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ABSTRACT 

The study of organizational resilience is crucial for organizations to adapt and thrive in 

the face of challenges. However, the prevailing method for quantitatively measuring resilience 

is through the construction of a tool known as a "resilience scale." Due to the unique attributes 

inherent to different organizations, limitations exist regarding applicability and accuracy. In 

this study, we propose a novel organizational resilience measurement approach by leveraging 

NDVI data from satellite imagery and employing synthetic control methods to simulate future 

counterfactual paths. We compare the historical averaging method with the synthetic control 

method to assess strengths, weaknesses, effectiveness and use scenarios in both methods. Our 

findings demonstrate that the synthetic control method outperforms the historical averaging 

method, providing more accurate and robust measurements. Furthermore, we will demonstrate 

the applicability of synthetic control methods to temporal data with periodic patterns. This 

research contributes to advancing the measure of organizational resilience and highlights the 

potential of satellite imagery and synthetic control methods in enhancing resilience assessments. 
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INTRODUCTION 

In recent decades, the world has witnessed many unpredictable events that have posed 

significant threats, including natural disasters, public health crises, and financial downturns. 

These events have resulted in substantial property damage, diminished productivity, and loss 

of life and well-being, exposing the inherent vulnerability and fragility of our societal systems. 

As a result, individuals and institutions have recognized the need to develop effective strategies 

to address and mitigate the adverse effects of such shocks and events.  

Organizational resilience, derived initially from ecological principles, has garnered 

significant attention especially in social science, management, and economics fields in recent 

years. It refers to the capacity and functionality of a system to respond to external changes 

using prevention, coping, recovery, and adaptation at various levels (Bhamra et al., 2011). 

Extensive research has demonstrated the finding that resilient organizations are better equipped 

to withstand adverse environmental conditions, enabling them to persevere and thrive amid 

crisis compared to other organizations with the same situation. (Annarelli & Nonino, 2016; Ge 

et al., 2016; Clarke, 2008).  

This study's focus is the wine industry, which, like other manufacturing sectors, faces 

challenges within its supply chain and confronts risks tied to environmental changes. Climate 

shifts and extreme weather events resulting from global warming have adversely affected crop 

yields and production. Resilience emerges as a critical factor in enabling the wine industry to 

respond adeptly to external changes and sustain growth momentum despite adversity. 
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While prior research on organizational resilience has primarily concentrated on 

conceptualization and empirical studies within specific domains, there is ongoing refinement 

of its conceptual boundaries. Efforts have been made to provide clearer definitions and enhance 

understanding (Burnard & Bhamra, 2011; McCarthy et al., 2017). Criticisms have arisen due 

to the vagueness and inconsistency surrounding the concept (Linnenluecke, 2017), 

necessitating empirical evidence to consolidate its research value. Studies have explored the 

relationship between organizational resilience and outcomes such as improved financial 

performance (De Carvalho et al., 2016), enhanced competitiveness (Webb & Schlemmer, 

2006), and service quality (Annarelli, Battistella, & Nonino, 2020). Supply chain research has 

also focused on risk management to ensure stability amidst disruptions (Colicchia et al., 2010; 

Spieske & Birkel, 2021; Wieland & Durach, 2021). 

Yet, despite the increasing emphasis on empirical studies since 2015, there remains a 

dearth of relevant quantitative research, creating gaps to be addressed (Hillmann & Guenther, 

2021). Thus, there is a need to conduct more in-depth quantitative studies that examine the 

measurement of resilience, enabling a better understanding and utilization of organizational 

resilience. 

The most common approach to measuring organizational resilience involves scales 

designed to align with the study's focus, followed by data analysis for validation (Richtnér & 

Löfsten, 2014; Hillmann & Guenther, 2021). However, this approach has limited applicability 

and requires the involvement of experts and more importantly fails to adapt to dynamic system 

changes Alternatively, using performance outcomes as resilience measures has gained traction. 

This approach provides a more realistic assessment of a system's state and recovery post-shock 

(Dutta, 2017; Desjardins et al., 2019). Despite its advantages, it requires identifiable metrics 

strongly correlated with resilience, appropriate timeframes, and inclusion of comparative 

reference groups for accurate assessment (Ilseven & Puranam, 2021). 
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Taking these factors into consideration, our research is aimed at addressing the 

constraints inherent in existing methods and pursuing avenues to advance the measurement of 

organizational resilience. The primary objective of this project is to explore new methods for 

quantifying organizational resilience, with a specific focus on the wine industry as a case study. 

By harnessing the potential of cutting-edge techniques, including machine learning and 

satellite image correlation, we endeavor to introduce a novel and versatile method for 

quantifying resilience – synthetic control method. This approach capitalizes on the insight that 

when observed units constitute a small fraction of the overall entities, combining unaffected 

units offers a more appropriate comparison than relying on any single unaffected unit (Abadie 

et al., 2010). As a result, the synthetic control method estimates treatment effects by creating a 

synthetic control group in the absence of an actual control group. The treatment effect 

quantifies the difference between an area or organization after the implementation of a specific 

policy, intervention, or event, and a control group that did not undergo the same intervention 

(Abadie et al., 2015).  

In addition to the synthetic control method, we propose an alternative reference method 

known as the "historical data averaging method." The historical data averaging method 

involves establishing historical data as a baseline control group. To better understand the 

efficacy of these two approaches, we conduct a comprehensive comparison and analysis of 

their outcomes, considering factors such as effect performance and applicable scenarios. 

Overall, this research endeavors to contribute to the academic and practical understanding of 

organizational resilience by introducing an innovative and adaptable approach that combines 

machine learning and satellite imagery. By leveraging these advancements, this study aims to 

enhance the measurement and evaluation of resilience in the wine industry, opening new 

possibilities for resilience assessment in various industries and contexts.  
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this article is structured as follows: Section 2 presents the theoretical background, 

including a literature review of the various theories and concepts related to the approach. 

Section 3 explains the dataset and the design of the methods. Section 4 covers the results 

analysis of the two methods. In Sect. 5, we discuss the results and provide directions for future 

work. 

THEORETICAL BACKGROUND 

  In this section, we provide a comprehensive review of the theoretical background that 

underpins the topic of organizational resilience. Drawing upon existing literature, we explore 

the fundamental concepts, theories, and frameworks that have shaped our understanding of 

resilience in organizational settings. Additionally, we review the contributions made by 

previous researchers in this field, highlighting their valuable insights and findings. We 

conclude by redefining the concept of organizational resilience and describing the research 

framework. 

2.1 Definition of organizational resilience 

The concept of organizational resilience originated from the ecological system theory, 

where it is defined as the capacity of a system to absorb disturbance, undergo change, and retain 

its essential function, structure, identity, and feedback (Holling, 1973). Researchers have 

observed that certain organizations perform better than others when responding to unexpected 

events and sudden changes (Fiksel et al., 2015; Gittell et al., 2006). The increased frequency 

of unexpected major events, such as terrorism, along with the growing complexity and 

interdependence of social, economic, and technological domains, has exposed organizations to 

a greater risk of failure (e.g., Allen and Powell 2013; Kambhu et al. 2007). Consequently, this 

has driven the surge in research on organizational resilience in the business and management 

field since the early 2000s (Linnenluecke, 2017). 



 

9 

 

Initially, scholars primarily focused on conceptualising organizational resilience and 

engaged in thorough discussions and analyses to provide more transparent and more precise 

definitions. For instance, Horne and Orr (1998) defined organizational resilience as the ability 

of an organization to adapt to changing circumstances and continue functioning effectively. 

Sutcliffe and Vogus (2003) described it as maintaining positive adjustment under challenging 

conditions.  Another study by Gittell et al. (2006) explored airline resilience performance after 

9/11 and defined organizational resilience as an organization's dynamic ability to grow and 

evolve adaptively over time, ultimately influencing its strategy implementation and 

performance. Boin and van Eeten (2013) provided a more detailed delineation and framing of 

organizational resilience, viewing it as an ability to anticipate, prepare for, respond to, and 

adapt to incremental changes and sudden disruptions to survive and prosper over time. 

Organizational resilience has undergone significant expansion and extensive study. 

However, the literature reveals a need for more consensus and uniformity in its definition, 

reflecting the diversity of research directions and goals. Different perspectives have emerged, 

including adaptive strategies, reactive approaches, resource utilization, early response, and 

various other perspectives (Hillmann, 2021). These varied research directions contribute to the 

multifaceted understanding of organizational resilience. Moreover, a statistical analysis of 

previous studies highlighted that most definitions of organizational resilience encompass two 

or more attributes, emphasizing its multidimensional nature (Hillmann & Guenther, 2020). 

Predictability, stability, adaptability, inverse growth, and inclusiveness are all attributes that 

have emerged in past studies—however, the frequency with which different attributes were 

mentioned varied. For example, adaptive capacity was frequently mentioned, along with 

coping capacity, reinvention capacity, and predictive capacity. The analysis also revealed the 

diversity of attributes associated with the definition of organizational resilience. Different 

research perspectives view organizational resilience as a competency in different contexts. For 
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example, some scholars view it as an organization's ability to remain stable in the face of shocks. 

