
Opleiding Informatica

Counting winning hands

in Rummikub

Romke Feijen

Supervisors:
Jan N. van Rijn & Jonathan K. Vis

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 01/05/2023

www.liacs.leidenuniv.nl

Abstract

Rummikub is a tile-based game, where players in turn play tiles from their hand
to the table. Tiles on the table must be grouped by value with different colors or
grouped by color as a consecutive range of values. The first player to get rid of all
their tiles wins. This thesis will focus on the possibility that given an arbitrary
set of tiles, that set is winning. Such knowledge is relevant when developing
game strategies for example. We will describe an algorithm that will count the
number of winning combinations that can be formed with this given set. The
algorithm produces results that correspond with other results from different work
and creates confidence that these results are accurate. Using the full default tile
set of Rummikub makes the problem too large for current hardware to handle,
thus a smaller set of tiles is used to test the capabilities of this algorithm and
find its limit. For our implementation, the bottleneck seems to be memory usage.
Hence a suggestion for future work is to improve the efficiency of the algorithm’s
memory usage and two concrete pointers are given.

2

Contents

1 Introduction 1

2 Definitions 3
2.1 Classic rules . 3
2.2 Generalisations for this research . 3
2.3 Terminology . 4

3 Related Work 5

4 Methods 6
4.1 The algorithm . 6

4.1.1 Pseudo-code . 7

5 Implementation 9
5.1 Programming language . 9
5.2 Solution mapping . 9
5.3 Parallel Processing . 10
5.4 Knowing when to stop . 11

6 A backward approach 13
6.1 Mirroring . 13

7 Experiments 15
7.1 Validating . 15
7.2 Expanding . 17

8 Conclusions and Further Research 20

1 Introduction

Rummikub is a tile-based game, played with a set of 106 (104 + 2 jokers) tiles. A tile
has a value range from 1 to 13, one of four colors, and one other copy of itself. Figure
1 shows the full tile set for Rummikub. Each player starts with 14 tiles and at every
turn, they can decide to play a set of tiles or draw a new one. A player can play its tiles
by forming groups with these tiles either by grouping by value with different colors or
grouping by color in consecutive number order. The first player with no tiles left wins
the game.

A player’s chance of winning is very valuable information at any point in a Rummikub
game, as this could influence a player’s decision-making at that point. Such information
could potentially lead to developing strategies to give the player a higher chance of
winning.

Figure 1: The default Rummikub tile set

In a highly relevant study, van Rijn et al., 2015 aimed to answer the hypothetical
question “Given a hand of h tiles, what is the probability that hand is winning?”. The
paper explains the rough outlines of an algorithm and follows up with two series of results.
One is with the default Rummikub tile set (13 values, 4 colors, and 2 copies of each),
which shows to be a challenge to compute completely. The second was for a custom Rum-
mikub tiles set (6 values, 4 colors, and 2 copies of each) for which all solutions were found.

Their work opens some opportunities for further research and explanation. The al-
gorithm, for one, can be described in more detail and the results achieved have yet to
be confirmed to be correct. A lot more results can be gathered with variations on the
tile set as well, not just by changing the value parameter, but also the color or copy

1

parameters. Finally, there is a clear indication that for some tile sets some limits are
hit in terms of performance and hardware, but it is not clear where these limits lie and
what that means on current hardware.

This thesis aims to continue where van Rijn et al., 2015 left on the question “Given a
hand of h tiles, what is the probability that hand is winning?” and attempt to answer
other questions mentioned above. We developed an algorithm and explain its exact
working. Another approach is briefly explored and it is discussed why this approach is
not ideal. The developed algorithm is then put to the test to check if we can confirm
the counting results from the original paper, but also how the results take shape for
other parameters, both in terms of counting sizes and runtime. We will investigate what
tile sizes we compute completely with current hardware.

To summarise, this thesis will explore the computational limits of algorithms that
count winning Rummikub hands. Section 2 will explain the rules of Rummikub, as well
as how these rules are perceived and applied in this research. Section 3 will discuss
some related work that is already done on this subject or is relevant in another way.
The methodology of exactly how the problem has been tackled and how the algorithms
work is stepped through in section 4. The implementation and further optimizations
are covered in section 5. The performance and the results of the implementation of this
algorithm are discussed in section 7. Section 8 will round up this thesis and go into
some potential further research.

2

2 Definitions

This section 2.1 will give a summary of the classic “Rummikub: How to play”, n.d.
rules. For this thesis we will make an adoption on this set of this rules to both keep the
complexity of the problem manageable as well as confine the research. This adoption of
the rules is described in section 2.2. Finally, section 2.3 will explain some of the notable
parameters and terminology around describing and representing Rummikub scenarios.

