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Abstract

The manual review process is the biggest cost driver in electronic discovery (eDiscovery).
This is driven by high review eort, which refers to the amount of documents that need to
be reviewed manually. Most approaches designed to reduce this review eort implement an
active learning based system that leverages user feedback to exclude non-relevant documents
faster. In eDiscovery this is also referred to as Technology Assisted Review (TAR).
Although this method is eective at reducing review eort, it also has a possibility of
creating false negatives without the awareness of the user. As a result, this research proposes
a dierent strategy to reducing review eort. More specically, through iteratively re-
ranking the relevance rankings based on user feedback, which is also referred to as relevance
feedback. In our proposed method for this, the relevance rankings are produced by a BERT
based dense vector search and the relevance feedback is based on cumulatively summing
the queried and selected embeddings. Our results show that this method can reduce review
eort between 17.85% and 59.04%.
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1 Introduction

Prior to lawsuits and investigations there is a discovery process during which each party is
required to produce evidence, in the form of information/documents/e-mails, to the other party
[44]. In 2006 this process was extended by the Federal Rules of Civil Procedure (FRCP) to
all electronically stored information (ESI), which gave rise to the eld of electronic discovery
(eDiscovery) [42].

The eld of eDiscovery refers to any process where ESI is collected, located and searched
with the intent of using it as evidence in lawsuits or investigations [14]. Generally, this ESI is
a heterogeneous collection of emails, oce documents (e.g. word les, excel spreadsheets, etc.),
databases, and other forms of data (e.g. source code or voice mails) [17].

In a typical eDiscovery scenario, a set of documents is collected from ESI based on a list of
custodians (i.e. people that have administrative control over a piece of data) or a date range.
Thereafter, this set of collected documents is manually reviewed by a legal team in order to nd
documents that could be used in a lawsuit or investigation.

The costs of eDiscovery has grown over the years. In fact, the costs associated with the
eDiscovery process sometimes exceed the amount in controversy during legal disputes [32]. The
biggest cost driver here is the manual reviewing process, which has been estimated to account
for 90% of all eDiscovery costs [55]. These high review costs are driven by high review eort
[52], which refers to the amount of documents that have to be manually reviewed by a human
annotator [15].

Given these gures, dierent strategies aimed at reducing manual review eort have been
proposed in the Text Retrieval Conference (TREC) [59]. By and large, these strategies focused
on implementing active-learning based methods that speed up the reviewing process through
excluding non-responsive documents (i.e. documents that are not relevant to a lawsuit or inves-
tigation) faster based on user feedback. In eDiscovery this strategy is generally referred to as
Technology Assisted Reviewing (TAR) [27].

1.1 Problem statement

Despite being eective at reducing review eort, the usage of TAR in eDiscovery does have a lim-
itation. Namely, the possibility of false negatives. In eDiscovery this is particularly problematic,
since any false negative might not just be relevant, but crucial to a lawsuit or investigation
[23]. TAR is particularly prone to this issue, since the active-learning based system can create
false negatives automatically without the explicit awareness of the user.

Also, TAR is typically applied after a deduplication process [27]. This process is eective at
removing exact duplicates, but not near duplicates. As a result, review eort can be spent on
near-duplicate documents that are practically similar regarding their textual contents.

Given these shortcomings, the goal of this research is to evaluate a dierent approach for
reducing review eort. For this, we combine two major components: textual similarity and
relevance feedback. Here, the textual similarity is used to produce relevance rankings, whilst
relevance feedback is used to iteratively improve those relevance rankings based on user feedback.
For the textual similarity component, we evaluate similarity methods that are based on Quorum
search, TF-IDF and BERT. Next, for the relevance feedback component, we compare text based
and vector based feedback strategies.
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1.2 Research question

Given the limitations of the current TAR process identied in the previous subsection, we
formulate the research questions stated below. The rst research question relates to selecting
the most suitable text similarity approach for the relevance rankings. Next, the second research
question relates implementing that approach using dierent relevance feedback strategies with
the goal of reducing review eort.

• RQ1: Can text similarity be used for relevance feedback?

• RQ2: To what extent can relevance feedback help to reduce review eort?

1.3 Thesis outline

The remainder of this thesis is structured as follows. In section 2 we provide a summary of
works related to this research. This consists of works related to the domain of eDiscovery, text
similarity methods, and relevance feedback. Next, we describe the methodology and experimen-
tal setup of this research in section 3 and section 4. Here, we rst discuss the text similarity
methods used for the relevance rankings. Next, we discuss the relevance feedback strategies used
to implement the identied text similarity method. In section 5 we share the results of these
experiments. Thereafter, in section 6, we interpret these results and discuss the limitations of
the experiment. Based on these limitations we share our suggestions for future work. Finally,
in the conclusion section we answer the research questions stated earlier.
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2 Background

In this section we provide an overview of the literature related to this research. First, we discuss
the eDiscovery process and how it’s implemented in dierent legal systems. Secondly, we discuss
literature related to the text similarity methods used in our experiment. Next, we build on that
through discussing literature related to the usage of those text similarity methods in eDiscovery.
Thereafter, we review other methods that reduce review eort and the role of machine learning
in this. Finally, we discuss dierent relevance feedback strategies related to our research.

2.1 eDiscovery in dierent legal systems

The discovery process is the exchange of information between two parties prior to lawsuits
and investigations. The eld of eDiscovery refers to this process, but with the inclusion of
electronically stored information [42]. The implementation of eDiscovery diers per legal system
[67]. This subsection provides an overview of these legal systems and their dierences regarding
the role of eDiscovery.

2.1.1 Adversarial legal systems

The adversarial system is specic to common law, which is generally practiced in Anglo-centric
countries like the United States, Canada and the United Kingdom. Here, the court (often with
a jury) acts as a referee between the two parties in a legal dispute. Therefore, the parties are
responsible for preparing and presenting their own case in court [56].

As a result, the parties in a legal dispute must collect evidence from each other [5]. The
extent to which evidence is collected depends on the country. For example, in the United
States the extent to which a party is allowed to ask for evidence from another party extends
to anything relevant to the case which is non-privileged [42]. So for example, attorney-client
privileged information is excluded from this discovery process. This legal format results in a
recall oriented eDiscovery process where large sets of evidence are considered in court [30]. As
a result, an approach to reducing review eort should be recall oriented when applied in an
adversarial legal system. Considering relevance feedback has been categorized as High-Recall-
Information-Retrieval (HRIR) [68], our approach is favorable in this legal system.

2.1.2 Inquisitional legal systems

The inquisitional legal system is specic to civil law, which is practiced in many (non-Anglo)
countries. For example, Germany, France and The Netherlands. Here, in contrast to the adver-
sarial legal system, the judge acts as an investigator instead of a referee [56].

As a result, this eDiscovery process tends to be less recall oriented than in the adversarial
legal system [30]. Hence, the added value of a high recall approach (like relevance feedback) is
lessened in this legal system.

2.2 Text similarity methods and techniques

The text similarity methods used in this research stem from dierent approaches to computing
textual similarity. More specically, our TF-IDF and Quorum based similarity approaches have
a background in term based similarity methods, whereas our BERT based approach is a context
based text similarity method. As a result, this subsection provides an overview of the related
works in these categories.
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2.2.1 Term based similarity methods

Term based similarity methods compute text similarity through taking the common features
between two pieces of text into account [12]. As a result, these methods don’t incorporate
contextual language properties like homonymy or synonymy in their similarity computations.

A simple (and commonly used [34]) implementation of term based similarity is Jaccard
similarity [33], which computes text similarity based on how many features two texts have in
common divided by the total number of features across both texts. The implementation of
this similarity method is based on set algebra (using the intersection and the union operators).
The formula for this is given below. Here, A and B refer to the set of unique words for both
documents.

Jaccard(A,B) =
A B
A B =

A B
A+ B (1)

A disadvantage of Jaccard is how it’s impacted by the size of the data. Computing the
intersection between two texts (without optimization) amounts to quadratic (O(n2)) time com-
plexity [19]. Moreover, properties like word frequency can’t be included when simplifying texts
with set algebra. As a result, we don’t use this approach in our experiments for basic term
based text similarity. Instead, we use Quorum search [6].

Quorum search is used to return documents that contain a specic number of terms (see
section 3.1.1). It complements Jaccard through sorting the words based on frequency. As a
result, their position in the sorted list contains more information than only occurrence. More-
over, it uses an index to return documents that contain specic terms, which is a datastructure
that allows for faster searching through mapping words to locations (e.g. documents) [40]. As
a result, this method has linear time complexity (O(n)) [6] and therefore scales better than
Jaccard similarity.

However, a shortcoming of Quorum search is that frequent terms within a document are
unlikely to be distinctive or important [10]. To deal with this shortcoming, there are two
approaches. The rst approach is based on manually ltering out frequent words based on a
pre-dened list of words that are known to be common in a given language. These words are
often referred to as stop words. Removing stop words when searching for textually similar
documents tends to have a benecial eect [10]. Hence, we lter out stopwords in our experiment.

The second approach is based on diminishing the value of words that are common in a corpus
[10]. An advantage of this method compared to ltering stopwords is that it’s more dynamic.
Meaning, certain words that are common within a specic context (e.g. the word patient in
medical data) might not be included in pre-dened lists of stopwords.

This approach is implemented in our TF-IDF based similarity method (see section 3.1.3)
through the inverse document frequency. Here, terms are given a measure of uniqueness by
dividing the amount of documents in total by the amount of documents that have a specic
term. The formula for this metric is given below. Here, D refers to the number of documents
in the dataset whereas d refers to the number of documents that contain term t. As a result,
terms that appear in many documents (and are therefore less unique) are given a diminished
value [53].

idf(t,D) = log
D

1 + d ∈ D : t ∈ d (2)
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Figure 1: Simplied architecture of SBERT [48]

2.2.2 Context based similarity methods

In this research we also use context based similarity methods. In contrast to the term based simi-
larity methods mentioned previously, these methods do incorporate a form of semantic meaning.
This is based on the distributional hypothesis [25], which is built on the idea that words that
occur in the same contexts tend to have similar meanings [12]. Given this hypothesis, this
research uses pre-trained word embeddings that provide vector-based representations of texts.
This enables us to compute the textual similarity based on the similarity between the vectors
(e.g. with Cosine similarity) [12].

