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Abstract

In this thesis, we have done research on deep learning reinforcement learning agents in a
simplified self-made version of the game Crossy Road. The game is played autonomously using
a deep reinforcement learning algorithm called Proximal Policy Optimization (PPO). The
environment is an infinite world, with the agent observing states consisting of a portion of the
world relative to the agent. The main objective is to show the different effects of the size of
the portion of state representation. We have conducted three experiments, highlighting the
difference between the use of step rewards as well as the use of a double state representation
clearly exposing various objects in the environment separately. The training shows that for
all agents, agents using a larger state representation perform on average better. Agents with
a smaller state representation get stuck behind obstacles more. Yielding heuristic rewards
for actions helps the agent progress, manipulating moving forwards and rewarding patience
over exploration. The use of a double-state representation for an agent with a relatively
small single-state representation is beneficial. Double-state representations for agents with a
relatively large single-state representation expose the problem of the curse of dimensionality.
Furthermore, the evaluation shows that the standard deviation for all agents is high and that
some portions of the world are harder to navigate. This thesis exposes us to carefully think
about the size of a state representation for a given environment, as well as the implications of
providing the agent a reward for a specific action.
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1 Introduction

Reinforcement learning [SB18] is an active topic in the field of Artificial Intelligence (AI). Rein-
forcement learning is learning from experience: an agent and an environment communicate with
each other to gain feedback as to how it performs a certain task. From the perspective of the
agent, looking towards an environment is capturing an observation: a state. A state contains
information about the current setting of the environment, for instance, where certain objects are
or what certain variables are. Based on this information, the task of the reinforcement learning
agent is to take the optimal action when given this state information. Intuitively, one might
think that better choices can be made with more information, but this is tricky. The agent does
not know what these values specifically mean, and which are relevant for its current choice of
action. It has to be learned that some values are more relevant to the situation than other val-
ues. Furthermore, to increase the number of values representing a state is to increase the state
space. This introduces the curse of dimensionality [BM03], which states that increasing the size of
a state representation, is to exponentially increase the number of parameters that have to be learned.

Knegt et al. [KDW18] wondered the same: how to reduce the complexity of a state representation,
thus reducing the complexity of the state space. For their research, they used a vision grid to
represent a state in the Game of Tron. In this game, an agent is guiding a light cycle against an
opponent in a 10 × 10 grid world. The player must also avoid hitting any walls or light trials from
either the opponent or themselves whilst doing this. Furthermore, a vision grid is a grid relative
to the agent of which it can observe values. In their paper, the agent is the center of the grid,
where the grid has a dimension of n× n, where n is a positive odd number. They used multiple
vision grids to denote different features of observation, and multiple sizes for said combination of
vision grids (3 × 3 and 5 × 5). There are separate vision grids for light trials of the player itself,
light trials by the opponent, and walls. These are binary grids, denoting the presence of a feature
relative to the agent with a value of 1, whilst a value of 0 denotes the absence. They showed that,
in comparison to using the whole grid as a state representation, vision grids state representations
reduce the state space significantly, allow for better learning, and in most cases allowed for better
performance. They have shown that the larger vision grid outperformed the smaller vision grid,
and rarely the full grid outperformed the larger vision grid. However, there was not a lot of insight
into the effects of the vision grids other than performance. The reduction of the state space is a
significant part of the performance increase, however, we missed a clear explanation as to why these
sizes are used and what advantages and/or disadvantages the agent has with its vision.

In this thesis, we want to experiment with various sizes of vision grids as well as cell representations,
along with the reward shaping of actions. We ask ourselves the following research question:

What are the effects of reinforcement learning agent performance using different observation space
complexities for the game Crossy Road?

For this, we have implemented a self-made simplified version of Crossy Road as a sequential decision
problem where the agent gets to choose an action for each new game state. This environment
is in itself infinitely large, and highly dynamic with obstacles to avoid and attributes to use to
their advantage. In this environment, it can be observed what the effects of different vision grids
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are, not only in a metric of performance but also in behavior. We will perform three experiments
where the effects of observation space complexities are central. The first experiment show the
overall comparison in performance between agents using different vision grid sizes with no ap-
plied heuristic reward for actions. The second experiment however does apply a heuristic in the
reward function such that patience is valued over moving around and moving forwards is promoted
over moving backwards. Here, the question rises: Has this heuristic impact on the reinforcement
learning agent performance because of different utilization of the vision grid? Lastly, to represent
cells distinctively, we experimented with a more complex representation of cells in order to find
out: Is this increased complexity for representing cells distinctively worth the performance difference?

Results have shown that the more vision an agent has, the better the performance. The smaller
the vision grid, the more the agent gets stuck. However, the larger the vision grid is, the more
the problem of poor generalization arises due to the curse of dimensionality. Reward shaping for
actions improves the performance of the agent. A state representation of multiple vision grids
resolves the problem of getting stuck as much, but due to the added dimension, this is not a good
trade-off for agents with larger vision grids. The importance of the number of values an observation
is represented with to a reinforcement learning agent could truly be limiting its performance. Using
the explainable AI method Shapley, the agents showed that cells contributing to their path are of
the largest importance when it comes to deciding upon action, with cells on the said path further
away having less importance than cells close by relative to the agent.

Our contributions include a Gym [BCP+16] environment which represents a simple version of Crossy
Road. This environment includes various options for adjusting the vision grid size, hyperparameters
in the environment, reward function, and an easy structure to change any layers and/or section
generation. There are options for recording an episode as well. With the extensive feedback from
the environment, we contribute extensive evaluations of agents with various vision grid sizes in
the settings of: using a single vision grid without step reward; using a single vision grid with step
reward; and using a double vision grid with step reward. Evaluations include but are not limited to,
the way the agent terminated the environment and where it was at that particular moment. During
training as well as during evaluation, a shift between the way agents terminated the environment
and where that happened can be observed.

We will first start by going over related work in section 2, then continue with background knowledge
in section 3. Additionally, we will extensively explain the methods in section 4. The results are
shown in section 5 along with appendix D. Lastly, we will reflect on our work in section 6 and end
with a conclusion in section 7.

2 Related work

Research by Knegt et al. [KDW18] made use of vision grids in reinforcement learning agents. In this
research, opponent modeling is used in the Game of Tron using reinforcement learning. The Game
of Tron is played on a grid, where there is a player present as well as an opponent. This research
suggested making use of relative vision grids for the agent to represent only a partial view of the grid
as representation. The game grid was subdivided into three binary grids, one to denote the player’s
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position, one to denote the opponent’s position, and one to denote the walls present in the vision.
This reduced the state space tremendously. They showed that vision grids increase the learning speed
along with an increase in performance when compared to using the full grid as a state representation.

The thesis by van der Velde [vdV18] experimented with Frogger with a single multi-layer perceptron
as well as a double multi-layer perceptron, where one is meant for the Road section and one for
the Logs section. Along with that, they experimented with a single-action network and compared
the performance. Single-action networks are networks that yield an approximation of the Q-value
of a state-action pair. As input, they have used a vision grid of the world. Instead of using cells,
they have used blocks of 30x30 pixels to denote the value of that cell in the state space. The vision
grid reaches out 4 cells forward, and 2 steps both left, right, and downwards. Both approaches
managed to get passed the Road section, but could not get across the Logs section. For both
single-action, single multi-layer perceptron, and double multi-layer perceptron, the performance
was not comparable to human performance.

The thesis of Maijers [Mai19] continued with this project, implementing 2-step Q-learning and
4-step Q-learning [PW96] with two different reward functions: action-based reward functions and
distance-based reward functions. They showed that this does affect the percentage of Road section
completion, but does not improve the win rate. They have shown that multi-step Q-learning with
an action-based reward function performs significantly better than a distance-based reward function.
They noted that the agent has little patience on the Logs section and that not penalizing doing
nothing in the reward function could potentially help.

Emigh et al. [EKB+14] also experimented with Frogger. They have used two different kinds of
representations to describe the game state. The first is a ’holistic’ feature construction, which
targets agent locations globally across the entire environment, and a ’local’ feature construction,
which is comparable to the vision grid concept, along with additional information about whether
spots have been filled with frogs or not. They argue that this way of state representation by stating
the curse of dimensionality has a great impact on the learning process [Bel10]. Along with this,
they used Q-learning along with nearest neighbor action value approximation to let the agent
learn. This is a way to evaluate unvisited states by approximation concerning the action values
of neighboring states. They showed that there both methods of feature construction succeed in
navigating the frog, with ’holistic’ feature construction making metric learning greatly improve the
learning performance. Furthermore, they showed that with metric learning, irrelevant features were
eliminated or decreased in importance when making action value updates.

Reward shaping is steering the agent’s behavior via a certain heuristic, by giving rewards for
sub-objectives. If the objective function is to maximize the reward received, the agent will explore
ways to do so. By reward shaping, a heuristic is added to reduce this exploration by stating what
sub-objectives are steering in the right direction [BHV+14]. For example, an additional reward
could be to keep the largest distance from other agents [DKG11]. Overall, learning in environments
where there are sparse rewards yielded, reward shaping helps to speed up the learning process.
Providing additional penalties or additional rewards can expose the directed behavior of an agent.
Additionally, rewards and penalties lower the training time for learning a certain task [NHR99].
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PPO agents have been shown to learn complex behavior in elaborate environments [HTS+17]. The
observation space consists of two parts, where the first part is focused on the sensors of the agent,
including velocity, acceleration, and gyroscope but also values of each join angle on the legs and
torso. The second part is environmentally based, where just a part relative to the position of the
agent is known. They show that an agent can show locomotion, which is sensitive to reward shaping.
Agents must navigate various terrains, including bumpy terrain, jumping over obstacles, slaloming
walls, and jumping over gaps. They show that, by extensive reward shaping, agents utilizing a PPO
model can possess the skill of locomotion.

Previous research on Atari games with Deep Reinforcement Learning shows the method of using
convolutional network [MKS+13]. An Atari emulator is used to interact with a game, where a state
is a literal frame of the game, and the output is an action emulated in the game. They showed
that a convolutional neural network, trained with a variant of Q-learning, taking in the raw pixel
values of a frame can be used as a value function to estimate future rewards. Whilst Atari games
are visually fairly simple games, they did outperform humans for three out of six games, and show
state-of-the-art results in six of seven games.