2.1 Classic rules

Rummikub is a tile-based game that is played with one or more players. The tile set
consists of 13 values × 4 colors × 2 copies of tiles, where each tile has a value and a
color. The tile set can contain extra tiles, like jokers, which can take up any color and
value. A game of Rummikub starts with 14 tiles in the hand of each player. Players
take turns to either draw a new tile from the undistributed tile pool or play their tiles
by placing them on the table for everyone to see. Tiles can only be played in a set such
that all tiles on the table are either formed in a group or a run with a minimal size of
3. Groups are formed with tiles of the same value but each is a different color from the
other. Runs of tiles have the same color but are always in a contiguous and consecutive
order. The tiles placed on the table can be rearranged by whichever player’s turn it is,
as long as all the tiles placed on the table are in valid runs and groups by the end of the
turn. Once tiles are played on the table they can no longer be picked up from the table.

Players can choose to enforce an initial meld, where the very first play a player makes
must at least add up to 30 points. The goal is for all players to keep playing in turns
until the player has no more tiles in their hand. The first player to play all their tiles
validly will win the game.

2.2 Generalisations for this research

For this thesis, there are a few generalizations made to the default rule set. The
motivation behind these changes is mostly to keep the problem manageable and keep
more focus on the counting problem at base.
Firstly, we are only interested in the hands of a player. Considering the hands of

adversaries or mechanics like taking turns are not of interest here. By playing Rummikub
alone, these aspects of the game are not relevant and can be disregarded, therefore for
the rest of the paper, we are always considering a single-player version of Rummikub.
As a single-player game, there is no real need to distinguish tiles on the table from the
tiles in the player’s hand, therefore it will be assumed that all tiles are always in the
player’s hands. This hand can be considered to be winning hand if it is possible to
arrange all tiles in the players hand in such a way that each tile is in a valid set.
The requirement for an initial meld is left out, as it would filter out a lot of lower-

valued hand sizes that are as interesting in the perspective of counting and totality.
Jokers are also not in the game, due to their added complexity.

3

Requirements around tile placement and set formation will remain in place but
could be tuned. The next section will go through some of the parameters that can be
distinguished.

2.3 Terminology

Throughout this thesis and several parameters will be used. Most notable will be
hand size h, the number of tiles kept in a hand. The exact value or color of these tiles
is unknown. Three other important (input) parameters for this thesis are n, k, and m:

• n: the maximum value a tile can take

• k: the number of different colors a tile can take

• m: the number of copies that exist of a tile

Together n× k ×m also binds the maximum value of h. Furthermore, they respectively
form the rows × columns × values of a matrix that can represent a configuration
of tiles in a table. This form of representation will be used throughout this thesis to
explain several principles. Figure 2 show an example of such a representation.

0 0 1 0
1 1 2 0
0 0 1 0

Figure 2: 3D visualisation for the Rummikub playing field n = 4, k = 3,m = 2, h = 6.

Here, runs are placed on the rows and groups on the columns. The value in each cell
represents the number of copies for that tile. Note that this situation in the figure is
winning because it consists of a run on the 2nd row of 123 and a group on the 3rd column
with 3’s.

4

3 Related Work

The amount of research on the game Rummikub remains small, with only a handful
of papers directly related to the game itself.

Some of the earlier work is done by den Hertog and Hulshof, 2006. Here the authors
challenge themselves with the question “Given a set of tiles, what is the maximum
number or value of tiles that can be played?”. They show this can be solved using a
mathematical model: integer linear programming. They extend this model by minimizing
the changes done to already existing sets.

More recently, Gulin, 2019 supposedly attempts to solve Rummikub using two types of
algorithms: a recursive method and a heuristically guided space search. Due to restricted
access to the paper itself, the work cannot be further researched for the writing of this
paper.

This paper is mostly a continuation of the work by van Rijn et al., 2015. In this paper
the authors consider the problem of “Can a set of given tiles be placed in such a way
that each tile is placed in a valid run or group?” as an optimization problem. They
show that this problem can be solved in polynomial time and as part of that solution
provide an algorithm that works with different input variables. The same algorithm was
then also used for the counting problem: “Given a subset of tiles, what is the chance
this hand can be played in one move?”. Continuing on this very subject, the goal is
to confirm the results of these authors, push for higher input sizes, consider different
implementations in practice, and discuss the performance of these implementations.

Less related but still relevant is the work by Kotnik and Kalita, 2003 where Temporal-
Difference Learning is compared against an evolutionary algorithm with Rummy, a card
variant of Rummikub.