In this category of pre-trained word embeddings we are specically focused on BERT (short
for Bidirectional Encoder Representations from Transformers) [21], which forms the basis of
one of the similarity methods that this research explores (see section 3.1.4). BERT is based on
transformers, which is a deep learning model based on a neural network architecture [63]. This
architecture is similar to recurrent neural networks (RNNs) in the sense that both can be used
to detect patterns in a sequence of data [54].

However, in contrast to RNNs, transformers can process complete sequences without needing
multiple iterations. As a consequence, this architecture allows BERT to capture the semantic
meaning of a word in a sequence based on the terms that surround it. This is accomplished
during the pre-training and ne-tuning steps of the BERT framework, which consists of two
tasks [21]. First, the masked language model, which is to hide (i.e. mask) words in a sentence
and predict their value. Second, next sentence prediction, which is to predict whether two
sentences have a logical/sequential connection.

The ne-tuning step of BERT can be done on domain specic data, which makes it possible
to create custom versions of BERT for specic tasks. Some BERT versions that are related to
the topic of this research are LEGAL-BERT [11] (which was trained on legal texts like court
cases, contracts, legislation, etc.) and Goldilocks (which is optimized for technology assisted
reviewing in eDiscovery [66]). However, despite being related to the topic of this research, these
BERT models are not optimized for text similarity tasks. Hence, we don’t use these BERT
models in our research.

Sentence-BERT (SBERT) on the other hand is a BERT model specically made for measur-
ing text similarity using the cosine distance metric [48]. The key advantage SBERT has over the
other BERT models for text similarity tasks is its reduction in computational overhead. The re-
searchers found that for nding the most similar pairs in a collection of 10.000 sentences, BERT
would take ≈65 hours whereas SBERT would take 5 seconds. Moreover, it enables a similarity
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search between larger bodies of text (like sentences and paragraphs) through mean-pooling the
word embeddings.

A simplied overview of this architecture can be found in Figure 1. Here, the (word level)
BERT embeddings are rst mean-pooled to create paragraph/sentence level embeddings. There-
after, these embeddings are compared through their cosine similarity. Note, for the mean-pooling
process, text that exceeds 384 words in length is truncated [48]. As a result, this approach can’t
be implemented on a level of text granularity that exceeds this amount.

Given these advantages, we will use SBERT in our experiments to compute text similarity.
Note, a potential alternative to SBERT could be tBERT [43], which is another BERT model
specically made for text similarity tasks. However, this BERT model is also topic-informed,
which makes it more t for domain specic cases. Hence we will not use tBERT in this research.

2.3 Usage of text similarity methods in eDiscovery

In eDiscovery – besides custodian lists, keywords or date ranges – documents can be used as
queries [18]. This is referred to as Query by Document (QBD) and is the implementation of
the text similarity methods in this research. QBD has some advantages over traditional queries.
First, it nullies the eort that comes with constructing a traditional query. Second, it can
return documents that traditional queries can miss [18]. Note, the richness of a document
(i.e. the prevalence of relevant terms in a queried document) [65] has a positive impact on the
eectiveness of this technique.

Next, the text similarity methods mentioned in the previous section can also be used for near-
duplicate detection in eDiscovery. This is dierent from our research, which focuses on nding
relevant documents instead of near duplicate documents. Still, near duplicate detection is an
important eld in eDiscovery. In fact, the number of similar documents in eDiscovery corpora
typically ranges between 25%-50% [58]. As a result, near duplicate detection can signicantly
reduce the size of these corpora through ltering out duplicate documents.

2.4 Methods for reducing eDiscovery review eort

This section provides an overview of other strategies that aim to reduce review eort currently
used in eDiscovery.

2.4.1 Technology assisted reviewing

In eDiscovery, review eort is often reduced using some form of automation. Typically, this
process is not fully automated, since the usage of automated and manual reviewing is generally
viewed as a trade-o where humans are more accurate and computers are more ecient [41].
As a result, it’s common to establish a synergy between automated and manual reviewing. In
eDiscovery, this is often referred to as technology assisted reviewing (TAR), predictive coding
or predictive ranking [60]. In this research we refer to this process as TAR.

In TAR, the computer takes the input from the user (who labels a document as relevant or
non-relevant) and uses it to automatically label other documents [27]. Because TAR leverages
user input, the system tends to become better at suggesting/labeling documents as the process
progresses [60].

Currently, there are three major protocols for TAR [27]. First, the CAL (continuous active
learning) protocol [28], which is generally seen as the most eective at reducing review eort
[16]. In summary, CAL uses the input from the initial seed set and the input from the continuous
reviewing from users to select the next most likely relevant document for review until no more
relevant documents can be found. A variation on this process can be found in MINECORE,
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Protocol Seed set Stopping criterion

CAL Judgmental sampling Enough documents found (e.g. measured in drop-o precision)
SAL Judgmental sampling Classier good enough (e.g. measured in precision, recall or F1)
SPL Random sampling Classier good enough (e.g. measured in precision, recall or F1)

Table 1: Dierent TAR protocols (sorted from least to most review eort)

which stands for minimizing the expected costs of review [41]. Here, the user is presented
documents for which the classier is least certain.

Second, in the SPL (simple passive learning) protocol [28], the (human) reviewer pre-selects
documents as training examples. These documents are used to train the model. Once adequate
training has been achieved, this model is used to label every document. Generally, this labeling
is re-reviewed manually. Finally, in the SAL (simple active learning) protocol [28], documents
are selected and labeled by a (human) reviewer. This labeling is then used to train the model
until it’s adequately trained. Generally, the model pre-selects documents for labeling that it’s
least certain about. Both SPL and SAL are referred to as TAR 1.0, and have been found
less eective at reducing review eort than CAL [60]. Note, a tabular summary of these TAR
protocols (sorted by review eort) can be found in Table 1.

Still, regardless of the TAR protocol, review eort is reduced through excluding documents
based on user feedback. As a result, the creation of false negatives without the awareness of the
user remains an issue. In eDiscovery this is particularly problematic, since any false negative
might be crucial in an investigation or lawsuit [23]. This problem is augmented in an adversarial
legal system, since this discovery process is more recall oriented [30]. As a result, our approach
to reducing review eort uses user input to re-rank documents instead of exclude them.

2.4.2 Clustering search results

After collection, instead of reviewing search results one at a time, search results can also be
reviewed in clusters. These clusters are based on the similarities between the documents and
can be reviewed through a representative document (also referred to as a centroid). As a result,
multiple documents can be (dis)approved in one action, which reduces manual review eort [22].

IBM [34] used this technique to group/cluster e-mails together in their eDiscovery Ana-
lyzer. This was implemented in the review stage of the eDiscovery process by showing seman-
tically similar search results in groups, making it possible to (dis)approve multiple search results
at once. According to IBM, the usage of text similarity in this setting increased the precision
of the review process from 0.62 to 0.91. Thus, the text similarity methods identied in this
research could be implemented in a similar fashion.

2.4.3 Topic Modeling

Topic modeling is a collection of methods that reduce large collections of text into a smaller sub-
space of topics/clusters [13]. An example of such a method is non-negative matrix factorization
(NMF). This method has been used in combination with TF-IDF embeddings to compute the
dissimilarity between the relevant documents in the seed set, and the remaining documents in
the dataset [45]. The philosophy behind this method is that documents that are very dissimilar
to the relevant documents in the seed set are likely to be non-relevant. As a result, these doc-
uments can already be labeled as such. According to the researchers this strategy reduces the
manual review eort between 10.6% and 96.9%. Because this research used the same dataset as
our research (the RCV-1 v2 news corpus [3]), we use these results to contextualize the reduction
of review eort from our proposed method.
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(a) Linear-SVM (b) Kernel-SVM

Figure 2: Illustration of dierent types of SVMs from [29]

2.4.4 Supervised machine learning

The implementations of the previously mentioned TAR protocols are generally based on su-
pervised machine learning, often through support vector machines (SVMs) [45]. Originally
introduced by Vladimir Vapnik in 1995 [62], SVMs are a form of supervised machine learning
that classify data points in two (or more) classes through tting a hyperplane between them.
This hyperplane is tted based on a convex optimization problem, which strives to maximize
the distances between the hyperplane and the data points it separates. The shape of this hy-
perplane can be of two categories: linear-SVMs (straight hyperplane) or kernel-SVMs (exible
hyperplane). An illustration of the dierences between these two types of SVMs can be found
in Figure 2. For both variants, the SVM requires labeled data to be trained on. In TAR, the
manual labeling of data points is typically used for this [69] (e.g. through the pre-selected data
points in the SPL protocol)

In eDiscovery the data points are often based on word embeddings. For example, a commonly
used (SVM based) method to classify text in eDiscovery is a linear-SVM based on TF-IDF
embeddings [64]. In fact, a comparison of popular machine learning algorithms in eDiscovery
found that this approach outperforms other commonly used approaches, like bag-of-words based
linear-SVMs or TF-IDF based logistic regression [64]. Hence, in order to contextualize our results
in the broader domain of eDiscovery, we also use this method as a baseline approach.

2.5 Relevance feedback

Relevance rankings in eDiscovery refers to the order in which documents are returned [57]. In
this research we are particularly interested in relevance feedback, which refers to changing the
relevance ranking through user feedback, generally in multiple iterations [40].

In eDiscovery, the usage of relevance feedback has been found particularly useful for High-
Recall-Information-Retrieval (HRIR) [68]. This is due to the fact that in relevance feedback
documents only get re-ranked instead of excluded (as is the case in TAR). As a result, this
approach to reducing review eort is particularly useful in adversarial legal systems [30].

Note, a variation of relevance feedback frequently used in research (since it’s not always
viable to give manual feedback in experiments) is pseudo-relevance feedback. In pseudo relevance
feedback, the feedback is based on automatic analysis. For example, through assuming that only
the top n documents are relevant, or through assuming that only search results with a similar
annotation/label are relevant [40].
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As for implementing relevance feedback, there are two major categories of relevance feedback
strategies. [35]. First, text based relevance feedback strategies. Second, vector based relevance
feedback strategies. Both of these strategies are implemented in our experiments.

