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Abstract

Games are meant to be played by humans, but even so AI’s have been created to play
games too. Many games are built as a gridworld where elements are kept within designated
tiles. This would be good for implementing Reinforcement Learning(RL) agents that use
a state-space to save its exploration data and choose actions according to it. So a tabular
gameworld can be easily converted into a state-space. However this becomes more difficult
when the player character is separate from the gridworld, where it can exist anywhere between
multiple states. With a continuous location for the player it is hard to compute with a RL
agent, but it has been done before using approximation algorithms and deep learning. But
what happens when the player is bound by this grid, when the player position is contained by
tiles or subdivisions of tiles? In this thesis, the effects on RL agents are explored when the
RL agents are bound by a grid that can be subdivided. With a Python program gameworlds
can be created where a player can interact with the world elements and its physics. Using
a variable called Coarseness the movement of the player can be changed through changing
the amount of subdivisions of a tile. By implementing RL agents, Q-learning, SARSA and
Expected SARSA, they can traverse the world and learn from the environment at multiple
coarseness settings. After testing the results are accumulated into multiple graphs as well
as the shortest path each agent was able to achieve. In small and simple worlds all agents
perform comparatively with only execution time going up with each coarseness setting. As the
complexity of the worlds rise so does the difficulty of the agents reaching the goal. Q-Learning
and Expected SARSA often still perform similar with Expected SARSA usually performing a
little bit better than Q-learning, both of them capable of learning more complex world design.
SARSA performs comparatively badly, unable to finish some of the tests and sometimes unable
to create efficient shortest paths where Q-Learning and Expected SARSA do both. All in
all with a sufficiently well coded agent they can be able to traverse gameworlds with many
subdivisions normally given enough time. Q-learning and Expected SARSA show this, but
SARSA is only good at low complexity. The biggest impact is execution time, as the tiles get
more subdivided the state-space grows with it. Using smaller and less complex worlds reduces
this execution time, a high exploration perimeter helps finding the goal. Future research could
be sub-rewards for reaching new areas, player inputs during subdivided tile movement and
adjusting the state-space implementation.
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1 Introduction

There are many games in the world, naturally they are meant to be played by humans, but with the
availability of computers, modern advances and demand for Artificial Intelligence many games have
been explored to implement some sort of computerized player. May it be by the game developers
themselves to create an antagonist or companion for the player that acts separately, or made
for playing the games instead of the player. External programs than can play games as aids to
the player or by themselves in sections, from start to finish, supervised or even starting with no
knowledge of the game.
Amongst those AI’s are Reinforcement Learning(RL) Agents, that use reinforcement to learn of the
game from nothing using a state-space. Through exploration of gameworld it fills the state-space
with action-reward values to determine what the best action is in each state.
Games are often based on grid systems, tiles with set boundaries and characteristics that define
what they are and do. This is really good for RL agents as these tiles can be concisely converted
into a state-space. The issue for RL agents arises when the player character is not bound by this
same grid system. This means that a player can interact with the tiles and spaces differently than
what an RL agent may expect. A game such as ’Geometry Dash’1, as well as games such as Super
Mario Bros., Castlevania and Celeste use similar tabular worlds. Worlds that consists set tile sets
than can include floors and platforms, hazards such as spikes and different world items than can
be interacted with. With the aforementioned games the players as well as most enemies are loose

Figure 1: Screenshot of the first level in the Geometry Dash game. The playercharacter moves freely
from the gridworld RobTop Games - Steampage.

