by selecting a cutting-edge rating pattern-based CDR model

as its foundation. The choice of the “DARec” model (Yuan et al., 2019) as the starting

point is substantiated by its exceptional performance within the rating pattern-based

CDR domain. Section 4 illustrates the DARec model architecture in detail.

DARec has consistently surpassed numerous other existing CDR models, rendering

it a significant and fitting selection as benchmark for this study. Moreover, the research

itself recommends investigating the combination of DARec with content-based transfer,

which aligns with the direction the research aims to pursue. Previous research studies

also support that incorporating associated metadata can significantly enhance recommen-

dation accuracy (Gogna & Majumdar, 2015; Zhao et al., 2016). Thus by building upon

the accomplishments of this well-performing model, the thesis proceeds to explore the

potential augmentation of recommendation accuracy and effectiveness through the fusion

of content-based and rating pattern-based transfers.

1.2 Research Question

Considering the recurrent data challenges faced by recommender systems, the thesis exam-

ines the potential impact of integrating content-based and rating pattern-based transfer

learning methods on enhancing recommendation accuracy. The assumption is made that

combining two transfer learning techniques will positively influence the recommendation

accuracy, which forms the hypothesis that is tested. The ensuing research question is

articulated as follows:

Research Question (RQ): To what extent does the combination of content-based and

rating pattern-based transfer learning strategies positively influence the recommendation

accuracy of cross-domain recommendation systems?

1.3 Thesis Outline

The structure of the thesis is organised as follows. In the initial section, the significance

and relevance of the research to businesses are expounded. Next, an in-depth exploration

of various types of recommender systems is presented. The literature review concludes by

examining diverse techniques adopted in cross-domain recommendation. The subsequent

section elabourates on the DARec model and the combination of DARec and content

model employed within the study. Moreover, the research outlines the utilised dataset

and explains the steps taken for data pre-processing. The ensuing section encompasses

5



the executed experiments and provides visual representations of the outcomes. Finally,

the thesis culminates with a comprehensive summarisation and discussion, followed by an

exploration of potential future directions.
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2 Business Case

In today’s business landscape, companies, specifically e-commerce companies, face the

formidable challenge of captivating customers effectively. The following section delves

into the compelling rationale behind the need for businesses to utilise robust recommender

systems. It emphasises the profound influence of personalised recommendations on rev-

enue and customer engagement, illustrating their pivotal role in navigating the modern

business landscape.

2.1 Business Significance

In the face of expanding volumes of available information, businesses encounter challenges

in effectively reaching their customers. Once a customer engages with a business, there

exists a narrow timeframe before their attention shifts elsewhere. An insightful study by

Accenture Interactive expands on this; revealing that nearly 40% of customers opt to exit

retail websites when confronted with an overwhelming plethora of choices (Accenture,

2016). This finding highlights the notion that an excess of options can lead to decision

fatigue, discouraging further interaction. Therefore, it is imperative to seize and maintain

the user’s interest within the initial moments of their digital interaction (Agarwal, 2021).

This accentuates the need for personalisation, conveying information in manners aligned

to individual preferences.

In this regard, recommender systems play a vital role in providing that personal-

isation, effectively sustaining customer engagement with the business. Companies like

Amazon and Spotify use recommendations to generate over 35% and 25% of their rev-

enue, respectively (Cooper, 2018; MacKenzie et al., 2013), and in general over 26 % of

revenue from e-commerce sites is driven by personalised product recommendations (Sales-

force, 2017). This number has increased to 31% in 2023, according to a study conducted

by Barilliance (Serrano, 2023).

Figure 1 illustrates the impact of personalised product recommendations on conversion

rates, based on a study by Barilliance (Serrano, 2023). Conversion rate refers to the

percentage of users who complete a desired action, such as making a purchase in e-

commerce, out of the total number of users who engage with the platform. Evidently, the

inclusion of personalised recommendations leads to a significant surge in conversion rate

(rising from 1.02% to 3.96%), accentuating its significance.
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Figure 1: Impact of personalised recommendation on consumers’ conversion rate (Serrano, 2023)

Similarly, a study conducted by SalesForce illustrated that personal recommendations

amplify consumers’ propensity to finalise a purchase by a factor of 4.5 (Salesforce, 2017).

Figure 2 reveals the impact of personalised recommendation across devices.

Figure 2: Impact of personalised recommendation on consumers’ behaviour (Salesforce, 2017)

Thus, recommender systems play a crucial role in establishing a personalised link

between consumers and businesses, encouraging shopping behaviour (Agarwal, 2021).

Moreover, these systems simplify the purchasing process by narrowing down the search

to products that are most likely relevant (Accenture, 2016).

These findings emphasise the crucial role of recommender systems in businesses and

especially e-commerce, a concept many companies aim to adopt. However, not all busi-

nesses possess the necessary expertise to implement them effectively. As a result, in

today’s corporate landscape, such enterprises often turn to IT solution providers that

specialize in serving clients without extensive IT knowledge. Within this environment,

the challenge emerges when certain clients express a desire for recommender systems but

struggle with a shortage of data needed to train robust algorithms. The reality is that

conjuring additional data is beyond their reach, leaving them constrained by the confines
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of their modest dataset. The central focus of the thesis lies on a transfer learning solution:

the integration of the client’s exclusive data with either an existing dataset from the IT

company or leveraging a pre-trained model from the IT company, or alternatively, tapping

into publicly available repositories.

The utilisation of transfer learning aims to enhance the efficiency of recommender

systems, which can bring forth numerous noteworthy advantages for companies, exerting

a positive influence on their overall operational performance and revenue generation (X.

Zhang & Wang, 2005). This is particularly relevant in the context of managing the

overwhelming amount of information. Additionally, as mentioned before, a proficient

recommender system that offers accurate and pertinent recommendations to customers or

users tends to result in heightened customer satisfaction and increased revenues (Agarwal,

2021; Cooper, 2018; Jiang et al., 2010). Beyond this, there are additional merits, including

the ability to counteract shopper reluctance to embrace new products and the potential

to introduce customers to novel product categories (Dias et al., 2008).

Such a system aligns with a core business objective of recommender systems, which

is to effectively guide users through decision-making processes by providing tailored and

valuable suggestions.

2.2 Legal implications

The realm of data sharing for research or training purposes is often closely connected with

complex issues pertaining to privacy and intellectual property rights. When datasets (or

models trained on a specific dataset) are shared, particularly across different organisations

or domains, concerns arise regarding the potential disclosure of sensitive information.

Additionally, the ownership and rights associated with the shared data can lead to legal

challenges, potentially affecting the control and usage of the data or model beyond its

original scope. While these concerns are valid and significant, it is important to note

that addressing the legal and intellectual property aspects of data sharing falls beyond

the scope of this research. Instead, the focus here is on exploring innovative approaches

to enhancing cross-domain recommendation systems through the integration of transfer

learning techniques.
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3 Literature Review

The literature review begins with presenting a comprehensive overview of existing rec-

ommendation techniques. Following this, attention turns towards the examination of

contemporary state-of-the-art cross-domain recommendation methods. The exploration

encompasses illustrating the distinct categories of transfer learning and rationalising the

emphasis on the rating pattern-based approach within CDR. Subsequently, an in-depth

analysis delves into the varied content-based cross-domain recommendation techniques,

including their strengths and limitations. Concluding the literature review, the rationale

for selecting the DARec model as the initial framework for this investigation is discussed.

3.1 Types of recommendation techniques

As mentioned in the introduction (Section 1), recommender systems try to forecast user

preferences for items that have not yet been viewed and attempt to get the user to buy

them (Bobadilla et al., 2013). Recommender systems can use implicit or explicit manners

for finding the information on users to make recommendations (Gope and Jain, 2017;

Koren et al., 2011). Implicit information is considered data that implicitly shows user

preferences, such as buying history and demographics, whereas explicit information is

data that was obtained for this specific purpose, such as ratings or questionnaire results.

The emphasis of the thesis lies on recommender systems employing explicit information.

Recommender systems are algorithms that provide recommendations based on input

data. The nature of the input data varies depending on the type of recommender sys-

tem used. Within the scope of the thesis, recommender systems are categorised into

two distinct groups: non-personalised and personalised. Non-personalised recommender

systems offer generic recommendations without considering individual user preferences,

while personalised recommender systems tailor recommendations to the specific interests

and characteristics of individual users or items.

3.1.1 Non-personalised recommender systems

The most naive RS is a non-personalised recommender system. The non-personalised

system offers recommendations solely based on information unrelated to the user. It

delivers identical suggestions to all users, irrespective of demographics, preferences, or

other individual details. Non-personalised recommender systems offer valuable advantages

as they can be presented to users even with limited knowledge about their preferences.

Examples of non-personalised recommenders are algorithms that simply take the N -most

popular items to recommend to a user, like the homepages of grocery shop websites that

display their top ten products (Ricci et al., 2010).
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A non-personalised recommender system does not mean that it provides bad recom-

mendations. Some argue that non-personalised recommendations should only be used

until the system gathers enough information to provide more personalised suggestions.

However, it is essential to recognise that humans are fundamentally social beings, and

love to know (and potentially follow) what is currently most popular, if only to discern

what might not align with their interests (Falk, 2019).

3.1.2 Personalised recommender systems

Personalised recommender systems are designed to provide different recommendations

based on the user. The recommenders utilise information about the user to offer more

tailored and ultimately more accurate suggestions (Resnick & Varian, 1997). Various ap-

proaches are employed to achieve personalisation, such as collaborative filtering, content-

based filtering, and hybrid methods that combine both techniques. Figure 3 illustrates the

theoretical working principles of each of these approaches, demonstrating how they cater

to users’ diverse needs and interests to enhance the overall recommendation experience.

The following subsections elabourate on the approaches in detail.

Figure 3: Types of personalised recommender systems
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3.1.2.1 Demographics

A demographic-focused personalised recommender system disregards a user’s preference

or historical behaviour and instead relies solely on defining characteristics of the user to

generate recommendations. It identifies the common traits shared by users who favour a

particular item and leverages this information to make future suggestions (Pazzani, 1999).

For instance, older women (characterised by age and gender) may receive recommenda-

tions for cleaning supplies, while students (distinguished by age and occupation) might

be suggested school supplies.

A drawback of the demographic-focused recommender system is the challenge of ac-

quiring accurate user demographics. Gathering such information can be cumbersome,

requiring user consent and often relying on self-reported data. In many cases, users

might be unwilling to share personal details, leading to incomplete or unreliable demo-

graphic profiles. Moreover, the recommendations generated solely based on demographic

attributes may lack precision and personalisation. Without considering individual pref-

erences or past behaviour, the system might suggest items that do not align with users’

actual interests or needs. As a result, the accuracy and relevance of the recommendations

may be compromised (Pazzani, 1999).

3.1.2.2 Association Rule Learning

Association Rule Learning (ARL) recommender techniques operate on association anal-

ysis; deriving recommendations from patterns or rules discovered in the data. ARL is

a data mining technique that aims to discover relationships between variables. For in-

stance, in a supermarket setting, this method can analyse customer purchase data to

identify frequently co-purchased products. By leveraging association rules, the supermar-

ket can gain valuable insights into customer behaviour, enabling them to enhance their

marketing strategies and make more informed product recommendations (Kumbhare &

Chobe, 2014). The significance of an association rule is typically measured using two key

metrics:

1. Support: This metric reflects the frequency with which products A and B are

purchased together. Rules with higher support values are considered more significant,

indicating strong associations between the items (Fürnkranz & Kliegr, 2015).