2.5.1 Text based strategies

A commonly used text based relevance feedback strategy is keyword expansion. Here, key-
words from the selected search results are appended to the query. There are two main variations
of this method [9]. The rst variation is to select terms that co-occur with terms from the orig-
inal query. The philosophy behind this approach is that terms that co-occur with terms from
the original query are more likely to be relevant to the search. The formula to calculate this
feature is shown below. Note, in this formula C(ti, eD) refers to the frequency a query term
ti co-occurs with expansion term e. By default, a co-occurence is dened through a range of
12 words. Also, the formula corrects co-occurence with (over)frequent terms through dividing
the co-occurrences with a specic expansion term by the total frequency (tf) of that expansion
term.

f(e) = log
1

n
Σn

i=1

Σd∈F C(ti, eD)

Σt Σd∈F tf(t,D)
(3)

Another keyword-expansion variation for relevance feedback is based on the inverse document
frequency mentioned earlier in this section. Here, the underlying assumption is that more unique
words are more valuable to the search. In this thesis we will use this strategy for selecting
keywords to expand our queries with.

2.5.2 Vector based strategies

Assuming vector representations of the query and search results are available, user feedback
can also be applied to the queried vector directly. This is referred to as vector based pseudo
relevance feedback. In general, there are two commonly used methods for this [35]. First, the
queried vector can be averaged with the positive search results. Second, the queried vector can
be summed with the selected search results. Both of these strategies are implemented in our
research.

A commonly variation of averaging query vectors is based on Rocchio’s method for relevance
feedback [35]. Originally invented by Joseph John Rocchio in 1966, the high-level idea of this
method is to move the query vector towards the selected vectors through assigning dierent
weights to selected and queried vectors [50]. The version of Rocchio implemented by most
researchers today [8] [4] diers slightly from the original method, since it omits the negative
feedback (i.e. non-selected documents) from the formula. As a result, this version of Rocchio
can be seen as a weighted average between the (original) queried embedding and the (averaged)
selected embeddings.

The weight of the queried embedding (α) and the weight of the averaged selected embeddings
(β) can be set by a user. Still, the default/consensus values most research adheres to is α = 0.5
and β = 0.5 [4]. Hence, we use Rocchio with those parameter values as a baseline method in
our experiment.
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Figure 3: Flowchart of the method

3 Methodology

In this research we evaluate dierent relevance feedback strategies and text similarity methods
with the objective of reducing review eort. As shown in Figure 3, the method for accomplishing
this is based on iteratively presenting the user with a set of (10) results to accept or decline.
Thereafter, the accepted documents are used to improve the query (and consequently results)
for the next iteration.

For returning the results (i.e relevance ranking) we experiment with dierent text similar-
ity methods, levels of textual granularity, and ranking methods. Moreover, we compare the
performance of these text similarity methods with a supervised approach to contextualize their
performance. These methods are explained in the rst and second subsection. Next, for pro-
cessing the feedback given after each iteration, we experiment with dierent feedback strategies.
These feedback strategies are explained in the third subsection.

Note, a common denominator of all our experiments is the usage of a search engine. In
our case, this search engine is based on an inverted index at the document level (using unique
document identiers). This is also referred to as a document index.

3.1 Text similarity methods

In this research we have two baseline methods. The rst baseline method is a basic text similarity
method (Quorum operator). The second baseline method is a supervised machine learning
approach commonly used in eDiscovery for similar classication tasks (TF-IDF based linear-
SVM). The purpose of this method is to contextualize the results of our text similarity methods
within the broader domain of eDiscovery. Next, our second and third similarity methods are
based on TF-IDF and dense vector search.

3.1.1 Quorum search

The Quorum operator is used to search for documents that contain a specic number (M ) of
terms [6]. For example, given the search terms Foo, Bar where M = 1, a document should at
least contain one of these terms for the quorum operator to return true. This search operation
is conducted on a document’s N most common terms.

As a result, the Quorum operator requires two parameters. First, N changes the amount
of words considered for comparison (expressed as a percentage of the queried document’s size).
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Algorithm 1: Quorum search

input : query, documentIndex
output: Number of matching terms between queried article and target articles.

1 matches ← emptyMatches()
2 for term in query do
3 for documentId in documentIndex[term] do
4 matches[documentId] += 1 // Docs that have term from query.

5 return matches

Increasing this parameter will increase the recall of the quorum operator. Second, M changes
the amount of terms that need to match between a query and a document (expressed as a
percentage of N ). Increasing this parameter will increase the precision of the quorum operator.
Given the meaning of these parameters, M ≤ N . Else, there won’t be enough terms in the
documents to achieve the number of required matches.

Note, since the Quorum operator isn’t available in any public libraries, we implemented our
own version. The pseudo-code for this implementation can be found in Algorithm 1. Here, the
document index and query are already pre-processed based on the documents’ N most frequent
terms. Also, the threshold M will be applied to the returned values after this function. Finally,
the results are sorted based on the matches divided by document length.

3.1.2 SVM based approach

Our second baseline method is a linear-SVM based on TF-IDF embeddings. Note, in contrast
to the other methods in this section, this is a supervised approach. Meaning, it’s rst trained on
annotated data. As a result, this approach diers from our other approaches and is exclusively
meant to contextualize the results of our other similarity methods.

First, TF-IDF [49] vectorizes text based on multiplying the frequency of a word in a document
with the inverse frequency of that word in the entire data set (formula for this is given below).
Hence, TF-IDF looks at the uniqueness of a word instead of just the frequency. The result
of TF-IDF is a sparse vector where all the words that exist in a document are given their TF-
IDF value (words that don’t appear in a specic document have zero values). The formula for
computing the TF-IDF value for a term is given below.

TF =
term frequency in document

total words in document

IDF (t) = log2


total documents in data set

documents with term



TF-IDF score for term t in data set = TF · IDF(t)

Next, these embeddings are used to train a Linear-SVM. Meaning, the data-points that the
Linear-SVM aims to separate are based on the TF-IDF embeddings of the texts in the dataset.
For this, we use a 60/40 train/test split. The classes of these data-points and the data used for
this method will be explained in the experimental setup.
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3.1.3 TF-IDF based approach

Our second text similarity method is based on TF-IDF, which makes it a statistical approach
to nding similar texts. As exemplied in the previous subsection, TF-IDF builds on Quorum
search through multiplying the frequency of a term in a document with a measure of uniqueness
based on the entire dataset. Hence, computing the similarity between two texts based on TF-IDF
captures more information than Quorum search.

In order to use TF-IDF to nd similar documents, we use MoreLikeThis (MLT). In summary,
MLT queries the terms from a document (that have the highest TF-IDF values) individually
using the document index. The documents returned by these queries are ranked based on
combining their MLT scores, which is dened as the sum of the TF-IDF values of the matching
terms between the queried document and the returned document [24].

Note, we are aware that a commonly used implementation of TF-IDF to identify textually
similar texts is based on computing the cosine distance between the TF-IDF vectors. However,
computing the Cosine distance between n vectors results in quadratic time and space complexity
(O(n2)). Hence, this method is not feasible in a real-world eDiscovery scenario. As a result, we
use MLT instead.

3.1.4 Dense vector search

Our third similarity method is based on Sentence-BERT (SBERT) embeddings. These embed-
dings can be used to nd similar texts using dense vector search (DVS). The distance metric
used for this is cosine similarity, which computes the similarity between two vectors (i.e. em-
beddings) based on the cosine value of the angle between the two vectors [46]. This angle is
computed through dividing the dot-product (which is the sum of products from both vectors)
by the length of the vectors. This means that the potential values of this similarity measure
range from -1 (completely opposite) to 1 (completely similar). The formula for this is given
below.

cosine similarity = cos(θ) =
AB

∥A∥∥B∥ =

n
i=1 AiBin

i=1 (Ai)2
n

i=1 (Bi)2
(4)

In order to nd embeddings with a high cosine similarity (or low cosine distance) in a large
dataset eciently we use Hierarchical Navigable Small Worlds (HNSW) based vector search [39].
HNSW is an algorithm that nds the k most similar documents to a query with logarithmic
time and space complexity (O(log(N)). It accomplishes this based on Navigable Small World
(NSW) graphs.

NSW graphs are network graphs that are built to have both long-range links and short-
range links. As a result, each vertex (which in our research represents an SBERT embedding) is
connected to a number of other vertices. In NSW these connected vertices are referred to as a
friend list. Using this friend list, a nearest neighbor search is conducted through a greedy search
process. Meaning, each iteration a new vertex is selected from the current friend list based
on being closest to the queried vertex. When no vertex closer to the query than our currently
selected vertex is available in the friend list, the stopping criterion is reached.

HNSW builds on this concept through adding a hierarchy. Meaning, the graph is separated
in layers. In the top layers vertices are connected through long distances. In the lower layers the
distances between the vertices are shorter. As a result, starting in the top layer, the algorithm
can easily traverse longer distances to nd vertices closer to the query. When reaching a local
minimum, the algorithm traverses to a layer below to continue the search.
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Figure 4: Illustration of the HNSW algorithm from [36]

Consequently, this algorithm decreases the amount of steps needed to nd the closest neigh-
bor. Because, in the rst set of iterations the stepsize is larger and local minimums are found
faster. An illustration of the HNSW algorithm can be found in Figure 4.

3.2 Text granularity and ranking methods

Because relevant information can be exclusive to a specic part of a document [1], we conduct
experiments on two levels of text granularity: document and paragraph. Here, the paragraph
level means that we query and retrieve paragraphs instead of documents. However, for the
relevance ranking we only consider documents. As a result, the experiments on the paragraph
level require a document ranking to be derived from the returned paragraphs. For this, we
dene two dierent paragraph based document rankings.

The rst ranking method is based on taking the highest ranked paragraph of a document in
the ranking as the overall document ranking. For example, say we return 6 paragraphs from 3
unique documents in the following order: d1, d2, d2, d3, d3, d3 where di refers to a paragraph
from document i. Then, our document ranking will be as follows: 1, 2, 3. Note how the ranking
from the rst paragraph of a document determines its position in the document ranking.