5

4 Methods

Given a hand with a number of tiles, of which the values and colors are unknown,
there are a finite number of different configurations of tiles that can be made for this
hand. The work by van Rijn et al., 2015 shows us that the ratio between the total
configurations and the configurations that are of such different proportions it would
naive and infeasible to consider every possible configuration to find the ones that are
winning. While section 6 and 7.2 will show that there are some specific scenarios where
this might work, it will also show that for most hands sizes it will not work. Hence a
different approach is suggested in this section. Counting Winning (Rummikub) Hands
(CWH) is an algorithm that systematically enumerates all the winning configurations
based on the rules of the game.

4.1 The algorithm

The concept of enumerating configuration, could be thought of as repeatedly adding
and removing tiles to a hand to form all the different variations that exist. The core
principle of CWH is that it should only ever enumerate winning configurations, even
during the operation of the algorithm. This means when enumerating configurations
for a given number of tiles, for every tile added to the configuration, the hand should
remain winning regardless of whether the target size has been reached or not. To guar-
antee this, the algorithm is bound to the rules of Rummikub, the most important one
being: tiles may only be added to the configuration in groups or runs with a minimal
size of 3. Consequently, it will not even be necessary to ever add more than 5 tiles at
once. From then on any number can be partitioned by 3,4 and 5, meaning that there
exists a combination of sets of length 3, 4, and 5 such that they all add up to that number.

Next, CWH will be explained. Figure 3 will function as simple visualization of this
algorithm where unique tiles exist (no copies, m = 1). The pseudo-code might also help
as a guideline. It can be found in algorithm 1 and is explained in section 4.1.1.

1 1 1 0
0 0 0 0
0 0 0 0

,
0 1 1 1
0 0 0 0
0 0 0 0

, ... ,
0 0 0 0
0 0 0 0
0 1 1 1

, ... ,
1 0 0 0
1 0 0 0
1 0 0 0

, ... ,

0 0 0 1
0 0 0 1
0 0 0 1

Figure 3: An example of an iteration of the CWH algorithm for a simplified configuration:
n = 4, k = 3,m = 1, h = 3.

CWH will consider a configuration as a matrix, over which it can iterate from left
to right, top to bottom. By iteratively adding runs and groups to this configuration a

6

solution can be built. Placing the set slightly differently each iteration, as seen in figure
3, will create a new solution every time. In essence, this is how CWH operates.

The algorithm will do two full passes over all positions in the matrix. On its first pass
of the matrix, only runs will be placed. In every iteration, CWH will evaluate its options
at that current position and the number of tiles remaining in its hand. For example, a
run placement may never exceed the maximum value n. Similarly, if at any point there
are only 4 tiles left to play, these tiles have to be played all at once. Playing only 3 of
the 4 tiles would leave 1 tile remaining, which is against the design philosophy of this
algorithm. Choosing not to place a run is also an option. Placing a run will initiate
a recursive call, passing its state as well and the number of remaining tiles with the
number of placed tiles subtracted.

Once the end of the matrix has been reached and all the run placement options have
been exhausted but CWH still has remaining tiles to play, it will consider group forming.
This is a slightly different approach because where runs are in consecutive numerical
order, groups are unordered. As opposed to the runs placement, group forming will be
done on the vertical axis of the matrix. For this second pass, CWH will iterate over
the columns from left to right. In each column, all possible group formations will be
determined and considered recursively. When the last column has been reached and all
the possible group combinations have been considered the algorithm will end.

Whenever the number of remaining tiles hits 0 during the running of the algorithm, a
solution has been found. The solution will be stored in a set and the function will return
to its recursive call. Storing all the winning configurations found so far in a set (unique
list) is required because there are certain configurations that CWH will enumerate twice.
Figure 4 shows an example of such a configuration. This configuration could be built by
placing runs of 123 for 3 different colors or placing the groups 111, 222, and 333.

1 1 1 0
1 1 1 0
1 1 1 0

Figure 4: A configuration that could lead to a duplicate count. Configuration settings
are n = 4, k = 3,m = 1, h = 6.

4.1.1 Pseudo-code

Algorithm 1 shows the pseudo-code of CWH. The algorithm can be split into two
distinct parts, namely placing tiles as runs (lines 5-12) and placing tiles as groups (lines
15-20). The variable placing distinguishes on what iteration the algorithm is.

Like in the previous section, CWH will consider a configuration as a matrix. Variables
i and j indicate the current position of CWH on this matrix. In every position, it
is evaluated what the options are (lines 7-8 and 16-17), from which the options are
explored with a recursive call (lines 10 and 19).

7

As soon as a full iteration of the matrix has concluded but the algorithm still has tiles
to play (hand_size ≠ 0), a different recursive call will be done (line 13). The positional
variables will be reset to 0 and the placing variable will be flipped to the GROUPS state,
indicating that the iteration for groups will now start.