2. Confidence: The confidence metric measures the conditional probability of buying

product A when product B is purchased. It assesses the likelihood of one item being

recommended when another item is already chosen by the user.

These measures play a vital role in identifying relevant and meaningful associations

between products, facilitating the generation of item recommendations based on observed
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purchase patterns.

While association rule learning is a useful technique for discovering relationships be-

tween variables, it does have some drawbacks. One major limitation is that it only iden-

tifies associations between items that are frequently co-purchased but does not consider

the underlying reasons or causal relationships. As a result, the identified associations

may not always lead to meaningful or actionable insights. Additionally, association rule

learning can be sensitive to noise in the data, leading to the discovery of spurious or irrel-

evant associations. Moreover, as the dataset grows larger, the number of potential rules

increases exponentially, making the process computationally expensive and challenging to

interpret. Finally, the method does not take into account user preferences or personali-

sation, providing non-personalised and static recommendations that may not accurately

reflect individual tastes and needs (Kumbhare & Chobe, 2014).

3.1.2.3 Content-based Filtering

Content-based recommender systems utilise content information from items to suggest

similar items to users. For instance, if a user expresses interest in a song of the genre

”jazz,” a likely recommendation for that user would be another song of the same genre.

Content-based RS construct a user profile based on the characteristics of a user’s rated

items. The recommendation process involves comparing other item characteristics to

the user’s profile, which represents a structured representation of their preferences and

interests (Lops et al., 2011). By utilising item attributes and user preferences, content-

based recommender systems aim to provide personalised recommendations tailored to the

unique preferences of individual users.

Content-based filtering in recommender systems offers several advantages. One key

strength is its user independence, as it only requires information about the active user and

not ratings from others. Similarly, content-based RS provides explainable recommenda-

tions by clearly stating the characteristics on which the suggestions are based, enhancing

the interpretability of the system. Furthermore, content-based approaches are not af-

fected by the cold-start problem for items, allowing them to recommend unrated items

since they rely on item attributes rather than user behaviour (Lops et al., 2011). By lever-

aging item content, content-based recommendation systems can infer user preferences and

offer relevant and targeted suggestions, making them valuable in scenarios with limited

user feedback or explicit ratings (Pazzani & Billsus, 2007).

However, content-based systems have their limitations. One major flaw is the sys-

tem’s limit in content analysis; it can only analyse a limited amount of content, which

may not be sufficient to accurately profile a user’s interests. Additionally, content-based

RS may encounter difficulty providing accurate recommendations to new users as it first
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needs ratings to determine their user profile (Lops et al., 2011). The effectiveness of

content-based systems heavily relies on the accuracy and comprehensiveness of item de-

scriptions, which directly impacts the quality of recommendations. Sparse or inadequate

item descriptions may limit the performance of content-based approaches. Furthermore,

content-based systems may suffer from the “over-specialisation” problem, frequently sug-

gesting similar items with content that a user has already seen or liked before, making

it challenging to suggest novel items outside of the user’s usual preferences (Pazzani &

Billsus, 2007).

Overall, content-based recommendation systems offer a valuable approach to person-

alised recommendations, especially in situations where user feedback is scarce or difficult

to obtain. They complement other recommendation techniques and play a crucial role

in diverse recommendation scenarios, including domains with rich and informative item

content.

3.1.2.4 Collaborative Filtering

Collaborative Filtering (CF) is a popular and widely used approach in recommender

systems that leverages user and item similarities to provide personalised recommendations.

The CF algorithm, also referred to as ”people-to-people correlation,” identifies users with

similar preferences and items that have been highly rated together with the current item

to make recommendations (Ricci et al., 2010). By effectively combining user-user and

item-item correlations, CF aims to deliver accurate and relevant suggestions. As a result,

collaborative filtering has become a well-liked and frequently employed strategy in the

field of recommender systems .

Collaborative Filtering can be broadly categorised into two main approaches: neighbour-

based approaches and latent factor models. Neighbour-based methods focus on establish-

ing connections between items or users and generate recommendations based on similar

items the user has already rated or items that are highly rated by similar users. These

methods, such as nearest-neighbour techniques, are popular due to their simplicity and

effectiveness.

On the other hand, latent factor models aim to transform both items and users into

a shared latent factor space. One example of a latent factor model is matrix factorisa-

tion. In the latent space, items and users are represented based on variables that can

be automatically derived from user input (Koren et al., 2011). These latent features are

unobserved or indirectly defined features inferred through the model from the directly

observed variables. These latent factors serve as valuable generalisations obtained by

compressing the data. By incorporating latent factor models, collaborative filtering can

effectively capture underlying patterns and relationships in the user-item interactions,
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leading to more accurate and comprehensive recommendations.

Neighbourhood-based models

Neighbourhood-based collaborative filtering models aim to mimic human interaction by

identifying users who share similar preferences with the active user. Among these ap-

proaches, the most common implementation is the user-user approach, which estimates

unknown ratings by leveraging confirmed ratings from similar users (Herlocker et al.,

1999). Over time, the item-item approach gained popularity, estimating an item’s rating

using known ratings provided by the same user for comparable items. This approach of-

fers advantages in terms of scalability, explainability, and accuracy (Bell & Koren, 2007;

Koren et al., 2011).

In neighbourhood-based models, based on how similar the users are to one another,

weights are allocated; the closer the resemblance, the more weight. Neighbourhood-based

models can deliver personalised recommendations that are in line with the active user’s

tastes by taking into account the preferences of similar users (Bobadilla et al., 2013).

Both user-user and item-item recommendation embody the same principle:

General Algorithm

Given an active user a and a target item j without a rating:

1. Identify a set of similar users (neighbours) or items (neighbour items) based on past

interactions and historical ratings.

2. Calculate interpolation weights w for each neighbour based on their similarity to

the active user a (for user-user) or their similarity to the target item j (for item-

item). The similarity metric can be cosine similarity, Pearson correlation, or any

other appropriate measure.

3. Predict the missing rating for item j by combining the ratings of the neighbours

using the calculated interpolation weights w.

In user-user recommendation, the process involves locating akin users to the active

user a and interpolating their ratings to estimate the absent rating for item j (Herlocker

et al., 2017; Breese et al., 1998). Conversely, item-item recommendation entails identi-

fying similar items to the target item j and interpolating their ratings to formulate the

prediction (Sarwar et al., 2001; Linden et al., 2003).

By following this general algorithm, collaborative filtering models can effectively lever-

age the similarities between users and items to provide personalised recommendations.

The specific implementation may vary depending on the chosen similarity metric and

interpolation method, but the underlying idea remains the same for both user-user and
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item-item recommendation. In general, latent factor models achieve better results. How-

ever, neighbour-based approaches are often used due to their simplicity and intuitive

reasoning, as they are quite logical and reasonably easy to use.

Some of the drawbacks of neighbour-based models are that they are typically relatively

local in nature, focusing solely on a limited selection of similar ratings, in contrast to ma-

trix factorisation. The models also have limited coverage, since users are only considered

neighbours if they have common rated items (Desrosiers & Karypis, 2010).

Latent Factor models

Latent factor models serve as a generalisation of content-based filtering, aiming to over-

come its limitations by inferring latent factors responsible for user-item preferences (Hof-

mann, 2004; Hofmann & Puzicha, 1999; Koren et al., 2009). In contrast to content-based

filtering, where specific factors must be explicitly defined, latent factor models do not re-

quire such prior knowledge. Instead, the model infers latent representations, represented

by ui for users and vj for items, capturing underlying patterns in the data (Mongia et al.,

2020). The model predicts higher ratings when the latent factors of users and items align,

enabling flexible and versatile recommendations based on these inferred representations.

The rating (x) of item i for an active user a can be modeled by calculating the inner

product between the latent factors of the user (ua) and the item (vi):

xa,j = uavj (1)

While latent factor models, such as matrix factorisation, excel in rating prediction

accuracy, they are not without their limitations. One significant challenge is the mentioned

cold-start problem, where these models struggle to make accurate recommendations for

new users or items with sparse data. Additionally, the lack of transparency can be a

drawback, as users might not understand the reasoning behind the recommendations.

Furthermore, for less popular or niche users or items, latent factor models might not offer

the most optimal recommendations due to limited data availability, potentially leading to

suboptimal user experiences (Cheng et al., 2018).

3.2 Cross-Domain Recommendation

As discussed in the preceding section, personalised and non-personalised recommender

systems each have their strengths and limitations. Often, the limitations are due to some

form of data sparsity. Cross-domain recommendation (CDR) emerges as a strategic ap-

proach to address the challenges of data sparsity and cold-start problems in recommender

systems. Cross domain recommender systems embody the concept of transfer learning :
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taking information from a source domain and applying it to have better knowledge in

a target domain (Khan et al., 2017). By leveraging data from multiple domains, CDR

aims to mitigate data sparsity, address the cold-start problem, and ultimately improve

recommendation performance in a broad array of domains.

Transfer learning encompasses both positive and negative transfer scenarios. Positive

transfer occurs when knowledge or experience in one domain enhances performance or

learning in a related domain. For example, possessing the skill of riding a bicycle can

significantly facilitate the process of riding a scooter, in comparison to someone who has

never encountered either mode of transportation. Similarly, someone who knows how

to play the violin might pick up the piano faster than someone who has never touched

an instrument before (Zhuang et al., 2021). However, this generalisation of experience

can also have downsides. Negative transfer occurs when having experience or knowledge

in one domain negatively influences performance or learning in another domain due to

conflicting information or inappropriate mappings between the domains. An intuitive

example for this is languages: acquiring proficiency in Spanish could pose more challenges

for someone already familiar with English and French, compared to an individual with

only a background in English (Zhuang et al., 2021).

Within the scope of the thesis, attention is directed towards positive transfer, with an

emphasis on enhancing cross-domain recommender systems through knowledge transfer.

Through the utilisation of positive transfer, the objective is to surmount challenges linked

to data sparsity and cold-start issues, thereby enabling the generation of meaningful

recommendations even in domains marked by constrained user interaction data.

3.2.1 Building Blocks for a CDR System

In the design of cross-domain recommender systems, three crucial aspects must be ad-

dressed: domain difference, user-item overlap, and recommendation task (Khan et al.,

2017). These factors play a pivotal role in shaping the system’s architecture and ap-

proach, and thus require careful consideration during the system’s development.

1. Domain difference

The first building block examines whether the various domains are distinguishable

based on their respective systems, data types, or different times, or if items can be

distinguished based on their attributes, types, medium, or system (Cantador et al.,

2015; Li, 2011). The focus is on understanding the distinctions between domains in

order to choose the design of the recommendation system.

2. User-Item overlap

The second building block investigates the overlap between users and items in the
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different domains. Four cases of overlap are considered (Cremonesi et al., 2011):

• User-Item overlap (U-I): there are common users and common items in both

domains

• User-No Item overlap (U-NI): there are common users but no common items

in both domains

• No User-Item overlap (NU-I): there are no common users but common items

in both domains.