The second ranking method is based on counting the amount of paragraphs per document in
the ranking, and using that count to rank the documents. For example, say we return the same
6 paragraphs in the following order: d1, d2, d2, d3, d3, d3 where di refers to a paragraph from
document i. Then, our document ranking will be as follows: 3, 2, 1. Note how in contrast to
the previous ranking method, the amount of paragraphs per document determines the ranking.

Given the fact that the number of paragraphs per document diers, we expect the approach
based on the highest ranked paragraph to outperform the count based approach. Because, in
a count based approach, documents with fewer paragraphs are biased to have fewer matching
paragraphs, regardless of their individual relevance to the query.

3.3 Relevance feedback

Relevance feedback is the process of iteratively improving the relevance rankings based on user
feedback. In this research, the feedback is given based on automatic local analysis instead of
real human input. As a result, this research uses pseudo relevance feedback. The rules for our
pseudo-relevance feedback are explained in the next section. In this section, we explain the
dierent relevance feedback methods researched in this thesis.
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3.3.1 Baseline methods

In this research we have three baseline methods for the relevance feedback experiments. The rst
baseline method is to re-use the original queried embedding. Meaning, if a user accepts/declines
documents, the ranking of documents remains constant. This is referred to as no feedback or
original.

Next, the second baseline method is based on keyword expansion. In keyword expansion,
each iteration a number of keywords from the documents with positive pseudo relevance feedback
are selected and appended to the original query using an OR operator. As a result, the selected
keywords serve as a pre-lter for the original query where the documents should contain at least
1 of the collected keywords to be considered.

The selection of the keywords from the documents is based on TF-IDF. More specically,
after selecting a number of documents through relevance feedback, the words from the selected
documents are sorted based on their inverse document frequency. Each iteration of feedback,
the top 10 of this set of words is appended to the keyword lter.

Finally, the third baseline method is based on Rocchio [50], which is a commonly used vector
based approach for relevance feedback. In Rocchio, the queried embedding is a weighted average
of the original embedding and (the average of) the selected embeddings. The parameters that
control this weighted average are α (which impacts the weight of the original embedding) and β
(which impacts the weight of the selected embeddings). The formula for this method is shown
below. In this formula, E(. . . ) refers to the embedding of a document and Avg(E(p1) . . . E(pk))
refers to the average embedding of the selected documents. Note, the most commonly used
setting for the parameters is α = 0.5 and β = 0.5 [4]. Hence, we use these parameter values in
our experiment.

EQnew = α ∗ E(QOriginal) + β ∗Avg(E(p1) . . . E(pk)) (5)

3.3.2 Vector based relevance feedback

Since the queried and collected texts have vectors (e.g. BERT or TF-IDF), the relevance feed-
back methods are based on vector operations. These vector operations are based on summing
and averaging the vectors. For this, we experiment with both cumulative (i.e. include the queried
vector in the average/sum) and non-cumulative feedback (i.e. exclude the queried vector in the
average/sum).

3.3.3 Feedback amplication

For text similarity methods implemented on the paragraph level, relevance feedback can be
amplied to the document level. Meaning, if a given paragraph receives positive relevance
feedback, then that feedback can be extended to other paragraphs that have the same parent
document. In our research this will be referred to as amplied feedback (or amp in tabular
formats). Note, feedback amplication is not applicable to any of our baseline methods.
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4 Experimental Setup

The rst experiment focuses on comparing the performances of dierent text similarity meth-
ods. The second experiment focuses on implementing the best performing similarity method
using dierent relevance feedback strategies. This section provides an overview of these experi-
ments and some common denominators like performance evaluation, data (pre-processing) and
conguration.

4.1 Performance evaluation

We evaluate the dierent similarity methods based on recall, precision and F1 scores (see for-
mula’s below). For these metrics, the denition of a true positive is a returned document
that is of the same set as the queried document. This positive set is based on the annotations
of the dataset. For example, if we query a document annotated as sports, then the returned
document should also be annotated as sports to be considered a true positive.

The main performance metrics are dened as follows. First, recall refers to the fraction
of relevant items retrieved [40]. Given our denition of a true positive mentioned earlier, this
metric resembles the fraction of documents from the positive set that have been returned (as
similar) after querying a document.

Recall =
#(relevant items retrieved)

#(relevant items)
(6)

Next, precision refers to the fraction of retrieved documents that are relevant [40]. Given
our denition of a true positive, this metric resembles the fraction of returned documents that
are from the positive set.

Precision =
#(relevant items retrieved)

#(retrieved items)
(7)

Besides the precision and recall scores we also evaluate our methods with the F1-score. This
performance metric is the weighted harmonic mean of the precision and recall values mentioned
earlier.

F1 Score =
2 ∗ Precision ∗Recall

Precision+Recall
(8)

Finally, to combine the results of dierent experiments into one concluding metric, we take
the macro average. This metric is based on averaging the precision/recall/F1 score of dierent
classes (i.e. topics) in our experiments. This metric will be used to compare the performances
of dierent similarity methods and relevance feedback strategies.

Macro Average(X) =

n
i=1 Xi

n
(9)
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(a) Test set (b) Ambiguous set

Figure 5: Distributions of the paragraph lengths

4.2 Data and pre-processing

Our research uses the RCV-1 v2 [3] dataset in all the experiments. This dataset was made
public in 2005 by Reuters News and consists of 806784 news articles. A complete overview of
this dataset can be found in Table 35. Due to hardware constraints, we did not use the complete
dataset in our experiment. Instead, we randomly sample 300 articles per topic from a set of 15
topics.

The sampled topics in our research are as follows. Firstly, the train set consists of the topics
Religion, Health, Travel and Tourism, Advertising and Promotion, Unemployment. Second,
the set of validation topics is Fashion, Metals Trading, Crime Law Enforcement, Arts Culture
Entertainment, Weather. Thirdly, our test topics are Strategy/Plans, Regulation/Policy, War
Civil War, Sports, Elections.

For all similarity methods, the nal result is based on the performance on the test set. The
usage of the train and validation sets diers per method and will be discussed in this section.
Note, besides the regular test set, the methods are also evaluated on an additional set of topics
that stem from the same parent topics. This set will be referred to as the ambiguous set
and consists of the topics EC Internal Market, EC Corporate Policy, Forex Markets, Energy
Markets.

Note, because the RCV-1 v2 dataset has multiple topics per article, the proper size of a topic
in a random sample can (slightly) exceed the sample size. As a result, a tabular overview of the
exact sample size per topic can be found in Table 34 (see Appendix).

As for pre-processing, for Quorum and TF-IDF we lter out stopwords, numbers, and convert
the text to lowercase. The stop word list used for this is publicly available on GitHub1. For the
SBERT and SVM based experiments, we only remove numbers and special characters.

Finally, for the experiments on the paragraph level, we rst split the text into sentences
using the <p>...</p> tags in the XML les from RCV-1 v2 dataset [3]. Next, a paragraph is
created through concatenating every 3 adjacent sentences of a document (and the remainder).
For SBERT the amount of words in a paragraph can’t exceed 384. Hence, the paragraphs in the
topic sets used in the SBERT experiments (test and ambiguous) shouldn’t exceed that limit.
As shown in Figure 5, our experiment adheres to this requirement.

1https://github.com/stopwords-iso/stopwords-en
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4.3 SVM based approach

In contrast to the similarity methods, our second baseline method (linear-SVM) is supervised.
Meaning, in order to use it as a classier it rst needs to be trained on labeled data. To preserve
the direct comparison between this baseline method and the similarity methods, the test data
is the exact same set of documents as the similarity methods.

As a result, the train data is an additional random sample of documents from the same
topics (for both the test and ambiguous set). Since we use a 60/40 train/test split, the size
of this random sample is 450 articles. Note, the training samples are checked to not have any
overlap with the test samples.

For this baseline method, there is no parameter optimization or ranking. Hence, we run this
experiment directly on the test and ambiguous set. Also, – since the purpose of this baseline
is to emulate a common approach in eDiscovery – this experiment is only conducted on the
document level.

4.4 Quorum search

For the experiments based on Quorum search we set two parameters. First, N. Which impacts
the amount of words considered for comparison (expressed as a percentage of the queried doc-
ument). Second, M. Which impacts the amount of words that need to match between two
documents to be dened similar (expressed as a percentage of N ).

In order to nd the optimal combination between N and M we do a grid search of these
parameters. For N, this grid search goes from 20% to 100% with a stepsize of 20%. For M, this
grid search goes from 5% to 50% with a stepsize of 5%. As a result, for each value of N we
iterate through 10 dierent values of M.

Besides these parameters, there are no parameters that can be changed. So, we conduct this
grid search of M and N on both the train and validation sets. The optimal combination on each
of these sets is based on the highest macro F1 score. Finally, we take the average of M and N
from these optimal combinations as the parameter values for the remaining experiments.

Next, in the Quorum experiments the returned documents/paragraphs are ranked. Hence,
we iterate through the returned results using dierent cuto rates. The cuto rates in our
experiment are the top 10, 20, 50, 100, 200, 300 and 500 results. For each of these cuto rates
we compute the precision, recall and F1 Score.

Finally, for the paragraph level experiments we test both paragraph based document rankings
mentioned in the previous section. Also, to get a better understanding of the paragraphs used
in our research, we run the experiment for both querying the rst paragraph and a random
paragraph.

4.5 TF-IDF based approach

For these experiments we can set two parameters. First, the minimum document frequency.
This refers to the minimum amount of documents (in the dataset) a word needs to occur in in
order to be considered. Second, the maximum document frequency. This refers to the maximum
amount of documents (in the dataset) a word needs to occur in in order to be considered.

Similar to the Quorum experiments, we set these parameters on the train and validation set.
However, due to limited computing resources, we didn’t do a full grid search. Instead, we used
a manual search to nd the optimal parameter values. Finally, the scores on the test set and
the ambiguous set will be considered as the denitive performance of this approach.
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Model name Size #Dimensions Speed (sentences/sec)

all-mpnet-base-v2 420 MB 768 2800
all-MiniLM-L12-v2 120 MB 384 7500
all-MiniLM-L6-v2 80 MB 384 14200

Table 2: Selected BERT models’ characteristics according to [47]

Since we use MLT, the returned documents/paragraphs are ranked. Hence, we iterate
through the returned results using dierent cuto rates. The cuto rates in our experiment
are the top 10, 20, 50, 100, 200, 300 and 500 results. For each of these cuto rates we compute
the precision, recall and F1 Score.