from this tabular gridworld and are not predefined to be entirely within tiles. Instead they use
hitboxes around the position of the entities location that can float freely through, on top of and
below these tiles. The hitbox interacts with the game world, if the hitbox collides with a floor,
the entity and hitbox will stay on top of the floor. If a hitbox collides with a wall, the entities
horizontal movement stops. If a players hitbox collides with an enemy hitbox or with a hazard, the
player will take damage. As such there are numerous examples of entities and, in particular, the
player interacting with the surrounding environment.
Applying an RL agent to this type of game would mean making compromises somewhere. Using
a state-space as continuous as the players position may be outright impossible. But methods do
exist that can make use of this continuous position, such as using approximation policies and deep
learning. Reducing the state-space will be beneficial to some point, but at what point would one see
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diminishing returns? Where the state-space is coarse enough where the agent makes unnecessary
mistakes due to the rounding towards one state or lacking a good state transition to go from one
state to a further state.
But what happens when the player IS bound by this tabular world? For one, movement may seem
very rough as a result, as the player could move one whole tile per timestep. However this is not
necessary, the player could be programmed to move to sub-tiles, a division of the tiles, so that the
movement of the player does not appear as rough and yet still be bound by the gridworld, but
instead smoother with every further division.
As such one could wonder how the performance of RL agents are affected when such a translation is
made between continuous player movement and a strictly set state-space. Or how the performance
of the agents is effected when traversing such a gridworld where the players location is indeed
locked to this grid, but with differing subdivisions of those tiles to indicate this players location.
Naturally the research question follows and will be addressed in this thesis: Will Reinforcement
agents be affected in performance when more states in relation to tiles are used within
the agents decision process?

1.1 Method

With the research question in mind, a program or game is created to find the results. This program
stands free from previous made games, without the need to lock into their executables or screen
outputs. Without the need to check for framerate pacing and alignment. Then we can research at
our own speed with the settings we desire. But we do need to create a gameworld, where we can
control the player and their inputs, as well as their outputs with the physics of the game.
This gameworld is modifiable to allow a multitude of different configurations of elements as well as
be scalable through the coarseness variable, the variable that determines how many subdivisions of
a tile the players position can partake. The player has access to the controls, which is going forward
and backwards as well as be able to jump or instead simply moving in cardinal directions.

Contributions to the project are:

• A program of code that can create a gameworld environment where the coarseness can be
adjusted, with capabilities for user-defined worlds, visualization of these worlds and taken
paths.

• An implementation of three RL agents that can use the gameworld and play it.

• A set of experiments to determine what the effects of coarseness are on the learning behaviour
of the agents and the effects on computational requirements.

1.2 Thesis overview

This chapter contains the introduction about gameworlds and Reinforcement Learning agents;
Section 2 includes the definitions of used RL agents, their formulas as well as other broad terms;
Section 3 discusses related work; Section 4 describes the creation of the game tools, how each
module is set up and connected; Section 5 describes the experiments on the different gameworlds
and each their outcome; Section 6 concludes and gives suggestions for further work.
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2 Definitions

In the world of AI there is a partition is called Reinforcement Learning Agents. As the name suggest
these agents learn through reinforcement, when an agent takes an action, decided either randomly
or through some formula, in a certain state or location, it records its reward in a table so that it
can compare and choose the actions to take when it re-arrives in this same state. This table is the
State-Space or Q-table the agents use, where all possible states and actions are recorded with the
reward each action gives in each state, usually stored in an array or index, which is a list of items.
The agents used were the Q-Learning agent, State-Action-Reward-State-Action agent(SARSA) and
the Expected SARSA agent.
All agents use the same selection criteria to select an action a from an actionset A. This is called a
greedy action where the agent uses the best action it can find in the current state. However there is
a random chance that the agent will do a random action instead, not including the best action.
In this thesis this chance for a random action is 10 percent, denoted by ϵ. This random action
can help exploring actions and states that have not been recorded into the state-space before, but
it could also lead to taking an objectively bad action, such as entering a state where the agent
dies. Meaning that there is a 1− ϵ = 90 percent chance of choosing the action a that is the best
action b in the action set A of the state Q. The 10 percent remainder is divided over the rest of the
available actions.
This is the formula used for choosing an action with the ϵ-greedy policy:

πϵ−greedy(a) = f(Q, ϵ) =

{
1− ϵ, if a = arg maxb∈A Q(b)

ϵ
|A|−1

, otherwise

The agents also use what is called a policy update, an update to the their respective state tables
with some different implementations for each agent. The Q-table state value Q(st, at) is updated by
modifying its own state value by adding a combination of a learning perimeter α, given Reward
Rt+1 and a static value γ (which is set to 1 in this thesis) that controls the influence of the policy,
a value that changes per policy and lastly subtracting the current state value. With t being the
current timestep and t+ 1 being the next timestep.
Q-Learning[WD92]
With the part [maxaQ(st+1, a)] the Q-learner always updates its policy with the best move it could
have taken in the next state. However this does not take into account that the next state might not
be actually realized, which makes it off-policy.