• No User-No Item overlap (NU-NI): there are no common users or items in

both domains

This analysis helps in understanding the available data and user-item relationships

between the domains. The four scenarious are depicted in Figure 4.

Figure 4: Four scenarios of user-item overlap (Cremonesi et al., 2011)

3. Recommendation Task

The third building block categorises the type of recommendation that occurs based

on where the recommended items or users come from. Within CDR, there are four

scenarios for recommendation (Zhu et al., 2021):

• Single-Target CDR: This approach involves transferring knowledge from a

source domain, where there is sufficient data, to a target domain, where data

is limited or missing. The goal is to leverage the information learned from

one domain to improve recommendations in another domain. For example,

if a recommender system has ample data on user preferences for movies, it

can transfer this knowledge to enhance recommendations for books, even with

limited book-related data.

• Dual-Target CDR: This approach leverages information from two domains to

improve recommendation accuracy in both domains simultaneously. It is a
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variation of Single-Target CDR, but instead of having a fixed source and target

domain, Dual-Target CDR uses both domains depending on which domain has

richer information.

• Multi-Target CDR: In this scenario, information from multiple domains is used

to improve recommendation accuracy across all domains simultaneously. The

objective is to recommend items from multiple target domains to a single user

based on their diverse interests or historical interactions. For instance, a Multi-

Target CDR system might suggest movies, books, and music to a user who has

demonstrated interests in all three domains.

• Multi-Domain CDR: This approach leverages information from multiple do-

mains to improve the recommendation accuracy of a set of items from multiple

domains to a single group of users. The goal is to provide personalised rec-

ommendations to users who have preferences spanning across various domains.

For instance, a Multi-Domain CDR system could be used in an e-commerce

platform to recommend a set of products from different categories (e.g., elec-

tronics, clothing, and home decor) to a specific group of customers (e.g., fre-

quent shoppers or premium members).

Within the context of the current investigation, particular focus is directed towards

the single-target cross-domain scenario. In this scenario, recommendations are made

either from the source domain to users in the target domain or in the reverse direction

(Cremonesi et al., 2011; Zhu et al., 2021). In single-target CDR, there are three variations

of transfer learning: content-based, embedding-based, and rating pattern-based transfer.

The following Subsections explain these variations in detail.

3.2.2 Content-based transfer

Content-based recommendation is an intuitive approach that enhances the recommen-

dation process by utilising additional information about items or users. This technique

leverages knowledge of the product or user to generate more accurate suggestions and is

based on the content-based filtering (Section 3.1.2.3). This section delves into the various

types of content that can be utilised for transfer in content-based recommendation.

A straightforward example of content-based transfer considers the domains of movies

and books, where similarities between the two domains can lead to relevant recommenda-

tions. Having substantial knowledge about a movie and a book allows for the generation of

consistent suggestions. If a user enjoys fantasy films with child protagonists, they are likely

to appreciate fantasy books with similar characteristics. However, without information

about the genre or storyline of the book and movie, generating accurate recommendations
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becomes challenging. This exemplifies how additional information, such as user/item at-

tributes, can enhance the accuracy of content-based recommendations (Berkovsky et al.,

2007).

Other examples of content-based recommendation include utilising social tags, which

are user-generated metadata about a product that can be shared across different domains

(Fernández-Tobıas et al., 2019; Wang & Lv, 2020). Semantic properties derived from

textual reviews help measure similarity between reviews, enabling the identification of

similar items (Q. Zhang et al., 2019). Votes reflecting the helpfulness of reviews also

play a role, with higher ratings carrying more weight (Shapira et al., 2013). Additionally,

textual information can be analysed using techniques like topic modelling to model user

and item interests, creating a shared topic space (Tan et al., 2014). Browsing and watching

history can serve as implicit feedback, indicating user interest through actions like clicking

on or watching specific content, even in the absence of explicit ratings (Kanagawa et

al., 2019). These content-based techniques contribute to generating more accurate and

relevant recommendations for users in various domains.

3.2.2.1 User/Item attributes

In content-based recommendation, user and item attributes are utilised to understand

users’ preferences and item characteristics (Berkovsky et al., 2007). User attributes in-

clude information about the users themselves, such as demographics and past behaviour.

On the other hand, item attributes represent the features of the items being recommended,

like descriptions and metadata. An important distinction for user/item attributes is that

they provide explicit information that can often be directly observed and is based on the

metadata of the users/items (Leung et al., 2007; Zhu et al., 2021).

By extracting meaningful features from these attributes, user profiles are created to

capture the users’ preferences, and item representations are established to capture the

important characteristics of the items. Similarity between the user profile and each item

can be calculated using measures like cosine similarity or distance metrics. Based on the

similarity scores, items that are most similar to the user profile are selected as potential

recommendations. These recommendations can be further refined using techniques like

ranking, filtering, or combining with other recommendation approaches.

An example of an algorithm that uses user/item attributes is by Melville, Mooney, and

Nagarajan (2002). They propose a content-based predictor that creates a pseudo user-

ratings vector containing the user’s actual ratings and content-based predictions for the

unrated items. These pseudo-ratings vectors replace the original (sparse) ratings matrix.

In summary, user/item attributes are utilised to create user and/or item profiles,
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calculate similarity, and generate personalised recommendations based on the user’s pref-

erences and the characteristics of the items (Jannach et al., 2010; Ricci et al., 2010).

3.2.2.2 Social Tags

Social tags are user-generated labels or keywords assigned to items by users in a social

tagging system. These tags represent user perceptions, opinions, or associations related

to the items. Social tags can provide additional information about the items, capturing

user-generated knowledge and subjective aspects of the items that may not be explicitly

captured by predefined attributes (Fernández-Tobıas et al., 2019). For example, in the

MovieLens database, the film “Remember the Titans” is associated with social tags such

as “football,” “race issues,” “feel-good movie,” and “based on a true story” (Harper &

Konstan, 2015).

The difference with user/item attributes is that user/item attributes represent prede-

fined characteristics and preferences associated with users and items, while social tags rep-

resent user-generated labels or keywords that capture subjective aspects of items. While

user/item attributes are based on predetermined categories and metadata, social tags pro-

vide insights into how users personally perceive and categorise the items, making them

valuable for understanding subjective preferences and associations.

3.2.2.3 Semantic Attributes

Semantic attributes focus on intrinsic item characteristics and their relationships, which

can be extracted from both structured and unstructured textual information. Instead

of focusing solely on predefined characteristics or user-generated labels (like user/item

attributes or social tags), semantic attributes aim to uncover the underlying meaning or

context of items. Semantic attributes help establish connections and similarities between

items from diverse domains, even if they lack explicit overlap in traditional attributes

or tags. As an illustration, contemplate a situation involving movie and book domains.

Conventional attributes within these domains could encompass elements such as genre,

director, author, or release date. In addition to these, social tags emerge as user-generated

labels, encompassing descriptors like “feel-good,” or “tear-jerking”. Semantic attributes,

however, go beyond these predefined labels and uncover deeper relationships between

items. These attributes could include elements like “emotional intensity,” “atmosphere,”

or “character development.”

To extract semantic attributes, advanced techniques like text clustering or topic mod-

eling are applied to analyse textual data from multiple items. These techniques identify

common themes, concepts, or topics present in the text, enabling the system to group

similar items together based on their semantic content. Unlike social tags, which capture

21



users’ individual perceptions and associations with items, semantic attributes represent

the intrinsic characteristics of items.

An example algorithm using semantic attributes is presented by Kumar et al. (2014),

who utilised item description data to identify the top 25% important words and establish

semantic relations using WordNet ontology (Miller, 1995). Fraihat and Shambour (2015)

extract semantic attributes by using text clustering on the item descriptions.

Although similar to user/item attributes, semantic attributes differ in that they rep-

resent the underlying meaning or context of items. They provide a more abstract and

meaningful representation of users and items, capturing their essence in a generalised

and interpretable manner. Moreover, semantic attributes are shared among items/users,

while user/item attributes often pertain to specific individual users/items, making them

distinct in their scope and application.

3.2.2.4 Text Information

Text information in CDR focuses on leveraging textual content associated with items,

which includes product descriptions, reviews, summaries, and other text-based data that

provides valuable information about the items. By analysing the text data using natural

language processing (NLP) techniques, the CDR system can extract meaningful features,

sentiments, and themes, gaining a deeper understanding of the items’ characteristics.

Scholars have investigated the utilisation of textual data within CDR systems to

enhance the precision of recommendations. For example, Tang et al. (2012) calculate

the similarity of authors based on the papers they publish, using text data to establish

connections between authors and their works. Similarly, Tan et al. (2014) utilise text

data, such as movie summaries, meta data, and user-generated tags in the MovieLens

dataset, as well as summary text and comments in the Amazon dataset, to enhance the

understanding of users’ preferences and item characteristics, leading to more effective

and personalised recommendations. Sahebi and Walker (2014) use a convoluted neural

network (CNN) to process text information (e.g. course introductions) and predict latent

factors, which are then utilised to match students with new learning resources.

The difference between semantic attributes and text information lies in their ap-

proach. Semantic attributes are determined using automated techniques like text cluster-

ing or topic modeling, which span several users/items, without delving into specific textual

content. In contrast, text information focuses on the actual individual textual content,

providing a more detailed understanding of item content, such as analysing movie reviews

to comprehend user opinions. Semantic attributes, on the other hand, offer a broader

perspective for categorisation and grouping, like genre labels of movies.
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3.2.2.5 Votes/Thumbs-up

The concept of votes or thumbs-up refers to the user feedback provided to items in the

form of positive ratings or endorsements. In many recommendation systems, users have

the option to express their satisfaction or preference for an item by giving it a positive

rating, such as a thumbs-up or a like.

Votes and thumbs-up are a form of indirect user-generated data that can be utilised

in content-based recommendation approaches. For instance, in a music recommendation

system, users can express their approval by giving thumbs-up to songs they like, enabling

the system to suggest similar songs or artists based on shared attributes or genres. Addi-

tionally, voting can augment direct user input. An illustrative example involves a model

that integrates explicit ratings with user preferences obtained from their Facebook profile.

This model considers a user’s direct feedback and incorporates indirect feedback based

on the user’s activities on Facebook, such as liking pages related to specific films or series

(Shapira et al., 2013).

This approach allows the model to provide more accurate and personalised movie

recommendations that align with the user’s tastes and interests. For instance, if a user

explicitly rates several action movies highly and has also liked multiple action movie

pages on Facebook, the model can deduce the user’s strong preference for action-packed

content. Consequently, it can offer movie recommendations that cater specifically to the

user’s affinity for action films.

3.2.2.6 Browsing/Watch History

Browsing/watch history is gathered to gain insights into user preferences and interests by

analysing the web pages or items they have interacted with. It serves as a form of soft

rating, as it reflects the user’s level of interest or disinterest without a direct numerical

rating. This valuable information is then utilised to construct user profiles, which capture

the user’s preferences and behaviour across various domains.