In contrast, others emphasize the ability to actively absorb external changes and turn them to 

their advantage. 

Aligned with the focus and purpose of this research project, we define organizational 

resilience as the capability of an organization to rebound to its original state following an 

external shock. These shocks encompass various adverse events that disrupt the initial state. 

Given the context of this article, which centers on a wine estate, relevant events primarily 

include natural disasters such as wildfires, frosts, and droughts. Our analysis will explore the 

strength of this capacity across different dimensions. 

2.2 How do we measure organizational Resilience?  

The measurement of organizational resilience is a burgeoning field encompassing 

various research and practice directions across disciplines such as risk management, disaster 

management, operations management, leadership, and change management. Recognised as a 

crucial capability for organizations to navigate the increasingly dynamic and uncertain world, 

understanding and effectively measuring organizational resilience have become imperative 

(Seville et al., 2015). However, despite the growing number of empirical studies, measuring 

organizational resilience poses significant challenges for researchers. 

2.2.1 Management-Based Measurement Approaches 

To address these challenges, researchers have explored different measurement methods 

and approaches to enhance our understanding of organizational resilience. In the realm of 

management, Lee, Vargo, and Seville (2013) undertook a comprehensive study to develop a 

tool for measuring and comparing organizational resilience. Their work involved conducting a 

systematic literature review and a long-term survey of 68 organizations in New Zealand. By 

dividing organizational resilience into four distinct segments, namely leadership and strategy, 

culture and values, people and community, and resources and systems, the authors identified 
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specific resilience indicators using survey questions. This approach resulted in a total of 13 

indicators, enabling organizations to identify their strengths and weaknesses before crises occur. 

Other researchers, such as Chowdhury and Quaddus (2017), have used a similar 

measurement tool with minor refinements to assess the organizational resilience of critical 

infrastructure providers. They adjusted the Likert scale, indicator names, and descriptions and 

subsequently validated the reliability of the resulting tool using Cronbach's alpha. Their study 

further analyzed the results based on industry types, employing t-tests and classification 

analysis to gain deeper insights. 

Moreover, scholars have adopted variations of the organizational resilience scale by 

incorporating and refining existing scales through insights derived from expert interviews and 

financial data (e.g., Chen et al., 2021; Gentile et al., 2019; Sweya et al., 2020). These efforts 

aim to contextualize resilience within specific domains. For example, Chen's study 

incorporated dimensions like strategic resilience, cultural resilience, relationship resilience, 

capital resilience, and learning resilience, drawing from previous studies. The measurement of 

cultural resilience was based on studies by Costanza et al. (2016) and Ramón and Koller (2016), 

while relational resilience measurement drew from Shore et al. (1990) and Vogus and Sutcliffe 

(2007).  

2.2.2 Alternative Measurement Approaches 

Beyond management-based approaches, researchers have explored alternative methods 

for measuring organizational resilience. For instance, Aleksić et al. (2013) suggested assessing 

the organization resilience potential of SMEs using fuzzy cognitive maps to evaluate the 

contributing factors for each business process. Fuzzy set theory is a research approach that can 

deal with problems relating to ambiguous, subjective and imprecise judgments, and it can 

quantify the linguistic facet of available data and preferences for individual or group decision-

making (Shan et al., 2015a). Organizational resilience may be analyzed as a fuzzy issue 
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(Pendall, Foster, and Cowell, 2010) since it is the combined effect of receiving many factors 

that are not clearly defined (Carvalho et al., 2008 ). Therefore, using fuzzy models allows for 

the most accurate assessment of resilience factors possible. In the assessment process, the 

researcher designed criteria including leadership, information and communication, human 

resources, risk management, and supply chain management, among others, and tested them on 

a case study of an SME in the process industry. The results showed that the SME had moderate 

to high resilience potential (citation).  

2.2.3 Recovery-Oriented Measurements and Financial Indicators 

In addition, from the perspective of recovery, scholars have used recovery time, level 

of recovery, initial vulnerability and potential loss averted to measure organizational resilience 

(Erol, Henry, Sauser, et al.,2010). Scholars also measure resilience in terms of outcomes, like 

financial performance. Ortiz-de-Mandojana and Bansal (2016) proposed that organizational 

resilience is an underlying, path-dependent construct with outcomes that can be measured. 

They conducted hypothesis testing using data from 121 U.S. firms through matching pair over 

a 15-year period. Their study demonstrated that specific indicators of financial performance, 

such as financial volatility, sales growth, and survival rates, reflect organizational resilience to 

a certain degree. 

2.3 Synthetic  control 

The Synthetic Control Method (SCM) has gained widespread usage in recent years for 

evaluating the impact of interventions and outcomes (Abadie & Gardeazabal, 2003; Abadie et 

al., 2010, 2015; Ben-Michael et al., 2021; Zohrehvand et al., 2023). This approach constructs 

artificial control groups by selecting units resembling the intervention units from those that 

haven't experienced the intervention. In doing so, researchers simulate counterfactual outcomes 

that represent performance in the absence of the intervention. SCM finds application in various 

policy evaluations, such as assessing the effects of tobacco control programs (Abadie et al., 
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2012), measuring the economic impact of tax reforms (Adhikari & Alm, 2016), and 

investigating the relationship between governance changes and spending reduction (Roesel, 

2017). SCM's versatility allows its application across political, economic, and social contexts. 

 

Based on a collection and analysis of previous literature, the SCM approach has been 

discussed in great depth in applications and shows the multitude of possibilities. This method 

is only some-powerful and certainly, there are some limitations to this method. Abadie, 

Diamond and Hainmueller (2015) suggest that the SCM method is not recommended when a 

suitable control group cannot be constructed, i.e., when the correlation between the observed 

unit and the original data set is not up to the standard. In contrast, the experimental results 

would have been more prominent if the fitted ensemble of the original dataset had better 

simulated the experimental group, addressing the problem of bias correction for inexact 

matches (Abadie and Imbens, 2011). Because in the original method, the authors aimed to use 

the weighted values of each type of ensemble as a control group. However, due to factors such 

as modeling errors, environmental changes or external disturbances, it is difficult to end up 

with very precise results.  

Scholars are investigating a variety of methods to achieve bias minimization and 

improve the precision of control groups. For example, scholars have proposed the augmented 

integrated control method (ASCM) to address the high degree of fit that cannot be achieved 

with the SCM alone. The Ridge ASCM is best described as an augmented SCM based on a 

ridge regression model that recognizes negative weights and uses extrapolation to improve the 

preprocessing fit. The Ridge ASCM avoids overfitting noise, improves the accuracy of the 

results, and was validated against the 2012 Kansas tax cut in the case of its impact on economic 

growth (Ben-Michael & Rothstein, 2021) . Another branch is the generalized synthetic control 

(GSC) method, which combines the synthetic control method with linear fixed effect models. 



 

14 

 

It employs a latent factor approach to address causal inference problems and provides valid 

uncertainty estimates. As a result, GSC can handle multiple treated units and variable treatment 

periods, improving efficiency and reducing the need for individual matching (Xu, 2017). For 

example, Zohrehvand et al. (2023) use Doudchenko and Imbens’ (2017) synthetic control 

(DISC) method in Mergers and acquisitions (M&A) research.  He analyzed the performance of 

Family Dollar and Dollar Tree, two large discount retailers in the general merchandise industry, 

before and after the completion of the M&A in 2015 through the dimension of shareholder 

returns. The results demonstrate the adaptability of the methodology in this area and open up 

possibilities for broader research. 

RESEARCH DESIGN AND METHODS 

3.1 STUDY AREA 

The study focused on American Viticultural Areas (AVAs), a collection of 271 

winegrowing regions in the United States. For this research, a carefully selected subset of 14 

AVAs was chosen based on specific criteria, with a primary emphasis on including areas both 

impacted and unimpacted by the Glass Fire in Northern California during the 2020 wildfire 

season.  

The criteria for selecting these AVAs were defined by key components. Firstly, the 

chosen areas were limited to a size of less than 300 acres, as larger areas might introduce 

additional complexities. Secondly, preference was given to regions established before 2010. 

This selection was based on the growth cycle and size of grapevines, as well as the timing of 

image collection, ensuring relatively stable conditions for areas established prior to 2010. 

Lastly, the chosen AVAs exhibited minimal changes in Normalized Difference Vegetation 

Index (NDVI) data between 2017 and 2023. 
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Table 1. Dataset field meaning 
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Name Area States Geometry 

Monticello 235.551252 Virginia -121.541963098142 

36.666800211857 

Potter Valley 75.610935 California 

 

-123.006862416652 

38.8498486078256 

Ramona Valley 199.288575 California 

 

-123.045032989206 

47.5332165344136 

Shenandoah Valley 118.07 Virginia -88.5117345119528 

37.0585957806172 

Sierra Pelona 

Valley 

118.07 California 

 

-120.867515068736 

38.953896344212 

St. Helena 20.292511 

 

California 

 

-119.037317560212 

36.6577420797992 

Sta. Rita Hills 23.398320 

 

California 

 

-122.443563143963 

38.4818455409617 

Temecula Valley 201.811840 California 

 

-118.658790546661 

35.1420882969951 

Atlas Peak 82.627783 California 

 

-121.338791859765 

36.3397617711635 

Bell Mountain 13.295671 Texas -120.122839545975 

34.6679738120383 

Calistoga 32.415558 California 

 

-120.761410049607 

38.5249452457511 

Chalone 20.846268 California 

 

-122.76099411987 

38.5093532399772 

Diamond Mountain 

District 

12.627637 California 

 

-121.233129303134 

37.2902960636805 

Escondido Valley 67.635895 Texas -123.184715470587 

45.034129256 

Table 2. Dataset  
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The Glass Fire, a devastating wildfire that occurred between September 27 and October 

20, 2020, originated near Glass Mountain Road in Deer Park, Napa County, and also affected 

Sonoma County. Rapidly escalating from a single 20-acre brush fire, it merged with two 

smaller fires, eventually covering approximately 11,000 acres by the night of September 27 

(California Department of Forestry and Fire Protection [CAL FIRE], 2020). 