Throughout this pseudo-code, several helper functions are used. The functions
determineRuns and determineGroups determine all possible runs or groups of tiles
that can be played at that current position and state of the configuration. The placing
of a run should for example never exceed the maximum value a tile can take. Similarly,
the size of a run or a group is also bound by the number of tiles that remain to be
played. If that amount is 4 then we can also only place runs of 4, following the logic
described in section 4.1. Possible group and run placement can also be bound by what
tiles are already added to the configuration since we can only have m copies of the same
tiles. The function place adds a run or group to a configuration.

Algorithm 1: Pseudo code of CWH() with the arguments (configuration,
hand size, i = 0, j = 0, placing = RUNS)

1 if hand size = 0 then
2 solutions.add(configuration)
3 else
4 if placing = RUNS then
5 while j < max colours do
6 while i < max value do
7 for run in determineRuns(config, i, j, hand size, RUNS) do
8 new config = place(configuration, run, i, j)
9 CWH(new config, hand size− run.size, i, j, RUNS)

10 i++

11 i = 0, j ++

12 CWH(configuration, hand size, 0, 0, GROUPS)

13 else
14 while i < max value do
15 for group in determineGroups(config, i, hand size, GROUPS) do
16 new config = place(configuration, run, i, j)
17 CWG(new config, hand size− group.size, i, 0, GROUPS)

18 i++

8

5 Implementation

During the process of testing and gathering results, some improvements were made
to the algorithm Count Winning Hands. This section discusses how some of the design
choices and improvements were made during the development of the algorithm.

5.1 Programming language

CWH is developed in Python 3.8, but it should be possible to implement this in most
other programming languages. The main motivation for choosing this language is the
flexibility, readability, and ease of use it brings. It was not until later (see section 7) when
some of the computational limits of Python were reached and we considered that more
low-level programming languages like c++ might have an edge for this implementation.

There are 4 external packages used in this implementation. The first two are timeit
and psutil to gather some statistics about the runtime and memory usage respec-
tively. The itertools package allows for some efficient array operations. This leaves
multiprocessing, a package used to implement the multi-threading version of this
algorithm, further discussed in section 6.
Furthermore, tests are (unless noted otherwise) run on an Intel Core i7 9700k with

16 GB of RAM. This is a processor with 8 logical cores and does not support hyper-
threading.

5.2 Solution mapping

In section 4.1 we describe why all solutions are stored in a set until the algorithm is
done. To manage the memory usage of this set, the solutions must be stored as efficiently
as possible.
In our Python implementation, configurations are kept as nested lists because it is

easy for CWH to work with. However, when a configuration is stored as a solution there
is no longer a need to keep this nested list structure. By mapping the configuration to
an integer, we can reduce the memory usage as our solution set grows larger.
Figure 5 visualizes an example of this mapping. Here, every row is read as a binary

number. All these binary numbers are then concatenated to form one integer. This
integer is then added to the solution set.

1 1 1 0
1 1 1 0
1 1 1 0

−→ 010001000100 = 1092

Figure 5: Visualisation of the solution map function. n = 4, k = 3,m = 1, h = 3.

9

To give an indication of what effect this will have, consider the example below.
A random configuration is initialized in the table variable. Using a getsizeof()

call on this variable returns a size of 88 bytes. Now we use our solution mapping
function hashTable() on the configuration to map the configuration to an integer. This
operation reduces its size to 40 bytes, a reduction of more than half. This is a significant
improvement, especially considering how large solution sets can grow. This size can
likely be reduced even further.

>>> table = [[2,1,1,0,1,1,1,0,1,1,1,0],

... [0,1,1,1,1,1,2,0,1,1,1,0],

... [1,1,1,1,1,2,1,0,1,1,1,0],

... [1,1,1,2,1,1,1,0,1,1,1,0]]

>>> getsizeof(table)

88

>>> getsizeof(hashTable(table))

40

5.3 Parallel Processing

As runtimes started to increase towards multiple hours it became more desirable for
the algorithm to make use of multiple threads. To implement multi-threading we need to
distinguish a main problem and its sub-problems. Then, by assigning these sub-problems
their thread, they can be processed in parallel instead of sequentially, resulting in a
performance gain in terms of time.

0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 0
0 0 0 0
0 0 0 0

Task 1

0 1 1 1
0 0 0 0
0 0 0 0

Task 2

0 0 0 0
1 1 1 0
0 0 0 0

Task 3

...

Task ...

0 0 0 1
0 0 0 1
0 0 0 1

Task 10

Figure 6: Visualisation of the Multi-threading implementation of CWH-parallel through
a simple example.