By analysing the browsing/watch history, the recommender system can discern pat-

terns and trends in the user’s online activities, enabling it to make more informed and

personalised recommendations. For example, if a user frequently visits web pages re-

lated to travel destinations and adventure activities, the system can infer their interest

in traveling and adventure-oriented experiences. This knowledge contributes to the cre-

ation of a comprehensive user profile that enhances the accuracy and relevance of future

recommendations.

Algorithms using browsing/watch history can also replace ratings entirely, as demon-

strated by Kanagawa et al. (2019). Others use the search history to build user features,
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which are then used to create user profiles (Elkahky et al., 2015).

3.2.3 Embedding-based transfer

Embedding-based cross-domain recommender systems concentrate on transferring em-

beddings obtained from collaborative filtering methods. The process begins by training

a collaborative filtering model on the source domain to generate the embeddings. These

embeddings, which represent the underlying user and item preferences, are then shared

with the target domain using machine learning algorithms. By leveraging these shared

embeddings, the recommender system can effectively transfer knowledge from the source

domain to the target domain, enhancing the accuracy of personalised recommendations

in the target domain (Zhu et al., 2021).

There are various approaches that have been utilised in embedding-based transfer.

These include multi-task learning, where the model simultaneously learns from multiple

tasks to improve generalisation; transfer learning, which leverages knowledge from the

source domain to enhance performance in the target domain; clustering, where similar

users or items are grouped together to improve recommendation accuracy; deep neural

networks, which can capture complex patterns and representations in the data; rela-

tional learning, which focuses on learning relationships between users and items to make

recommendations; and semi-supervised learning, which uses both labeled and unlabeled

data to improve the learning process. These techniques play a crucial role in enhancing

the capabilities of embedding-based cross-domain recommender systems and facilitating

knowledge transfer between different domains (Zhu et al., 2021).

Despite the potential of embedding-based methods to transfer user and item prefer-

ences across domains, the direction of the thesis research does not extend to this domain.

Multiple factors influenced this choice, including data availability and alignment, existing

research saturation, and the intricacies involved in advanced embedding-based transfer

techniques and its integration with rating pattern-based transfer.

3.2.4 Rating pattern-based transfer

Rating pattern-based transfer is the CDR approach that emphasises the transfer of general

patterns that emerge across domains, rather than focusing on specific users or items (Zhu

et al., 2021). It aims to capture recurring patterns in ratings data and leverage this shared

knowledge to improve recommendations in the target domain. For instance, consider a

pattern where users who rated films A and B with five stars tend to rate film C with only

one star. This pattern can then be employed to predict potential items for a user who has

highly rated film A. By identifying and utilising such rating patterns, the rating pattern-

based transfer enables more effective knowledge transfer between domains, contributing
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to enhanced cross-domain recommendation performance (Yuan et al., 2019).

The fundamental concept of rating patterns remains constant across different do-

mains and data in rating pattern-based transfer. However, the distinguishing factor lies

in the algorithmic approaches employed. These approaches can vary from focusing on

domain-specific rating patterns, to solely considering cluster-level rating patterns, or even

combining both aspects (Gao et al., 2013; Li et al., 2009). In addition, some strategies

acknowledge that user-item interactions may vary across domains, leading to the explo-

ration of methods that leverage all three aspects to effectively exploit user preferences

(Hu et al., 2013; Loni et al., 2014). These diverse ideas contribute to the comprehensive

exploration of transfer learning and rating patterns to enhance recommendation accuracy

in cross-domain scenarios.

Recent advancements in transfer learning have shown a growing interest in integrat-

ing deep learning techniques with cross-domain recommendation. As mentioned in the

Introduction (Section 1), a noteworthy example is the work presented by Yuan et al. in

“DARec,” which combines rating pattern-based transfer with deep learning and achieves

SOTA performance compared to other models on the same dataset (Yuan et al., 2019).

By leveraging domain adaptation alongside cross-domain recommendation, DARec effec-

tively addresses scenarios with user-no item (U-NI) overlap, enhancing its applicability

in diverse recommendation settings. Section 4 presents the comprehensive architecture of

the DARec model.
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4 Model

The present section focuses on the implemented models in the thesis. As introduced

previously, the research begins with the DARec model as foundation. Following this,

the integration of content-based features into the framework is implemented to explore

the outcomes of combining two distinct transfer learning techniques within CDR. The

section first elaborates on the DARec model and subsequently provides details on the

incorporation of content-based features. It is important to note the presence of two

variations of the DARec model: U-Rec and I-Rec. U-Rec adopts a user-centric approach,

aiming to forecast rating vectors for individual users. Conversely, I-Rec takes the inverse

route by predicting rating vectors for specific items.

The emphasis of the research is directed towards implementing the I-Rec (Item-Based)

model, rather than the U-Rec (User-Based) model. The decision is driven by the findings

from the DARec paper (Yuan et al., 2019), where the I-Rec model outperformed its user-

based counterpart in terms of recommendation accuracy and cross-domain adaptation

capabilities (demonstrated by Figure 9). As a result, the implementation of the I-Rec

model as the initial step in our investigation is prioritised. Emphasising this variant

allows the utilisation of its strengths in capturing item-based features and facilitating the

recommendation process adaptation across diverse domains. It is important to note that

the same data pre-processing steps are used for both variants of the model, which are

explained further in Section 5.

4.1 Research Methodology

The purpose of the research aims to provide insight in the impact of combining transfer

learning techniques in cross-domain recommendation. To test the hypothesis stated in

the Section 1.2, the research focuses on building a recommender system that evaluates

the recommendation accuracy of the model using only rating pattern-based data and a

system using a combination of rating pattern-based data and content. The two distinct

models are evaluated with the aim of enhancing recommendation accuracy.

The methodology to achieve this objective is built upon the utilisation of two models

that share the same initial pipeline and input data. The key distinction arises from the

inclusion of content features within one of the models. At each phase of the pipeline, ex-

periments are conducted to attain optimal outcomes before progressing to the subsequent

stages. A detailed description of the fundamental pipeline is presented in Subsection 4.2.

In the research, it is ensured that the input data has explicit feedback (user ratings)

and source and target domain have a shared set of users, but no overlapping items (i.e.
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scenario U-NI from Section 3.2). The following notations are used:

Set of users: U = {1, 2, ..., U} (2)

Set of items in the source domain: IS = {1, 2, ..., IS} (3)

Set of items in the target domain: IT = {1, 2, ..., IT} (4)

All variations of the model are scored with the Root Mean Squared Error (RMSE)

metric. RMSE is widely adopted as a key metric in evaluating the performance of rec-

ommender systems due to its ability to capture the extent of prediction errors. RMSE

provides a comprehensive insight into how well the model’s predictions align with the

actual observed ratings. By considering the squared differences between predicted and

actual ratings, RMSE not only measures the magnitude of errors but also penalizes larger

deviations more severely. This sensitivity to larger errors makes RMSE an effective mea-

sure for assessing the overall accuracy of recommendation predictions, offering a clear and

interpretable benchmark to compare different models and techniques. Equation 5 outlines

the formula employed for computing the RMSE score, with M and N representing the

quantities of items and users within the test set, respectively. ŷi,u represents the predicted

rating for item i and user u, and yi,u represents the actual observed rating for item i and

user u.

RMSE =

√
1

(M ×N)
× ΣM

i=1Σ
N
u=1(ŷi,u − yi,u)2 (5)

4.2 DARec

The DARec (“Deep Domain Adaptation for Cross-Domain Recommendation via Trans-

ferring Rating Patterns”) paper proposes a novel approach to address the challenges of

cross-domain recommendation (CDR) by leveraging domain adaptation techniques (Yuan

et al., 2019). The key idea behind DARec is to learn the underlying rating patterns from

source domains and then adapt this knowledge to the target domain. The model incor-

porates a deep learning architecture that effectively captures the intrinsic relationships

between users and items in different domains. Figure 5 shows the architecture of the

whole DARec pipeline.

4.2.1 AutoEncoder

The first step of the DARec model, inspired by AutoRec (Sedhain et al., 2015), employs

an AutoEncoder to address the issue of unknown ratings in the dataset. The primary
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Figure 5: DARec architecture

objective is to encode and decode the rating matrix in a manner that reduces its sparsity

effectively. To achieve this, two separate AutoEncoders are utilised within the archi-

tecture: one trained on the source domain and another on the target domain. Each

AutoEncoder takes the rating vector for every item (yi) as input and maps it into a low-

dimensional latent space (the mapping layer is referred to as the encoder, and the latent

space are the embeddings). Subsequently, a reconstruction layer (known as the decoder)

generates values for the missing ratings, yielding rating vectors with predicted values.

The predicted vectors are defined as follows:

ŷ = W2 · g(W1 · y + b1) + b2) (6)

where W1, W2, b1, and b2 are the relevant weights and biases of the AutoEncoder, and

g(·) is an activation function.

lossAutoEncoder =
U∑

u=1

∥ŷu − yu∥2O

+ λ
(
∥W1∥2F + ∥W2∥2F + ∥b1∥22 + ∥b2∥22

) (7)

Equation 7 shows the loss function for the AutoEncoder, which is calculated by calculating

the masked loss between the true and predicted ratings and adding the regularisation

term. The masked loss is explained in Section 4.2.4. The regularisation term consists of

the matrix Frobenius norms of W1 and W2, and the vector l2-norm of b1 and b2, and λ is

the regularisation strength.

From the trained AutoEncoder, the encoder -layer is used to map the rating vectors of

both source and target to the low-dimensional latent space. These embeddings form the

input for the rest of the model. The algorithm for training the AutoEncoder is shown in

Algorithm 1.
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Algorithm 1: Training the AutoEncoder

input: rating matrix
output: embeddings, predicted rating matrix
Training AutoEncoder
1: for rating matrix in domains do
2: Forward pass to get embeddings and predictions
3: Compute loss using predictions and true values
4: Update model parameters using backpropagation
5: end for
6: Save trained AutoEncoder

4.2.2 Interleaving Embeddings

Before using the embeddings as input for the subsequent part of the architecture, the

source and target domains are combined to create a new dataset. To extract shared

rating patterns effectively from the latent space, the sequence of latent factors for the

target domain is interleaved with those from the source domain. This interleaving process

includes transferring the embeddings from both domains to create a new dataset. Each

embedding is associated with an item ID and a domain ID to indicate to which item and

domain (source or target) it belongs. The interleaving algorithm is further detailed in

Algorithm 2. This approach allows the model to capture and leverage shared patterns

between the two domains, enhancing the performance of cross-domain recommendation.

Algorithm 2: Interleaving Embeddings

Input: Embeddings source, Embeddings target
Output: Interleaved Embeddings
Creating train-test split
1: for domain in [source, target] do
2: Get embeddings from trained AutoEncoder
3: Create train and test split on embeddings
4: end for
5: for embedding in train/test do
6: Interleaved ← embeddings source + id + domainid

7: Interleaved ← embeddings target + id + domainid

8: end for

4.2.3 Modified DANN

The second part of the DARec model has its focus on taking in the embeddings and trying

to predict the original source and target rating vectors from it. This part of the model

is inspired by the Domain Adversarial Neural Networks (DANN) (Ganin & Lempitsky,

2015). The DANN architecture proposed by Ganin et al. consists of a domain classifier, a

deep label predictor, and a deep feature extractor. A gradient reversal layer, which aligns

the feature distributions between several domains, connects the domain classifier to the
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feature extractor during training. In order to make the features as indistinguishable

from one another as possible for the domain classifier, this alignment seeks to make

them domain-invariant. Effective domain adaptation results from the model’s training to

minimise both label prediction loss for source instances and domain classification loss for

all samples.