Conversely, the study also encompassed AVAs that remained unaffected by recent 

wildfires, enabling a comparative analysis between regions with and without wildfire-related 

impacts. This approach facilitates the identification of potential differences in vineyard zones' 

characteristics and assesses the resilience of viticultural regions to wildfire events. 

To gather the necessary data, the researcher accessed the AVA Map Explorer tool, a 

valuable resource offered by the U.S. federal government, providing comprehensive 

information on these viticultural regions. The subsequent meticulous processing and merging 

of shape files from this tool resulted in a dataset encompassing vital information about each 

AVA, such as geographical boundaries, climate conditions, soil composition, and other 

pertinent factors crucial for grape cultivation and wine production. 

 

Fig 1. AVA map 
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The satellite images used for this study were sourced from the Sentinel-2 satellite 

mission, which is a part of the Copernicus program and is known for providing high-resolution, 

multispectral images over land and coastal waters ("Copernicus Sentinel-2 Mission," n.d.). 

These images constitute a valuable resource for researchers and industry participants, as they 

offer crucial insights into land cover, vegetation health, and various environmental variables, 

enabling systematic monitoring of terrestrial surface changes over time. 

In this study, the researchers proactively accessed and processed the Sentinel-2 satellite 

images, extracting relevant data based on precise geolocation. Specifically, satellite images 

with cloud cover thickness of less than 50% in the target area were acquired from April 2017 

to April 2023. For analysis, the researchers obtained the Level-2A product, which had 

undergone atmospheric correction, providing higher data quality. To ensure data stability and 

accuracy in monitoring changes and trends over the specified period, the researchers initiated 

two key preprocessing steps: cloud and outlier removal. This proactive approach entailed the 

systematic elimination of clouds and outliers from the image data, thereby reducing potential 

interference and enhancing the overall reliability of the dataset. This preparatory step was 

crucial for subsequent calculations, particularly in the computation of the Normalized 

Difference Vegetation Index (NDVI). 

3.2 GENERAL APPROACH AND WORKFLOW 

In this study, we collected a dataset that includes GPS coordinates for each region, 

enabling precise location within satellite images. To obtain these images, we utilized Sentinel 

Hub and downloaded data from the Sentinel-2 mission. By selecting specific spectral bands, 

we focused on capturing important characteristics of the target areas in the satellite image. 

These bands include blue (band 2), green (band 3), red (band 4) and near-infrared (band 8) 

spectral bands and cloud masks. The use of cloud masks allowed us to identify and exclude 



 

19 

 

areas covered by clouds, which could otherwise introduce noise and inaccuracies in our 

analysis.  

Among the selected spectral bands, bands 4 and 8 were used to calculate the Normalized 

Difference Vegetation Index (NDVI), which is the most widely used index in vegetation health 

analysis (Rouse et al., 1974). It is extensively employed to identify the health status of 

vegetation and provide information on the spatial and temporal distribution of vegetation 

communities and biomass. Therefore, variations in NDVI values and other general vegetation 

indices the ongoing changes and trends in vegetation dynamics (Lasaponara. 2022). Bands 2, 

3, and 4 were utilized to generate a true color image, facilitating easy observation and analysis 

of image content.  

 

Fig 2. Experiment method overview 
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3.2.1 Cloud removing 

Despite the significant advancements facilitated by the Sentinel satellite mission, it is 

crucial to acknowledge the inherent susceptibility of satellite image quality to atmospheric 

phenomena such as water vapor, airborne impurities, and refraction. These limitations 

introduce instability and pose various challenges during subsequent data analysis stages. 

Therefore, prior to extracting the Normalized Difference Vegetation Index (NDVI) and 

conducting experimental procedures, meticulous data cleansing and noise removal are essential 

to ensure data integrity and enhance analytical robustness. 

The persistent presence of clouds in satellite images hinders the acquisition of high-

quality images. We employ the Vpint2 method to address this concern, widely recognized for 

its effectiveness in cloud removal (Arp, Baratchi, & Hoos, 2022). This technique involves 

identifying and removing pixels classified as cloud-covered within the image. Subsequently, 

corresponding pixels from a contemporaneous cloud-free reference image, closest in temporal 

proximity, are extracted and inserted into their original positions within the primary image 

(citation). This meticulous procedure safeguards against the detrimental impact of cloud 

presence, thereby enhancing the reliability and fidelity of subsequent analyses. 

Following the completion of the interpolation and cloud removal procedures, a 

noticeable reduction in the presence of outliers within the dataset is achieved. However, certain 

residual noise artifacts still persist, affecting the accuracy of the data. A thorough examination 

is conducted to identify reflection anomalies associated with extreme outliers to mitigate this 

effect. Consequently, specific data points that exhibit a pronounced influence on the dataset are 

selectively removed, and their positions are subsequently filled with the mean value of the 

respective variable. 

By implementing these rigorous data cleaning and noise removal steps, we ensure that 

the dataset is more reliable and accurate for further analysis. 
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3.2.2 NDVI calculation 

After completing the preparatory measures, the subsequent step involves utilizing 

satellite bands B04 (infrared spectrum) and B08 (near-infrared spectrum) to compute the 

Normalized Difference Vegetation Index (NDVI) and integrate it into the dataset. This index 

is derived from multispectral imagery by combining the near-infrared (NIR) and red (RED) 

bands, and its calculation is defined by the following mathematical formula: 

 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝐸𝐷)/(𝑁𝐼𝑅 + 𝑅𝐸𝐷)    (1) 

 

The computation of NDVI enables the quantification of vegetation vitality, facilitating 

the characterization and analysis of vegetation dynamics and health within the study area. 

To ensure high-quality normalized vegetation index (NDVI) time series, which is 

critical for numerous applications, various noise reduction methods have been proposed in the 

literature to minimize residual noise and reconstruct more reliable NDVI time series. Some of 

these methods include the harmonic analysis of time series (HANTS) (Roerink et al., 2000), 

Temporal Window Operation (TWO) (Park et al., 1999), logistic function-fitting (Beck et al., 

2006; Elmore et al., 2012; Cao et al., 2015), and the Savitzky-Golay smoothing technique 

(Chen et al., 2004; Verger et al., 2011). 

In this study, the researchers chose to employ the Savitzky-Golay smoothing technique 

due to its effectiveness in reducing noise and preserving the overall trend of the data. The 

method utilizes a sliding window to fit a polynomial function, and the least squares method is 

used to determine the optimal coefficients for the fit (Schafer, 2011). This approach ensures 

that the Savitzky-Golay filter removes high-frequency noise and rapid fluctuations while 

retaining the essential patterns and trends within the dataset (Chen et al., 2021). 
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Moreover, The Savitzky-Golay filter is a simple extension of the moving average, 

which is one of the most widely used algorithms in the NDVI smoothing literature (Hird and 

McDermid, 2009; Pettorelli et al., 2005). For example, Chen et al. (2004) applied this filter to 

enhance the quality of satellite derived NDVI data for vegetation monitoring in a tropical 

rainforest region. Verger et al. (2011) utilized the Savitzky-Golay smoother to improve the 

long-term NDVI time series analysis in arid regions. These examples demonstrate the 

effectiveness and versatility of the Savitzky-Golay method in various environmental studies, 

further justifying its application in this research. 

3.3 Measurement 

To compare the resilience levels of different regions affected by hill fires, two distinct 

methods were employed to create control groups representing counterfactual results. The focus 

was on examining the length and speed of recovery as relevant indicators of regional resilience. 

The detailed description of both methods, as well as the design of validation and comparison 

experiments, is provided below. 

3.3.1 Commonly practiced approach  

Option A, commonly referred to as the conventional practice approach, involves 

utilizing historical NDVI data as a control group to measure regional resilience. Historical 

NDVI data have found extensive application in ecological and environmental studies, 

encompassing the evaluation of changes (Spruce et al., 2014), predictions of future trends 

(Firozjaei et al., 2021), and assessment of activities' impact (Wang et al., 2022). The dynamics 

of NDVI data are characterized by distinctive patterns, intra-annual seasonal cycles, and stable 

trends across years (De Jong et al., 2013). In instances of trend deviations, analysis based on 

historical trends allows for identifying the inception of these shifts and delving into the 

underlying causes of vegetation change as well as measure recovery. 
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In this approach, we make the underlying assumption that historical monthly NDVI 

data, constituting the baseline dataset, exhibit relative stability in the absence of external 

interventions. By juxtaposing the post-disruption NDVI values against the expected baseline 

values, we can promptly identify substantial deviations attributable to the influence of hill fires. 