Q(st, at)← Q(st, at) + α
(
Rt+1 + γmaxaQ(st+1, a)−Q(st, at)

)
SARSA[Lor22]
SARSA is the on-policy variant of the Q-learner, now using [Q(st+1, at+1)] instead to update its
policy. With this policy it always updates the Q-table with the value that was actually realized
from the action that was taken.

Q(st, at)← Q(st, at) + α
(
Rt+1 + γQ(st+1, at+1)−Q(st, at)

)
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Expected SARSA[JGC+19]
The Expected SARSA is a modification of SARSA, using the expected value [Σaπ(a|st+1)Q(st+1, a)].
Instead of sampling the next action like SARSA does, it uses the sum of all possible actions at
the next state to reduce the variance caused by random sampling by the selection policy. In this
implementation Expected SARSA is an on-policy agent as it uses the same policy to calculate the
expected value as is used to select actions.

Q(st, at)← Q(st, at) + α
(
Rt+1 + γΣaπ(a|st+1)Q(st+1, a)−Q(st, at)

)
The agents in this example will traverse a gameworld, a 2D array of locations, each resembling
either Air, through which the agent can freely move, Walls/Floors which the players cannot enter
and Hazards, which the agent dies to. The gameworld also encompasses the Goal location and
player location, the latter of which is influenced by coarseness. In this context coarseness will mean
subdivisions of an integer or gameworld tile, with each subdivision the player can move half of the
previous coarseness level in one step partition or quarter step. At coarseness 0 the player moves 1
tile each step, at 1 it is half a tile, 2 a quarter, 3 one-eighth, etc.
When an agent traverses a world it receives a reward through every step, dying gives a strong low
reward to deter doing that action, reaching a goal ends the game. These rewards can be plotted
over time creating a learning curve. This learning curve usually starts really low, where the agents
are met with an unknown environment and occasionally bump into hazards before ever reaching
the goal. Over time this curve increases where the agents learn to avoid hazards and are able to
more efficiently reach the end goal for a higher reward. When the agent finds optimal strategies to
follow to reach the goal, the curve flattens or converges.

3 Related Works

3.1 Markov Games

To start simple we have Littman’s research[Lit94], in which he describes two learning agents, a
minimax-Q agent and an implementation of the Q-Learning agent that was also used in this thesis.
His research shows that these agents can give good performance in a smaller and clearly defined
state-space. These simple experiments can show the ground work of reinforcement learning agents
and show how simple problems can be solved by them.
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Figure 2: [Lit94]Representation of the soccer field, left is the initial board where with both players
needing to score at the opposite goal. Ball possession is initialized at random and indicted by the
circle. This is a small state-space with gridbound players.

3.2 Atari Reinforcement Learning

With the previous example the basics of RL agents can be explained, but using them can be quite
limited. In this thesis the implementations for Q-Learning, SARSA and Expected SARSA are
unmodified, but sometimes you need well calculated modifications to make agents function within
a new research space. One such modification can be Deep Learning with image data, so that you
can take in image data and convert that into usable data for RL agents. In 2016 this was done by
Zhao et al.[ZWSZ16] to create ’Deep SARSA’ and compare it against ’Deep Q-Learning’ using the
Atari 2600 for the input data.
In 2020 another group took the Atari 2600 one step further. Instead applying Model Based Reinforce-
ment Learning to the agents to learn the games. Kaiser et al.[KBM+19] apply an algorithm called
Simulated Policy Learning (SimPLe) to the Atari console instead. Showing how the performance of
RL agents can differ compared to others, in this case comparing against Rainbow and PPO. Which
can tell what strategies and policies can lead to greater performance than previous research and
implementations.