A study by Beechey [BS3] aims to explain reinforcement learning decisions using Shapley. For
one, they showed how Shapley values are applied to policies. They argue that Shapley values for
feature importance are not a standalone explanation of the performance of an agent, but rather
a tool to describe the currently chosen action based on given features. This is true for both a
value estimation function as well as a policy function. The paper extends upon this problem by
proposing a new method using Shapley to identify feature contributions to the performance of the
agent. This is done by observing the consequences of leaving one feature out and quantifying the
performance change. They state to have found meaningful explanations of performance that match
human intuition via this method.

3 Background

3.1 Frogger vs. Crossy Road

The game we will be exploring is Crossy Road, released by Hipster Whale in 2014 [Wha14]. This
game is a successor to the arcade game Frogger, released in 1981, developed by Konami and
manufactured by Sega [Kon81].

Starting with Frogger, the objective is to guide the agent, in this case, a frog, to each spot on the
other side of the grid-based environment. A visualization can be seen in figure 1. The agent starts
at the bottom and has to work its way up to the top, considering two large tasks. First of all, the
agent has to cross a five-layer road section, where vehicles from left and right with various speeds
cross by. The agent must not get hit, or it will lose a life (out of a total of five). Separated by a safe
layer, the next section is a log section, where the agent must navigate itself to one of the empty
spots. There are logs, turtles, and alligators the agent can stand on. Turtles appear and disappear
from time to time, so moving swiftly is obligatory. Alligators can be stepped on at any point, except
for the head. For all objects, the agent moves along with the objects, meaning it can float off-screen.

4



The process of filling an empty spot with a frog has to be repeated five times to move on to the
next level. There is a time limit for navigating the frog to the other side, which is usually set to 60
seconds. Any time unused will be added to the total points. Furthermore, occasional spawning flies
be caught which yields additional points. The game ends when the player has no more lives left.

Crossy Road is fairly similar to Frogger, and can be seen in figure 2. It is seen as an endless
adaptation to Frogger. The objective is slightly different: get as far as possible without colliding
with vehicles and utilizing objects. The grid-based environment is not just two sections, but an
infinite amount of sections. New parts of the environment get generated the further you get. Crossy
Road adopts the two sections Frogger provided, namely the Road section and the Logs section. A
new section is added in this adaptation, which is a Rail section. This section contains a high-speed
train that rushes by at certain intervals. The agent gets warned via a light signal. Sections can be
of variable length based on their type, chance, and progression. For Logs and Road sections, this
average lies around three layers. For the Rail section, this average is usually lower. The further the
agent progresses, the more difficult the environment gets. This affects vehicle and object speeds,
the density of vehicles and objects, and the number of layers a section contains. The agent only
has one life, and it loses it in collision with vehicles, jumping into the water, or moving off-screen.
A time limit also exists in the original game, making sure that the agent does not wait too long
before moving on. The agent must reach a new layer to reset that time limit. Visually in the game,
the environment moves slowly off-screen when no actions are performed. Once the agent gets too
close to the bottom of the screen, the environment ends. The game contains golden coins, which
are randomly distributed in the environment and can be picked up by the agent. This does not
add any points to the score but does increase the player’s in-game currency to unlock new characters.

Figure 1: The game Frogger. The goal of this
level-based game is to get five frogs in each gap
at the top of the level, whilst starting at the
bottom avoiding cars and utilizing logs. Source:
[con23]

Figure 2: The game Crossy Road. The goal of
this endless game is to get across as many layers
as possible, by avoiding cars and trains and
utilizing logs. Source: [Wha14]
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We will be using Crossy Road as a baseline for this environment. We will be building the environment
ourselves since that provides us with more information about the positions of the objects and allows
more control over the environment. Previous research of a DQN network on Atari games shows the
use of convolutional networks [MKS+13], but we feel like this approach for the actual game Crossy
Road is a lot harder. The environment we will be building is similar but does differ in the fact that
there are no coins to be picked up and a possible time limit works differently. Furthermore, world
generation will deviate from the game, primarily since there are no exact numbers as to how the
world is generated in the original game. Difficulty works slightly differently too, mainly because it
only increases the number of layers per section, but does not interfere with the speeds or density.

3.2 Proximal Policy Optimization

3.2.1 Policy Gradient Method

Proximal Policy Optimization (PPO) [SWD+17] wants to strike a balance between easy implemen-
tation, sample efficiency, and easy tuning. It is a policy gradient method, which means it learns
online and directly from experience. PPO does not have a replay buffer, since it leads to unjustified
large policy updates, which could potentially destroy the current policy. The experience is only
used once, before being discarded, meaning that this model is less sample efficient than models like
a deep Q-learning network (DQN) [MKS+13]. PPO, as stated, is a policy gradient method. It uses
a policy gradient method, which is defined as

LPG(θ) = Êt[logπθ(at|st)Ât]

where πθ is the policy network, Êt the expectation at time t, logπθ(at|st) the logarithm of selecting
action a in s at time t, and Ât the advantage. There are two parts to this objective function. The
first part is logπθ(at|st). These probabilities are generated using a neural network. This is a policy
network πθ, which takes in the state as the input and generates action probabilities as the output.
The second part is Ât, which is the estimated advantage when taking some action a given some
state s. To calculate the advantage, discounted rewards and baseline estimates are needed. The
discounted rewards are the reward function, which is defined as

Gt =
∞∑
k=0

γkrt+k

where γ is the discount factor and rt at time step t. k represents the future expected steps along
with the expected rewards. This reward function sums up the discounted rewards from the current
episode. This function does exactly that. With a discount factor γ = 0.99, the reward function
rewards current rewards more than rewards it will get later.

The baseline estimate is the estimate of the discounted reward from time t. This is estimated by
another neural network, namely a value function or baseline network, which takes in a state and
produces V (s): the estimate of the discounted return from current time t. This is a noisy estimate.
Putting them together, Ât is defined as

Ât = Gt − V (s)
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or the advantage is the discounted rewards minus the baseline estimate. Or, ”how much better is
the action that the agent took than expected?”
Now, it knows what reward it received from that state, namely the reward from the action taken
from the previous state. This now becomes a supervised learning problem, where V (s) should be
as closely predicted to the reward r observed. This neural network, as well as the policy neural
network, are updated accordingly to the error of the value function. Coming back to the original
objective function, yielding a higher Ât yields a higher at, thus providing more chance to an action
being picked that has a higher advantage. This works vice versa: an action yielding a disadvantage,
will lower at and thus be picked less.

3.2.2 Trust Region Method

There is a problem, however, which we mentioned before: it cannot update on a dataset of experience,
but rather learn from online experience. This has to do with the fact that the experiences in such a
dataset are chronologically unrelated. The way Ât is calculated, is by observing the reward the
agent making action a from a state s to yield s′. Using a random state s to calculate the advantage
over, yields unrelated results and cause the value function to be completely wrong, thus training
falsely.
The solution for this is a Trust Region Method, which in this case is Trust Region Policy Optimization
(TRPO) [SLM+15]. It makes sure that the new policy is not too far off from the old policy, i.e. the
updates are not too significant. It uses the following objective function:

max
θ

Êt

[ πθ(at|st)
πθold(at|st)

Ât

]
subject to Ê[KL[πθold(·|st), πθ(·|st)]] ≤ δ

where πθold denotes the old policy, KL denotes the Kullback-Leibler divergence, which is a type of
statistical distance, and lastly δ denotes the value to which the network is constrained for updating.
This objective function consists of two parts. The first part is in essence the same as the first part
of the objective function LPG, but instead of applying the log, it is turned into a fraction. The
purpose of this part of the objective function remains the same: a policy gradient method [Sch17].
The second part is a constraint that the update of the policy is not too significant, i.e. the new
policy lies closely to the old policy, for which we know the policy performs well. Adjusting δ allows
us to tune the balance between exploration and exploitation, by allowing newer policies to make
more or less errors than the old policies. TRPO has a so-called surrogate objective function. This
means that instead of optimizing the model to yield the most cumulative rewards, it optimizes the
policy updates since this is simpler and more efficient.

3.2.3 Proximal Policy Optimization

The problem that TRPO faces, is that the objective and the constraint are separate. These both
serve different purposes and require different optimizations. The functions alone do not function as
an objective function, but rather the balanced combination is what makes TRPO powerful.
PPO [SWD+17] introduces a new way of a surrogate objective function:

LCLIP (θ) = Ê[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât]
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Figure 3: The way the surrogate objective function LCLIP functions. Here you can see both
advantages A > 0 and A < 0. The red dot shows the starting point for the optimization (r = 1)
[SWD+17]

where rt(θ) =
πθ(at|st)

πθold
(at|st) , the hyperparameter clip range ϵ = 0.2 that allows for smaller or larger

updates, and ’clip’ the function that limits values at a certain extent. First of all, it uses an
expectation. So it going to compute this objective over some batches. Then, it takes the minimum
of two terms: the normal policy gradients objective, which is seen in TRPO, and a clipped version
of the normal policy gradients objective. Figure 3 shows the way the surrogate objective function
works. For a positive advantage, thus the action was better than expected, it limits at 1 + ϵ. This
limits too big updates to the policy if the current action was too good. For a negative advantage,
thus the action as worse than expected, it limits at 1− ϵ. Similarly, if the action was too bad, it
does not get updated too significantly in one update. Note how the other sides of the graphs (i.e.
r < 1 for the left graph and r > 1 for the right graph), are not clipped. You could argue this is a
safeguard for this function: the policy only ends up on either side when the action was less probable
(left) or more probable (right) but made the policy function worse. This then acts like an undo
function, making the exception that a bigger policy update is allowed here to ’fix’ the bad policy
update.

3.3 SHAP

It is important to find out why a model makes certain predictions. Especially for models with
more complexity, interpretability helps understand but also correct the models. SHapley Additive
exPlanations (SHAP) is an evaluation method that aims to explain machine learning models using
a game theoretic approach [LL17]. The purpose of SHAP values is to explain the contribution of
each feature in the input for a model’s prediction. SHAP values are established via cooperative
game theory where it can distribute the predicted value over all different features, by assigning
an impact value compared to a baseline reference. To understand a model using SHAP values,
not only the predicted output can be evaluated with these impact values, but also the output not
predicted. This makes it interesting in a setting of reinforcement learning to find out what features
were responsible for choosing or not choosing a certain action given a certain state, where the state
is a collection of features.

For the evaluation of a policy network given a collection of values provided by a vision grid, it can
be observed whether values closer or further relative from the agent are more important or less
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important to the output respectively. We assume that this is the case, and such an assumption would
look like the heatmap in figure 4 on the left. This figure shows values closer to the agent (provided
in a lighter color) are more important than values further away from the agent (provided in a darker
color). Furthermore, such an evaluation per time step can also expose whether some (combination
of) action(s) is preferred by being less dangerous. This should then expose a combination of lighter
colored cells, relatively close to each other and suggesting a certain direction, which implicitly is a
combination of actions, which can be seen in the same figure on the right.