10

With CWH, each recursive call made is essentially the algorithm splitting up the
problem into smaller problems for the recursive call to figure out. Therefore, a method
of implementing multi-threading would be to take all recursive calls at a recursion depth
of level 1 as a list of tasks. This list of tasks can then be spread over any number of
threads. Figure 6 shows a visualization of this process.

The performance gain for this implementation scales nearly linear with the number of
cores assigned. Figure 7 shows this difference in performance with different configurations
of 6 values, 4 colors, and 2 copies of each tile.

Figure 7: Multi-threading performance for n = 6, k = 4,m = 2. This implementation
shows a nearly linear performance gain for each added core.

This implementation does have one drawback namely an increase in memory usage.
The cause lies with each thread building its own solution set and not sharing these
solutions with its parent or other threads. Meanwhile, other threads might hold the same
solution. This is only resolved when a thread finishes and merges its solution set with
that of its parent. The exact impact on memory is not clear and was hard to measure
within Python and multiple threads that barely communicate. In an ideal situation,
multiple threads can write their solutions to a shared solution set.

5.4 Knowing when to stop

During some of the initial runs it was noticeable that as the hand size h increases so
did the runtime of the algorithm. The maximum runtime was reached for the maximum
value of hmax = n×k×m. This seems excessive as for hmax there exists only one possible
winning configuration. One would expect the problem to be relatively simple and the
runtime therefore relatively low. In fact, we expect lower runtimes as h nears either 0 or
hmax and a maximum runtime somewhere in between.
For CWH to show a tipping point in runtime as h reaches hmax the algorithm must

know when to stop searching for solutions and prune. This can be achieved by checking

11

if there still exists a certain best-case scenario at every iteration of the algorithm. This
best-case scenario can be described as a scenario in which I can still play all the tiles
currently in hand. Figure 8 shows how an example of how this could work in practice.
In the first scenario, it is still possible to play the 5 tiles currently in hand. However, on
the next iteration, there is no longer room to play these 5 tiles; the algorithm can stop.

0 0 0 0
1 1 1 0
0 0 0 0

→
0 0 0 0
0 1 1 1
X X X X

→ PRUNE

Figure 8: Visualisation of the counting ahead optimization. n = 4, k = 3,m = 1, h = 8.
In the first scenario, we still see an opportunity to play our 5 remaining tiles. In the
second scenario, we no longer have this opportunity.

It should be noted that this “best”-case scenario can be specified in various degrees.
The example in figure 8 is a relatively simple specification (and also the current im-
plementation). A more strict version could also prune on the first scenario because on
row 2 there is only space for 1 more tile and the algorithm will never place less than 3
tiles at once. However, specifying this scenario too extensively might in turn lead to an
impact on performance that does not justify compared to a simpler specification.
Already, the simple implementation from figure 8, seems to have a notable negative

impact on performance. Figure 9 shows the time taken to find all solutions per hand
size h, for the configuration of 6 values, 4 colors, and 2 copies of each tile. It shows
an increasing (growing with h) effort of finding solutions as opposed to not using this
algorithm.

Figure 9: Performance of the countfit optimization showing an increasing effort as h
grows. Configuration settings are: n = 6, k = 4,m = 2.

12

6 A backward approach

In this section, we discuss a different approach that was briefly explored in an attempt
to tackle some large hand sizes near hmax. This algorithm starts under the assumption
the player has all tiles (instead of none like with CWH). It continues to iterate over this
set of tiles, leaving out a different combination of tiles every iteration and testing if the
hand remains winning. The size of the combination that is left out is hmax − h and is
thereby dependent on the target hand size h. Figure 10 shows an example for a tile set
with hmax = 4× 3× 2 = 24 and a target hand size of h = 23.

1 2 2 2
2 2 2 2
2 2 2 2

,
2 1 2 2
2 2 2 2
2 2 2 2

, ... ,
2 2 2 2
2 2 2 2
2 2 2 1

Figure 10: Visualisation of the backward approach. Essentially this algorithm is repeat-
edly removing different tiles from the full set of tiles and checks if the configuration
remains winning after. n = 4, k = 3,m = 2, h = 23.

The implementation makes use of c++ script developed by Frank W. Takes. It takes
a list of configurations as input and determines for each of the given configurations
whether it is winning or not.

By writing a Python wrapping script that generates all possible configurations, removes
duplicates (section 6.1), and automatically feeds these to Takes’ script, we create
a program that essentially has the same outcome as CWH. The program has also
surprisingly efficient memory usage because solutions are written to a file on disk. It
is also highly scalable in terms of CPU processing. Parallelizing this script is simply
calling Takes’ script a multitude of times.
Although this program seemed promising at first, it soon became clear that the

more h deviates from its maximal value hmax harder the runtime was growing. This
implementation is practically brute-forcing to find its answer and we earlier established
in section 4 that is a very naive approach with the number of total possibilities that
exist. Later the optimization discussed in section 5.4 was found and it should make this
method even less relevant.