These deviations serve as reliable indicators of disturbances and the subsequent recovery, 

consequently quantifying the level of resilience exhibited. 

Specifically, we first evaluated NDVI trends for each region through October 2020, 

with the goal of initially assessing the suitability of measuring historical NDVI data as a 

baseline control group. If the NDVI trend was significantly different from year to year starting 

in 2017, and more specifically if data such as annual NDVI maxima and minima fluctuated 

significantly, this area would be removed from the data set. Subsequently, we selected 

historical monthly NDVI median values specific to each region as the control group. Using the 

median is less affected by outliers or extreme values than the mean and better represents typical 

values (Jamali et al., 2012). In instances where data gaps occur due to inclement weather or 

technical constraints, we took a pragmatic approach by replacing these gaps with median NDVI 

values for the same period in other years. This method ensures the coherence and continuity of 

the baseline dataset, effectively addressing potential interruptions in the data. 

It is pertinent to acknowledge that although the stability assumption is well-founded, 

long-term shifts like those influenced by global warming could potentially impact it. Long-

term data beyond 10 years will allow the opportunity to observe gradual trends in surface 

vegetation (Gutman & Ignatov, 1995). Despite considering the study period from 2017 to 2023 

relatively short and the impact minimal, we adopted rigorous analysis, closely examining 

annual changes during the dataset selection process to maximize the reliability and robustness 

of the dataset employed. 
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As of October 2020, we are aware of the trend-breaking point attributed to the Glass 

Fire, a mountain fire that occurred in Northern California. This significant disruption event 

serves as a pivotal moment for our analysis. The metrics for measuring resilience levels will 

be based on the intensity of the disruption event within each region and the subsequent rate of 

recovery. This approach enables us to quantitatively evaluate how different regions respond to 

disturbances like hill fires and the subsequent pace of recuperation. By utilizing this framework, 

we aim to gain insights into the comparative resilience levels of various regions, shedding light 

on their abilities to withstand and rebound from such disruptive incidents. 

To measure recovry duration of the post-disruption, the 𝑅𝑡𝑖𝑚𝑒 is formulated as: 

𝑅𝑡𝑖𝑚𝑒  =  ∑ 𝐼(
𝑁𝐷𝑉𝐼𝐴𝐶

𝑁𝐷𝑉𝐼𝐵𝐴𝑆𝐸
) <  𝑇) 

● 𝑅𝑡𝑖𝑚𝑒 represents the "resilience over time" metric for a specific region.  

● 𝐼(𝑥) is the indicator function, which returns 1 if the condition 𝑥 is true, and 0 if it's 

false.  

● 𝑁𝐷𝑉𝐼𝐴𝐶  is the actual post-disruption NDVI value for a given time period.  

● 𝑁𝐷𝑉𝐼𝐵𝐴𝑆𝐸  represents the baseline NDVI value for the same time period. 

● 𝑇  is a predefined threshold value, and in our research 𝑇 = 0.92. 

The purpose of this formula is to quantify the time required for an area to fully recover 

from a disruption event and return to its original state. The value of  
𝑁𝐷𝑉𝐼𝐴𝐶

𝑁𝐷𝑉𝐼𝐵𝐴𝑆𝐸
  represents the 

deviates from the baseline NDVI.  A value of less than 0.92 indicates that the area has not yet 

fully recovered from the disruption and current month add to the recovery time. Conversely, a 

value equal to or greater than 0.92 suggests that the vegetation index has rebounded to at least 

92% of the baseline level, implying that the area has nearly or completely recovered from the 

disruption.  
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In determining the threshold of 0.92, we initially considered a range interval of [0.9, 1] 

for potential thresholds. Subsequently, we conducted experiments by assessing the discrepancy 

between the total number of recovery months and the actual recovery time across different 

threshold values. We concluded that  a threshold of 0.92 is a relatively accurate. Opting for a 

higher threshold (e.g., 0.99) may necessitate a more extended recovery period, while selecting 

a lower threshold (e.g., 0.90) might result in a more lenient assessment. Thus, the choice of 

0.92 as the threshold value strikes a balance between precision and practicality, aligning well 

with the recovery process's dynamics and characteristics. 

Another indicator, event intensity 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑥)  will be defined by the following 

equation: 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑥)  =  ∫
𝑡2

𝑡1

(𝑁𝐷𝑉𝐼𝐴𝐶(𝑡) − 𝑁𝐷𝑉𝐼𝐵𝐴𝑆𝐸(𝑡))𝑑𝑡 

● 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑥) represents the "event intensity" metric for a specific region, reflecting the 

integrated difference between actual NDVI values and baseline NDVI values over a 

defined time interval subsequent to experiencing a disruption. 

● 𝑡1 𝑎𝑛𝑑 𝑡2 is the starting and ending point of the recovery period. 

● 𝑁𝐷𝑉𝐼𝐴𝐶(𝑡) is the actual NDVI value at time t. 

● 𝑁𝐷𝑉𝐼𝐵𝐴𝑆𝐸(𝑡) is the corresponding baseline NDVI value at the same time t. 

The approach aim to  quantify the intensity of a disruption event by calculating the 

integral of the difference between actual NDVI values and baseline NDVI values over a 

specified time interval. This method captures the cumulative magnitude of changes between 

the two datasets throughout the recovery period. The calculated intensity value provides 

insights into the cumulative impact of the disruption event on the region's vegetation. A higher 

intensity value indicates a more substantial disruption that resulted in significant discrepancies 

between the actual and baseline conditions, both in terms of magnitude and duration. On the 
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other hand, a lower intensity value suggests a less severe disruption with relatively minor 

deviations and quicker recovery. 

3.3.2 Alternative approach: synthetic control 

The core idea of synthetic control method is to combine information from mutiple 

observations to create an integrated control group rather than seeking a single control or 

average in a neighbourhood of controls to assess the impact of a particular intervention or event 

(Abadie & Gardeazabal, 2003; Abadie, Diamond, & Hainmueller, 2010). In the context of this 

method, the term "unit" pertains to individual entities or observational objects encompassed in 

the study. Specifically, the unit that has undergone the intervention is designated as the 

"treated" unit, while the unit that has not been subjected to the intervention serves as the 

"untreated" unit. This nomenclature helps to differentiate between the entities that have 

experienced the intervention's effects and those that have not, thereby facilitating clear and 

concise communication of the research framework. 

First we divided all the units into two categories, one that has received the effects of 

the intervention and one that has not been affected by the intervention. So, we suppose the 

dataset includes J units: 𝑗 =  1,2,3, . . . , 𝐽. Unit  𝐽(𝑗 =  1) is the treated unit, while the 

remaining units represent the untreated group. 𝑡 =  𝑇0 is the point that intervention 

happened. Let 𝑌𝑗𝑡 as observed at the time t. So, let 𝑌𝑗𝑡
0 denotes non-observe NDVI value 

would be in the region  𝐽  that are not affected by the intervention. 𝑌𝑗𝑡
1 denotes  NDVI value 

at point 𝑡 if it is affected by intervention. When 𝑡 <  𝑇0: 

𝑌𝑗𝑡 = 𝑌𝑗𝑡
0 (𝑡 <  𝑇0 , 𝑗 = 1) 

When 𝑡 >  𝑇0: 

𝑌𝑗𝑡 = 𝑌𝑗𝑡
1 (𝑡 >  𝑇0 , 𝑗 = 1) 

For the unit 𝑗 = 2,3, . . . , 𝐽:  
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𝑌𝑗𝑡 = 𝑌𝑗𝑡
0 (𝑡 <  𝑇0 , 𝑗 = 2,3,4, . . . , 𝐽) 

So, the causal effect of intervention at the time 𝑡 is: 

 𝜏𝑗(𝑡)  =   𝑌𝑗𝑡
1 −  𝑌𝑗𝑡

0 

Assume that there exists a series of weights for the unit 𝑗 = 2,3, . . . , 𝐽 such that  𝑌𝑗𝑡
0 can be 

represented by the following equation: 

𝜏1(𝑡)  =   𝑌𝑗𝑡
1 − ∑

𝑗

𝑗=2

 𝑤𝑗𝑌𝑗𝑡  

The optimization objective is to find the optimal weights combination, which makes the 

estimated synthetic control path closest to the actual observed control path in the time period 

between t and T: 

𝑎𝑟𝑔𝑤2,...𝑤𝑗𝑚𝑖𝑛 ∑

𝑡:𝑡<𝑇

|𝜏1 (𝑡) − 𝜏1
𝑒𝑠𝑡 (𝑡)| 

𝜏1(𝑡) is the actual observed treatment effect after time t, indicating the actual impact of the 

intervention. 𝜏1
𝑒𝑠𝑡 (𝑡) is the estimated treatment effect after time t, denoting the effect 

estimated in the model. By minimizing these differences, the optimization algorithm can find 

the best weight configuration (𝑤2, . . . 𝑤𝑗)  that makes the synthetic control path as similar as 

possible to the actual control path. 