Figure 4: The overall expectation of absolute normalized importance for each cell in a vision grid
using SHAP values. The blue colored circle represents the location of the agent. The colors range
from dark to light. We assumed that the importance would decay the further the cell is away
relative to the agent, as seen on the left. Another possibility is that the agent has a preferred
direction, which implicitly states a combination of actions towards a certain direction, which can
be seen on the right.

4 Methods

4.1 The environment

The environment is an endless world, just like in the original game. A world W itself is a grid
world and has a width Ww = 15 and a height Wh = |L| = ∞. This differs from the original
version: this environment is 5 cells wider. Each horizontal slice of the grid world is a separate
layer. You could thus say that the height of a world W is made up of an ordered list of infinite
layers L = {L1, L2, . . . , L∞}. In the environment itself, only a maximum of 14 layers are displayed.
However, due to the mechanics of the game, this could potentially be an endless array.

The cell space C is the set of all cells in the representation R of each layer, such that

C =
⋃
L∈L

R(L)

which has |C| ≥ Ww ×Wh. There are three types of cells present in the environment: valid cells,
invalid cells, and terminal cells. The set of valid cells CV ⊂ C are cells valid for the agent to enter.
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The set of invalid cells CI ⊂ C are states that cannot be entered by the agent. Lastly, the set of
terminal cells CT ⊂ C end the environment once an agent enters. From a cell c ∈ CT , no more
actions can be taken. The union of these sets gives⋃

{CV , CI , CT} = C

The agent can move from some cell c to a cell outside of the environment. These are called truncated
cells. They are the cells outside of the environment, which in theory, is possible for the agent to
explore, but are not part of C. Like c ∈ CT , truncated cells end the environment. For clarification, a
cell c can only be part of one aforementioned subset, such that⊔

x∈{V,I,T}

Cx = CV ⊔ CI ⊔ CT

As stated, the world W contains an ordered list L of layers. A layer is a one-dimensional self-
contained world. This means that each layer has a representation R(L) ⊂ C, and may or may not
have an updating method. The representation of a layer L is the whole collection of all cells that
make up the layer. There is also the observation of a layer. The observation for a layer L is defined
as O(L(t)) ⊂ S, where |O(L(t))| = Ww. The observation of a layer is the cells visible in the current
world at some time t. Note that

∀L ∈ L,O(L(t)) ⊆ R(L)

The way they differ is that a representation of a layer could be a larger set of cells than the
observation. This has to do with the different types of layers that there are. The types of layers can
be subdivided into two categories: static layers and non-static layers. Static layers do not contain
agents, and thus have a static observation. Non-static layers, on the other hand, do contain agents
and thus have a dynamic observation. Non-static layers have an update function that adjusts
O(L(t)) according to some time t. Therefore, the observation of some non-static layers is the
partition of the representation of that layer respective to t.
There are several layers types of layers. A type of layer L is defined as type(L) ∈ types, where
types = {Empty, Bush, Logs, Road, Lilypad, Rail, Custom}. We will refer to the collection
of layers Lx ⊂ L with some x ∈ types as

Lx = {L|L ∈ L ∧ x = type(L) ∈ types}

and the collection of cells of that set as

Cx =
⋃

L∈Lx

R(L)

4.1.1 Static layers

There are three types of static layers: Empty, Bush, and Lilypad. Static layers, as mentioned, are
layers that do not contain any agents. The term static refers to the observation of that layer: for
every time step t, the observation of a static layer L is the same as the representation of that layer.

∀t,R(L) =̇ O(L(t)) (1)
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Empty
The Empty layer is the simplest. The layer describes itself: it is empty. Every cell in this layer is a
valid cell: CEmpty ⊂ CV . Visually, the layer looks like grass tiles.

Figure 5: The visual representation of the Empty layer. Source: 8

Bush
The Bush layer is similar to the Empty layer. However, this layer contains bushes. Bushes are
considered invalid cells, and cannot be entered by the agent. The layer thus contains a mix of valid
and invalid cells: CBush ⊂ CV ∪ CI . The ratio of valid and invalid cells in this layer is determined by
a parameter d: density. The density is defined as

dBush =
|{c ∈ CBush|c ∈ CI}|

|CBush|
∈ [0, 1]

For example, dBush = 1 means that the layer is entirely filled with bushes, whilst dBush = 0.3 the
layer is filled for 30% with bushes.

Figure 6: The visual representation of the Bush layer. The cells containing a bush cannot be entered.
Source: 8

Lilypad
The Lilypad layer looks like the opposite of the Bush layer. This layer contains terminal cells
c ∈ CT . Visually, the layer looks like water with lilypads. The cells without lilypads are terminal
cells, whilst the cells with lilypads are valid cells: CLilypad ⊂ CV ∪ CT . The ratio is again determined
by a parameter dLilypad, in a similar way as the density of the Bush layer:

dLilypad =
|{c ∈ CLilypad|c ∈ CV }|

|CLilypad|
∈ [0, 1]

4.1.2 Non-static layers

There are three types of non-static layers: Road, Logs, and Rail. These layers contain agents:
vehicles, logs, and trains respectively. These agents move horizontally through the environment and
have an effect on the observed cells for that layer. For static layers, we have discussed that these
have the same representation as observation for every t. The opposite applies to non-static layers.
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Figure 7: The visual representation of the Lilypads layer. The lilypads are the only c ∈ CV on this
layer. Source: 8

Figure 8: A sliding window approach to establish cell values based on agents. The left figure shows
how the sliding window works. For instance, for this Road layer, the representation of width Ww

is copied to create a representation of size Ww × 2. A window of size Ww, displayed in red, slides
of the whole representation R to make an observation with respect to t: O(L(t)). Notice that the
window moves in the opposite direction of the way the vehicles are facing. This creates the illusion
the vehicles are moving. On the right you can see how the average of 2 cells is established. The
red box shows a single cell of the sliding window. The sliding window covers 2 cells, each with a
proportion of 1− (t%1) and t%1. The average is thus the sum of the weighted values of the cells.

O(L(t)) is established through a sliding window manner. Figure 8 shows how this is done.
The window slides over the representation to create an observation concerning t. Note that, since
the original representation consisted of Ww cells and the representation is literally copied, that
O(L(0)) = O(L(Ww)). The time t for a layer L lies in the range [0, Ww]. To make sure t lies
within this range and will not exceed any side, the following formula is applied after updating t:
t = (t+Ww)%Ww, where % denotes the modulo operator. This can be seen as a cycle, and with
the fact that the representation is copied, it creates the illusion that once an agent moves out of the
screen, it re-enters on the other side. Note that this procedure also states that the configuration
of the agents does not change. This is in line with the game, where the configuration of agents is
repeated after some amount of time steps.

The range where t lies also shows that t can take any decimal value within that range. This means
that one cell is shown as a combination of two parts of two cells. An example can be seen on the
right in figure 8. The proportion of the weight of each cell in the calculation of said average is
respective to t%1: the two cells each have a contribution of 1− (t%1) and t%1. The cell that greater
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value is considered the discrete cell value. You could also state that a cell has changed value when

⌊t%1⌉ ≠ ⌊(t+∆t)%1⌉ (2)

The three types of non-static layers are Road, Logs, and Train.

Road
The Road layer looks like a highway with cars present. The cells of the road where no car is present
are c ∈ CV , whilst the cells where there are parts of a car present are c ∈ CT , thus CRoad ⊂ CV ∪ CT .
There are three parameters in this layer that are relevant to its behavior. These are the cycle speed
csRoad, the configuration confRoad and the direction dirRoad. The cycle speed csRoad is defined as the
difference in the time t in the layer once the layer is updated. This can also be denoted as ∆t for
the layer. The cycle speed in itself is the number of time steps it takes for the sliding window to
make a cycle. The configuration confRoad of the cars is a preset of where the cells that make up
the car are located in the layer. The reason for doing this instead of a density approach is because
of access-ability: randomly placed car cells created hard-to-impossible configurations for an agent
to pass. With preset car cell configurations, it is made sure that there is always a gap between
cars and that randomness cannot interfere with the difficulty. Lastly, there is a parameter for the
direction dirRoad the sliding window is moving. This can either be left or right.

Figure 9: The visual representation of the Roads layer. Source: 8

Logs
The Logs layer is quite an interesting layer. Like the Road layer, CLogs ⊂ CV ∪ CT . This layer looks
like a river with logs floating in it. The cells containing water are c ∈ CT whilst the cells containing
(a part of) a log are c ∈ CV . Similarly, there is a sliding window concept going on in this layer.
However, the agent moves along with the sliding window on this layer. Visually, this makes sense:
the agent stands on a log that floats in a direction, thus not moving would mean that the agent
moves along with the log. There are some interesting properties to denote here. First up, what
would happen when the agent stays put on the logs? It would mean that the agent, along with
the log, will float off the screen. But instead of the agent continuing the cycle as the log does, the
environment will be truncated. Secondly, how are moves made on the logs, whilst there is an offset?
This is solved by using the property explained in formula 2: the agent will still be part of a single
cell and move along when the aforementioned property is met. Lastly, moving from a Logs layer
to another layer, the offset will be calculated and set according to the layer and the current cell
the agent is in. There are again three parameters in this layer that are relevant to its behavior.
These are the cycle speed csLogs, the configuration confLogs and the direction dirLogs. The cycle
speed csLogsworks similarly as in the Road layer: it is the number of time steps it takes for the
sliding window to make a cycle. A similar problem occurred with the random generation of the
logs: hard-to-impossible situations were randomly created. To get more control of the generation,
the configuration confLogs is introduced. The configurations of logs are several configurations of
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where the logs are located. Lastly, there is a parameter for the direction dirLogsthe sliding window
is moving. This can either be left or right.

Figure 10: The visual representation of the Logs layer. The agent moves along with the log once
stood upon. Source: 8

Rail
The Rail layer is unlike any other layer. This layer has as the base all cells c ∈ CV . However, at a
certain interval, a train will speed down the track. The agent will be warned via a light signal and
a cell representation that a train is coming. The train cells are c ∈ CT and are 7 cells ’wide’. There
are three parameters in this layer: the interval iRail of the train, the speed spRail of the train, and
the direction dirRail of the train. The interval iRail is the number of time steps before the train will
come. In the meantime, the layer is safe to enter and walk on. The speed spRail is the number of
cells it moves each time step. Note that it does not move in partitions: it moves whole states, and
no cell can be partly occupied by a train and partly not. The direction dirRail the train moves in is
the third parameter, and this can be in either the left or right direction.