The modified DANN model, henceforth referred to as the DARec-part of the model,

undergoes two modifications: the utilisation of two label predictors (one for the source

and one for the target) instead of one, and the omission of the gradient reversal layer due

to the exclusive focus on I-DARec within this thesis. The altered DARec model comprises

three distinct elements:

1. Rating Pattern Extractor

The first component is the Rating Pattern Extractor (RPE). This is a fully-connected

neural network that is applied to the task of feature extraction. It takes in the interleaved

embeddings and extracts domain-invariant features.

2. Rating Predictor

The Rating Predictor (RP) is a component that is domain-specific and therefore applied

twice: once for source (RPS) and once for target (RPT). It consists of a deep feed-forward

neural network that takes in the domain-invariant features from the Rating Pattern Ex-

tractor and reconstructs the original source or target rating matrix. Its hidden layers

follow a pyramid shape that varies based on the output dimensions from the RPE.

Its dimensions are calculated based based on the number of rows in the input matrix

(I) and the # of features (F) in the RPE:

1 Layer. In: # of features RPE (F). Out: x = (F + I)/2

2. Layer. In: x. Out: y = (x+ I)/2

3. Layer. In: y. Out: I

Based on thesizeof the input matrix, the layers either follow a pyramid or an inverted

pyramid shape.

3. Domain Classifier

The last component of the DARec model is the Domain Classifier (DC), a component

solely implemented to force the model to learn domain-invariant features. It is a neural

network consisting of two layers that tries to predict the domain label of the input. The

domain label c ∈ {0, 1} denotes 0 as belonging to the source domain, and 1 as belonging

to the target domain.
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As previously mentioned, the model does not require a gradient reversal layer prior

to the domain classifier when extracting the patterns. Since there is no overlap between

items, the RPE attempts to reduce the domain classification loss to more effectively adjust

the model to the varied item attributes that are present across domains. As a result, the

following is an expression for the total loss function of the DANN-part of the DARec

model:

L(Θf ,Θr,Θc) = losspred(Θf ,Θr) + µ · lossDC(Θc) + λ ·R

=

IS,T∑
i=1

∥ŷi,S − yi,S∥2O + β · ∥ŷi,T − yi,T∥2O

+ µ ·
IS ,T∑
i=1

ĉi log (ci) + (1− ĉi) · (1− cu)

+ λ ·R

(8)

where Θf is the parameter set of the rating pattern extractor, Θr the parameter set

for the rating predictor, and Θc is parameter set for the domain classifier. The loss of

the domain classifier is calculated by employing binary cross-entropy loss, where ĉu is the

predicted domain, and cu is the true domain label.

Algorithm 3 shows the pipeline for this process, after the embeddings are generated

by the trained AutoEncoder.

Algorithm 3: DARec model

Input: Interleaved Embeddings
1: for embedding in interleaved embeddings do
2: feature ← AutoEncoder(embedding)
3: prediction source ← RPS(feature)
4: prediction target ← RPT(feature)
5: prediction domain ← DomainClassifier(feature)
6: Update DARec model based on loss function
7: end for
8: best RPE ← trained-RPE
9: best RPS ← trained-RPS
10: best RPT ← trained-RPT

4.2.4 Masked Loss

In the calculation of the loss for the AutoEncoder (as indicated in Equation 7) and the

predictors in Equation 8, the employed approach involves utilising a concept known as

”masked loss.” This approach serves to address the issue arising from ratings that are
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unknown or missing within the rating matrix.

The masked loss function focuses only on the observed ratings when training the

AutoEncoder or DARec, i.e., the ratings that are known in the training data. It disregards

the missing entries in the rating matrix by masking them. This approach is essential, as

including the missing ratings, which are represented by zeroes, in the loss calculation

would introduce biases and inaccuracies in the model’s learning process.

By using a masked loss function, the model can concentrate on optimising the predic-

tions for the observed ratings only, which enables it to learn the underlying patterns and

relationships more effectively. This helps in mitigating the impact of data sparsity and

improves the recommendation accuracy, especially when dealing with large and sparse

rating matrices.

4.3 Hybrid model

The objective of the DARec model is to identify domain-invariant features for items

within the datasets, as elaborated in the preceding section. To enhance recommendation

performance further, the study explores the integration of content-based recommendation

in conjunction with the rating pattern-based recommendation. By enhancing the DARec

model with content features, the aim is to leverage supplementary item information, which

in turn enhances feature learning and deepens the comprehension of item attributes. It is

expected that the addition of content-based recommendation provides extra input, aiding

in accelerating the learning process. However, it is anticipated that the ultimate outcomes

are similar, since the content-based features are presented as supplementary information.

One method for experimenting with the combination of two transfer learning strategies

is to build two distinct models (one based on rating patterns and the other on content), and

combine the two outcomes. Due to the notion that using numerous models is preferable to

using only one, it is expected that this will probably result in improved recommendations.

However, such an approach does not effectively address the core objective of this research,

which is to explore the integration of transfer learning techniques. To truly assess the

impact of combining content-based and rating pattern-based transfers, a more integrated

approach is necessary to investigate the impact of the combination. Section 4.3.2 addresses

the proposed model for this research.

4.3.1 Obtaining Content Features

The first step of the hybrid model is the creation of the content features. Section 4.2

already explains the entire architecture of the DARec pipeline, which remains the same for

this model. Section 3.2.2 explains the types of content features that are used typically in
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cross-domain recommendation. For this research, leveraging text information by analysing

the item descriptions and item titles is the approach chosen. Section 5.1.2 explains how

the content is pre-processed in the data before it is used to generate content features.

The content features itself are based on the top N most-popular terms in the TF-IDF

algorithm.

4.3.1.1 TF-IDF algorithm

The TF-IDF algorithm (Term Frequency-Inverse Document Frequency) (Robertson, 2004)

is used to gauge a term’s significance within a group of documents. It vectorises text by

multiplying a word’s frequency in a document by the word’s inverse frequency throughout

the entire dataset to determine how relevant a term is to a particular document within

a broader corpus. Because of this, TF-IDF considers a word’s ”uniqueness” rather than

merely its frequency. The output of TF-IDF is a sparse vector with zero values for words

that do not appear in any particular document and one value for each word that does.

The TF-IDF algorithm consists of two main components:

Term Frequency (TF)

It calculates the frequency of a term (word) within a document. It indicates how often a

term appears in a document relative to the total number of terms in that document. The

intuition is that more frequent terms may have higher importance within the document.

TF (t, d) =
Number of occurrences of term t in document d

Total number of terms in documentd
(9)

Inverse Document Frequency (IDF)

It measures the rarity of a term across the entire corpus. It penalises terms that appear

frequently in many documents as they are considered less informative. Rare terms that

appear in only a few documents are considered more valuable in distinguishing those

documents.

IDF(t,D) = log

(
Total number of documents in the corpus

Number of documents containing term t

)
(10)

Finally, the TF-IDF score for a term in a document is obtained by multiplying its TF

and IDF values:

TF-IDF(t, d,D) = TF (t, d)× IDF (t,D) (11)

To extract content features, the TF-IDF score is computed for every word in the

content descriptions. The top N content words are then determined based on their highest

cumulative TF-IDF scores. These selected content words serve as essential representations
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of the most relevant and distinguishing features found in the item descriptions.

Subsequently, the identified top N content words are repurposed into content features

for each item. In this process, a value of 0 is assigned if a content word is absent in the

item description, and a value of 1 is assigned if it is present. This procedure generates

content features that effectively indicate the presence or absence of specific content words

in each item description. For instance, an example content feature would look as follows:

Source Black Wood Red
Item 1 1 1 0
Item 2 0 1 1

Table 1: An example content feature

For both the source and the target domains these features are saved and stored for

later use.

4.3.2 Integration content and DARec

Figure 6 shows the model depicting the integration of content-based features within the

DARec pipeline. As can be seen in the Figure, the original DARec pipeline remains

unchanged. The change occurs at the end of the pipeline, where instead of returning the

predicted rating matrices, the steps of the DARec model are repeated, with the addition

of content features.
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Figure 6: Hybrid model architecture (DARec with content)
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The integration process begins with the utilisation of the content features in conjunc-

tion with the pre-trained DARec model. From the pre-trained DARec, the pre-trained

AutoEncoder, rating pattern extractor, and rating predictors are saved. The domain

classifier is left out of the process, as the content features are domain-specific.

The pipeline remains unchanged until the rating pattern extractor (RPE) stage, where

the same steps as before are followed to obtain embeddings from the rating matrices. The

dimensions of the rating pattern extractor remain consistent with those in the original

DARec model. Using the RPE, the features are extracted from the generated embeddings.

The actual integration occurs just before passing the new features into the rating

predictors. In this stage, the content features are added to the output of the rating pat-

tern extractor. This strategy is based on the idea that the AutoEncoder within DARec

strives to achieve a comparable objective (identifying distinct features for optimal dataset

representation), but it must start learning from the beginning. By furnishing it with

well-defined features through content features, the intention is to support its learning en-

deavour. Placement of the content features after the rating pattern extractor is guided by

sizing considerations; since the output is already reduced at this point, the incorporation

process becomes more seamless.

To accommodate the new input dimensions resulting from the addition of content

features, a layer is inserted before the original pre-trained rating predictors. Once the

content features are combined with the output features from the rating pattern extractor,

the process of training the rating predictors remains the same. The same loss function,

without the domain prediction loss, is employed to compare the final results to those

of the model without content features. This approach facilitates the assessment of the

influence of content integration on recommendation accuracy.

The modified algorithm, after the main DARec model is trained, is shown in Algorithm

4.

Algorithm 4: DARec model with content

Input: Interleaved Embeddings, content
1: for embedding in interleaved embeddings do
2: feature ← AutoEncoder(embedding)
3: feature content ← feature + content
4: prediction source ← RPS(feature content)
5: prediction target ← RPT(feature content)
6: Update DARec model based on loss function
7: end for
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5 Data

The primary dataset utilised for experimentation is sourced from Amazon reviews, origi-

nally curated by J. McAuley (McAuley et al., 2015). The dataset was initially developed

for one-class collaborative filtering research and encompasses product reviews and asso-

ciated information from 24 distinct Amazon product categories. Moreover, each category

is accompanied by a corresponding dataset containing metadata for all products within

that particular category. As highlighted in Section 2.2, the issue of intellectual prop-

erty rights surrounding data becomes a notable concern when employing transfer learning

across datasets or models sourced from distinct companies. To circumvent this potential

challenge, a deliberate choice was made to utilise a publicly available dataset. By opting

for such a dataset, the discussion regarding intellectual property becomes a non-issue,

providing a clear and ethical pathway for the research investigation.