In our case, the dataset exhibits temporal regularity and undergoes dynamic changes, 

introducing a higher level of complexity compared to traditional scenarios involving single-

policy interventions. To address this complexity and surmount the limitations of existing 

methodologies, we have opted for the advanced synthetic control (Neural Continuous Synthetic 

Control) approach proposed by Bellot and Schaar (2021) to estimate counterfactual outcomes.  

By introducing the vector field 𝑓 , we employ matrix-vector multiplication 

involving𝑓(𝑌1,𝑠
0 ) 𝑑𝑌𝑆

0  spanning from time 𝑡0 to the time 𝑡  as the application of the influence 
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of f on the latent path in a matrix,  thereby constructing a more intricate model for the control 

path. And the 𝑑𝑌𝑆
0 signifies the variation of the latent path of the untreated unit over the time 

interval [𝑡0, 𝑡] . This innovation can be understood as a novel nonlinear extension of the 

conventional linear discrete-time synthetic control method (Bellot & Schaar, 2021). 

The counterfuactual path  𝑌1𝑡
0  can be represented using the following equation: 

 𝑌1,𝑇
0 + ∫

𝑡

𝑇
𝑓( 𝑌1,𝑠

0 )𝑑𝑌𝑆
0, 𝑡 ∈ (𝑇, 𝑡𝑚]  

So, the causal effect of intervention at the time 𝑡 is: 

𝜏1,𝑡 =  𝑌1,𝑡
0 −   𝑌1,𝑇

0 − ∫
𝑡

𝑇

𝑓( 𝑌1,𝑠
0 )𝑑𝑌𝑆

0, 𝑡 ∈ (𝑇, 𝑡𝑚] 

To uphold interpretability, a central tenet of the synthetic control method, the present 

approach introduces a weighted diagonal matrix to govern the influence of control paths. This 

extension defines potential counterfactual states as follows: 

 𝑌1,𝑇
0 + ∫

𝑡

𝑇

𝑓( 𝑌1,𝑠
0 )𝑊𝑑𝑌𝑆

0, 𝑡 ∈ (𝑇, 𝑡𝑚] 

We use loss function 𝐿(𝑦1(𝑡), 𝑦1
𝑒𝑠𝑡(𝑡)) to evaluate the difference of countfactual estimation 

and observed value. To optimize the parameter estimation, a gradient descent algorithm is 

employed. This algorithm backpropagates through both the ODE solver and the continuous 

state dynamics, facilitating the parameter updates as demonstrated in previous studies [13, 24]. 

It seeks to minimize the composite objective function R, which includes various loss terms and 

a regularization term linked to the weighted diagonal matrix W. The formula for solving the 

optimization problem is as follows: 

𝑎𝑟𝑔𝜃,𝑛,𝑣,𝑤𝑚𝑖𝑛 ∑

𝑡:𝑡<𝑇

𝐿(𝑦1(𝑡), 𝑦1
𝑒𝑠𝑡(𝑡)) + 𝜆 ∑

𝑗−1

𝑗=1

|[𝑊]𝑗𝑗|  

𝜃, 𝜂, 𝑣, 𝑤: : These are the parameters to be optimized, corresponding to the parameters of the 

neural networks 𝜃, 𝜂, 𝑣, and the weight matrix 𝑊. 
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𝑡: 𝑡 < 𝑇: This is a set of time points, representing all time points within the time range before 

the intervention occurs. This set is used to limit the computation of the loss function to the 

pre-intervention period. 

𝜆: This is the regularization parameter that balances the trade-off between prediction error 

and sparsity. It controls the number of non-zero elements in the weight matrix 𝑊. 

∑𝑗−1
𝑗=1 |[𝑊]𝑗𝑗| : This is the second part of the loss function, summing up the diagonal 

elements 𝑊𝑗𝑗  of the weight matrix 𝑊, representing the contributions of each control path. 

This component of the loss encourages sparsity in the weight matrix 𝑊 by using the absolute 

value operation. 

This approach leverages controlled differential equations to model the latent 

counterfactual path and allows optimization within each function space. By adopting this 

approach, we have achieved improvements in the following aspects: 

1. The continuous evaluation: Compared to the previous discrete value 

observations, this new method can be evaluated using paths connected between 

observation points. It is more flexible in time and better suited to dynamic 

systems. 

2. Latent states: In real scenarios, observations are usually a function of latent 

states, and the dynamics of latent states follow differential equations. Therefore, 

the synthetic control method allows projecting this latent state into the 

observation space. 

3. Transparency: Although the nonlinearity reduces the transparency to some 

extent, we ensure the sparsity of the control path Y0 by introducing 

regularization in the solution space. Therefore, the final result still possesses a 

very good interpretability. 
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3.3.3 Evaluation 

By using synthetic control methods, we are able to obtain counterfactual estimates. This 

replaces the baseline as a control in the previous traditional method. In order to compare the 

accuracy of these two methods, we will evaluate them in the following aspects. 

1. Treatment Effect Estimates: Compare the estimated treatment effects obtained from 

each method. Computes the resulting difference between treatment units and the 

counterfactual estimates provided by each method. 

2. Prediction Accuracy: Evaluate the predictive performance of both methods by 

comparing their ability to forecast future outcomes after fully recovered. 

3. Robustness Analysis: Conduct conducted a placebo analysis to simulate counterfactual 

result in the unaffected area with the actual trend, and thus to conclude the the degree 

of stability of the synthetic control method. 

By evaluating these aspects, we can compare the accuracy, reliability, and efficiency of 

the traditional baseline method and the synthetic control method. This evaluation will help to 

determine which method is more suitable for obtaining counterfactual estimates in a specific 

case. 

RESULT 

4.1 Temporal and spatial trends of NDVI data 

By calculating and visualizing the NDVI data from the dataset we can see that the data 

have a certain temporal pattern, with a significant increase in spring, a peak in summer, a 

significant decrease in autumn, and a stable annual minimum in late autumn and early winter. 

In addition, the characteristics of NDVI data are summarized in terms of mean, maximum, 

minimum, standard deviation, and annual rate of change. 
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Fig 2. NDVI trend before the preprocessing 

The researchers identified the impacted areas by looking for localization in the 2020 

U.S. wildfire record and identified several areas that will be affected by wildfires in October 

2020. These are the Diamond Mountain area, the St. Helena area, the Atlas Peak area, and the 

Monticello area. At the same time NDVI serves as supporting evidence, in the visualization of 

the NDVI change curve, the data undergoes a sudden drop. In particular, the minimum value 

of NDVI was significantly lower compared to previous years. This means that due to wildfires, 

some of the soil that once covered vegetation has been exposed and the vegetation area reduced. 

In particular, the minimum value of NDVI was significantly lower compared to previous years. 

This means that due to wildfires, some of the soil that once covered vegetation has been 

exposed and the vegetation area reduced. 

4.2 Main results 

In this section, we analyzed the results of measuring resilience by classical methods and 

by synthetic control methods for several regions, respectively. 
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First, we interpolate the cloud mask pixel points using the Vpint2 algorithm, for some 

outliers we selectively remove them. Despite efforts to enhance the image clarity, some degree 

of data fluctuation is still observable. This variability may be attributed to atmospheric 

disturbances, sensor errors, and other contributing factors. To mitigate this noise and improve 

the reliability and consistency of the data, a smoothing filter based on the Savitzky-Golay 

algorithm is applied. By employing this algorithm, the data undergoes a processing procedure 

that results in a more stable representation (See Fig 3,4,5). A comparative analysis between the 

original and processed data reveals a notable improvement in stability post-processing. This 

step is crucial as it ensures a more accurate and dependable dataset, thus enhancing the overall 

reliability of the findings. 

 

Fig 3. Region Monticello 
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Fig 4. Diamond Mountain 

 

Fig 5. Atlas Peak 

In the traditional approach to measuring resilience, the Baseline is determined by taking 

the historical average NDVI data before the onset of a natural disaster. The figure 6 illustrates 

the Baseline curve and the actual NDVI change curve. 
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Fig 6. Comparison between two dataset 

Prior to the event, the baseline data exhibited a considerable level of consistency 

compared to the observed data. It is essential to acknowledge that slight deviations between 

these datasets are expected due to the inherent variability of environmental conditions from 

year to year, resulting in minor fluctuations in the normalized difference vegetation index 
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(NDVI). These nuanced changes, which are not captured by the baseline dataset, can be 

observed as relatively stable within the overall trend . 

The event took place between October and November 2020. During this period, a 

notable short-term decline in NDVI can be observed (see Fig 3), particularly in the Diamond 

Hill and Atlas Peak areas. Subsequently, a significant divergence in the persistence of the 

baseline data is evident across these three regions. Specifically, the Diamond Mountain area 

and Atlas Peak experienced a rapid and sustained decline in NDVI, remaining below historical 

averages for an extended period.  It took several years for these regions to recover and regain 

normal NDVI levels. Although the Monticello area did not experience a sudden drop compared 

to the other regions, there was a noticeable decrease, and the subsequent trend in NDVI 

remained considerably lower compared to historical levels. The following table presents the 

outcomes obtained using traditional methods to measure resilience in the aforementioned 

regions. 