Figure 11: The Rail layer. The train moves in whole cells. Source: 8

4.1.3 Custom

There is an option to add custom layers to the environment. Not only can you pass different values
for the predefined layers, but you can also define a custom representation of a layer. For instance,
the starting area of W consists of the same three layers: a layer L ∈ LBush, where dBush = 1.0 such
that the whole layer is filled with bushes, and thus ∀c ∈ L, c ∈ CI making walking backward from
the start impossible. The following two layers are Custom layers, with a custom static representation
O(L(t)) such that the states on the edges of the layer are bushes, and the rest of the layer is an
Empty layer.

4.2 World generation

The world has a specific way of generating layers: by adding sections. This is comparable to the
actual game, where you could see that there are multiple similar layers generated after each other,
followed by a static layer or another section. A section can be one or more layers. When the
agent moves forward, more world is generated once there is little world left. There is also a factor
of difficulty to be taken into account. The actual game gets harder by adding harder and more
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non-static sections, along with changing cycle speeds and densities.

The world has a specific way of generating layers: by adding sections. This is comparable to the
actual game, where you could see that there are multiple similar layers generated after each other,
followed by a static layer or another section. A section can be one or more layers. When the
agent moves forward, more world is generated once there is little world left. This addition happens
seamlessly outside of the visual range of the game. There is also a factor of difficulty to be taken
into account. The actual game gets harder by adding harder and more non-static sections, along
with changing cycle speeds and densities.

Algorithm 1: Section generation
1 INITIALIZE : some decay value θ < 1
2 base← base+ 0.01
3 currentBase ← base
4 SELECT SECTION TYPE UNIFORMLY

5

6 WHILE r ∼ U(0, 1) ≤ currentBase :
7 ADD NON−STATIC LAYER OF SAME TYPE

8 currentBase ← currentBase × θ
9 ADD STATIC LAYER

Figure 12: This figure shows a visualisation of the idea of algorithm 1. Any next layer generated
has a decreased chance of being part of the section, displayed with transparency denoting lesser
chance. The currentBase decreases by a factor θ. The section ends with a static layer.

Now, for some types of layers, the decay factor θ is higher than others. A higher value for the decay
factor θ means that there is more chance for more layers to be generated. Similarly, increasing the
base at each step will make sure longer sections are added. Longer sections of non-static layers are
in general harder. A difference with the game is that the cycle speed nor configurations change at a
higher difficulty.

To make sure a section can be crossed by the agent, there is an additional check. This check uses a
breadth-first search (BFS) [Kal12] pathfinder to check if it is possible to cross. The BFS pathfinder
simulates the environment for several steps, and will then check with the actions available by the
agent if it is possible. A heuristic depth of 50 timesteps is used: the agent must be able to make it
to the other side within 50 timesteps. The reason for using a heuristic is the following: suppose a
scenario where 4 non-static layers are added, each with a different cycle speed between 50 and 250,
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then the number of time steps it takes for the 4 non-static layers to get back to the initial state at
the same time, it could take up to LCM(250, 249, 248, 247) ≈ 1.9 · 109 time steps, where LCM is
the lowest common multiple. This also assumes that the cycle speeds are natural numbers, but in
this setting, they could be real numbers. A heuristic is therefore applied to evaluate whether it is
possible.

4.3 State space

All this time, we have been talking about cells. The reason for this is that the state space consists
of a selection of these cells. For the observation space, we will make use of a vision grid. A vision
grid is, quite literally, a grid of vision in each direction relative to the agent. What differs from the
way Knegt et al. [KDW18] has utilized them, is that the sizes of the vision grid are various and
that the agent does not necessarily have to be the center of the vision grid here. Figure 13 shows
how the vision grid looks within the game. Each visible cell in the environment will get represented
by a single or multiple values, based on the weighted sum of the cells the sliding window covers.
Looking at the color coding: the greener-looking cells lean more towards a cell c ∈ CV , whilst more
red-looking cells tend to lean towards c ∈ CT . Dark-colored cells are c ∈ CI . The vision grid then
states how many of these cells are visible in each direction. In this case, the vision grid relative to
the agent, is 2 cells to the left, 2 cells to the right, 2 cells upwards, and 0 downwards. This gets
flattened, from bottom to top, into a one-dimensional array to yield a state. As you can see, the
larger the vision grid, the more values, the larger the representation of a state.

Figure 13: Here you can see how the values are assigned to each cell. In this case, |c| = 1 was used.
You can see how the vision grid is a 5x3 box of cells, marked in blue. The cells will get assigned a
value based on the proportion of the cell that is terminal or invalid, done via the process explained
in 8. The color gradient also tells how safe a cell is, with red leaning towards terminal and green
leaning towards valid. A dark-colored cell is an invalid cell, represented with a value of 1.
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Figure 14: A summary of cell representations for every c ∈ C and |c| ∈ {1, 2}

A single cell can also be represented with two values. For a two-value cell representation, there is
an individual value for invalid cells such that one cell is represented by the proportions [terminal,
invalid]. This makes the representation for terminal cells and invalid cells distinct. A single cell
representation in theory merges these two vision grids into one, which differs from the research of
Knegt et al. [KDW18]. Note that multi-value cell representations make a single cell be represented
by more values, thus adding complexity to the input. Using multiple values to represent a single
cell is in line with the approach of [KDW18]. To refer to multi-value cell representations, we will
use ∀c ∈ C, |c| ∈ {1, 2} to denote what representation is used. Figure 14 shows a summary of what
a representation of a cell looks like using different |c| and different c ∈ C. The amount of values of
a state is calculated by the size of the vision grid as well as the number of values a single cell is
represented.

|s| = |c| × (vgright + vgleft + 1)× (vgdown + vgup + 1)

where |c| represents the amount of values needed to represent one state, and vgx is the amount of
cells the agent can look in direction x. In figure 15 you can see how a state is built up for different
|c|: how different vision grids for different types of cells are used and combined to form a state.

An important thing to denote here is that the train tracks, even though the sliding window moves
in full cells, can take a fractional value too. This is the case when a train is approaching: five
timesteps before the train enters the environment, all the values of the cells have a value of 0.5,
which is meant to be some kind of warning. This remains until the train leaves the environment. It
is comparable to the way it works in the game, where there is a light signal notifying the player
that a train will be entering the environment momentarily.

4.4 Action space

The action space A is the set of all possible actions, which is defined as A = {up, left, down, right,
still}, which are zero-indexed respectively. As observed, |A| = 5. The world W could be seen as
an (observable) gridworld of Ww by Wh. An action is defined as the move from a cell c to a cell c′

which is adjacent according to the grid world.

4.5 Transition function

The transition function is defined as T (c′|c, a), which denotes the transition from cell c to cell c′

using action a. Here, it requires that c ∈ CV . This makes sense because an agent cannot make an
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Figure 15: The way a state is built up. Here you can see the two different vision grids, each
representing terminal states, and invalid states respectively. This vision grid box is the same vision
grid box seen in figure 13. You can see it depends on what |c| is used, for how a state is built up.
The general way is for each grid (top to bottom), each row (bottom to top), and each cell (left to
right) to take the value and place it after the other. For example, for |c| = 2, the first 2 states are
the bottom left corners of each grid (top to bottom). The next one would be the cells located right
of that corner cell. The cells are color-coded based on the proportions of termination or invalidity.

action from a terminal cell and cannot be in an invalid cell. An agent making a transition to an
invalid cell will follow the rule:

∀c ∈ CV ; a ∈ A; c′ ∈ CI , T (c′|c, a) =̇ T (c|c, a)

A transition to an invalid state is the same as standing still. This, however, does not apply to the
reward function. Note that walking outside of the environment is not considered invalid, but is
rather considered as truncation. Truncation is also considered when the environment unexpectedly
ends, due to a time- or step limit.
Furthermore, the transition function T (c′|c, a) is deterministic: there is no random chance involved
in the transition from cell c to c′. Note that there is no invalid cell present in any of the non-static
layers: {c|c ∈ CI ∧ c ∈ CRoad ∪ CLogs ∪ CRail} = ∅. There is however one special case: the Logs layer.
While the agent is on top of the logs agent on this layer, the agent moves along. This means that
standing still moves the agent along with the log. Therefore, you could argue that

∀c ∈ {c|c ∈ CLogs ∧ c ∈ CV },Pr(c, a = still, c′) ˙̸= Pr(c, a = still, c)

where Pr(c, a, c′) denotes the transition probability. It thus is possible to ’move’ to another cell
whilst standing still. This primarily affects the surrounding cell space, since standing still on a log
can only end the environment if and only if the log moves off-screen, for which truncation applies.
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4.6 Reward function

The reward function is defined as r(c, a, c′), which denotes the reward obtained by using action a
to transition from cell c to cell c′. The reward function is defined in chronological order:

r(c, a, c′) =



−100, if c′ is terminal

−100, if c′ is truncated

−100, if c′ is invalid

10, if a = up and to an unvisited (new) layer

otherwise r(a)



2, if a = up

−1, if a = left

−4, if a = down

−1, if a = right

0, if a = still

As you can see, a reward of -100 is applied when the agent enters a terminal cell, the environment
is truncated, or when the agent tries to move to an invalid cell. The environment can truncate
in two ways: the agent walking outside of the environment or the agent exceeding the maximum
amount of steps allowed to make in the environment. A reward of 10 is applied when the agent
moves to a new unvisited layer. This means that the agent sets a new high score. If none of the
previously mentioned cases apply, a step reward is yielded. Upwards yields 2 points, downwards
yields -4 points, left and right both yield -1, and standing still yields 0.
Something interesting to denote here is that the rewards are not cumulative. Standing in a cell
and moving upwards, to a new unvisited layer, will yield a reward of 10, and not 10 + 2 (step
reward). Another case that could occur is that the same cell transition could yield different rewards.
Expanding on this theory, for a combination of static layers, the same state transition could yield
different rewards: moving upwards to a new unvisited layer will yield a reward of 10. If the agent
then moves downwards, yielding -4, and upwards again, it will only yield a reward of 2.
The thought behind this reward shaping is to promote moving upwards tremendously, whilst moving
downwards is punished. It is also punished to move to a bush state: the agent has to learn to stand
still for bush states instead of moving towards one. Furthermore, patience is more promoted than
moving around: the step rewards for left and right are -1 on purpose, such that when the agent
does not ’see a clear path’, it will stand still instead of moving left and right. We assume this would
help with the logs section.