6.1 Mirroring

Developing the backward approach brought to light the concept of mirroring solutions.
This is a concept that has the potential to significantly reduce the number of solutions
needed to compute in certain counting problems of Rummikub. The idea is that when
a winning Rummikub solution is mirrored over the X-axis or Y-axis (or both), then a
different winning solution will be found, see figure 6.1. Mirroring a configuration does
not alter any connection between tiles, only the values of those tiles will change, which
means the configuration will hold to the important rule that every tile is played in a

13

series of minimally 3 tiles. This means if an algorithm finds a winning configuration it
potentially could deduct up to 3 more winning configurations to add to its solution set.
For the backward approach, this meant that for certain configurations, if we found a
configuration that was winning its mirrors could be cleared as well and added to the
solutions without checking. This mirroring concept has not found an implementation
for the CWH algorithm.

Y-axis

X-axis

Figure 11: By mirroring a solution over the X & Y axis other solutions are found.

14

7 Experiments

A method for counting winning Rummikub hands is described in section 4. Section 5
discusses a possible implementation of this algorithm and further mentions a couple of
improvements. Most of these improvements, as well as the alternative approach from 6,
have been developed during the processing of testing and running experiments to reach
some set-out goals.

The first of these goals was to validate some of the results attained by van Rijn et al.,
2015. Although this validation is not so much of a challenge computationally and thus
reached relatively quickly, it is still a very important milestone. Both algorithms used
were developed independently and if both come to the same results it gives confidence
that these are correct.
Subsequently, was to gather some results that are more of a challenge to gather

computationally. It is during this process that the bottlenecks were found and therefore
also the source of most of the improvements and experiments from the previous sections.

In this section, both of these topics will be addressed and their respective results will
be discussed.

7.1 Validating

In the work of van Rijn et al., 2015, two sets of results are given to compare against.
The first set of results uses the same settings as those of the default Rummikub rules,
namely 4 colors, 13 values, and 2 copies of each tile. Table 1 shows what is generated by
our implementation.

Table 1: Number of winning Rummikub configurations with a hand of h tiles for a
configuration size of 13 values, 4 colors, and 2 copies of each tile.

h solutions
3 96
4 53
5 36
6 4,656
7 4,980

h solutions
8 4,731
9 151,728
10 233,412
11 279,108
12 3,753,318

h solutions
13 7,244,080
14 10,232,524
15 75,493,324

The first and most important thing to note from these results is that they correspond
with those found by van Rijn et al., 2015. It indicates that the results both parties found
seem to match up and are thereby somewhat meaningful.

Secondly, running the algorithm quickly becomes increasingly computationally expen-
sive both in terms of time and in terms of space. Running for larger hand sizes h with
these settings will require hardware with greater capabilities than those at hand.

Scaling down the problem, using smaller input, does make it possible to work out the
number of winning situations for all hand sizes h. For this instance, the settings are still

15

4 colors and 2 copies of each tile, but the number of values is limited to 6 instead of 13.
Figure 12 shows the results for these settings. Crucially the results for these settings
again seem to match with that of van Rijn et al., 2015.

Figure 12: Solution set size vs the hand size h for 6 values, 4 colors, and 2 copies of each
tile. The peak solution set size is found a h = 31.

This figure shows that the maximum solution set size is reached at 31, after which
the solution sets start declining again. An effect to notice from this figure is that every
for every 3rd increment of h (h mod 3 = 0) generally goes with a substantial increase of
the solution set size. The effect is even more clear when the solution set size is plotted
on a logarithmic scale, see figure 13. As the solution set grows to its maximum size, the
effect seems to change. In figure 13, a decrease in the solution set size can be after the
first few increments of 3. After a while, however, this decrease seems to turn into an
increase. Such an increase is easier to read in figure 12, where the increase in solution
size from h = 27 → h = 28, is nearly as big as the increase from the 3rd increment:
h = 26 → h = 27.

A cause for this effect is likely linked to the minimal group and run size requirement,
recall this is set to 3 for this thesis. Every 3rd increment of h opens the opportunity to
create a different and separate set (not connected) to any of the other sets. The decrease
in the solution set size can be after the first few increments of 3, which is also caused by
this minimum size requirement. If a run/group size is smaller, there are more ways to
play it. An example would be h = 5, which cannot be played in any groups, whereas
h = 3 can be played in 4 different combinations.
Figure 13 also plots the number of different partitions (of size 3,4 or 5) that can

be formed given a hand size h plotted. For example, h = 9 can be partitioned in
3+ 3+3 but also in 4+ 5. Unsurprisingly, this number plotted over h shows that similar
periodic incrementing (every 3rd h) as seen with the solution set size, confirming the
aforementioned cause.