Table 3. The measurement result use traditional method 

By analyzing the information related to the event start date, event end date, duration, 

event intensity for each region, the following conclusions were drawn. The recovery period 

signifies the duration required for complete recuperation, and the event intensity indicates the 

integration of the actual NDVI and the historical contemporaneous data, which represents the 

Region Event start Event end Period Event intensity 

Monticello 10/2020 08/2021 10 0.56 

Diamond Mountain 10/2020 11/2021 13 1.24 

Atlas Peak 10/2020 01/2023 26 1.37 
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severity and duration of the event. The Monticello area recovered within 8 months of the event, 

whereas the Diamond Mountain area necessitated 11 months for recovery, and the Atlas Peak 

area took a significant 26 months to fully recover. These findings indicate that the Atlas Peak 

area requires a lengthier period to return to pre-disaster conditions. The event intensity  of the 

Monticello region is 0.56, which indicates a moderate level of activity in the Monticello region 

during that time period. In comparison, the disruption in the Diamond Mountain region was 

more severe with an event intensity of 1.24. This suggests a relatively intense event occurred 

in the Diamond Mountain region during that time period. During this timeframe, the Atlas Peak 

region experienced the longest and most severe wildfire, with an event intensity of 1.37. 

Although the event intensities in Diamond Mountain and Atlas Peak are similar, the 

recovery time in Diamond Mountain is much shorter. This can be considered to be more 

resilient and better able to recover from negative situations after suffering a blow of the same 

scale. Correspondingly, the recovery time of the Monticello area and the Diamond Mountain 

area is similar. It can be considered that within the same time frame, the Diamond Mountain 

region can quickly recover to its original state, while the Monticello region recovers more 

slowly. From the comparison of the above two groups in Table 3, we can see that the recovery 

speed of the Diamond Mountain group is greater than that of the other two regions. Therefore, 

it can be seen that the Diamond Mountain Region has higher resilience. 

These findings highlight the impact of the natural disaster on vegetation resilience. The 

sharp decrease in NDVI and its prolonged deviation from historical averages in the Diamond 

Mountain area and Atlas Peak demonstrate the severe and lasting effects of the event. Similarly, 

the significant decline in NDVI observed in the Monticello area indicates a substantial 

alteration in vegetation dynamics. 
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In the SCM, the performance comparison in the Fig 7 the left chart illustrates the 

effectiveness of the synthetic control method. The yellow curve represents the estimated 

counterfactual paths obtained through synthetic control, while the blue curve represents the 

actual NDVI change values.  

The middle figure presents the corresponding treatment effect, which quantifies the 

difference between the counterfactual estimates and the observed trajectories. Positive 

treatment effect values indicate a beneficial impact on the organization, while negative values 

suggest a detrimental effect. Prior to the event, we observe treatment effects hovering around 

0. This signifies the synthetic control group's ability to simulate the state of the experimental 

group before the event, ensuring a comparable baseline. 

Following the event, the treatment effect experienced a sharp decline, indicating a 

significant immediate impact. Subsequently, it gradually rebounded and converged towards 0, 

reflecting the recovery process of the system after being subjected to an external shock.  In the 

Monticello region, a slight decrease in the treatment effect is observed, consistent with the 

results obtained from the traditional method. This suggests that the area experienced a minor 

impact and quickly returned to its original state. In contrast, the Diamond Mountain area 

exhibits a faster recovery, reaching or even surpassing its pre-event condition within a year. 

On the other hand, the Atlas Peak area requires a more extended recovery period. 

Overall, both the synthetic control and traditional methods effectively measure 

organizational resilience. However, the synthetic control method proves to be more accurate as 

it can capture the interplay of covariates and provide better counterfactual modeling. Its ability 

to estimate counterfactual paths and quantify treatment effects provides valuable insights into 

the impact of the natural disaster on vegetation dynamics and their subsequent recovery. 
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Fig 7(a). Syntactic control method on Monticello 

 

Fig 7(b). Syntactic control method on Diamond Mountain 

4.3  Evaluation  

4.3.1Placebo analysis 

The placebo analysis serves as a pivotal step in evaluating the robustness of our findings 

and affirming the credibility of the treatment effect estimates. In order to execute this analysis, 

we leveraged the synthetic control method on regions that remained unaffected by the 

intervention. The fundamental objective of the placebo analysis revolved around investigating 

whether the applied methods would generate treatment effect estimates closely approximating 

0 when no actual intervention was present. This validation process substantiates the efficacy of 

the synthetic control method in faithfully portraying the scenario. 

For this analysis, we deliberately chose regions that had not experienced any disruptive 

event. Employing the same methodology as in our primary analysis, we proceeded to estimate 

the treatment effects in these regions. A noteworthy observation emerged on the left side of our 
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analysis, where the actual trend and the estimated trend exhibited striking similarity, effectively 

overlapping. Moreover, from a statistical standpoint, the treatment effects exhibited a 

consistent fluctuation between 0 and 0.075. This pattern reinforced the conformity of our 

results to the anticipated outcomes. These findings indicate that the methods performed in 

alignment with expectations. 

 

Fig 8. Placebo analysis 

By rigorously validating our method through the placebo analysis, we reinforce the 

foundation of our study and enhance its credibility. This empirical process fortifies the position 

of the synthetic control method as a valuable tool in discerning treatment effects within a 

context characterized by the absence of actual interventions. 

4.3.2 Comparison with two methods 

In the comparative analysis of the two methods, we delved into the examination of the 

resemblance between the factual and estimated trends prior to the disruption, subsequently 

quantifying their respective goodness-of-fit through the determination of their R-squared (𝑅2) 

values. In the case of the historical data averaging method in the Altas area, the calculated 𝑅2 

value stood at 0.52. Conversely, the synthetic control method yielded a markedly higher 𝑅2 

value of 0.89. 

The 𝑅2 value of 0.52 for the historical data averaging method suggests a moderate level 

of correspondence between the method's estimates and the actual observations in the Altas area. 

On the other hand, the synthetic control method achieved an 𝑅2 value of 0.89, signifying a 
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significantly higher level of concordance between its estimated trend and the factual trend. This 

pronounced discrepancy in 𝑅2 values indicates that the synthetic control method possesses a 

superior ability to closely replicate the actual trends, enhancing its potential for generating 

more accurate and reliable predictions. 

Another perspective to evaluate the performance of the two methods involves assessing 

their impact on the simulation of the overall trend, particularly by examining the extent of 

deviation in peak values. In the context of the historical mean method, the peaks' highest and 

lowest values in 2021 generally align with the corresponding highest and lowest values of the 

actual curve. However, a one-month deviation in peak values is observed for the year 2022. 

Conversely, within the framework of the synthetic control method, the maximum and minimum 

values of peak points in both 2021 and 2022 consistently mirror those of the actual curve. 

This comparative analysis underscores the synthetic control method's superiority in 

determining the overall trend's trajectory, yielding forecasts that are more precise and aligned 

with the actual trend. The coherence between the synthetic control method's predicted peak 

values and the actual curve demonstrates its capacity to effectively capture the underlying 

dynamics and nuances, enhancing its efficacy in forecasting future trends. 

DISCUSSION 

5.1 Finding of NDVI trend change 

The heterogeneity of NDVI recovery levels are contingent upon the distinctive 

characteristics of different areas, including weather conditions, vegetation attributes, 

management approaches, restoration strategies, and policies (Kapucu, 2014; Miller & Ager, 

2012; Arab et al., 2021). Notably, the exceptional recovery and subsequent enhancement 

observed in the Diamond Mountain area can be attributed to a confluence of factors. Firstly, 

the activation of robust coping mechanisms in response to adversity likely played a pivotal role 

in facilitating the region's recovery process. These mechanisms encompass adaptive strategies, 
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resource allocation, and resilience-building activities that empower the system to rebound and 

reestablish its ecological equilibrium.  

Furthermore, improvements in environmental conditions and enhanced management 

practices may have contributed significantly to the area's post-event growth and development. 

For instance, after a wildfire, changes in vegetation distribution disrupt the original balance, 

creating more favorable conditions for certain dominant crops (Saulino et al., 2023).  

Additionally, the recovery process benefited from inorganic material derived from the 

burnt debris of mountain fires and favorable climatic conditions in the subsequent year, 

alongside other related positive factors (Martín-Alcón and Coll, 2016). The complexity of 

recovery processes is emblematic of the intricate relationships between environmental, 

ecological, and human factors, underscoring the need for comprehensive and context-sensitive 

approaches to resilience assessment and management. 

In the context of the three examined cases, the findings emerging from the Diamond 

Mountain area hold a captivating allure. Notably, this region not only swiftly recuperated 

following the event but also exhibited an augmented state of vegetation activity that surpassed 

even the projections formulated through both conventional and synthetic control methods. This 

intriguing observation resonates harmoniously with the concept of the "recovery paradox," 

positing that certain entities, subjected to profound disruptions, have the potential to rebound 

to a state surpassing their initial conditions (Binswanger, 2001). 