4.7 Initial state distribution

The initial state distribution must be linked to the generation of W. The agent always starts in
a c ∈ CV , and the collection {L1, L2, L3} remains the same for each episode: a Bush layer with
dBush = 1, followed by two Custom layers which are Empty layers with bush states c ∈ CI on both
sides. Sections are generated until the sum of layers exceeds Wh.
Together, the tuple (S,A, T (c′|c, a), r(c, a, c′)) make up a sequential decision environment which
can be interacted with by a reinforcement learning agent.
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Figure 16: Agent-environment loop for an Actor-Critic model. Source: [O’G22]

4.8 Reinforcement learning model

For this environment, we will be using a Proximal Policy Optimization (PPO) model. This is an
Actor-Critic model, meaning it makes use of two networks: an actor (policy) network and a critic
(value function) network.
How this agent-environment loop functions is as follows: the agent observes a state from the
environment. In this case, it is a vector of values concerning the vision grid and the number of
values that represent a single cell. This observation is then fed into the policy network. This is
a network consisting of an input layer the size of the observation vector, followed by two hidden
layers, consisting of 32 and 16 nodes each and using the activation function tanh, and an output
layer of size |A|. This outputs scores for each action. The action with the highest score gets picked
and simulated in the environment. The agent then observes the new observation and the reward
received from performing that action. This is fed into the value function network. This network,
similarly to the policy network, also consists of an input layer the size of the observation vector,
with two hidden layers each 32 nodes and 16 nodes with an activation function tanh. However, the
output layer consists of a single node, namely the node that predicts the advantage Ât. Based on Ât,
both the policy network and the value network gets updated. As explained in section 3.2.3, Ât > 0
will update both the policy network and the value network positively, such that the policy network
scores the action next time better, and the value function network makes a better prediction for
the advantage. Similarly, Ât < 0 will update the policy network and value network negatively, such
that the policy network scores the action next time worse and makes it less likely that the policy
network chooses this action next time. The value function network will also update itself accordingly.
These updates are not too significant themselves, since it uses a policy gradient with a clip range
ϵ = 0.2. For full details of what hyperparameters and what differs from default hyperparameters, see
appendix B.

The world gets updated simultaneously with the agent. This way, the agent has to anticipate in
the world what will happen before it happens. In the majority of the cases, no anticipation is not
punished, but there are edge cases: a cell could still be valid (i.e. the value for invalidity is ≤0.5)
but could not apply anymore when the agent acted whilst the world updated.
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5 Results

In order to create the interaction between the agent and environment, we use the OpenAI library
Gym [BCP+16]. Gym is based on making environments operable for reinforcement learning agents.
They implement easy access to train reinforcement learning agents using the traditional agent-
environment loop. It includes many features, such as a base template, multiple observation- and
action spaces, and easy creation and sharing options. It also provides the use of other libraries
in combination with Gym, since Gym is highly compatible with for instance Stable Baselines 3
[RHG+21], which we will be using to create the PPO model.

Along the many parameters, the parameters that remain the same are the learning rate α = 3 · 10−4,
the clip range ϵ = 0.2, and the discount factor γ = 0.99. An overview of all parameters used during
the experiments for the world and the reinforcement learning agent can be found in appendix B.
Furthermore, the rollout is set to n steps = 2048 and the batch size is set to batch size = 64.
Additionally, the policy used for picking actions is deterministic, since an optimal policy π∗ of a
fully learned agent is assumed to be the greedy policy.

We will be conducting several experiments, with every experiment consisting of testing four differ-
ent agents, which differ in vision grid size. These vision grid sizes are vgdown = 0 ∧ vgright =
vgleft = vgup = v with 1 ≤ v ≤ 4. We will refer to an agent using a vision grid size of
vgdown = 0 ∧ vgright = vgleft = vgup = v with 1 ≤ v ≤ 4 as vg = v. Furthermore, every ex-
periment is run on the world generation described in algorithm 1 (a more elaborate version, with
more insight into probabilities, can be found in 2). When the environment terminates or truncates,
W is created from scratch. Lastly, a world could have a maximum age. This means in essence
that the agent is allowed a maximum number of actions in the world. After this amount, the
environment truncates. This can be compared with a time limit within an environment. This is
added due to the environment being endless, and an agent getting stuck will never terminate the
environment. Implementing a maximum number of moves forces the agent to maximize the reward
within a certain amount of time steps. The max age = 500 for each experiment. For the evaluation
of the model after training, a maximum age of max age = 5000 is used such that the agent is
not limited to any time limits in their performance, though still stopping agents that might get stuck.

Due to the crowdedness of many figures, some of the figures related to the training have been moved
to appendix D. The results are discussed in the sections, however.

5.1 No step reward and single-value cell representation

The first experiment we did was not rewarding steps. Given the reward function from section 4.6,
the alternation made here was that ∀a ∈ A, r(a) = 0. The only way the agent can get a positive
reward is by setting a new highscore, thus the objective function of the reinforcement learning
agent is directly correlated to the reward obtained for each action. Furthermore, it allowed the
agent more patience as to how to navigate the environment, since taking more steps is now not
disadvantaging.

Training
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Starting, we are going to discuss the training results of these agents. Figure 17 shows the moving
average length of an episode during training (a), the moving average cumulative reward of an
episode during training (b), and the highscore per episode obtained during training (c) respectively.
The models are color-coded, and consistent color coding is used for the remaining plots where
possible. From figure 17a, it can be observed that the average episode length lies around the
range of [250,300], with the agents with vg = 2 and vg = 4 lying around the lower part of that
range whilst the agents with vg1 and vg = 3 lie around the higher part. Out of a maximum
of 500 steps, these agents seem to not use all steps before getting terminated or truncated, but
due to these plots being moving averages and a large portion of episodes also ending quickly,
this average is brought down significantly. The peak observed for vg = 4 in the first 0.2 · 106
shows that the agent’s policy was changed from standing still and playing safe to moving more
forward and taking more risks. Furthermore, from figure 17b, it can be observed that the moving
average cumulative reward differs per type of vision grid significantly. For smaller vision grids,
this average lies lower and increases in vision grid size. It peaks at a vg = 3, after which the
cumulative average reward for vg = 4 reduces. Additionally, in figure 17c can also be observed
what the moving average highscore is for various vision grids during training. As you can observe,
the highscore for agents with a smaller vision grid lies a lot lower than the highscore for agents
with a larger vision grid. The agents with vg = 3 and vg = 4 can be argued to perform quite similarly.

a) Episode length b) Episode reward c) Episode highscore

Figure 17: The moving average episode length (a), moving average episode cumulative reward (b),
and highscore per episode (c) for agents with 1 ≤ vg ≤ 4 during training without step reward. The
moving average episode length lies in the range of [250,300]. Furthermore, it can be observed that
smaller vision grids on average yield lower cumulative rewards whilst larger vision grids yield higher
rewards. Lastly, the agent with vg = 1 on average yields lower highscores than other models.

In figure 34, it can be observed what the proportions of terminations and truncations are during
training. Logically, these proportions add up to 1, thus the plots mirror each other on the x-axis
at 0.5. This plot tells us whether the agent learns from the environment or gets stuck, with the
implication that the environment more often ends unexpectedly (i.e. truncation), or that the agent
has not learned enough, and therefore ends the environment due to making the wrong actions
(i.e. termination). From this plot, it can be observed how the proportion of truncation gradually
increases during training, with smaller vision grids having a higher truncation proportion shift than
larger vision grids. Also, here can be observed that the policy of the agent with vg = 4 for the first
0.2 · 106 was playing safe since the majority of deaths are due to truncation.
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Additionally, to make clear why these proportions between truncation and termination shift and
how they shift, we looked into the proportions of deaths on types of layers during training. This
can be seen in figure 35. You can see how the proportions are all quite similar, with the exception
that the proportion for deaths on the Bush layer is significantly higher for the agent with vg = 1.
Similarly, the proportion of the non-static layer Rail seems to be lying around 0.2 for every agent.
Lastly, the dip seen in the graph of the agent with vg = 4 for the proportion of deaths on the
Logs layer does not have to do with better performance on the Logs layer, but rather a worse
performance on other layers, due to standing still and playing safe.

Figure 18: The type of layer the agent ended
the episode on for agents without step reward.
This can be due to termination (solid bar) or
truncation (textured bar). The colors represent
the various vision grid sizes. It is clear that the
Logs layer had the highest death count

Figure 19: The type of death that ended the
episode for agents without step reward. Here
you can see how the termination (blue) and
truncation (orange) ratios over 1000 episodes
are distributed, with more truncation on smaller
vision grids and more termination on larger vi-
sion grids

Evaluation
This section goes over the evaluation of the plots. As explained, the evaluation is done by running
an agent on 1000 episodes, with max age = 5000. Beginning with the first evaluation plot: we
observed what layer the agent was on when the episode ended. This can be seen in figure 18. The
episode ends can be both due to termination or truncation, marked as a solid bar or textured bar
respectively. Furthermore, you can see that each category, i.e. layers, has four bars, representing
the different vision grid sizes used. As you can see from this figure, most episodes ended whilst the
agent was on the Logs layer. For smaller vision grids, this often is due to truncation. This can both
mean a time limit, but it is more likely the agent drove along with the log off the screen, resulting
in truncation. Additionally, of all non-static layers, the agent died the least on the Road layer. It is
noticeable how many deaths there are on the static layers, especially for smaller vision grids. For
the Empty and Bush layers, the only way the episode can end is due to exceeding the maximum
age. This meant that the agent got stuck on both the Empty and Bush layer quite often, with more
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truncations by agents with a smaller vision grid than larger ones. Lastly, the overwhelming majority
of episodes that end on the Rail layer are terminations, meaning that the agent on average has the
most difficulty with anticipating when to cross this layer.

Continuing, to make it convenient, we have added the types of death as totals per different vision
grid sizes from figure 18. This can be seen in 19. As you can see, an agent with a smaller vision grid
often results in truncating the environment, whilst agents with a larger vision grid shift to more
terminations. This can be explained using several reasons. First of all, for agents with a smaller
vision grid, the agent is limited by its vision. In situations where the agent gets stuck behind a row
of bushes and has to maneuver around it, the agent is simply incapable of doing so. Furthermore,
by not including a heuristic action reward for patience, the agent is too impatient on the Logs layer.
Agents with a larger vision grid have to deal with the complexity of state representations. This
disallowed good generalization of a state by the policy to pick a good action. In other words, too
much information causes the agent to be unable to decide what action is considered good. Though
observed from figures 17a and 17b, you can see that both curves for episode length and episode
reward have converged respectively.