Finally, the experiments are conducted on both the document and the paragraph level. For
the paragraph level experiments we test both paragraph based document rankings mentioned in
the previous section. Also, to get a better understanding of the paragraphs used in our research,
we run the experiment for both querying the rst paragraph and a random paragraph.

4.6 Dense vector search

In our experimental setup for DVS we don’t have any parameters to set. Hence these experiments
are conducted directly on our test set and our ambiguous set. Next, we experiment with three
dierent pre-trained SBERT models. These are selected based on being all-round (i.e. general
purpose) models selected by the SBERT documentation [47].

The rst pre-trained model used in this experiment is all-mpnet-base v2. This is the largest
(and according to the documentation best performing) SBERT model. Its embeddings are of
xed size and have 768 dimensions. The second pre-trained model used in this experiment is
all-MiniLM-L12-v2. This model is smaller than the previously mentioned pre-trained BERT
model and its embeddings only have 384 dimensions. Finally, the third BERT model used
in this experiment is all-MiniLM-L6-v2, which is the smallest model used in this experiment.
Similar to the previous model it also has 384 dimensions. An overview of the characteristics
(and performance) of the selected pre-trained SBERT models according to the documentation
[47] can be found in Table 2.

Due to a maximum input text size of 384 words in SBERT [48], the DVS experiments are
conducted on the paragraph level only. Hence we test both paragraph based document rankings
mentioned in the previous section. Also, to get a better understanding of the paragraphs used
in our research, we run the experiment for both querying the rst paragraph and a random
paragraph. Moreover, to verify the numbers shown in Table 2 derived from the documentation,
we also record the time taken and RAM consumed by the dierent SBERT models in our
experiment.

Finally, in this experiment the paragraphs returned as similar are ranked. Hence, we iterate
through the returned results using dierent cuto rates. The cuto rates in our experiment are
the top 10, 20, 50, 100, 200, 300 and 500 results. For each of these cuto rates we compute the
precision, recall and F1 score.

4.7 Relevance feedback

For our relevance feedback experiments we implement a form of pseudo relevance feedback. Here,
the feedback is based on the same denition of a true positive as mentioned earlier. Meaning,
the topic of a returned document should contain the queried topic to get positive feedback.
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Algorithm 2: Pseudo relevance feedback experiment

input : paragraph, maxIterations
output: recall at dierent iterations

1 iteration = 0
2 while iteration ≤ maxIterations do
3 lter = acceptedDocuments + declinedDocuments
4 results = query(paragraph, lter) // Returns top 10 results.

5 for result in results do
6 if feedback for result is positive then
7 paragraph = processFeedback(result)
8 acceptedDocuments += result

9 else
10 declinedDocuments += result

11 iteration + = 1

12 return recall at dierent iterations

An overview of the layout of the experiment can be found in Algorithm 2. Note how each
iteration the already collected/declined documents are ltered from the search. Also, note how
the query is updated each iteration based on the pseudo relevance feedback. In our implemen-
tation of this experiment, we collect 10 documents/paragraphs each iteration, and we iterate to
a maximum of 75 iterations (since we have just under 7500 paragraphs in our test set).

For performance evaluation, we record the number of iterations needed to achieve a certain
recall. There are two formats for this. First, we record the recall achieved every 5 iterations.
This format shows the trend of this performance metric. Second, we record the average (and
standard deviation) of iterations needed to achieve exactly 80% recall. This format is used to
make an exact comparison between the methods. The value of 80% recall is chosen due to it’s
common usage as a minimum threshold in eDiscovery scenarios [51]. Finally, for every pseudo
relevance feedback strategy we record the time taken per iteration as a separate performance
metric.

4.8 Conguration

The experiments are conducted on a local device. The CPU of this device is an Intel(R)
Core(TM) i7-10610U CPU @ 1.80GHz and it has 16GB of RAM memory. As for software,
the TF-IDF and DVS based text similarity experiments were conducted using Solr [38], which is
built on top of Lucene [24]. The SVM based experiments are conducted using the Sklearn library
[7]. Here, apart form the token pattern (which is set to r"(?u)\b\w+\b") and the normalization
(which is set to None), all default parameter values apply. Finally, the source code used in
this experiment is publicly available on GitHub2.

2https://github.com/TimoKats/MasterThesis
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5 Results

This section is an overview of the results from our experiments. In the rst subsection, we discuss
the results of the individual text similarity methods. In the second subsection, we discuss the
results of the dierent relevance feedback strategies. Note, for all the results presented in this
section a complete and tabular overview is available in the appendix.

5.1 Text similarity methods

In this subsection we share the results of the text similarity methods. First, we share the results
for Quorum search. Next, we share the results for the TF-IDF based approach. Thereafter, we
share the results for the DVS experiments. Finally, we compare these individual results and
contextualize them with the results of our second baseline method.

5.1.1 Quorum search

For the document level, the grid search on the train and validation sets resulted in the parameter
values of N=100% and M=7.5%. Next, for the paragraph level, the grid search on the train and
validation sets resulted in the parameter values of N=40% and M=10%. Hence, the results on
the test and ambiguous sets are based on these parameter values.

Figure 6 shows the recall and precision scores for Quorum search on the document level and
paragraph level. These results show that for Quorum search, the document level works better
than both paragraph based approaches. Also, the paragraph based document ranking where the
rst paragraph determines the ranking of a document outperforms the document ranking based
on counting the paragraphs. Finally, for both paragraph based experiments it’s apparent that
querying the rst paragraph gives slightly better results than querying a random paragraph.

In summary, these results show that the most suitable conguration for Quorum search (in
our experiment) is implemented using N=100% and M=7.5% on the document level.

5.1.2 TF-IDF based approach

For both the paragraph level and the document level, the manual search on the train and
validation sets resulted in the parameter values minDf=0 and maxDf=0.8. Hence, the results
on the test and ambiguous sets will be based on these parameter values.

Next, the results in Figure 7 show that for this approach the document level is the most
suitable level of text granularity, since it outperforms both paragraph approaches. Also, the
paragraph based document ranking where the rst paragraph determines the ranking of a doc-
ument outperforms the document ranking based on counting the paragraphs. Finally, for both
paragraph based experiments it’s apparent that querying the rst paragraph gives better results
than querying a random paragraph. In summary, these results show that the most suitable
conguration for our TF-IDF based approach is implemented using minDf=0 and maxDf=0.8
on the document level.

5.1.3 Dense vector search

The results based on querying the rst paragraph can be found in Figure 10. Next, the results
based on querying a random paragraph can be found in Figure 11. In both sets of results, it’s
apparent that the largest pre-trained SBERT model (all-mpnet-base v2) outperforms the other
pre-trained SBERT models for both paragraph based document rankings. Next, similar to the
other text similarity methods, the document ranking based on the rst paragraph outperforms
the document ranking based on counting the paragraphs.
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Figure 6: Results for Quorum search on the test set

Figure 7: Results for the TF-IDF based approach on the test set
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Cuto@
Quorum
(test)

TF-IDF
(test)

DVS
(test)

Quorum
(ambiguous)

TF-IDF
(ambiguous)

DVS
(ambiguous)

10 0.071 0.079 0.072 0.061 0.072 0.068
20 0.130 0.145 0.132 0.107 0.128 0.123
50 0.282 0.311 0.290 0.222 0.265 0.264
100 0.472 0.517 0.494 0.354 0.421 0.439
200 0.683 0.745 0.755 0.494 0.580 0.643
300 0.729 0.793 0.839 0.547 0.629 0.708
500 0.638 0.691 0.713 0.556 0.612 0.661

Table 3: Macro F1 scores of the best performing conguration for each similarity method

As for the dierence between querying a random or the rst paragraph of a document, this
is shown in Figure 12 for our best performing pre-trained SBERT model and ranking method.
Here, in accordance with the results from our Quorum and TF-IDF based approaches, querying
the rst paragraph gives slightly better results than querying a random paragraph.

Next, the results for RAM usage are shown in Figure 8 and the results for time taken per
embedding are shown in Figure 9. In these gures, the x-axis refers to the individual paragraphs
(i.e. each x-tick is a paragraph) and the y-axis refers to the time taken/memory consumed to
create an embedding for that paragraph. Here, despite the large variance of results shown in
Figure 8, both these Figures conrm the pattern described in the documentation from SBERT
(shown in Table 2), which is that the larger models are more time and memory consumptive.

5.1.4 Combined results

For comparison purposes, the precision-recall graph for each method’s identied conguration
is shown in Figure 13 for the test set and Figure 14 for the ambiguous set. Moreover, the macro
F1 scores associated with these precision-recall graphs are shown in Table 33. To reiterate, the
identied TF-IDF and Quorum based similarity methods are implemented on the document level
whereas the DVS based approach is implemented on the paragraph level (using all-mpnet-base
v2 ).

On test, DVS outperforms our TF-IDF and Quorum based approaches. Next, on the am-
biguous set the results again show that DVS outperforms our other approaches. However, the
margin between the individual text similarity approaches is larger than on the test set. Also,
the performance of the identied similarity methods is collectively worse on the ambiguous set.

Finally, the results of our second baseline approach are shown in Table 4. When comparing
the performance of all text similarity methods with these results on the test set, the results
are comparable with our identied DVS method (MF1 of 0.839 for DVS and MF1 of 0.827 for
linear-SVM). However, on the ambiguous set the linear-SVM outperforms all similarity methods
(MF1 of 0.708 for DVS and MF1 of 0.772 for linear-SVM).