This concept is evidenced across a number of fields including ecology, economics, 

social sciences and organizational management. For example, Hora, Srinivasan and Basu (2019) 

unearthed a phenomenon in South India where underground water levels rebounded 

remarkably beyond anticipated levels—a parallel to the paradoxical resurgence we observe 

here. Similarly, within the realm of social sciences, investigations into recovery processes 

unveil intriguing paradoxes. Sabine (2018) described the phenomenon of job stressors, which 
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is supposed to act as a positive stimulus in the recovery process, having a counterproductive 

effect. These studies collectively underscore the salience and significance of this concept, 

reaffirming its applicability as a pervasive phenomenon. 

The related discussion also shows that a system as a complex whole is affected by a 

combination of factors, and final manifestation is multifaceted and context-dependent (Hora 

et.al, 2019). The Diamond Mountain case, alongside these diverse examples, beckons further 

investigation into the intricate web of factors that enable such remarkable resurgences. This 

exploration can substantially enhance our comprehension of resilience dynamics and 

potentially foster novel strategies for bolstering positive outcomes in the aftermath of 

upheavals. 

5.2 Historical data approach and synthetic control approach 

Another crucial point to discuss is the strengths and limitations of the employed 

methods and their applicability to different scenarios. Ayyub (2014) emphasizes that measuring 

absolute resilience requires evaluating organizational performance without disturbances, 

rendering the chosen measurement method pivotal. Sensier et al. (2016) exemplify this by 

contrasting projected macroeconomic outcomes with actual results to gauge resilience. Among 

our methods, modeling future trends using historical attributes aims to measure absolute 

resilience. However, this approach faces challenges in accurately fitting actual change curves 

due to system complexity. In our study, limited three-year historical data introduces instability 

and potential gaps, compromising baseline reliability. Longer datasets might stabilize data, yet 

assuming accurate future representation remains challenging considering event interferences 

and system dynamics. 

The synthetic method is a relatively new approach in the field of resilience 

measurement. This approach quantifies relative resilience of an organization, where relative 

resilience refers to how well an entity performs relative to other similar entities, i.e., under the 
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same conditions (Ilseven & Puranam, 2021). Notably, when contrasted with the assessment of 

absolute resilience, the measurement of relative resilience is relatively more straightforward 

due to the ease of identifying comparable entities and the simplicity of its implementation 

(Abadie, 2021).  

Prior research has seen a substantial number of scholars discussing the efficacy and 

superiority of synthetic control methods in constructing counterfactual groups (Abadie, 

Diamond & Hainmueller, 2015; Mourtgos, Adams & Nix, 2022). Within the realm of resilience 

research, particularly in the context of recovery capacity, the synthetic control method is a very 

suitable research method. Moreover, synthetic control methods have been used by scholars for 

post-disaster recovery from major disasters (Fraser et a., 2022; Chen, 2022).  

It is worth highlighting that using industries as instances and measuring industrial 

organizational resilience is the innovation of this article compared to previous ones. By 

utilizing the industry context, this study establishes a crucial linkage between measurements of 

organizational resilience and the application of synthetic control methods. This approach 

unveils how organizations operating within a specific industry tackle disruptions. This unique 

angle significantly contributes to the arena of resilience measurement methodologies. 

Furthermore, the analytical findings presented in this research offer a highly insightful lens to 

dissect the origins of resilience disparities among different regions. This investigation extends 

to the identification of pivotal factors that can, in turn, shape future strategies and policy 

implementations, thereby augmenting the overall enhancement of industry resilience. 

5.3 Limitation and future direction 

The synthetic control method undoubtedly introduces a more versatile and adaptable 

approach to estimating counterfactual trajectories. By considering temporal patterns and 

system dynamics, this method notably enhances accuracy when compared to the traditional 



 

44 

 

approach. However, it is imperative to acknowledge certain limitations inherent to this method, 

which warrant attention for future research endeavors. 

Central to the accuracy of the synthetic control method is the judicious selection of the 

donor pool, consisting of unaffected regions (Abadie, 2021). A robustly representative donor 

pool enhances the credibility of counterfactual estimations, ensuring a more accurate portrayal 

of the system's trajectory. Conversely, the inclusion of a biased donor pool or data from events 

that have experienced impact can significantly compromise the precision of synthetic control 

estimates. Bouttell et al. (2018) actively addressed this limitation in their study on evaluating 

population-level health interventions.  

In our study, a notable example emerged when inconsistencies surfaced between initial 

treatment effect estimates for the Monticello area and actual observations. Subsequent 

investigation revealed that certain data points within the donor pool had also undergone 

changes in their external environment. Despite these changes, they remained part of the donor 

pool, leading to considerable errors in the final treatment effect estimation. 

Another limitation we want to discuss is about data quality. The data sourced from 

satellite images introduces a certain degree of noise, demanding extensive preprocessing during 

the initial stages. Furthermore, the volatile nature of weather conditions occasionally results in 

the presence of invalid or missing data. These variables require careful consideration and 

subsequent resolution to ensure accurate measurements of resilience. 

After we complete our study of vineyard settings with good results and feedback, we 

will be able to measure organizational resilience on a broader scale. To expand its application, 

researchers must refine the metrics employed to gauge resilience across different sectors. This 

could entail the development of industry-specific indicators and the incorporation of additional 

variables that capture the intricate dynamics of resilience (Fraser, Aldrich, and Small, 2021). 

By embracing more comprehensive metrics, the accuracy and relevance of resilience 
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assessments stand to be significantly heightened. This advancement holds the promise of 

offering more robust insights into the adaptive capacity of organizations across various 

industries, thereby informing informed decision-making in the face of disruptions. 

CONCLUSION 

In conclusion, this study contributes to the field of organizational resilience 

measurement by examining the case of  wine industry using satellite images and comparing 

historical data averaging method with the synthetic control method.  

The findings demonstrate the advantage of the synthetic control method in accurately 

assessing the treatment effect and capturing the dynamics of organizational resilience. By 

constructing counterfactual outcomes and considering potential confounding factors, the 

synthetic control method provides a more robust and reliable measurement approach. 

However, it is important to acknowledge the limitations of the synthetic control method, 

such as the potential impact of rebound effects and the dependence on data quality and 

availability. Future research is needed to address  these limitations and further refine the 

methodology. Additionally, exploring advanced machine learning techniques and integrating 

diverse data sources could enhance the accuracy and applicability of resilience measurement 

in various industries. 

Overall, leveraging satellite images and machine learning algorithms offers a promising 

avenue for studying and enhancing organizational resilience. By adopting a data-driven 

approach, organizations can proactively identify vulnerabilities, make informed decisions, and 

implement effective strategies to navigate challenges and ensure long-term sustainability. 

 

 

 

 



 

46 

 

REFERENCE 

1. Bhamra, R., Dani, S., & Burnard, K. (2011). Resilience: the concept, a literature review and 

future directions. International journal of production research, 49(18), 5375-5393. 

2. Annarelli, A., & Nonino, F. (2016). Strategic and operational management of organizational 

resilience: Current state of research and future directions. Omega, 62, 1-18. 

3. Ge, L., Anten, N. P., van Dixhoorn, I. D., Feindt, P. H., Kramer, K., Leemans, R., ... & 

Sukkel, W. (2016). Why we need resilience thinking to meet societal challenges in bio-based 

production systems. Current Opinion in Environmental Sustainability, 23, 17-27. 

4. Clarke, M. (2008). Understanding and managing employability in changing career contexts. 

Journal of European Industrial Training, 32(4), 258-284. 

5. Pineda-Martos, R., & Calheiros, C. S. (2021). Nature-Based Solutions in Cities—Contribution 

of the Portuguese National Association of Green Roofs to Urban Circularity. Circular 

Economy and Sustainability, 1(3), 1019-1035. 

6. Burnard, K., & Bhamra, R. (2011). Organisational resilience: development of a conceptual 

framework for organisational responses. International Journal of Production Research, 

49(18), 5581-5599. 

7. Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., & Branca, G. (2017). Climate smart 

agriculture: building resilience to climate change (p. 630). Springer Nature. 

8. Colicchia, C., Dallari, F., & Melacini, M. (2010). Increasing supply chain resilience in a 

global sourcing context. Production planning & control, 21(7), 680-694. 

9. Lv, W. D., Tian, D., Wei, Y., & Xi, R. X. (2018). Innovation resilience: A new approach for 

managing uncertainties concerned with sustainable innovation. Sustainability, 10(10), 3641. 

10. Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., ... & 

Pelizzari, P. M. (2012). A comparative risk assessment of burden of disease and injury 

attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic 

analysis for the Global Burden of Disease Study 2010. The lancet, 380(9859), 2224-2260. 

11. Spieske, A., & Birkel, H. (2021). Improving supply chain resilience through industry 4.0: A 

systematic literature review under the impressions of the COVID-19 pandemic. Computers & 

Industrial Engineering, 158, 107452. 



 

47 

 

12. Wieland, A., & Durach, C. F. (2021). Two perspectives on supply chain resilience. Journal of 

Business Logistics, 42(3), 315-322. 

13. Tang, J. (2019). Quantitative Assessment of Resilience in Complex Systems (Doctoral 

dissertation, ETH Zurich). 

14. Das, S., Das, B., Nath, K., Dutta, A., Bora, P., & Hazarika, M. (2017). Impact of stress, 

coping, social support, and resilience of families having children with autism: A North East 

India-based study. Asian journal of psychiatry, 28, 133-139. 