Figure 20: Boxplots of highscores of various vision
grids for the agents without step reward. The
boxplots show a relatively low IQR with many
outliers.

Vision grid size Mean ± SD Median
vg = 1 128.88 ± 110.76 95
vg = 2 151.90 ± 138.11 112
vg = 3 186.52 ± 162.50 145
vg = 4 172.64 ± 149.04 133.5

Table 1: Summary of the results seen in figure 20

Lastly, from figure 20, four boxplots can be observed, each showing the highscores respective to the
four vision grids over 1000 runs. Next to this plot, table 1 can be observed showing the average
reward as well as the standard deviation for each vision grid. Overall, it can be observed that
agents, no matter the size of the vision grid, have a significant number of outliers. Furthermore,
the interquartile range (IQR) lies quite low, compared to the many high-valued outliers. This is
due to the proportion of runs ending in low highscores being far larger. The upper tail of each
vision grid is therefore also longer than the lower tail. Nonetheless, the agent with a vision grid
of vg = 3 showed the best results, with a median episode highscore of 145. The average also lies
higher than the other agents, though due to the number of outliers, this is not a reliable basis to
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make assumptions.

5.2 With step reward and single-value cell representation

The second experiment we did, was testing the effects of step rewards in contrast to no step
rewards. The single-value cell representation is still used in this experiment. This reward func-
tion, as described, promotes moving forward and punishing moving backward, as well as reward
patience by standing still, instead of moving around. With this experiment, it can also be ob-
served whether this change of feedback makes a significant change in the way vision grids are utilized.

Training
First, we will address the moving average length, the moving average cumulative reward, and
the highscore per episode shown during training with step reward. Figure 21 shows exactly that
respectively. Figure 21a shows that the average length of an episode lies slightly higher than the
agents without a reward, with the converged values lying in the range [260,330]. The length of the
episodes of agents with a larger vision grid is shorter than that of smaller vision grids. The moving
average cumulative reward plot, displayed in figure 21b, shows that the values converge for each
agent within the range of [320,460]. Now, since the reward functions differ, this range lies higher
than the range without step reward. However, the trend of the smallest vision grid converging to
the lowest cumulative average reward is equivalent. A clear second lowest agent can be observed,
namely the largest vision grid. Additionally, we discuss the moving average highscore for various
vision grids during training, seen in figure 21c. It shows that the agents with the largest vision
grid and the agent with the smallest vision grid have the second lowest and lowest convergence of
average highscore respectively. The average values of the agents lie slightly higher than the agents
without step reward, but there is no significant difference. The agent with the vision grid size
vg = 3 outperforms the other agents at the end of training. However, it can be argued that, even
with smoothing applied, the graphs have deep peaks and valleys, and thus the agent might have
ended lucky.

Second, we will discuss the proportions of the types of deaths that occurred during training. From
figure 36 it can be observed that again, the smaller the vision grid, the higher the proportion for
truncation as a reason for ending the environment. However, only the agent with the smallest vision
grid had a higher proportion of truncations than terminations at the end of the training, whilst
here also the agent with the vision grid size vg = 2 shares this result. This means that the majority
of their deaths happen unexpectedly. The dip seen with the agent with vision grid size vg = 4 has
also decreased significantly but still shows.

The last training results plot is shown in figure 37. This plot shows similar results as figure 35:
the Logs layer remains the most deadly layer, the Train remains a steady death proportion of 0.2
over all agents, and the Bush layer is still troublesome for agents with a smaller vision grid. It thus
seems as though the agent with vg = 2 gets stuck more often due to the added step reward.

Evaluation
Starting with the evaluation, we will begin to address figure 22. This figure shows the count of
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a) Episode length b) Episode reward c) Episode highscore

Figure 21: The moving average episode length (a), moving average episode cumulative reward (b),
and highscore per episode (c) for agents with 1 ≤ vg ≤ 4 during training with step reward. The
moving average episode length lies in the range of [260,330]. Furthermore, it can be observed that
the agents with the smallest vision grid as well as the largest vision grid on average yield lower
cumulative rewards whilst the remaining sizes yield higher rewards. Lastly, the agent with vision
grid size vg = 3 outperforms the other agents. The trend of the largest and smallest vision grids
performing the worst continues.

Figure 22: The type of layer the agent ended the
episode on with step reward. This can be due to
termination (solid bar) or truncation (textured
bar). The amount of Road truncations decreased
in comparison to figure 18.

Figure 23: The type of death that ended the
episode. Here you can see how the termination
(blue) and truncation (orange) ratios over 1000
episodes are distributed. The agent with vision
grid size vg = 2 shows an interesting division
and does not follow the seen trend in figure 19.

the types of layers the agent ended the environment on, separated by vision grid size and split up
by truncation and termination. As you can see, the majority of the episodes ended on the Logs

layer. Along with that, the most truncation happens by agents with a smaller vision grid size.
The Bush layer is still prone to get stuck behind, with the Empty layer contributing here as well.
The Rail layer remains on a steady approximately 20% environment end rate for each agent. The
performance with reward shaping seems to decrease the amount of episode ends on the Road layer,
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but due to the environment endings merely consisting of truncations, it cannot be said that the
step reward has contributed to performance improvement.

Moving on to the total amount of environment truncations and terminations done by each agent,
which can be seen in figure 23. It is remarkable how the amount of terminations lies higher for
vg = 1 than for the same agent without step reward. Additionally, the agent with vision grid size
vg = 2 has a higher truncation rate than the agent with vision grid size vg = 1. The trend of more
terminations the larger the vision grid continues here, which is equivalent to the agents without
step reward.

Figure 24: Boxplots of highscores of various vi-
sion grids for the agents with step reward. The
boxplots show significant outliers.

Vision grid size Mean ± SD Median
vg = 1 113.77 ± 94.82 85
vg = 2 214.52 ± 198.65 153
vg = 3 209.82 ± 190.54 165.5
vg = 4 208.44 ± 190.32 149.5

Table 2: Summary of the results seen in figure 24

Lastly, the highscores of the evaluation are visualized in a boxplot, and summarized in a table,
which can be seen in figure 24 and table 2 respectively. As you can see, the boxplots again show that
the IQR is relatively low compared with some extreme outliers. The highest measured evaluation
episode came to a highscore of 1707, set by the agent with vision grid size vg = 2. Compared to
figure 20, here you can see that the agent with vision grid size vg = 1 is lacking performance,
compared with the other agents. Due to the extreme outliers of the agent with vision grid size
vg = 2, it looks like this agent on average performed the best. Though, from the median of the
highscores we would argue that the agent with vision grid size vg = 3 performed the best. From
table 2, it can also be observed that the standard deviation of each agent is extremely high. This
variance in performance is also seen back in table 1, thus it could be argued that this is due to the
environment.

5.3 With step reward and double-value cell representation

The third experiment we did, was testing whether using multiple vision grids to denote different
elements in the environment would help to increase performance. Hereby we refer to 4.3: we will be
using |c| = 2, thus having two separate grids to denote proportions of termination and proportions
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of invalid cells respectively. we want to test this due to invalid cells and terminal cells having the
same representation. Even though r(·, ·, c ∈ CI) = r(·, ·, c ∈ CT ), the environment terminates for
entering c ∈ CT and not attempting to enter c ∈ CI . This may interfere with learning and could lead
to inconsistencies while assessing states in the reinforcement learning model. From this experiment,
the trade-off between the extra complexity of multiple vision grids and the performance can be
observed. Lastly, it may also solve the problem of agents getting stuck behind invalid cells, since a
different classification for similar representations can be done, and may grant anticipation.

Training

a) Episode length b) Episode reward c) Episode highscore

Figure 25: The moving average episode length (a), moving average episode cumulative reward
(b), and highscore per episode (c) for agents with 1 ≤ vg ≤ 4 during training with step reward
and |c| = 2. The moving average episode length lies in the range of [260,320]. Furthermore, it can
be observed that agents with the smallest vision grid yield lower cumulative rewards whilst the
remaining sizes yield higher rewards. Lastly, the converged values lie around 130, except for the
agent with the smallest vision grid.

Starting, the moving average length of an episode during training, the moving average cumulative
reward of an episode during training, and episode highscores during training of agents with step
reward and |c| = 2 can be seen in figure 25 respectively. Figure 25 shows that the range of the
converged average episode lengths lies in the range [260,320], with the agents with vision grid sizes
vg = 1 and vg = 3 converging to larger average episode values than the remaining agents. Where
it seems as though the agent with vg = 4 with step reward was struggling, this seems like it is
not the case here. The small peak seen for this agent is similar to the agent with vg = 4 in figure
17c. Furthermore, figure 25b shows that the converged value for the cumulative reward lie in the
range [350,550], with the agent with vision grid size vg = 1 converging to the lowest value and the
remaining agents converging to around the same value. To compare this to the experiment with
single-value cell representations with step reward (since they use the same reward function), seen
in figure 21b, the agents perform around the same, with the agent with vg = 1 lacking behind
other agents. Continuing with the highscore convergence during training is seen in figure 25c, a
clear distinguishment can be made, where agents with smaller vision grids converge to a lower
average highscore. This hierarchy is also seen in figure 21c from the agents with a single-value cell
representation. Similarly, here, the graphs contain lots of peaks and valleys, which tend to suggest
that there is a lot of variance in the runs.
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Moving on with the moving proportions of the types of deaths of the agents during training. These
can be seen in 38. It can be observed that the proportion of truncations for the agent with vision
grid size vg = 4 is significantly higher than for the same agent with a single-value cell representation.
Similarly, the agent with vision grid size vg = 2 seems to be more gradually decreasing in the
proportion of terminations and increasing in the proportion of truncations. That both agents with
vision grid size vg = 1 and vg = 2 have a higher proportion of truncations than terminations, does
not foretell much good.

That will be made clear with the last training plot: the proportions of layers the agent has ended
the environment on. This can be seen in figure 39. The assumption that multiple vision grids would
help reduce the number of truncations on Bush layers, cannot be seen back for the agents with
vision grid size vg = 1 and vg = 2. The results shown in this figure are relatively similar to previous
figures 37 and 35.

Figure 26: The type of layer the agent ended the
episode on with step reward. This can be due to
termination (solid bar) or truncation (textured
bar). The amount of Road truncations decreased
in comparison to figure 18.