Dataset Macro Precision Macro Recall Macro F1 Score

Test 0.922 0.753 0.827
Ambiguous 0.775 0.791 0.772

Table 4: Results using TF-IDF with a linear-SVM
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Figure 8: Time consumed to create SBERT embeddings per paragraph

Figure 9: RAM% consumed to create SBERT embeddings per paragraph

Figure 10: DVS results for querying the rst paragraph
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Figure 11: DVS results for querying a random paragraph

Figure 12: Dierence querying a random paragraph and the rst paragraph with DVS
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Figure 13: Identied methods’ performance on test topics

Figure 14: Identied methods’ performance on ambiguous topics

29



Feedback strategy
Mean
(Test)

Std Dev
(Test)

Mean
(Ambiguous)

Std Dev
(Ambiguous)

No feedback 33.364 8.836 46.769 10.040
Keyword expansion 32.240 8.025 44.231 9.941
Rocchio (α = 0.5, β = 0.5) 29.502 3.793 37.975 5.110

Average 29.433 1.511 32.648 2.971
Average (amp) 30.167 1.026 32.990 1.797
Sum 28.285 0.746 29.407 2.126
Sum (amp) 28.462 0.499 30.538 1.310

Average 31.542 1.136 38.683 4.409
Average (amp) 32.814 1.077 38.412 2.638
Sum 32.802 1.118 38.804 5.278
Sum (amp) 32.201 0.872 38.201 3.774

Table 5: Iterations needed to achieve 80% recall (baselines are in the top cells, cumulative
approaches are in the middle cells, non-cumulative approaches are in the bottom cells).

5.2 Relevance feedback

The results for the relevance feedback are based on the identied (i.e. best performing) similarity
method from the previous experiments. To reiterate, this method is based on DVS (where
the pre-trained model is all-mpnet-base v2 and the document ranking is based on the rst
paragraph).

Using this similarity method, the relevance feedback results for the cumulative strategies
are shown in Figure 15 and Figure 16. Next, the results for the non-cumulative strategies are
shown in Figure 17 and Figure 18. In all of these gures, the y-axis represents the recall and the
x-axis represents the iterations needed to achieve that recall. Note, every iteration translates to
a review eort of 10 paragraphs. Similar to the previous experiments, the results are available
on the test set and the ambiguous set. Finally, the average amount of iterations (and standard
deviation) needed to achieve 80% recall for all methods and datasets is shown in Table 5.

First, the results on the test set. Here, it’s apparent that the feedback methods based on
vector operations require fewer iterations and have a lower standard deviation that the baseline
methods. The best performing feedback method is summing the vectors. Next, the results on
the ambiguous set. Here, all similarity methods require more iterations to reach 80% recall and
have a higher standard deviation than they have on the test set. Still, feedback methods based
on summing the vectors (cumulatively) gives the best results.

As for comparing cumulative and non-cumulative relevance feedback methods, here it’s ap-
parent that cumulative feedback methods outperform non-cumulative feedback methods for all
vector based relevance strategies. Moreover, the dierence between averaging and summing
vectors is smaller when using non-cumulative strategies.

A noteworthy nding when comparing the results from the test set and the ambiguous set is
the gap between the minimal baseline method (of no feedback) and the optimal feedback method
(of cumulatively summing the vectors). On the test set, the reduction of review eort (measured
in the number of iterations to achieve 80% recall) is 17.85%. On the ambiguous set however,
this reduction of review eort equals 59.04%. Another noteworthy nding is that amplifying the
feedback to sibling paragraphs reduces the standard deviation, but not the amount of iterations
needed to achieve 80% recall.

30



Finally, for all methods we measured average time taken per iteration. The results for this
are shown in Table 6. These results show that relevance feedback strategies based on vector
operations (average and sum) add little latency to the experiment compared to no feedback.
Still, amplifying feedback to sibling paragraphs does add some latency to the experiment for
both averaging and summing vectors. However, keyword expansion adds the most latency to
the experiments.

Strategy Average time per iteration (in seconds)

No feedback 0.02298
Average 0.02386
Sum 0.02417
Rocchio 0.02901
Sum (amp) 0.04982
Average (amp) 0.05097
Keyword expansion 0.12093

Table 6: Average execution times for dierent relevant feedback strategies (sorted)
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Figure 15: Cumulative methods’ performance on test topics

Figure 16: Cumulative methods’ performance on ambiguous topics

32



Figure 17: Non-cumulative methods’ performance on test topics

Figure 18: Non-cumulative methods’ performance on ambiguous topics
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6 Discussion

This section is a discussion of the results. First, we interpret the results for our two main
experiments. Second, we discuss the limitations of our research and the resulting suggestions
for future work.

6.1 Interpretations

The results presented in the previous section are interpreted in this subsection. First, the results
for the text similarity methods. Next, the results for the pseudo relevance feedback experiments.

6.1.1 Text similarity methods

For all of text similarity methods, some common denominators emerge from the results. First,
querying the rst paragraph gives better results that querying a random paragraph. This
coincides with ndings from our literature study, where research found that the eectiveness of
query by document approaches depends on the prevalence of relevant terms in the queried
text [65]. Combining this nding with our results, it’s probable that the rst paragraphs in
the RCV-1 v2 dataset outperform random paragraphs because they have a higher prevalence of
relevant terms. This property could be exclusive to the news articles used in our research, and
therefore might not translate to the data typically used in real-world eDiscovery scenarios.

Another commonality between the methods is related to the paragraph based document
rankings. Here, we see that for all methods ranking documents based on the rst paragraph in
the ranking gives better results than querying documents based on counting their paragraphs
in the ranking. Potentially, this could be related to dierences in the number of paragraphs per
document. Because, if a document only has one paragraph then it’s always bound to be at the
bottom of a count-based ranking. Regardless of how related/similar that document is.

As for comparing the dierent text similarity methods, both sets of experiments show that
DVS outperforms the other methods. However, the dierence in performance between the
dierent methods is more profound on the ambiguous set. This implies that for higher levels of
data ambiguity, the DVS based approach has more added value.

Next, the comparison of our similarity methods and our second baseline method. Here, the
results show that a commonly used supervised method (in our research exemplied through a
TF-IDF based linear-SVM) performs similar to an unsupervised text similarity based method
on our test set. For higher levels of data ambiguity however, the linear-SVM outperforms all
similarity methods. Still, regarding the fact that the similarity methods are unsupervised (and
therefore don’t require labeled data to be trained), these results are still encouraging.

Finally, it must be noted that the performance improvement in SBERT does come at a
computational cost. As Figure 8 and Figure 9 show, the memory usage and time consumption
increases for better performing SBERT models.

6.1.2 Pseudo relevance feedback

For the second experiment, the best performing text similarity method (DVS, with a rst-based
document ranking and all-mpnet-base v2 as pre-trained model) was implemented for relevance
feedback. For both the test set and the ambiguous set, the experiments show that relevance
feedback methods based on cumulatively summing the vectors reduce review eort the most.
Interestingly, this improvement does not seem to come at a computational cost. Since Table
6 shows that the execution time of these methods (without feedback amplication to sibling
paragraphs) is fairly similar to our minimal baseline method (of no feedback). Note, when
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optimizing for a low standard deviation, amplifying feedback to sibling paragraphs is benecial,
which does add latency to the experiment.

As for the reduction of review eort, we compare the iterations needed to achieve 80% recall
with our minimal baseline (of no feedback). Using this method, the reduction of review eort
is 17.85% on the test set and 59.04% on the ambiguous set. Related work that used an SVM
based approach for the same purpose found that their strategy reduced review eort between
10.6% to 96.9% using the same dataset [45]. This implies that the method used in our research
could be more predictable in terms of reducing review eort.

Moreover, their suggested method takes 71 seconds per iteration (of 1000 documents), which
translates to 0.071 seconds per document. This is far more than our best performing method,
which takes ≈ 0.02 seconds per iteration (of 10 documents). Obviously, innovation in hardware
could play a role in amplifying this dierence, since their experiments were conducted 5 years
ago. Also, their experiment didn’t use a subset of RCV-1 v2 but the entire dataset. Still, the
hardware used in their experiment (a shared 6 Intel Xeon E5-2630v3 CPUs @ 2.40GHz with
150GB of RAM) is powerful than ours (an Intel Core i7-10610U CPU @ 1.80GHz with 16GB of
RAM) regarding RAM and CPU clock speeds. As a result, it’s still probable that our method
is generally faster than an SVM based approach.

6.1.3 Relevance

First, with regards to implementation, our results show that review eort can be decreased
using text similarity based relevance feedback methods. An important side note in this nding
is that relevance feedback accomplishes this through only re-ranking documents. As a result,
this strategy does not produce false negatives automatically without the awareness of the user
(in contrast to an SVM based approach). This is particularly important for eDiscovery in an
adversarial legal system. Because, in this legal system the discovery process is typically recall
oriented. Hence, a reduction (or even nullication) of false negatives is favorable.

Second, with regards to scientic novelty and contributions, we should state that the concept
of relevance feedback in eDiscovery has been studied before [68]. However, certain parts within
our implementation are (to our knowledge) novel and therefore contribute to science.

First, the evaluation of dierent paragraph based document rankings contribute to the do-
main of paragraph based document-to-document retrieval. Given the rise of large language
models (that are generally limited to the paragraph level [37]) and the fact that relevant in-
formation can be exclusive to a specic part of a document [1], these ndings are applicable
beyond the technologies/embeddings used in this research.

Second, our results show that the usage of sibling paragraphs in relevance feedback can
reduce the standard deviation of review eort. To our knowledge, this technique and nding
are novel. Moreover, a more stable reduction of review eort could be favorable in real-world
eDiscovery scenarios. Hence, this nding is not just novel, but also applicable.

6.2 Limitations

First, data in eDiscovery tends to be a heterogeneous mix of emails, documents, direct messages,
etc [58]. But, the data used in this research is fairly homogeneous, since it only consists of news
articles. Hence, there’s a slight mismatch between the type of data used in this experiment and
the data used in real-world eDiscovery scenarios. Thus, the lack of data heterogeneity in this
experiment is a limitation of this research.

Second, due to hardware constraints, this research used a random sample of 300 articles
per topic for the experiments. This does not resemble the size of datasets typically seen in
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eDiscovery, which tend to be much larger [58]. Hence, the sample size of our used datasets is a
limitation of this research.