A computational wall is quickly hit for an instance of 13 values but counting all
solutions for 6 values seems to be doable in a reasonable time. Consequently one might

16

Figure 13: Solution set size vs the hand size h for 6 values, 4 colors, and 2 copies of each
tile. Notice the significant increase in solution every 3rd increment of h for the first 30
hand sizes. This behavior is in line with the maximum number of combinations of 3,4,5
that h can consist of.

wonder how this would fare for an instance of 7 values. The next section will explore
this scenario.

7.2 Expanding

Most of the improvements mentioned in 5 and 6 originate from one of the main goals
of this thesis: finding all solution sizes for a Rummikub instance with 7 values, 4 colors,
and 2 copies of each. Although this set of input might only differ slightly from the
one discussed in the previous section (values = 6, section 7.1), the number of solutions
increases immensely and made it computationally challenging to figure out. Figure 14
show the results achieved so far.

While the results are incomplete, the biggest solution size has been found (at h = 37).
For comparison, the curves for n = 5 and n = 6 are also plotted. The resemblance
between the 3 curves is noticeable and could opportune to start predicting unknown
values. For example, the maximum value of each of these curves is at 62, 5%, 64, 6%, and
66, 1% of hmax for respectively n is 5,6 and 7. Extrapolating from these values it would
seem plausible that n = 8 would have its maximum solution set at around 67% or 68%
which would translate into h = 43. However, more research is required to validate this
idea.
These results are gathered using the two different techniques parallel-CWH and the

backward approach explained in section 5 and 6 respectively. It is also no longer possible
to use home PCs for these runs since the hardware is no longer capable of handling
these large solution sizes. Because of the difference in nature of the above-mentioned
algorithm, one requiring more RAM and the other preferring more cores, two different
servers are selected. For parallel-CWH, a server with 64 cores and 1TB RAM is used.
The algorithm will only use 16 of those 64 cores. For the backward approach, a server

17

Figure 14: Solution set size vs the hand size h for different n values, 4 colors, and 2
copies of each tile. The different values all follow a similar curve. The gap in the curve
n = 7 represents the solutions that have yet to be found.

with 256 cores is used of which only 64 are used. These servers are shared with other
users and therefore they cannot be used for benchmarking. Stability was also an issue
because of this, with unplanned server restarts or the server running out of memory
when simultaneously running different resource-intensive programs.

Figure 15: Solution set size vs the hand size h for 6 values, 4 colors, and 2 copies of each
tile. The largest solution set size has been found. The gap in the curves represents the
solutions that have yet to be found.

With parallel-CWH, results have been gathered up until a hand size h of 41. While
time and memory usage has been measured, see figure 15, both can only be used as
a rough measure. Run-time is could be impacted by other users using the server and
the size of this impact is unknown. Furthermore, the memory usage from the different
threads was at times incorrectly added up, and actual peak usage numbers are expected
to be higher. Nevertheless, both still form a solid indication and are worth mentioning, to
get an idea of where performance is at. Combined peak memory usage for this instance

18

is seen well over 600 GB. Run times beyond h = 41 are also going into the weeks,
with h = 40 taking over 7 days and h = 41 nearing 10 days. Since this parallel-CWH
implementation does not have the counting ahead implementation (section 8), the growth
in time will also not stop. At this point, server stability became an issue with unplanned
restarts or the algorithm being killed when simultaneous with other resource-intensive
programs. Therefore no further attempts were made to use this algorithm. With the
backward approach, it was possible to find the solution set sizes of hand 56 to 50. It
might still be possible to find the solution set size for h = 49, with this method but here
server stability also became an issue similarly.

19

8 Conclusions and Further Research

Throughout this thesis, we have been busy with several aspects of this one problem
of counting winning Rummikub hands. To tackle this problem an algorithm (CWH) is
proposed and explained.
Crucially when put to the test, this algorithm seems to reproduce the same results

found by van Rijn et al., 2015 earlier. This gives some confidence that the algorithm
and the found results are correct.

To expand on these results and find for what size input this can be calculated with
current hardware, we have attempted to push the algorithm for a larger input size. Since
this input turns out to be challenging, various optimizations have been made to method
to improve performance, each again thoroughly explained. Nevertheless, we were not
able to find the solution for all Rummikub hand sizes of that input. While this might
seem that the results are thereby somewhat incomplete, we have achieved success in
finding a computational limit for this implementation.