Figure 27: The type of death that ended the
episode. Here you can see how the termination
(blue) and truncation (orange) ratios are dis-
tributed. The agent with vision grid size vg = 2
shows an interesting division and does not follow
the seen trend in figure 19.

Evaluation
Starting with the evaluation, figure 26 shows the count of each layer for which the episode ended
per agent, along with details on whether it was due to truncation or termination. As you can see,
the use of multiple vision grids did help to reduce the number of truncations on the Bush layer,
except for the agent with vg = 1. Where we first saw a steady decrease, the agents now show an
almost uniform amount of truncations on static layers (again, except for the agent with vg = 1
on the Bush layer.) For non-static layers, the values are more chaotically spread out. The Rail

layer shows more variable results: where we first saw a value of around 200 episode ends for each
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agent, we now see more variable values, with the agent with vision grid size vg = 2 having an
exceptionally high value. The Logs layer remains difficult for all agents.

Looking at the total amount of terminations and truncations for each agent in figure 27, the values
are highly comparable to figure 19, with a steady increase of the number of terminations for agents
with a larger vision grid. The number of terminations for the agent with vg = 1 from this experiment
lies lower than the number of terminations for the agent from the experiment with step reward and
single-value cell representations. This implies that double-value cell representations did not help
this agent. Similarly, but for vg = 2, this does seem to have an effect, but then again, the contrary
could be argued due to the same agent with vg = 2 differing in result when comparing with step
reward and no step reward.

Figure 28: Boxplots of highscores of various vi-
sion grids for the agents with step reward. The
boxplots show significant outliers.

Vision grid size Mean ± SD Median
vg = 1 129.66 ± 110.69 99
vg = 2 177.02 ± 160.34 129
vg = 3 213.93 ± 193.98 161
vg = 4 181.07 ± 166.13 133.5

Table 3: Summary of the results seen in figure 28

Lastly, the evaluation of the highscores gained for each episode is shown in figure 28, along with
a similar table 3. The hierarchy of the boxplots is in line with previous results: the agent with
vg = 3 performs the best and the agent with vg = 1 performs the worst. The means of the agents
with vg = 1 and vg = 3 increased. Furthermore, all medians are lower concerning table 2, except
for the agent with vg = 1. From the training plot, we can already see that the double-value cell
representation did not decrease the proportion of truncations on the Bush layer, thus this must
be coincidental. However, it is noteworthy to mention that the median, although decreased for
remaining agents, the agent with vg = 1 increased. This can be linked to more consistent good
runs.

5.4 Comparison

In this section, an overview is given of the best-performing models for each experiment. A best-
performing model is defined as the model with the highest median highscore during evaluation.
Determining performance by median evaluation highscore, the agents with vg = 3 performs
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the best in each experiment. Figure 29 show the training plots of each best-performing model.

a) Episode length b) Episode reward c) Episode highscore

Figure 29: The moving average episode length (a), moving average episode cumulative reward (b),
and highscore per episode (c) for the best-performing agents (all vg = 3) in each experiment. Each
label corresponds to the attributes unique to that experiment. Average episode lengths remain
similar for each agent. Intuitively, the average reward shows a clear distinction between the agent
without step reward and the agents with step reward. Here, the slower convergence of the agent
with |c| = 2 can also be observed. Figure c shows that the average highscore during training remains
similar over all experiments for these agents.

The moving average episode length seen in figure 29a shows barely any difference among the agents.
Figure 29b however, does show a significant difference. Due to not rewarding actions, it is intuitive
to say that the agent without step reward converges to a lower average reward than the agents
with step reward. You can also see a slower convergence of the agent with |c| = 2 over the agent
with |c| = 1. Lastly, the average highscore during training observed in figure 29c remains similar
over all experiments. Here you can also see that the agent with |c| = 2 converges slower than the
agents with |c| = 1.

Figure 30: Comparison of best-performing agents
(all vg = 3) in terms of evaluation of 1000 episode
highscores

Vision grid size Mean ± SD Median
∀a, r(a) = 0; |c| = 1 186.52 ± 162.50 145

|c| = 1 209.82 ± 190.54 165.5
|c| = 2 213.93 ± 193.98 161

Table 4: Summary of the results seen in figure 30
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The evaluation of the highscores of 1000 episodes, seen in figure 30 and table 4, show that agents
with step reward lie closer together in terms of average and median highscores than the agent
without step reward. The mean of the agent with |c| = 2 lies higher than the agent with |c| = 1,
however so does the standard deviation. The mean lies just a little higher due to an incredibly high
outlier.

5.5 SHAP analysis

With this empirical experiment, we wanted to see whether a connection between action prediction
and feature impact can be observed in terms of the closeness of cells relative to the agent. We
have done this by comparing visual agent playouts and executing the SHAP values parallel to the
current observation. Per observation, the agent generates |A| heatmaps, one for each action a ∈ A.
These heatmaps show the contributed impact of each cell value on the predicted outcome a. It
should be mentioned that the sum of impact values does not account for which action is taken, but
is merely a measure to see why a certain action is important.

a) Observation

b) SHAP value heatmap c) Observation + heatmap

Figure 31: An example of a scenario analyzed with SHAP. The scenario is the observation of the
agent (a). For each action, impact values are constructed which show how much influence each of
the cell’s values was on the predicted output a ∈ A (b). The colors of the heatmap show the impact
values, with darker colors representing negative impact, orange representing close to zero impact,
and lighter colors representing positive impact. Impact values decay the further the cell lies from
the agent. It can be argued that a = up has a directional decay and set out a trajectory to follow,
which can be seen when applying the SHAP values as an overlay to the scenario (c).

We assumed that the impact of cell values gradually decrease and that a directional decay could be
possible. What can be observed is that the values do decay the further the cell is relative to the
agent. For a single scenario with an agent with step reward and vg = 4 is observed in figure 31.
From this scenario, you can see that the agent has a slight gradual decrease of impact the further
the cells lie from the agent. This effect is especially seen in a = up. The effect of decay is visible for
cells lying directly in front of the agent, and generally, cells that are neighboring the cell the agent
is currently in. There is some form of directional decrease happening: you can see that for a = up,
the agent tends to move right since the log (consisting of 2 parts) is slightly to the right of the
agent. One could argue that, based on the trajectory of cells that make up the most impactful cells,
the agent has a plan and thus a course of action. This only happens when there is no clear course of
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action: the observation is complex with the number of cars, logs, and bushes. Once there is a clear
path, especially for moving forward, the impact of the single neighboring cell is incredibly high.
For example, as seen in figure 32, the agent cannot move forward. It is observed that neighboring
cells for left and right also contribute much to the respective action. The action a = right shows a
light decaying pathway as well. When a = right is chosen by the agent, the next scenario shows
that a clear non-obstructive path is revealed, and the impact of the neighboring cell for a = up is
incredibly high.

Figure 32: Two consecutive scenarios, where the agent is obstructed by a c ∈ CI for a = up, but has
two ways around this: a = left and a = right. The agent chooses a = right, and its SHAP impact
values show a decaying pathway leaning towards the right. Once the action is taken, the action a =
up is no longer obstructed and the impact of the neighboring cell in said respective direction is
incredibly high.

6 Discussion

In this project, we have built our own environment. This environment is based on the game Crossy
Road, and we have tried to replicate it as similarly as possible. This is due to us being able to receive
much more information about the environment, without the uncertainty added of convolutional
feature extraction via the real game. Furthermore, we wanted to relate results from this experiment
to the game Crossy Road, and therefore we had to make assumptions about certain world generation
values. This lead to bias in the environment in the attempt of recreation, since all parameters
cannot be estimated correctly. For instance, the bias in the world generation can be seen back at
how sections are generated. Road sections are usually longer, due to a higher θRoad value, whilst Logs
sections are a bit shorter. Furthermore, Lilypad layers are rarely generated, and thus terminating or
truncating on these layers rarely happens. Although we believe we got to similar world generations,
it did not help the agent to learn. The bias in the way the environment is built has, what we
believe, a direct effect on the performance of the agents. The amount of variance for each agent
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during evaluation is significant. This has had us believe that environments can be ’lucky’ gen-
erations. Even though we assumed 1000 runs would resolve this variance, it did not have much effect.

Results were variable, and even though correlations could be made between how the agent ter-
minated or truncated on a specific layer, it is not clear why it kept having difficulty with that
layer. For instance, for the Logs layer, the amount of terminations and truncations merely vary
between experiments. A reason for this could be because the value of the cell the agent currently
stands on decreases, whilst its neighbour increases. Once condition 2 is met, the agent is automat-
ically transferred, but this is not something the agent specifically learns since it does not have
a perception of what type of layer it is. The agent does not know that on the Logs layer, they
get moved along, and therefore it should not be learned similarly. For further research, we would
let the agent train on variable worlds, such as a world where dense Logs sections are possible.
This could allow for better training and generalization. As a side note, we have used the old
implementation of Gym. At the time of research, the new distribution Gymnasium by Farama
[TTK+23] existed, but was not compatible with Stable Baselines 3 [RHG+21]. Currently, the
distribution Gymnasium is compatible with Stable Baselines 3. This allows for the parameter info
to be returned, and future distributions of Stable Baselines 3 could utilize this. With this option,
the agent could know what layer it currently is on, and this would open new possibilities for research.

Due to the advantage being worse predicted for a valid move upon truncation, the agent might learn
inconsistencies. The reward for truncation is -100, even when the time limit is reached. This may
work in environments where the environment is not endless: this forces the agent to find the optimal
policy for which it also has to take into account not to take too much time and thus too many
actions. In this environment, however, a valid move, or at least an expected valid move is being
punished because of a time limit being reached. This could interfere with current knowledge, and
the advantage function would be negatively influenced. Instead, we should have yielded the reward
that the agent should have received and then ended the environment. This would not negatively
influence the advantage function and might have improved consistency.

The agents all have similar settings, with the same network architecture but different input layers.
These input layers vary from 15 nodes for the agents with a single-value cell representation and
vg = 1, to 90 nodes for the agents with a double-value cell representation and vg = 2. This major
difference is not being captured in a more complex network architecture. Even though every agent
has been trained on 5× 106 time steps, which is more than the agents with the smallest vision
grids needed, it seems to not always be enough for agents with larger vision grids. A next time, we
would use larger architectures that match the complexity of the input layer as a base, such that
the requirements are at least met for the agents with a larger vision grid.