The dataset has been previously employed in the DARec paper (Yuan et al., 2019)

and, consequently, serves as a benchmark for the present study. However, it is important

to note that since the publication of the DARec paper, the dataset has undergone sig-

nificant expansion, incorporating numerous additional reviews. Consequently, while the

results obtained in this thesis may exhibit slight variations due to the dataset extension,

the original DARec results continue to serve as valuable guidelines for comparison and

evaluation. Due to the different domains as well as its accompanying content metadata,

the dataset is ideal for this research and better suited than other datasets often used in

recommendation (i.e. MovieLens (F. Maxwell Harper, 2005)).

Due to hardware and availability constraints, not every domain set was used in the

experiments. The original DARec paper employed four domain sets, aiming for domains

as dissimilar as possible: Office Products & Movies and TV, Sports and Outdoors & CDs

and Vinyl, Android Apps & Video Games, and Toys and Games & Automotive. Among

the domain sets used in the original DARec paper, Sports and Outdoors, Toys and Games,

Movies and TV, and Automotive are notably large datasets. Additionally, one domain

(Android Apps) was not available anymore in the updated dataset. Therefore, to also

accommodate hardware limitations, the research focuses on two domain pairs: Office

Products & Movies and TV, and All Beauty & Appliances. These domain pairs strike a

balance between datasetsizeand the number of mutual users, aligning with the research

objectives. The selection was made considering the availability of data and computational

feasibility while maintaining the essence of the original approach (dissimilar domains).

37



Table 2 shows the summary statistics for the four chosen domains.

Dataset # of items
# of
users

# of ratings
Avg rating
per user

Avg # of
ratings per

item
Source Target Source Target Shared Source Target Source Target Source Target

1
All

Beauty
Appliances 58 68 11 69 71 4.4928 4.1549 1.1897 1.0441

2
Office

Products
Movies
and TV

11143 29667 3355 47302 117699 4.4941 4.3109 19.1550 39.7250

Table 2: Summary statistics domains

The sparsity of each domain is calculated by using the following Equation:

Sparsity =
# of ratings

(# of items×# of users)
× 100% (12)

In the context of the Beauty and Appliances domains, the sparsity rates are 89.18%

and 90.51%, respectively. For Office Products and Movies and TV, notably higher sparsity

levels of 99.87% and 99.88% are observed.

5.1 Data pre-processing

5.1.1 Generating rating matrix

For each dataset, Figure 7 shows the data pre-processing steps taken to obtain the rating

matrices. The data underwent a thorough cleansing process, involving the removal of

irrelevant columns and duplicate entries. To handle instances where users submitted

multiple reviews for the same product, only the latest review (and rating) was retained.

Additionally, to ensure sufficient data for effective learning, users with a limited number

of reviews (e.g., 5 for Beauty & Appliances and 10 for Office & Movies) were excluded.

Furthermore, in the case of Office and Movies, items with fewer than 5 ratings were

also filtered out to create a computationally manageable dataset. The selection of the

threshold value of 5 aligns with the criteria outlined in the DARec paper. Section 6.1

provides detailed insight into the rationale behind the choice of a threshold value of 10

for users for the Office & Movies domain.

Having extracted the desired rows, the next step involved identifying the shared users

between the source and target domains. Subsequently, the rating matrix was constructed

based on these shared users, with users serving as rows in the matrix. To align the data in

the format suitable for I-DARec, the matrix was then transposed. This process ensured

a well-prepared dataset, conducive to effective experimentation and analysis.
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Figure 7: Data pre-processing steps per domain set

5.1.2 Generating content

Each domain has extensive metadata on all its products. This metadata is used to gener-

ate the content features for the integration of content features and rating pattern-based

DARec. Before the content can be used, it first needs to be pre-processed as well. The

items have the following types of information available:

• Reviews:

– Reviewer ID: the ID of the reviewer

– Reviewer name: the name of the reviewer

– Review text: the text of the review

– Review summary: a summary of the review, where it is unknown who creates

the summary

– Review time: at what time the review was written

– Number of ”helpful review”-votes: how many other users found this review

helpful

• Items:

– Title: the name of the item

– Description: the description of the item

– Features: a bulleted list of features of the product

– Related products: products that are similar (either also bought, also viewed,

or bought together)

– Brand: the name of the brand
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– Price: the price in US dollars

– Categories: which categories the item belongs to (can be the domain itself, or

other categories)

It is essential to acknowledge that not every item in the dataset contains all the

mentioned data fields. Some items may lack certain information, such as descriptions,

features, or related products.

The choice of utilising item descriptions for analysis was made based on the data

availability, time constraints, and the quality of the textual content. In cases where item

descriptions were absent, the item titles were used to complement the missing information.

Figure 8 illustrates the sequence of pre-processing actions conducted to extract rele-

vant content from the metadata. The specific actions taken at each stage are described

below. It is important to note that these steps were executed without extensive optimi-

sation. While further refinement could potentially yield more insightful content features,

this aspect was not prioritised due to the constraints of time within the scope of this

research. Section 4.3.1 provides a detailed account of the content feature extraction al-

gorithm. To maintain conciseness, duplicating the comprehensive explanation here is

avoided.

Figure 8: Data pre-processing steps for content

5.1.2.1 Remove stop words, punctuation, and numbers

Stop words are common words that do not carry significant meaning in the text. Exam-

ples of stop words include “a,” “the,” “is,” and “and.” They are words that occur often

without incurring any meaning. Punctuation is removed from the text because it pro-

vides no meaningful context. Additionally, numbers are also deleted from the contents.

The reasoning behind this step is that numbers do usually not provide a distinguishing

feature of an item; in the dataset numbers are often product codes, prices, or measure-

ments. These are often not generalisable and only make sense when made relative to other

products. Preferable attributes include terms like “large”, “cheap”, or “travel-sized” as

opposed to terms such as “1 (L)”, “2.99”, or “50 (ml)”. Furthermore, HTML tags were

also removed from the text.
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Stop words, punctuation, and numbers are removed for multiple reasons:

• Noise reduction and focus on important terms: Eliminating elements like

stop words, punctuation, and numbers, causes the overall text to be cleaner and

less cluttered and allows the analysis to focus more on the content words that carry

significant meaning. This can help make the analysis and interpretation of the text

more straightforward and efficient, and can improve the accuracy and relevance of

the results obtained from NLP models.

• Memory and storage efficiency and improved computational efficiency:

The stop words, punctuation, and numbers can consume memory and storage re-

sources, especially in large text corpora. Removing them can lead to more efficient

processing and storage of textual data. Since the stop words, punctuation, and

numbers occur frequently, their presence in the text can increase the computational

burden during various natural language processing tasks. Removing them can speed

up processing and analysis.

5.1.2.2 Applying stemming

Stemming is a technique used in natural language processing to reduce words to their

root or base form, known as the stem. It involves removing common word endings or

suffixes to simplify words and group them together based on their common root form.

The purpose of stemming is to normalise words so that variations of the same word can

be treated as the same word. For example, stemming can convert words like “running,”

“runs,” and “ran” to their common stem “run,” allowing algorithms to recognise them as

similar forms of the same word.

Stemming algorithms work by applying a set of predefined rules or heuristics to re-

move suffixes and convert words to their stem form. These rules are based on linguistic

knowledge and patterns. The most commonly used stemming algorithm is the Porter

stemming algorithm; a technique used to remove common morphological and inflectional

endings from English words (Porter, 1980).

It is important to note that stemming is a simple and rule-based process, and it does

not always produce accurate results. Stemming can result in the stem not being an actual

word or it can create stems that are not necessarily related in meaning. Therefore the

performance of the algorithm with and without stemming was tested. The results are

recorded in Table 11 and 12.
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5.2 Train/test split

In order to create a train-test split for the data, unique identifiers are generated for the

rating matrix. The test percentage is used to determine the size of the test set, which is

a subset of these unique identifiers. Random selection without replacement ensures that

the test set does not overlap with the training set. After obtaining the test and train IDs,

the rating matrix is split into separate matrices for training and testing. The train/test

split is generated on the source and target domain separately for the AutoEncoder, and

on the interleaved embeddings (consisting of both source and target embeddings) for the

DARec and hybrid model.
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6 Experiments

The upcoming section meticulously outlines the experiments and the resulting perfor-

mance of the different models, as detailed in Section 4. It commences with comprehensive

explanations of the experiments and data settings. Subsequently, some of the models’

performances are compared against the benchmark set by Yuan et al. (2019). The section

concludes by presenting the outcomes related to the hybrid model.

6.1 Parameter Settings

This subsection delves into an exploration of parameter settings for three distinct models,

namely the AutoEncoder, the DARec model and the hybrid model. Understanding the

appropriate configuration of these hyperparameters is important in optimising the mod-

els’ performance for cross-domain recommendation tasks. Systematic experimentation

involves the assessment of diverse hyperparameters, including learning rates, weight de-

cay, number of hidden layers, and regularisation rates, among others. For all experiments,

the batch size is set to 512 and the train/test split is set to 10%. The results presented

are derived from the models’ performance on the test set.

6.1.1 AutoEncoder

The first step in both the regular DARec model and the hybrid model is the AutoEn-

coder. It is crucial for the AutoEncoder to perform well, as its embeddings influence

the performance of the other models afterwards. There are four hyperparameters to be

considered in the AutoEncoder: the number of features, the regularisation rate (λ), the

learning rate (lr), and weight decay (wd). The sets of values that are tested for each of the

hyperparameters are displayed in Table 3. An essential consideration in the AutoEncoder

implementation is to maintain an identical number of features for both the source and the

target domains. This ensures that the resulting embeddings possess uniform dimensions,

facilitating their seamless interleaving during the subsequent stages of the model. As

mentioned in Section5.1, there is also the additional test on what criteria to use for the

Office Products & Movies and TV domain set. This is done to simulate the number of

shared users this domain set has in the original DARec paper (5,154).

Domain
Set

Embedding
Size

λ lr wd∗ Criteria

1 {5, 50, 100} {1e-6 - 0.01} {1e-4 - 0.25} {1e-6 - 0.1}∗ 5

2
{200, 400, 600,
800, 1000, 1200} {1e-6 - 0.01} {1e-5 - 0.01} {1e-6 - 0.1}∗ {9,10,15}

Table 3: Hyperparameter settings AutoEncoder

*Weight decay is initially taken into account in the first few experiments, but it is
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eventually set to 0. This decision is made because the regularisation term (λ) in the

optimiser already serves as a means of controlling overfitting, similar to weight decay.

Simultaneously hypertuning both parameters could result in conflicts, hence weight decay

is fixed at 0 to avoid any potential interference.

The optimal-performing AutoEncoder (best RMSE) on both source and target domain

is saved and retained for the subsequent phase of the DARec model.

6.1.2 DARec

For the DARec model, the pre-trained AutoEncoder is used to obtain the embeddings (E).
After the sequence of embeddings from source is interleaved with the embeddings from

target, the interleaved input is fed into the DARec model. The sets of values that are

tested for each of the hyperparameters are displayed in Table 4. The hyperparameters

considered are: the number of features in the RatingPatternExtractor, the strength of

the domain classifier loss in the overall loss function (µ), the regularisation term (λ), the

importance of the target domain (β), and the learning rate (lr). Equation 8 details the

exact loss function used.