Moreover, data in eDiscovery tends to come from the legal domain [17]. This contrasts with
the data used in this research, which consists of news articles. As a result, certain properties
of our method identied in this research might not translate to real-world eDiscovery applica-
tions. For example, the fact that querying the rst paragraph outperforms querying random
paragraphs. Still, given the fact that the RCV-1 v2 dataset is commonly used as a bench-
mark dataset in eDiscovery [20], the results are still an adequate indication of our method’s
performance.

6.3 Future work

Our rst suggestion for future work is related to the level of data heterogeneity in the experi-
ments. As mentioned in the previous subsection, data in eDiscovery tends to be heterogeneous
whereas the data used in this experiment is fairly homogeneous. As a result, future work could
research to what extent heterogeneous data impacts the ability of dierent text similarity meth-
ods to return similar documents.

Next, this research uses Solr’s MoreLikeThis functionality to increase the speed of our TF-
IDF based similarity experiments. Meaning, we didn’t use any vector space scoring to compute
the similarities between the TF-IDF vectors. The reasoning behind this is that computing the
(cosine) similarities between n TF-IDF vectors results in quadratic (O(n2)) time and space
complexity, which is simply not viable in a real-world application.

However, recent innovations have made it possible to compute the pairwise similarities be-
tween (sparse) vectors much faster. An example of this is the ChunkDot Python library [2],
which splits the TF-IDF matrix into chunks and computes the similarities in parallel. Future
work could use this innovation to experiment with TF-IDF based cosine similarity as an addi-
tional text similarity method.

Thirdly, a category of text similarity methods not included in our experiments is neural net-
work based text similarity methods. The reasoning behind the exclusion of this category of text
similarity methods is related to its computational load, which is simply too large given our com-
putational resources. However, if future work does have sucient computational resources, this
category of text similarity methods could be researched more and compared with the methods
used in this thesis.

Our next suggestion for future work is related to the recent innovations in the domain of
large language models (LLMs). In this research the relevance feedback experiments were based
on SBERT embeddings. However, SBERT embeddings are not the only embeddings that can
be used for this purpose. In fact, recent innovations from OpenAI has created text embeddings
(e.g. text-embedding-ada-002 ) that can be used in a similar fashion [26].

Unfortunately, these embeddings have too many dimensions (1536) for our experimental
setup, which allows a maximum of 1024 dimensions. As a result, these embeddings are not
included in our experiment. Thus, future work could – given a dierent experimental setup –
include these embeddings and compare their performance with the BERT based approach used
in this research.

Finally, LLMs can also be implemented dierently from our method. Namely, through a gen-
erative Articial Intelligence (AI) based approach to reducing review eort. For this research,
such an approach is considered out of scope. Still, there are developments in this domain that
can be considered for further research. First, the usage of generative AI could be a complement
to our method when implemented as a co-pilot/assistant for the reviewer. For example through
assisting in formulating queries or summarizing search results [31].
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Next, generative models (like ChatGPT) can also be used to review documents automatically
by classifying documents as relevant/irrelevant to a (provided) topic description. Despite a
possibility of hallucinatory reviews (i.e. answers that are factually incorrect or unrelated), this
implementation has been shown to have potential [61].
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7 Conclusion

This research aimed to evaluate the impact of changing the (text similarity based) relevance
rankings based on relevance feedback. For this, the rst research question was formulated as
follows: can text similarity be used for relevance feedback? Our results show that the most
suitable text similarity method performs comparable to a commonly used supervised method
(in the form of a linear-SVM) and outperforms our baseline text similarity method. As a result,
we conclude that text similarity methods can be used for this purpose.

Next, the second research question was formulated as follows: to what extent can relevance
feedback help to reduce review eort? Here, our results show that the relevance feedback method
identied in this research reduces review eort between 17.85% and 59.04%.

However, the homogeneity of the data used in this research does not accurately resemble
the heterogeneous nature of data typically seen in eDiscovery scenarios. This is something
future work could improve upon. Also, the sample size also does not resemble real-world sce-
narios in eDiscovery. Recent innovations like chunking or improved hardware could address this
shortcoming.

Regardless, given the recall oriented nature of eDiscovery in (especially) adversarial legal
systems, the results for the relevance feedback experiments are very encouraging. Since, in con-
trast to an active learning based strategy (which typically used for this purpose), this approach
reduces review eort through only re-ranking documents. As a result, there are no false nega-
tives created without the awareness of the user. This feature is important for achieving optimal
recall and it makes this approach very suitable for real-world eDiscovery applications.
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Appendices

A Results

This Appendix contains results of the text similarity experiments and the relevance feedback
experiments.

A.1 Text similarity methods

This section of the Appendix contains results related to the text similarity experiments. For
this, the rst subsection contains the results for Quorum search. The second subsection contains
the results for the TF-IDF based approach. The third subsection contains the results for Dense
Vector Search. The nal subsection contains the results of all these approaches on the ambiguous
dataset.

A.1.1 Quorum search
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Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.973 0.037 0.071
20 0.967 0.070 0.130
50 0.948 0.166 0.282
100 0.917 0.318 0.472
200 0.837 0.577 0.683
300 0.718 0.741 0.729
500 0.505 0.867 0.638

Table 7: Results on the document level (N=100% and M=7.5%)

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.944 0.040 0.077
20 0.928 0.076 0.140
50 0.887 0.176 0.292
100 0.835 0.327 0.468
200 0.736 0.570 0.640
300 0.622 0.710 0.661
500 0.466 0.835 0.598

Table 8: Results on the paragraph level (querying rst paragraph), documents ranked on the
rst paragraph (N=40%, M=10%).

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.938 0.043 0.082
20 0.917 0.080 0.146
50 0.872 0.184 0.301
100 0.812 0.339 0.471
200 0.705 0.567 0.620
300 0.600 0.695 0.639
500 0.454 0.820 0.584

Table 9: Results on the paragraph level (querying random paragraph), documents ranked on
the rst paragraph (N=40%, M=10%).

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.738 0.031 0.059
20 0.730 0.058 0.106
50 0.690 0.132 0.221
100 0.643 0.244 0.352
200 0.576 0.435 0.493
300 0.511 0.568 0.536
500 0.417 0.725 0.529

Table 10: Results on the paragraph level (querying rst paragraph), documents ranked on
paragraph paragraph count (N=40%, M=10%).
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Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.710 0.030 0.057
20 0.710 0.056 0.104
50 0.660 0.127 0.212
100 0.617 0.235 0.339
200 0.555 0.422 0.477
300 0.490 0.547 0.515
500 0.406 0.703 0.515

Table 11: Results on the paragraph level (querying random paragraph), documents ranked on
paragraph count (N=40%, M=10%).
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A.1.2 TF-IDF based approach
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Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.969 0.042 0.079
20 0.962 0.079 0.145
50 0.946 0.187 0.311
100 0.922 0.360 0.517
200 0.857 0.661 0.745
300 0.748 0.845 0.793
500 0.545 0.949 0.691

Table 12: Results on the document level using maxDf=0.8 and minDf=0

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.890 0.038 0.073
20 0.872 0.071 0.131
50 0.828 0.163 0.270
100 0.778 0.300 0.429
200 0.681 0.512 0.579
300 0.578 0.647 0.605
500 0.419 0.782 0.541

Table 13: Results on the paragraph level using maxDf=0.8 and minDf=0 (querying rst para-
graph), documents ranked on the rst paragraph

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.859 0.038 0.073
20 0.837 0.071 0.130
50 0.793 0.161 0.265
100 0.736 0.292 0.414
200 0.637 0.490 0.548
300 0.541 0.609 0.569
500 0.402 0.739 0.518

Table 14: Results on the paragraph level using maxDf=0.8 and minDf=0 (querying random
paragraph), documents ranked on the rst paragraph

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.879 0.038 0.072
20 0.863 0.070 0.129
50 0.820 0.160 0.266
100 0.769 0.294 0.421
200 0.672 0.501 0.569
300 0.571 0.633 0.595
500 0.415 0.768 0.535

Table 15: Results on the paragraph level using maxDf=0.8 and minDf=0 (querying rst para-
graph), documents ranked on paragraph count
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Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.855 0.039 0.075
20 0.830 0.073 0.133
50 0.779 0.165 0.269
100 0.720 0.297 0.414
200 0.625 0.492 0.544
300 0.533 0.612 0.565
500 0.400 0.749 0.519

Table 16: Results on the paragraph level using maxDf=0.8 and minDf=0 (querying random
paragraph), documents ranked on paragraph count
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A.1.3 Dense vector search
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Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.978 0.036 0.070
20 0.974 0.069 0.129
50 0.964 0.166 0.283
100 0.948 0.323 0.482
200 0.906 0.614 0.732
300 0.812 0.824 0.818
500 0.560 0.946 0.703

Table 17: Results using all-MiniLM-L6-v2 (querying the rst paragraph), documents ranked on
rst paragraph

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.977 0.037 0.071
20 0.972 0.070 0.130
50 0.961 0.168 0.286
100 0.946 0.327 0.486
200 0.904 0.622 0.737
300 0.809 0.834 0.821
500 0.555 0.951 0.701

Table 18: Results using all-MiniLM-L12-v2 (querying the rst paragraph), documents ranked
on rst paragraph.

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.980 0.037 0.072
20 0.976 0.071 0.132
50 0.967 0.171 0.290
100 0.954 0.333 0.494
200 0.921 0.640 0.755
300 0.822 0.856 0.839
500 0.563 0.971 0.713

Table 19: Results using all-mpnet-base-v2 (querying the rst paragraph), documents ranked on
rst paragraph.

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.971 0.037 0.071
20 0.963 0.069 0.130
50 0.949 0.166 0.283
100 0.928 0.322 0.478
200 0.880 0.608 0.719
300 0.784 0.811 0.797
500 0.547 0.940 0.691

Table 20: Results using all-MiniLM-L6-v2 (querying a random paragraph), documents ranked
on rst paragraph.
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Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.968 0.037 0.071
20 0.961 0.070 0.130
50 0.946 0.167 0.283
100 0.925 0.323 0.478
200 0.878 0.609 0.719
300 0.781 0.811 0.796
500 0.542 0.937 0.687

Table 21: Results using all-MiniLM-L12-v2 (querying a random paragraph), documents ranked
on rst paragraph.