Additionally, the perspective for the agent on the Logs layer could be adjusted such that the agent
has the same offset from the Logs layer it stands on in its vision grid values. This matches the
intuitive thought that their vision grid exactly matches seen from its perspective, but could open
new problems since it still is not aware that it stands on the Logs layer.

Something we wanted to try but was out of the scope of this research was to apply Monte Carlo
Tree Search (MCTS). The assumption here is that MCTS might indirectly find that the agent
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should avoid difficult situations beforehand. These include last-second actions moving forward on
dangerous, edge-environment-related situations. The environment is reversible, in the sense that
you can ’save’ and ’load’ an environment state along with its respective values.

We did an analysis of the model’s predictions by utilizing the Shapley explainable AI method. We
have done this for agents with |c| = 1, but due to time limits, we did not implement the tools to
analyze agents with |c| = 2. This is an interesting research topic to continue in, and possibly do a
more in-depth analysis of various complex cases.

Lastly, future work can consist of adjusting the environment to either make it complete or tune it.
We left out some key elements of the game Crossy Road. These include a time limit for moving
forwards and randomly appearing coins. These can be added to manipulate the agent moving
forward and guide the agent in certain ways for a rewarding coin respectively. Furthermore, the
decay values θ are now set such that more per section more Road layers are generated than Logs

layers. One could argue that because more Road layers were generated, the number of encounters
with states primarily made up of Road layers and thus combinations of such encountering values
are increased, and thus learns how to navigate the Road layer better than for example the Logs

layer. However, all this cannot be confirmed from the plots provided in this thesis: the plots only
show the number of terminations and truncations on certain layers (for example figure 18), but not
the number of crossings of these layers. If these values are included, proportions of difficulty per
layer can be established by dividing the number of unsuccessful crossings by the total amount of
crossings. With that, the effect of adjusting θ values can be observed.

7 Conclusion

To conclude, we have looked at both Frogger and Crossy Road in previous research. From this,
we gained knowledge of difficulties with agents learning Frogger using multi-layer perceptrons as
well as use cases of vision grids. We have implemented a self-made simplified version of Crossy
Road, along with a clear explanation of world generation and layer generation. We have utilized
vision grids along with a PPO reinforcement learning model to capture the environment and learn
the environment respectively. With this being said, we discovered that the agents with a larger
vision on average perform better. Agents with a small vision grid struggle with getting stuck behind
obstacles. The larger the vision grid, the less this problem occurs. However, larger vision grids have
the problem of generalization due to their large state representation. Furthermore, reward-shaping
actions help the agent progress better. Using multiple vision grids as state representation only helps
to get less stuck, but due to increased complexity, is a burden for agents with a bigger vision grid.
The Logs section remains the most difficult layer to cross, which might be able to get solved using
the aforementioned techniques. Lastly, this thesis shows how the observation space size and shape,
made up of one or more vision grids of various sizes, influences learnability, in an evaluation on a
self-made simplified Crossy Road. This information can be used to assess information importance
for agents when determining what a state is in a state space: i.e. what does my agent necessarily
need to know about this state?
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8 References images

For the creation of the environment, we have used several images. We do not claim ownership over
these images and all credits should be considered to the creators. Hereby a list of sources of the
images:

• Bush tile by pixelartmaker.com

• Lilypad tile by pngitem.com

• Gravel base of the Rail layer by theappguruz.com

• Train and tracks by stock.adobe.com

• Chicken sprite by nl.depositphotos.com

• Remaining tiles and sprites by cs.cornell.edu
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A Symbol definitions

W The world of observable states
Ww The width of world W in terms of states
Wh The height of world W in terms of states
L An ordered list of infinite layers
L A single layer
C The set of all cells
R(L) The representation of a layer L
c A single cell
CV The set of valid states
CI The set of invalid states
CT The set of terminal states
t A certain time step
O(L(t)) The observation of a layer L at time t
type(L) Type of a layer L. This is within types
types Set of all types a layer could take
Lx The set of layers with type x ∈ types
Sx The set of cells for each layer with type x ∈ types
dx The density on a layer, with x ∈ {Bush, Lilypad}
csx The cycle speed for a layer, with x ∈ {Road, Logs}
confx The configuration for a layer, with x ∈ {Road, Logs}
dirx The direction for a layer, with x ∈ {Road, Logs, Rail}
iRail The interval for the train to appear
spRail The amount of cells the train moves with
θx Decay value for world generation, with x ∈ {Road, Logs, Empty}
s A single state
|c| Amount of vision grids used
|s| The amount of values representing state s
vgx The amount of cells the agent can look in direction x, excluding the cell

the agent is currently in, with x ∈ {left, right, up, down}
A The action space
a A single action
T (c′|c, a) The transition from cell c to state c′ using action a
Pr(c, a, c′) The transition probability from cell c to cell c′ using action a
r(c, a, c′) The reward function from cell c to cell c′ using action a

Â The advantage value predicted
π The policy
π∗ The optimal policy
α The learning rate
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ϵ The clip range of the PPO agent
γ The discount factor
n steps The amount of steps to do the rollout phase of training
batch size The batch size used whilst training
vg = v Notation to state vgdown = 0 ∧ vgup = vgright = vgleft = v
max age The maximum amount of steps that can be made by the agent in the environment

B Hyperparameter values

dBush ∼ U(0.1, 0.5)
dLilypad ∼ U(0.5, 0.8)
csRoad ∼ U(50, 250)

confRoad ∼ {”001111000000000”,
”000111000111000”,
”001100000011000”,
”011100110011000”,
”110000111000000”,
”001100000000000”}

dirRoad ∼ {”left”,”right”}
csLogs ∼ U(100, 500)

confLogs ∼ {”100010001000111”,
”110011001100111”,
”100110001100100”,
”110000101000010”,
”111000111000111”,
”101110011001100”}

dirLogs ∼ {”left”,”right”}
iRail ∼ U(20, 50)

spRail ∼ N(3, 6]
dirRail ∼ {”left”,”right”}

Table 5: Layer generation hy-
perparameters

θLogs = 0.5
θRoad = 0.7
θEmpty = 0.2

Table 6: World generation hyperparameters
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Learning rate α = 3 · 10−4
Clip range ϵ = 0.2

Discount factor γ = 0.99
Number of steps n steps = 2048 to run for update
Minibatch size batch size = 64

Epochs when optimizing surrogate loss = 10
Normalize advantage = True

The maximum value for gradient clipping = 0.5
Entropy coefficient for loss calculation = 0.0

Value function coefficient for loss calculation = 0.5
Hidden network architecture [64,64]

Activation function tanh

Table 7: Default PPO hyperparameters

The reinforcement learning model used is a PPO model. The policy this model uses is a multilayer
perceptron (MLP), with Actor-Critic implementation. Standardly, both the policy network as well
as the value network have an input layer consisting of |s| nodes, then 2 layers of each 64 nodes
follow with activation function tanh, and lastly the output layer consisting of |A| nodes for the
policy network and 1 node for the value network. Table 7 shows the default parameters used for a
PPO model. What differs from the PPO models we have used, however, is that we have edited the
network architecture to 2 layers of 32 and 16 nodes respectively, for both the policy network and
the value network. A visualization can be seen in figure 33. The activation function remains the
same.

Figure 33: The different MLPs used in the PPO network. At the bottom of each layer, the amount
of nodes are denoted. The blue coloured nodes form the input layer, the yellow nodes form the
combination of hidden layers and the red coloured node(s) form the output layer. The individual
perceptrons use a tanh activation function.
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C World generation algorithm

Algorithm 2: Section generation algorithm
1 base← base+ 0.01
2

3 SELECT SECTION TYPE UNIFORMLY FROM {Road, Logs, Train, Empty}
4

5 # create an ordered set.

6 layers = ∅
7

8 IF SECTION TYPE == Logs :
9 currentBase ← base

10 ADD LLogs to layers

11

12 # Generate non -static layers

13 WHILE r ∼ U(0, 1) ≤ currentBase :
14 currentBase ← currentBase × θLogs
15 ADD LLogs to layers

16

17 # Generate static layer

18 IF r ∼ U(0, 1) ≤ 0.3 :
19 ADD LBush to layers

20 ELSE:
21 ADD LLilypad to layers

22

23 ELSE IF SECTION TYPE == Road :
24 currentBase ← base
25 ADD LRoad to layers

26

27 # Generate non -static layers

28 WHILE r ∼ U(0, 1) ≤ currentBase :
29 currentBase ← currentBase × θRoad
30 ADD LRoad to layers

31

32 # Generate static layer

33 ADD LBush to layers

34

35 ELSE IF SECTION TYPE == Rail :
36 ADD LRail to layers

37

38 IF r ∼ U(0, 1) ≤ 0.5 :
39 ADD LRail to layers

40

41 ADD LBush to layers

42

43 ELSE IF SECTION TYPE == Empty :
44 ADD LEmpty to layers

45

46 WHILE r ∼ U(0, 1) ≤ currentBase :
47 currentBase ← currentBase × θEmpty
48 IF r ∼ U(0, 1) ≤ 0.1 :
49 ADD LEmpty to layers

50 ELSE:
51 ADD LBush to layers

52

53 # Check whether the generated section is possible to get across

54 IF section is possible to cross :
55 # Recall that L is an ordered set!

56 L ← L ∪ layers

57 ELSE:
58 Discard current generation and repeat this function
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D Training plots

D.1 No step reward and single-value cell representation

Figure 34: The type of death that ended the episode during training. Here it can be observed how
the proportions of the type of death shift, increasing the proportion of environment truncations
during training, especially the smaller the vision grid.

Figure 35: The proportion of types of layers the agent ended the episode on for various vision grid
sizes during training. All vision grid sizes show similar proportions, with some exceptional behavior.
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D.2 With step reward and single-value cell representation

Figure 36: The type of death that ended the episode during training with step reward. Here it can
be observed how the proportions of the type of death shift, increasing the proportion of environment
truncations during training, with the two smallest vision grid sizes having the proportion of
truncation exceeding the proportion of termination after training.

Figure 37: The proportion of types of layers the agent ended the episode on for various vision grid
sizes during training. All vision grid sizes show similar proportions, and results are comparable
with figure 35
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D.3 With step reward and double-value cell representation

Figure 38: The type of death that ended the episode during training with step reward and double-
value cell representations. The agents with vision grid sizes with vision grid size vg = 2 and vg = 4
seem to be lying closely together.

Figure 39: The proportion of types of layers the agent ended the episode on for various vision grid
sizes during training. All vision grid sizes show similar proportions, and results are comparable
with figures 37 and 35
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