3.3 Recurrent Neural Networks

As video games often are image data RL agents often are adapted to use this image data. With
Recurrent Neural Networks[MJ01] you can apply another modification of an RL agent. Showing
this off visually we have a Youtube video made in 2017 by SethBling where he shows how an RL
agent sees the input screen and processes this into useful data using Recurrent Neural Networks
generating outputs for the agent called Mariflow[Set17]. Here we can see how continuous data can
be constructed into a much simpler concept, even when the gameworld is not clearly tabular to the
input data, this concept of data can be adapted to work with RL agents. Converting an image into
a simple data stream that, in this case, the neural network can interpret alongside the additional
info about the environment it receives.
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Figure 3: [KBM+19]Showcase of the SimPLe loop, where it 1). Interacts with the world, 2) updates
the algorithms Model of the world and 3) the agent acts with the new parameters of the updated
model

Figure 4: MariFlow showcase. In this figure we can see the screen of the Mario kart game on the left,
with the neural network inputs, layers and outputs overlayed on top. On the right side we see a further
in depth visualization of what the neural network entails. Source: www.youtube.com/Sethbling.

3.4 Starcraft II

Games such as Starcraft II serve as different example. Instead of a small state-space and limited
world elements we have a gameworld with a giant state-space as well as a multitude of players,
which creates more difficult learning criteria and conversion for RL agents.
Yet in 2017 Vinyals et al.[VEB+17] tried implementing an RL agent for the Starcraft game. By
having all the game elements converted from 3D into 2D and making them grid aligned, the game
data will be more machine readable for an RL agent. Converting all game data into several ’feature’
layers of a state-space. This makes RL agents capable of learning how to play this game.

6
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Figure 5: Left is a human interpretable game world representation, right are a multitude of feature
layers for an agent. Source: DeepMind open source PySC2 toolset for Starcraft II.

4 Program Building

In order to answer our research question there are a few requirements that need to be met before
testing and its results can be achieved. We need a gameworld with all its elements, a player that
experiences all physics that correspond to the gameworld, Reinforcement Learning Agents that can
control the player and learn to move towards the goal and lastly a method to gather the data from
the agents.

4.1 Generating worlds

To start with I first needed to create game worlds that an agent has to traverse in order to reach
an end goal. The world size, a player position, walls, floors, air, hazards and the end goal had to be
established to create a functional gameworld.
To make this task easier a way was made to create worlds within the command line interface of
the program that would automatically fill a world with air and lets the user place all the other
elements within the game world. The world is then saved within a .txt file which can be further
modified in a text editor.
When the program environment is created it tries to read a default world.txt, when it is found it
does some basic checks to see if the file is properly formatted. Properly addressing a value to each
variable in the process. When the file is not found the user is asked to type a different file location
or create a new game world.

4.2 World typing

To output the visual of the gameworld and its elements each tile must be printed to the console
with a character, due to the command line interface we need to print the lines in reverse order,
going from array element to array element to output its data of being Air, Wall, Hazard, Goal or
Player.
There are two types of worlds that are most important to this project:

7
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Figure 6: Screenshot of the Command Line Interface. ”P” representing the player character, ”M” is
land/walls, ”A” are hazards, and ”E” representing the end goal position.

4.2.1 Top-down

In the book Reinforcement Learning: An Introduction[SB18], written by Richard S. Sutton
and Andrew G. Barto, we learn about gridworlds. Amongst the gridworld types there is one where
the player is set within a 2 dimensional world which is viewed from the top down. The player is able
to go towards the 4 cardinal direction to reach its goal. This mode was created to see if the agents
performance still closely resembles the implementation of the Reinforcement Learning Agents.

4.2.2 Vertical Slice

One popular 2 dimensional world would be vertical slice, used within primarily older titles or indie
games, such as Super Mario, Castlevania and Celeste. Here the player is set unto a world with
ground to stand on. With the ability to move forwards, backwards and jump. Gravity and speed
are important within this world type as the player can reach different velocities within the same
location. This creates a bigger state-space where each velocity type adds a dimension of complexity
and every value for velocity enlarges this dimension.

4.3 Physics

The player must experience physics in the gameworld, though limited to only moving towards
cardinal directions in the top-down world, in the vertical slice variant there are a multitude of
additions to the gameplay. One such thing is gravity, if the player is airbound, i.e. has no floor
below the player, they will receive an increase in downwards momentum every timestep until the
player is grounded again. Only when the player is grounded on the floor are they able to jump
upwards.
Another added aspect is the velocity, the player is capable of moving multiple tiles in one timestep,
limited to 3 tiles per timestep in each direction. With this velocity aspect a small subset of moves
was added to the vertical slice gameworld as well. No longer does it feature all four cardinal
directions, instead it is jumping, moving left and right, and the combination of the two. But an
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action that moves straight downwards is excluded due to the implementation of gravity.