Domain
set

# of features
RPE

µ λ β lr

1 {50-200} {1e-4 -10000} {1e-4 -10000} {0.1-1} {1e-4 - 0.1}
2 {50-500} {1e-4 -10000} {1e-4 -10000} {0.1-1} {1e-4 - 0.1}

Table 4: Hyperparameter settings DARec

The individual models of the top-performing DARec model - the rating pattern ex-

tractor, the rating predictor source, and rating predictor target - are saved and retained

for the integrated DARec with content model. The domain classifier is not used any

further.

6.1.3 Hybrid model (DARec with content)

By utilising the pre-trained DARec model and adapting it to incorporate the added con-

tent features, the same parameters as DARec are hypertuned within this model. Further-

more, experimentation encompasses varying the quantity of incorporated content features.

The selection of the number of content features is influenced by computational constraints

to avoid potential memory issues. Table 5 shows the hyperparameters tuned for this in-

tegrated model. The hyperparameters for the hybrid model are again the regularisation

term (λ), the significance of the target domain (β) and the learning rate (lr)

For both distinct domains, the point-biserial correlation coefficient between the content-

based features and the features extracted through the Rating Pattern Extractor was com-

puted to determine the uniqueness of the content-based features.
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Domain set # content features λ β lr

1 {10, 25, 50} {1e-4 - 10000} {0.1-1} {1e-4 - 0.1}
2 {50, 100, 200, 400} {1e-4 - 10000} {0.1-1} {1e-4 - 0.1}

Table 5: Hyperparameter settings hybrid model

6.2 Results

An overview of the findings derived from the conducted experiments is presented. The

initial subsection outlines the benchmark results from the original DARec model. After-

wards, the focus lies on the outcomes of the AutoEncoder experiments. This is followed

by a subsection on the results from the DARec experiments. The last subsection details

the results from the experiments with the content-integrated DARec model. Every ex-

periment is conducted with an implementation of early stopping to counteract potential

overfitting. The following section (Section 7) analyses the achieved results.

6.2.1 Benchmark DARec

Figure 9 shows the results obtained by the original DARec model. For each embedding size

value, the combined RMSE results of four models are displayed: U-AutoRec, U-DARec,

I-AutoRec, and I-DARec. U-AutoRec showcases the outcomes of the AutoEncoder with

a user-centric approach, while U-DARec represents the collective results of the DARec

model using the specified embedding size. Similarly, I-AutoRec and I-DARec exhibit

identical outcomes but from the item-centric perspective.

Within this diagram, the emphasis is based on the red and green lines, pertaining

to the I-rec version of the model. These particular lines display the performance of the

original I-rec model on the domainset of Office Products & Movies and TV and can

therefore be used for comparison. It should be noted that for embedding size 800, the

best RMSE for the AutoEncoder is 0.985, and for DARec the obtained RMSE is 0.974.

The overall best achieved RMSE for I-DARec is 0.9582, for embedding size 400.

Figure 9: Benchmark results DARec (Yuan et al., 2019)
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6.2.2 AutoEncoder

The presentation of experiment outcomes begins with the analysis of the AutoEncoder

results. The results are categorised by the two domain sets: Beauty & Appliances and

Office Products & Movies and TV (referred to as “Office & Movies” hereafter).

Criteria Shared Users Domain RMSE

1 15 1098
Source 0.8444
Target 0.9059

2 10 3355
Source 0.8828
Target 0.8853

3 9 4412
Source 1.1863
Target 1.2982

Table 6: Results experiments criteria Office & Movies

Starting with the experiments involving the criteria number for the Office Products

& Movies and TV domain set, Table 6 outlines the outcomes of the best AutoEncoder

model, acquired from the evaluation of three distinct criteria-values, accompanied by their

corresponding quantities of mutual users and RMSE-scores. As mentioned in Section 5.1,

the criteria-value stands for the minimum number of reviews a user must have to be

considered useful in the dataset. Following an exhaustive assessment of the experiments

and thoughtful consideration of computational efficiency, the decision to employ criteria

= 10 for all ensuing experiments was made.

The learning curves of the best AutoEncoders for the source and target domains on

the first domain set are depicted in Figures 10 and 11, respectively.

Figures 12 and 13 present the learning curves for the second domain set: Office &

Movies. Moreover, Figure 14 illustrates the ideal embedding size for both domains. In

the right figure, the benchmark from the original DARec model is highlighted.
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Figure 10: Learning curve Autorec All Beauty

Figure 11: Learning curve Autorec Appliances
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Figure 12: Learning curve Autorec Office Products

Figure 13: Learning curve Autorec Movies and TV

For comprehensive experiment results, Table 7 shows the performance of the AutoEn-

coder for Beauty & Appliances and Table 8 shows the results for the Office & Movies

domainset. An interpretation of the results is provided in Section 7.
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Figure 14: Impact of embedding size on RMSE

Beauty & Appliances

All the results presented are based on the optimal models obtained by running the hy-

perparameter optimisation program for 150 trials.

Embedding
Size

Combined
RMSE

Domain RMSE λ Lr Wd

25 0.0291
Beauty 0.0415 5.18e-6 0.1597 0

Appliances 0.0106 4.22e-6 0.2129 0

50 0.0106
Beauty 0.0083 1.14e-6 0.2473 0

Appliances 0.0053 1.26e-6 0.2476 0

100 0.0569
Beauty 0.079 3.48e-5 0.1091 0

Appliances 0.0269 1.01e-5 0.1431 0

Table 7: Results hyperparameter experiments AutoEncoder Beauty & Appliances

Office & Movies

All the results presented are based on the optimal models obtained by running the hy-

perparameter optimisation program for 50 trials.

Embedding
Size

Combined
RMSE

Domain RMSE λ Lr Wd

200 0.9152
Office 0.8276 1.02e-6 0.0006 0
Movies 0.9105 1.03e-6 0.0004 0

400 0.9001
Office 0.9230 1.01e-6 0.0004 0
Movies 0.8913 1.02e-6 0.0001 0

600 0.9362
Office 0.9352 2.04e-6 0.0009 0
Movies 0.9366 1.01e-6 0.0002 0

800 0.8847
Office 0.8828 1.04e-6 0.0001 0
Movies 0.8853 1.02e-6 0.0001 0

1000 0.9244
Office 0.8919 1.76e-6 0.0006 0
Movies 0.9364 1.05e-6 0.0000 0

1200 0.8900
Office 0.8843 1.03e-6 0.0001 0
Movies 0.8926 1.04e-6 0.0001 0

Table 8: Results hyperparameter experiments AutoEncoder Office & Movies
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Based on the findings presented, the optimal-performing models are chosen for further

progression. These selected models demonstrate superior performance and efficacy, mak-

ing them ideal candidates for further experiments with DARec and DARec with content.

6.2.3 DARec

The outcomes presented in this section are based on utilising the most optimal performing

AutoEncoder, as presented in the previous subsection.

Figure 15 shows the impact of size of the rating pattern extractor on the model’s

recommendation accuracy on the test set. The full parameter-settings for each experiment

are presented in Table 9 for Beauty & Appliances and Table 10 for Office & Movies.

Section 7 provides an interpretation of the results.

Figure 15: Results experiments nr of features RPE in DARec

Beauty & Appliances

All the results presented are based on the optimal models obtained by running the hy-

perparameter optimisation program for 250 trials.

Combined
RMSE

Domain RMSE µ λ β Lr
# factors

RPE

1.0549
Source 0.7350

191.3308 0.1415 1 0.0242 76
Target 1.2811

0.9815
Source 0.7044

0.4515 0.9083 1 0.0867 129
Target 1.1809

0.8769
Source 0.6715

0.0092 0.0002 0.6604 0.0867 130
Target 1.0309

1.1680
Source 0.5945

209.5544 1.6607 0.0067 0.0995 186
Target 1.5156

Table 9: Results hyperparameter experiments DARec Beauty & Appliances
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Office & Movies

All the results presented are based on the optimal models obtained by running the hy-

perparameter optimisation program for 25 trials.

Combined
RMSE

Domain RMSE µ λ β Lr
# factors

RPE

1.0275
Source 0.9220

0.6782 0.0004 0.7886 0.0179 115
Target 1.1458

1.0549
Source 0.7350

3.9322 1017.2699 0.2540 0.03892 313
Target 1.2811

0.9572
Source 0.8503

172.8745 0.9771 0.1923 0.005 410
Target 1.0660

1.0064
Source 0.8971

0.0002 51.5055 0.1252 0.0423 459
Target 1.1284

Table 10: Results hyperparameter experiments DARec Office & Movies

6.2.4 Hybrid model

The results depicted in the tables within this section stem from employing the most

optimal-performing DARec model, identified as Experiment 0 in the tables. Figure 16

illustrates the combined RMSE scores of the hybrid model plotted against different num-

bers of content features for both domain sets. Detailed values, along with the separate

source and target RMSE, are provided in the corresponding paragraphs for each domain

set.

Figure 16: Results experiments Hybrid model

Beauty & Appliances

Table 11 shows the highest-achieved RMSE score on the test set for the domain set

Beauty & Appliances. The ‘# of features’ denotes the number of content features used in

the experiment. All the results presented are based on the optimal models obtained by

running the hyperparameter optimisation program for 250 trials.
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# of
Features

Stemming
Combined
RMSE

Domain RMSE λ β lr

0 0 - 0.87693
Source 0.67146

- - -
Target 1.03087

1a 10 True 0.9593
Source 0.7543

3.1411 0.7144 0.0019
Target 1.1156

1b 10 False 0.9643
Source 0.7645

2.3178 0.5431 0.0019
Target 1.1531

2a 25 True 0.9579
Source 0.7869

0.0002 0.7787 0.0003
Target 1.0922

2b 25 False 0.9578
Source 0.78632

0.0003 0.6858 0.0003
Target 1.0925

3a 50 True 0.9673
Source 0.7960

0.0004 0.2378 0.0005
Target 1.1020

3b 50 False 0.9668
Source 0.7951

0.0015 0.9994 0.0005
Target 1.1017

Table 11: Results experiments hybrid model Beauty & Appliances with hyperparameters

Figure 17: Histogram of correlation-values between RPE-features and content-features for Beauty &
Appliances

Office & Movies

Table 12 shows the highest-achieved RMSE scores on the test set for the Office & Movies

domain set. All the results presented are based on the optimal models obtained by running

the hyperparameter optimisation program for an average of 10 trials.
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# of
Features

Stemming
Combined
RMSE

Domain RMSE λ β lr

0 0 - 0.9572
Source 0.8503

- - -
Target 1.0660

1a 50 True 0.9500
Source 0.8461

11.2807 0.3754 0.0348
Target 1.0560

1b 50 False 0.9498
Source 0.8457

0.0004 0.4782 0.0003
Target 1.0561

2a 100 True 0.9494
Source 0.8427

0.0193 0.9996 0.0002
Target 1.0581

2b 100 False 0.9496
Source 0.8424

0.0236 0.8117 0.0001
Target 1.0586

3a 200 True 0.9483
Source 0.8420

0.0107 0.6839 0.0001
Target 1.0565

3b 200 False 0.9484
Source 0.8430

0.0011 0.1912 0.0002
Target 1.0558

4a 400 True 0.9479
Source 0.8413

0.0070 0.6545 0.0001
Target 1.0563

4b 400 False 0.9480
Source 0.8415

0.0007 0.1176 0.0003
Target 1.0565

Table 12: Results experiments hybrid model Office & Movies with hyperparameters

Figure 18: Histogram of correlation-values between RPE-features and content-features for Office &Movies
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7 Discussion

The discussion regarding the experimental outcomes revolves around key observations

and insights derived from the conducted research. It begins with interpreting the results

presented in the previous section (Section 6.2), followed by a discussion of result limita-

tions. The relevance of the outcomes to the business case is then explained, and potential

directions for future research are highlighted to conclude this section.