15. Ilseven, E., & Puranam, P. (2021). Measuring organizational resilience as a performance 

outcome. Journal of Organization Design, 10(3-4), 127-137. 

16. Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for 

comparative case studies: Estimating the effect of California’s tobacco control program. 

Journal of the American statistical Association, 105(490), 493-505. 

17. Abadie, A., Diamond, A., & Hainmueller, J. (2015). Comparative politics and the synthetic 

control method. American Journal of Political Science, 59(2), 495-510. 

18. Holling, C. S. (1973). Resilience and stability of ecological systems. Annual review of ecology 

and systematics, 4(1), 1-23. 

19. Linnenluecke, M. K. (2017). Resilience in business and management research: A review of 

influential publications and a research agenda. International Journal of Management Reviews, 

19(1), 4-30. 

20. Allen, D. E., Singh, A. K., & Powell, R. J. (2013). EVT and tail-risk modelling: Evidence 

from market indices and volatility series. The North American Journal of Economics and 

Finance, 26, 355-369. 

21. Kambhu, J., Schuermann, T., & Stiroh, K. J. (2007). Hedge funds, financial intermediation, 

and systemic risk. Economic Policy Review, 13(3). 

22. Seville, E., Van Opstal, D., & Vargo, J. (2015). A primer in resiliency: seven principles for 

managing the unexpected. Global Business and Organizational Excellence, 34(3), 6-18. 

23. Lee, A. V., Vargo, J., & Seville, E. (2013). Developing a tool to measure and compare 

organizations’ resilience. Natural hazards review, 14(1), 29-41. 



 

48 

 

24. Brown, C., Seville, E., & Vargo, J. (2017). Measuring the organizational resilience of critical 

infrastructure providers: A New Zealand case study. International journal of critical 

infrastructure protection, 18, 37-49. 

25. Chowdhury, M. M. H., & Quaddus, M. (2017). Supply chain resilience: Conceptualization and 

scale development using dynamic capability theory. International Journal of Production 

Economics, 188, 185-204. 

26. Chen, R., Xie, Y., & Liu, Y. (2021). Defining, conceptualizing, and measuring organizational 

resilience: A multiple case study. Sustainability, 13(5), 2517. 

27. Gentile, R., Galasso, C., Idris, Y., Rusydy, I., & Meilianda, E. (2019). From rapid visual 

survey to multi-hazard risk prioritisation and numerical fragility of school buildings. Natural 

Hazards and Earth System Sciences, 19(7), 1365-1386. 

28. Sweya, L. N., Wilkinson, S., Kassenga, G., & Mayunga, J. (2020). Developing a tool to 

measure the organizational resilience of Tanzania's water supply systems. Global Business 

and Organizational Excellence, 39(2), 6-19. 

29. Chen, Y., Cao, R., Chen, J., Liu, L., & Matsushita, B. (2021). A practical approach to 

reconstruct high-quality Landsat NDVI time-series data by gap filling and the Savitzky–Golay 

filter. ISPRS Journal of Photogrammetry and Remote Sensing, 180, 174-190. 

30. Saulino, L., Rita, A., Stinca, A., Liuzzi, G., Silvestro, R., Rossi, S., & Saracino, A. (2023). 

Wildfire promotes the invasion of Robinia pseudoacacia in the unmanaged Mediterranean 

Castanea sativa coppice forests. Frontiers in Forests and Global Change, 6, 1177551. 

31. Martín-Alcón, S., & Coll, L. (2016). Unraveling the relative importance of factors driving 

post-fire regeneration trajectories in non-serotinous Pinus nigra forests. Forest Ecology and 

Management, 361, 13-22. 

32. Shen, H., Li, X., Cheng, Q., Zeng, C., Yang, G., Li, H., & Zhang, L. (2015). Missing 

information reconstruction of remote sensing data: A technical review. IEEE Geoscience and 

Remote Sensing Magazine, 3(3), 61-85. 

33. Arp, L., Baratchi, M., & Hoos, H. (2022). VPint: value propagation-based spatial 

interpolation. Data Mining and Knowledge Discovery, 36(5), 1647-1678. 

34. Wang, J., Ding, Y., Wang, S., Watson, A. E., He, H., Ye, H., ... & Li, Y. (2022). Pixel-scale 

historical-baseline-based ecological quality: Measuring impacts from climate change and 



 

49 

 

human activities from 2000 to 2018 in China. Journal of Environmental Management, 313, 

114944. 

35. Firozjaei, M. K., Sedighi, A., Firozjaei, H. K., Kiavarz, M., Homaee, M., Arsanjani, J. J., ... & 

Alavipanah, S. K. (2021). A historical and future impact assessment of mining activities on 

surface biophysical characteristics change: A remote sensing-based approach. Ecological 

Indicators, 122, 107264. 

36. Spruce, J., Hargrove, W. W., Gasser, J., Smoot, J., & Kuper, P. (2014, December). MODIS 

NDVI Change Detection Techniques and Products Used in the Near Real Time Forwarn 

System for Detecting, Monitoring, and Analyzing Regional Forest Disturbances. In AGU Fall 

Meeting Abstracts (Vol. 2014, pp. GC31A-0439). 

37. De Jong, R., Verbesselt, J., Zeileis, A., & Schaepman, M. E. (2013). Shifts in global 

vegetation activity trends. Remote Sensing, 5(3), 1117-1133. 

38. Jamali, S., Seaquist, J., Eklundh, L., & Ardö, J. (2012, May). Comparing parametric and non-

parametric approaches for estimating trends in multi-year NDVI. In 1st EARSeL Workshop on 

Temporal Analysis of Satellite Images; Department of Physical Geography and Ecosystem 

Science: Mykonos, Greece (p. 6). 

39. Gutman, G., & Ignatov, A. (1995). Global land monitoring from AVHRR: Potential and 

limitations. International Journal of Remote Sensing, 16(13), 2301-2309. 

40. Abadie, A., & Gardeazabal, J. (2003). The economic costs of conflict: A case study of the 

Basque Country. American economic review, 93(1), 113-132. 

41. Hird, J. N., & McDermid, G. J. (2009). Noise reduction of NDVI time series: An empirical 

comparison of selected techniques. Remote Sensing of Environment, 113(1), 248-258. 

42. Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. 

(2005). Using the satellite-derived NDVI to assess ecological responses to environmental 

change. Trends in ecology & evolution, 20(9), 503-510. 

43. Kapucu, N. (2014). Collaborative governance and disaster recovery: the National Disaster 

Recovery Framework (NDRF) in the US. Disaster recovery: Used or misused development 

opportunity, 41-59. 

44. Miller, C., & Ager, A. A. (2012). A review of recent advances in risk analysis for wildfire 

management. International journal of wildland fire, 22(1), 1-14. 



 

50 

 

45. Arab, A., Khodaei, A., Eskandarpour, R., Thompson, M. P., & Wei, Y. (2021). Three lines of 

defense for wildfire risk management in electric power grids: A review. IEEE Access, 9, 

61577-61593. 

46. Hora, T., Srinivasan, V., & Basu, N. B. (2019). The groundwater recovery paradox in South 

India. Geophysical Research Letters, 46(16), 9602-9611. 

47. Sonnentag, S. (2018). The recovery paradox: Portraying the complex interplay between job 

stressors, lack of recovery, and poor well-being. Research in Organizational Behavior, 38, 

169-185. 

48. Ayyub, B. M. (2014). Systems resilience for multihazard environments: Definition, metrics, 

and valuation for decision making. Risk analysis, 34(2), 340-355. 

49. Sensier, M., Bristow, G., & Healy, A. (2016). Measuring regional economic resilience across 

Europe: Operationalizing a complex concept. Spatial Economic Analysis, 11(2), 128-151. 

50. Mourtgos, S. M., Adams, I. T., & Nix, J. (2022). Elevated police turnover following the 

summer of George Floyd protests: A synthetic control study. Criminology & Public Policy, 

21(1), 9-33. 

51. Fraser, T., Poniatowski, A., Hersey, N., Zheng, H., & Aldrich, D. P. (2022). Uneven Paths: 

Recovery in Louisiana Parishes after Hurricanes Katrina and Rita. Available at SSRN 

4004216. 

52. Chen, P. (2022). Analysis of the post-earthquake economic recovery of the most severely 

affected areas in the 2008 Wenchuan earthquake. Natural Hazards, 114(3), 2633-2655. 

53. Fraser, T., Aldrich, D. P., & Small, A. (2021). Seawalls or social recovery? The role of policy 

networks and design in disaster recovery. Global Environmental Change, 70, 102342. 

54. Bouttell, J., Craig, P., Lewsey, J., Robinson, M., & Popham, F. (2018). Synthetic control 

methodology as a tool for evaluating population-level health interventions. J Epidemiol 

Community Health, 72(8), 673-678. 

55. Kong, J., Simonovic, S. P., & Zhang, C. (2019). Resilience assessment of interdependent 

infrastructure systems: a case study based on different response 

strategies. Sustainability, 11(23), 6552. 

 

 



 

51 

 

 

 

 

 

 