4.4 Implementation of Coarseness

As coarseness would subdivide each tile 2c times(where c = the set coarseness), this means each
tile is 2c × 2c as large as before. This comes with numerous issues to the physics model, player
movement and collision detection to apprehend.
Since the top-down gameworld would be unaffected by the coarseness changes only to the vertical
slice has an addition been made to the stepping process. Each step now include so called quarter
steps that take the player one coordinate further in accordance to the set coarseness. When the
coarseness is set to 0, there is only one quarter step made per point of velocity. At a coarseness of 1
this is now two quarter steps, at 2 and 3 it will be 4 and 8 respectively.

Coarseness nr. Quarter Steps Total Tile Size
0 1 1
1 2 4
2 4 16
3 8 64
4 16 256
5 32 1024

Table 1: Coarseness against the amount of quarter steps made to move a single tile

As players should not be able to phase through walls and hazards each quarter step now has 4
collision checks at each corner of the player character to see whether the player has entered the
hitbox of a wall, floor, hazard, goal or out-of-bounds, such that player will be corrected to the
right position or outcome. But as in this case only the players position has been modified by the
coarseness, a translation to the players actual position to any gameworld elements had to be made
to function correctly without scaling the entire world array up by the same 2c × 2c value.
To show the gameworld command line output every element indeed had to be printed 2c × 2c times
to show the players actual position. Even though this were a simple addition, the command line
would be quick to become unreadable at higher coarseness values without zooming out unnecessarily.

4.5 Implementation of RL Agents

With the gameworld asking for player input, a person can manually play the program by themselves.
However, for testing how Reinforcement Learning Agents traverse these worlds at different coarseness
levels I need to implement the agents themselves.
To initialize the agents a few parameters need to be set in accordance to the gameworld, such as
the size of the state-space and the number of actions the agents have, which are 4 for the top-down
type and 6 for the vertical slice type. To select an action I implement the ϵ-greedy algorithm that
picks the best action within the current state with a 10% chance of picking a different random
action. Every agent also needs its own update policy, coded in the same way as the formulas in
Section 2 are built up. This means that every agent should have different performance within the
gameworlds, for a good comparison on what can be a good or bad RL agent for these type of tests.
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To test with the agents they need to be set up in a way that they can play these gameworlds
automatically, with multiple exploration settings, from start to finish. Such that the program
cycles through each agent, exploration perimeter, as well as cycling through every episode without
resetting the state-space and repetition to average the results. All the test data must be interpreted
and transferred into graphs to clearly show the performance of each agent at each settings.

4.6 Pygame

To combat the illegibility of the command line interface a different source of visualization should
be used. Therefor, a Pygame function was implemented to show a screen of the gameworld instead
of the previously used text based command line output. Using a set of coordinates the agents path
towards the goal can be plotted. With a dynamically calculated resolution, the gameworld would
be readable at any setting. The maximum resolution is calculated by multiplying the gameworlds
width and height with the coarseness resulting in a pixel multiplier or divisor. By comparing the
world size with the maximum screen size (such as 1920 by 1080 pixels) the pixel multiplier can be
adjusted to fit the screen size properly. In the case a large set coarseness the base size of the world
may exceed the screen size, in this case the pixels are divided to be able to fit, with close attention
that a pixel drawn on screen cannot be less than a pixel in size.

4.6.1 Importing and exporting paths

If a path must be showcased without the use of the programs that manually or automatically play
the gameworld, these programs can export an array of path elements into a JSON file. By running
the visualization module on its own it will ask for a JSON file to import the path from it. With the
import of the gameworld it can display the agents path frame by frame without playing the game.

4.7 Gradient

To show the path of a player in a single image the idea was made to display it in a gradient. The
visualization module was therefor copied and modified to show a single run of an agent. This
program imports the players path in the same way as the visualization module using JSON files.
Now it only displays a single pathway without resetting the background and air tiles. Such that
each frame of the player character is overlayed on top of one another. By slowly increasing the
amount of red and green of the blue player character the player is drawn from blue at the start
to white at the end so that and earlier path can be distinguished from a later path. The finished
result is then saved as a PNG file upon which the program closes.