7.1 Interpretation of Results

The interpretation of the outcomes presented in Section 6.2 is divided into three distinct

subsections, each dedicated to a specific model: AutoEncoder, DARec and the Hybrid

model.

7.1.1 AutoEncoder

Figure 14 presents the influence of the embedding size of the AutoEncoder on its pre-

dictive accuracy. Notably, the combined RMSE of the Beauty & Appliances domain set

is markedly superior to that of the Office & Movies AutoEncoder. This divergence can

be attributed to the substantial dissimilarity in size between the two domain sets, af-

fording the AutoEncoder the opportunity to achieve near-perfect prediction of the rating

matrix in the smaller Beauty & Appliances domain. Consequently, the examination of

the model’s performance on the Office & Movies domain gains greater significance, as it

allows for a direct comparison with the state-of-the-art original DARec model.

The right-hand figure shows the superiority of the AutoEncoder model over the orig-

inal DARec I-Autorec model. This advancement can be partially attributed to the de-

creased sparsity of the experiment dataset, owing to the application of a higher criteria

in data pre-processing. The mitigation of sparsity permits the model to access more

significant information and generate improved predictions, thus resulting in heightened

performance compared to the original model. The diminished sparsity empowers the

model to leverage richer data, leading to more accurate and effective recommendations.

7.1.2 DARec

The experimental investigations concerning the DARec model were undertaken to estab-

lish a robust baseline. This process aimed to facilitate a precise assessment of subsequent

experiments involving the content-based features. The primary objective was to train an

adept rating pattern extractor that would serve as a benchmark for further evaluations.

Particularly in the Office & Movies domain, the comparison with the original DARec

model was informative in gauging the effectiveness of the developed model. Figure 15
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illustrates that an embedding size of 410 in the Rating Pattern Extractor yielded superior

outcomes in the Office & Movies domain compared to the original DARec model using the

same embedding size. Impressively, with an RMSE of 0.957, this performance surpassed

even the best feasible outcome of the original model (RMSE of 0.9582 for embedding size

400), shown in Figure 9.

7.1.3 Hybrid model

The interpretation of the results is split over the two distinct domain sets and addresses

the influence of stemming at the end.

7.1.3.1 Beauty & Appliances

Upon examination of the RMSE scores of the experiments, Table 11 shows that a dis-

cernible pattern emerges: within the context of this domain, the integration of content

features offers no apparent enhancement. Rather, the results exhibit a deterioration when

compared to instances where content features were omitted. This phenomenon could po-

tentially be attributed to the introduction of an abundance of novel information. This

hypothesis finds some tentative support in the correlation between the newly introduced

content features and those extracted using the Rating Pattern Extractor.

As presented in Figure 17, the correlation between the two feature sets tends to be

minimal or virtually non-existent. This observation hints at the possibility that the newly

introduced content features encapsulate distinctive information previously not considered.

Particularly in the context of a relatively small dataset, this influx of distinct information

could potentially lead to model confusion: the additional diverse information introduced

to the model might make it harder for the model to accurately learn and generalise

patterns from the data. This can result in the model being uncertain or less accurate

in its predictions, leading to a decrease in performance. Nonetheless, it is important to

note that while the data could possibly explain the phenomenon, arriving at definitive

conclusions in this regard would require a more extensive and rigorous investigation and

proof.

Additionally, when looking at the parameter settings in Table 11, the recorded hyper-

parameter values among the various experiments highlight a notable level of sensitivity

and variability. These tendencies could potentially be linked to the complex layered

structure of the model, and in part, to the challenges posed by data sparsity that the

hyperparameter optimisation algorithm faces.
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7.1.3.2 Office & Movies

The experiments on this domain set show that the incorporation of content features

does yield a slight enhancement in model performance (Table 12). However, the effect

is notably marginal, reflected in only a subtle change in the achieved outcomes. This

marginal effect can be attributed to the features are not contributing useful information.

The experiments show that the positive influence increases marginally with more features,

but this is an extremely small increase.

Figure 18 displays the correlation between the features extracted by the RPE and the

200 content features for the Office & Movies domain. Similar to the Beauty & Appliances

domain set, a minimal to non-existent relationship between these features is observed.

Given the larger scale of the Office & Movies domain, the addition of content features

may provide a marginal assistive effect instead of confusion.

Additionally, Table 12 highlights substantial variations in hyperparameter values for

the optimal models of each experiment. This could imply that the model’s sensitivity is

not overly pronounced. Nonetheless, the marginal improvement in results, while possibly

stemming from the introduction of novel features, remains of such small magnitude that

its definitive causation is challenging to ascertain.

7.1.3.3 Stemming

In both domain sets, the effects of stemming appear to be negligible and inconclusive.

The outcomes exhibit striking similarities across the experiments, demonstrating that

stemming does not consistently lead to either superior or inferior results. In scenarios

where the integration of content features yield negative effects, applying stemming would

not possess the inherent ability to counteract the adverse effects. Similar for the scenario

where the hybrid model performs marginally better, applying stemming does not amplify

or negate that effect. Stemming is a technique intended to enhance word alignment, es-

pecially in situations where words hold significant weight in improving recommendations.

Nevertheless, in this context, the variations in terms that stemming seeks to address do

not hold responsibility for the performance of the hybrid model.

7.2 Limitations

The mentioned outcomes are set against a backdrop of certain inherent challenges and

complexities. The model’s instability and sensitivity to hyperparameters are notable

considerations. The highly contingent behaviour of the model in response to parameter

variations could be attributed, at least in part, to its stacked architecture, which poten-

tially amplifies the influence of hyperparameter changes. Furthermore, the utilisation of
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the hyperparameter optimisation algorithm reveals potential struggles with data sparsity.

This aspect raises the question of whether the algorithm’s efficacy is hindered when faced

with sparse datasets.

An additional factor impacting the experiment results is the inherent data shuffling in

the absence of a seedable data loader. Despite consistent and seeded splits, the variabil-

ity in data ordering in the dataloader introduces an element of randomness that might

influence the model’s performance.

It is crucial to acknowledge that the results are based on certain assumptions, ran-

domness, and initialisation conditions. The convergence of the model, particularly in the

context of the stacked architecture, might be sensitive to these aspects, and such variabil-

ity could introduce noise into the results. While the results appear promising and warrant

further investigation, it’s crucial to approach these findings with caution.

7.3 Business Case

Embedded within the research’s foundational business rationale, the experimental insights

hold significant relevance. Across different domain sets, these experiments have yielded

valuable findings.

For the Beauty & Appliances domain set, the results underscore that even with access

to small, sparse datasets, the bare DARec model (without content features) remains

proficient in generating commendable recommendations. The AutoEncoder experiments

reveal the efficacy of a well-trained encoder in filling missing ratings. Additionally, they

demonstrate that supplementing content features in situations with limited data could,

paradoxically, lead to inferior outcomes.

In the context of the Office & Movies domain set, the experiments indicate that while

the inclusion of content features contributes positively to model performance, the marginal

improvement achieved does not seem to warrant the substantial resource investment. The

intricate process of sourcing, extracting, re-training, and optimising hyperparameters may

not be proportionate to the modest enhancement in recommendation accuracy. In sum-

mary, these outcomes shed light on the delicate balance between resource investment

and potential gains. Companies seeking to fine-tune their recommendation systems can

benefit from these insights when deciding whether to incorporate content features, par-

ticularly in scenarios where the incremental enhancement in accuracy might not outweigh

the associated complexities and costs.
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7.4 Future Work

The realm of future research offers several intriguing avenues for further exploration.

One such direction for future exploration involves broadening the scope of investigation

to include a diverse array of domain sets. This approach would yield a more holistic

understanding of how content features interplay with different domains and dataset sizes.

The current selection of two domain sets was influenced by the potential for meaningful

comparison and considerations of computational efficiency and focused on domain sets

that were extremely dissimilar. Subsequent research could concentrate on domains sharing

more similar content characteristics, or explore scenarios with varying sets of mutual users,

including intermediary sizes or significantly larger user sets.

Due to temporal limitations, the scope of the experiments was constrained. Extending

the experimental framework holds promise in yielding more comprehensive and depend-

able results. This expansion could shed further light on the discussed limitations, possibly

offering insights to mitigate their impact, and potentially fortify the validity and reliability

of the outcomes.

Lastly, a deeper exploration of alternative content-based transfer techniques could

shed light on potential enhancements to the recommendation accuracy. The extraction

of content-based features was undertaken using a straightforward approach, without un-

dergoing extensive optimisation. The simplicity of the method and the availability of the

data was a driving factor for the decision. While the chosen method offered an initial

insight into the influence of content features on the recommendation accuracy of a CDR

system, further investigations should encompass more advanced and optimised content

feature extraction methods. This exploration has the potential to illuminate the various

facets of content-based transfer learning and highlight how the selection of content-based

transfer techniques can significantly influence recommendation accuracy.
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8 Conclusion

The research explored the integration of content-based and rating pattern-based transfer

learning techniques to improve the recommendation accuracy of cross-domain recom-

mender systems. The findings reveal a nuanced picture of the impact of content features

on different domain sets. In the case of the smaller Beauty & Appliances domain set, the

addition of content features had a negative influence on the model’s performance. This

points to the possibility that, within such a constrained domain, the addition of new infor-

mation may lead to confusion and potentially outweigh the benefits. Conversely, for the

larger Office & Movies domain set, a slight positive impact was observed. However, these

improvements, though intriguing, were marginal. Hence, providing a straightforward an-

swer to the research question posed in Section 1.2 (“To what extent does the combination

of content-based and rating pattern-based transfer learning strategies positively influence

the recommendation accuracy of cross-domain recommendation systems?”) is not feasi-

ble. Depending on the domain set, size of the data, and the number of the added content

features, the impact on the recommendation accuracy differs.

Furthermore, it is important to acknowledge the model’s inherent instability and

sensitivity to hyperparameters, which could partly be attributed to the complex stacked

architecture and the challenges posed by data sparsity. Likewise, the inability to seed the

dataloader introduced variability in the data order for training and testing, impacting the

consistency of results.

Future research holds promise in diverse directions. Exploring varied domain sets

and optimising the content feature extraction steps could enhance understanding and

results’ reliability. Investigating alternative content-based transfer techniques could unveil

avenues for boosting recommendation accuracy in cross-domain systems.

In conclusion, it is imperative to approach the findings with caution. While the in-

corporation of content features holds promise for potential improvements, their impact

on recommendation accuracy varies from minimal to potentially adverse. The small en-

hancements observed within domain set Office & Movies additionally prompt considera-

tion regarding the cost-benefit analysis of content feature integration and hybrid model

training.
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