The runtime of our implementation was long, however more importantly it was no
longer scalable because of the excessive memory usage. The need to keep a solution
set with all current solutions found to avoid registering duplicate solutions forms the
bottleneck for this algorithm. A possibility of addressing this would be to improve the
storage and access of the solution set, also considering a multi-threaded implementation.
Another arguably more ideal solution would be to find an algorithm that does not find
duplicate solutions in the first place since that would eliminate the need for keeping an
ever-growing solution set. Either way, there is still a lot of potential for improvement for
this algorithm to allow for more efficient operation, both in terms of implementation
and logic.

In this thesis, we mostly considered variations of problems by changing the values n
from the default Rummikub tile set. Other parameters like the number of colors/copies
of each tile & minimal group/run size remained untouched. It could be interesting to see
how these parameters would impact the problem of counting winning Rummikub hands.

Perhaps most interesting for game theory, would be to consider this problem or the
game of Rummikub in general with adversaries. Here, the leading question could be if it
would be possible to build a model or strategy and what this would look like.

This is also what we hope this research will eventually contribute to, through means
of finding the probability of winning. The game of Rummikub includes decision-making
since in a turn, a player sometimes has the option to either draw a tile or play some of
its tiles. It remains to be seen if this decision-making can be (situationally) influenced
by knowledge of the odds that a particular hand could be winning.

20

References

den Hertog, D., & Hulshof, P. B. (2006). Solving rummikub problems by integer linear
programming. Comput. J., 49 (6), 665–669.

Gulin, M. (2019). Solving rummikub with computational power.
Kotnik, C., & Kalita, J. K. (2003). The significance of temporal-difference learning in

self-play training td-rummy versus evo-rummy. Machine Learning, Proceedings
of the Twentieth International Conference (ICML 2003), 369–375.

Rummikub: How to play. (n.d.). https://rummikub.com/rules/ (accessed: 09.10.2022)
van Rijn, J. N., Takes, F. W., & Vis, J. K. (2015). The complexity of rummikub problems.

Proceedings of the 27th Benelux Conference on Artificial Intelligence (BNAIC
2015).

21

https://rummikub.com/rules/

Appendix

Table 2: Number of winning Rummikub configurations with a hand of h tiles for a
configuration size of 6 values, 4 colors, and 2 copies of each tile.

h solutions
3 40
4 18
5 8
6 820
7 696
8 467
9 10,872
10 12,816
11 10,896
12 103,340
13 146,760
14 144,856
15 738,648
16 1,150,642
17 1,240,616
18 4,042,944

h solutions
19 6,433,240
20 7,220,872
21 16,853,400
22 25,910,748
23 29,036,248
24 52,234,799
25 74,258,224
26 79,916,256
27 115,475,104
28 146,292,716
29 145,376,712
30 171,072,496
31 186,041,792
32 163,221,584
33 154,071,432
34 136,832,104

h solutions
35 99,759,056
36 71,349,974
37 47,317,392
38 25,908,596
39 12,096,784
40 4,708,057
41 1,509,768
42 404,184
43 90,720
44 16,974
45 2,576
46 300
47 24
48 1

22

Table 3: Number of winning Rummikub configurations with a hand of h tiles for a
configuration size of 7 values, 4 colors, and 2 copies of each tile. Note that the solutions
with a * are not found yet.

h solutions
3 48
4 23
5 12
6 1,176
7 1,068
8 816
9 18,912
10 24,004
11 23,088
12 222,549
13 342,624
14 382,880
15 2,023,488
16 3,441,477
17 4,225,324
18 14,567,450
19 25,528,004
20 32,957,292
21 83,299,676

h solutions
21 83,299,676
22 142,777,052
23 186,805,904
24 374,025,439
25 603,930,676
26 775,426,266
27 1,290,486,380
28 1,910,673,477
29 2,338,326,204
30 3,318,889,954
31 4,410,877,676
32 5,002,983,709
33 6,104,467,324
34 7,132,482,924
35 7,277,229,084
36 7,572,253,716
37 7,575,982,124
38 6,703,667,162
39 5,792,305,988

h solutions
40 4,763,463,909
41 3,468,285,700
42 *
43 *
44 *
45 *
46 *
47 *
48 *
49 *
50 985674
51 189672
52 30681
53 4032
54 406
55 28
56 1

23

	Introduction
	Definitions
	Classic rules
	Generalisations for this research
	Terminology

	Related Work
	Methods
	 The algorithm
	 Pseudo-code

	Implementation
	Programming language
	Solution mapping
	Parallel Processing
	Knowing when to stop

	A backward approach
	Mirroring

	Experiments
	Validating
	Expanding

	Conclusions and Further Research