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.973 0.037 0.072
20 0.968 0.071 0.132
50 0.956 0.170 0.289
100 0.940 0.332 0.491
200 0.902 0.634 0.745
300 0.802 0.843 0.822
500 0.553 0.964 0.703

Table 22: Results using all-mpnet-base-v2 (querying a random paragraph), documents ranked
on rst paragraph.

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.814 0.031 0.060
20 0.846 0.062 0.116
50 0.823 0.147 0.249
100 0.803 0.284 0.419
200 0.764 0.537 0.631
300 0.696 0.733 0.714
500 0.541 0.942 0.687

Table 23: Results using all-mpnet-base-v2 (querying the rst paragraph), documents ranked on
counting paragraphs.

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.718 0.027 0.052
20 0.772 0.055 0.103
50 0.763 0.133 0.227
100 0.740 0.256 0.380
200 0.703 0.483 0.573
300 0.652 0.671 0.661
500 0.529 0.907 0.668

Table 24: Results using all-MiniLM-L12-v2 (querying the rst paragraph), documents ranked
on paragraph count.
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Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.714 0.027 0.051
20 0.775 0.055 0.103
50 0.759 0.132 0.225
100 0.743 0.256 0.380
200 0.706 0.483 0.574
300 0.653 0.669 0.660
500 0.535 0.912 0.674

Table 25: Results using all-MiniLM-L6-v2 (querying the rst paragraph), documents ranked on
paragraph count.

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.820 0.032 0.061
20 0.848 0.062 0.116
50 0.822 0.147 0.250
100 0.797 0.283 0.417
200 0.754 0.533 0.624
300 0.687 0.727 0.706
500 0.536 0.939 0.682

Table 26: Results using all-mpnet-base-v2 (querying a random paragraph), documents ranked
on paragraph count.

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.746 0.028 0.055
20 0.790 0.057 0.107
50 0.770 0.135 0.230
100 0.743 0.259 0.384
200 0.699 0.484 0.572
300 0.646 0.671 0.658
500 0.522 0.901 0.661

Table 27: Results using all-MiniLM-L12-v2 (querying a random paragraph), documents ranked
on paragraph count.

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.732 0.028 0.053
20 0.778 0.056 0.105
50 0.755 0.133 0.226
100 0.734 0.255 0.379
200 0.692 0.479 0.566
300 0.639 0.662 0.651
500 0.522 0.899 0.660

Table 28: Results using all-MiniLM-L6-v2 (querying a random paragraph), documents ranked
on paragraph count.
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A.1.4 Ambiguous data
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Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.867 0.032 0.061
20 0.829 0.057 0.107
50 0.769 0.130 0.222
100 0.707 0.236 0.354
200 0.619 0.410 0.494
300 0.549 0.546 0.547
500 0.446 0.737 0.556

Table 29: Results of Quorum search on the document level with N=100% and M=7.5%

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.867 0.037 0.072
20 0.844 0.069 0.128
50 0.799 0.159 0.265
100 0.750 0.293 0.421
200 0.668 0.513 0.580
300 0.592 0.673 0.629
500 0.475 0.862 0.612

Table 30: Results of the TF-IDF based approach on the document level with maxDf=0.8 and
minDf=0

Cuto@ Macro Precision Macro Recall Macro F1 score
10 0.914 0.035 0.068
20 0.896 0.066 0.123
50 0.871 0.156 0.264
100 0.840 0.297 0.439
200 0.779 0.548 0.643
300 0.691 0.727 0.708
500 0.519 0.910 0.661

Table 31: Results of DVS using all-mpnet-base v2, querying the rst paragraph, and ranking
documents based on the rst paragraph
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A.2 Relevance feedback

This section of the Appendix contains results related to the relevance feedback experiments.
The results display the recall for a given iteration (where every iteration resembles a review
eort of 10 results). Table 32 refers to the experiments on the test set and Table 33 refers to
the experiments on the ambiguous set.
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B Data

This Appendix contains information related to the data used in the experiments.

B.1 Reuters RCV1 v2

This section of the Appendix contains information related to the RCV-1 v2 dataset from Reuters,
which was used in all of the experiments. In this section, Table 34 shows the data of the sample
used in the experiments. Next, Table 35 shows the complete contents of the RCV1 v2 dataset.
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Subset Topic Prevalence within subset

Train RELIGION 300
Train TRAVEL AND TOURISM 300
Train UNEMPLOYMENT 300
Train ADVERTISING/PROMOTION 304
Train HEALTH 305

Validation METALS TRADING 300
Validation WEATHER 300
Validation FASHION 300
Validation CRIME, LAW ENFORCEMENT 304
Validation ARTS, CULTURE, ENTERTAINMENT 307

Test SPORTS 302
Test STRATEGY/PLANS 303
Test REGULATION/POLICY 308
Test WAR, CIVIL WAR 311
Test ELECTIONS 312

Ambiguous EC CORPORATE POLICY 300
Ambiguous FOREX MARKETS 300
Ambiguous ENERGY MARKETS 300
Ambiguous EC INTERNAL MARKET 311

Table 34: Topics and prevalence of the sampled articles
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Topic # % Topic # %

CORPORATE/INDUSTRIAL 443808 46,83 PRIVATISATIONS 8812 0,93
GOVERNMENT/SOCIAL 286178 30,2 CREDIT RATINGS 8686 0,92
MARKETS 217550 22,95 SHARE LISTINGS 8674 0,92
PERFORMANCE 169358 17,87 EXTERNAL MARKETS 8506 0,9
ECONOMICS 141130 14,89 NEW PRODUCTS/SERVICES 8018 0,85
COMMODITY MARKETS 94884 10,01 INFLATION/PRICES 7720 0,81
ACCOUNTS/EARNINGS 88968 9,39 BIOGRAPHIES, PERSONALITIES, PEOPLE 7550 0,8
COMMENT/FORECASTS 85922 9,07 HEALTH 7366 0,78
DOMESTIC POLITICS 68922 7,27 ENVIRONMENT AND NATURAL WORLD 7066 0,75
OWNERSHIP CHANGES 61702 6,51 CONSUMER PRICES 6938 0,73
MONEY MARKETS 57920 6,11 LEADING INDICATORS 6348 0,67
EQUITY MARKETS 53554 5,65 ASSET TRANSFERS 5626 0,59
SOFT COMMODITIES 52784 5,57 MONOPOLIES/COMPETITION 5578 0,59
MERGERS/ACQUISITIONS 52362 5,52 DOMESTIC MARKETS 5456 0,58
FUNDING/CAPITAL 51714 5,46 EC EXTERNAL RELATIONS 5374 0,57
GOVERNMENT FINANCE 50728 5,35 ARTS, CULTURE, ENTERTAINMENT 4686 0,49
MARKETS/MARKETING 50372 5,31 EC INTERNAL MARKET 4212 0,44
INTERNATIONAL RELATIONS 46568 4,91 WEATHER 3982 0,42
REGULATION/POLICY 45530 4,8 BALANCE OF PAYMENTS 3694 0,39
SPORTS 42726 4,51 RELIGION 3492 0,37
WAR, CIVIL WAR 41594 4,39 HUMAN INTEREST 3368 0,36
CAPACITY/FACILITIES 39128 4,13 RESEARCH/DEVELOPMENT 3128 0,33
CRIME, LAW ENFORCEMENT 38274 4,04 EC AGRICULTURE POLICY 3024 0,32
GOVERNMENT BORROWING 33272 3,51 LOANS/CREDITS 2982 0,31
INTERBANK MARKETS 32054 3,38 OUTPUT/CAPACITY 2790 0,29
PRODUCTION/SERVICES 31638 3,34 EC CORPORATE POLICY 2724 0,29
MONETARY/ECONOMIC 31436 3,32 MONEY SUPPLY 2716 0,29
STRATEGY/PLANS 29986 3,16 EC INSTITUTIONS 2684 0,28
FOREX MARKETS 28208 2,98 UNEMPLOYMENT 2630 0,28
ANNUAL RESULTS 27700 2,92 SCIENCE AND TECHNOLOGY 2626 0,28
BOND MARKETS 27110 2,86 INSOLVENCY/LIQUIDITY 2506 0,26
TRADE/RESERVES 24912 2,63 CONSUMER FINANCE 2446 0,26
ENERGY MARKETS 24596 2,6 RESERVES 2354 0,25
EUROPEAN COMMUNITY 23506 2,48 EC COMPETITION/SUBSIDY 2316 0,24
SHARE CAPITAL 22000 2,32 WELFARE, SOCIAL SERVICES 2242 0,24
LABOUR ISSUES 21684 2,29 ADVERTISING/PROMOTION 2104 0,22
EMPLOYMENT/LABOUR 21162 2,23 INDUSTRIAL PRODUCTION 2038 0,22
CONTRACTS/ORDERS 18620 1,96 DEFENCE CONTRACTS 1532 0,16
EXPENDITURE/REVENUE 17674 1,86 RETAIL SALES 1456 0,15
MERCHANDISE TRADE 15760 1,66 MARKET SHARE 1384 0,15
LABOUR 15270 1,61 WHOLESALE PRICES 1110 0,12
ELECTIONS 13722 1,45 OBITUARIES 1044 0,11
MANAGEMENT 13670 1,44 TRAVEL AND TOURISM 916 0,1
BONDS/DEBT ISSUES 13574 1,43 HOUSING STARTS 504 0,05
LEGAL/JUDICIAL 13390 1,41 PERSONAL INCOME 412 0,04
METALS TRADING 13118 1,38 EC ENVIRONMENT ISSUES 370 0,04
MANAGEMENT MOVES 12398 1,31 FASHION 322 0,03
ECONOMIC PERFORMANCE 10482 1,11 CONSUMER CREDIT 236 0,02
DEFENCE 10470 1,1 INVENTORIES 132 0,01
DISASTERS AND ACCIDENTS 9798 1,03 CAPACITY UTILIZATION 64 0,01
EC MONETARY/ECONOMIC 9786 1,03 EC GENERAL 64 0,01

Table 35: All topics in the RCV-1 dataset sorted by prevalence (in count and percentage)
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