5 Experiments

To test the final performance of the three implemented agents a diverse testing suite must be set
up to see the effects of coarseness in a multitude of circumstances. Each circumstance much be
easily differentiated from each other to see whether agents’ performance becomes dissimilar in these
situations.
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5.1 Game Worlds

Simple World

This world shows how quick an agent can adapt to finding the goal in a small amount of steps, to
converge into the most optimal route, even at larger coarseness’s.

Figure 7: Pygame representation of the Simple Gameworld, with Blue as the players starting
position, Green as the end goal. White as air in which the player can move freely, Black as walls
and floor into which the player cannot move, Red as hazards to which the player dies and gets
moved back to the start.

Short World

This world the agents deal with a higher step of complexity while still being able to traverse a
similarly small world as the simple world. This should lead to the agents receiving a higher path
length as well as more jumps and turns.

Figure 8: Pygame representation of the Short Gameworld, for color coding see figure 7

Long World

This world is to show how the agents will perform at large speeds, as the agents can move at 3 tiles
per step at a maximum. No turning around, only jumps and two paths, an upper and a lower path.

Figure 9: Pygame representation of the Long Gameworld, for color coding see figure 7
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Tall World

This world tests the jumping process of the agents and whether they can learn mastering the
great amount of simple and complex jumps. Additionally the agents must traverse the same height
downwards, with large amounts of hazards and together with gravity finding a way through the
tight passageways.

Figure 10: Pygame representation of the Tall Gameworld, for color coding see figure 7

Endurance World

This world tests the endurance of the agents to see how they learn a big world where finding the
goal at all is a difficult task. By combining features of the previous worlds, this world features lots
of vertical jumping, horizontal traversal, falling, multiple turns and at the end a split path.

Figure 11: Pygame representation of the Endurance Gameworld, for color coding see figure 7
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5.2 Results

5.2.1 Settings

Each world were tested with the three aforementioned agent settings. Each agent ran with 4 different
exploration perimeters namely: α = 0.01, 0.1, 0.5, 0.9. Each agent ran for 250 episodes with a
maximum of 20000 timesteps each. With 8 repeats to average the tests. In the figures the path
consisting of quarter steps of the agent goes in a gradient from blue to white, with teal representing
a full step, though some full steps are overshadowed by quarter steps. Full blue are the first steps,
almost white are the last steps. The path length is determined by counting every quarter step as
well as every full step.
For reference to the execution time. The testing programs were ran on a Ryzen 5 3600, 16GB of
3200MHz DDR4 and a 7200RPM harddrive.

5.2.2 Simple World

Figure 12: The path of the Q-Agent, Expected SARSA agent and SARSA agent with no coarseness,
coarseness 1 and coarseness 2 respectively in the Simple world. Coarseness 0 has no subdivisions
per tile, coarseness 1 has 4 subdivisions and coarseness 2 has 16 subdivisions. Black being walls,
Red are hazards, green is the goal in the bottom right corner. The players path is a gradient from
dark blue to white. Teal is the player in a position where they take an action. In all three paths
there is a single jump towards the right over the obstacles before reaching the goal in the bottom
right, with only coarseness 2 jumping up before moving.

Discussion

In the simple world all performance seem similar with only minor differences. The best movement
of each agent seems rather similar in each coarseness setting, consisting of a single jump and relying
on the height to carry its speed over the hazards and to the goal as can be seen in figures 12 and 13.
Therefor the agents have the same path length to each other in each coarseness as well as roughly
the same performance curve as can be seen in figure 14. With the shortness and lack of hazards
in this test, all agents in all coarseness levels quickly converge into an optimal movement set as
seen at the high reward level, leveling off at around 100-150 episodes like in figure 14. With each
coarseness level we can see how the path of the agents looks to be more smooth, yet more jagged
by moving up, then sideways and only then down while looking more like a natural jumping curve
at the low coarseness levels.
The biggest differences in the Simple world are in path length and execution time as seen in
figure 15. With the coarseness increasing both path length and execution time increase seemingly
exponentially, most likely due to the size of a single tile increasing by 2c × 2c. This world was quick
to test, where execution time goes from just 3½ minutes to 44 minutes.
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Figure 13: Continuing from figure 12, these
are the paths of the Q-Agent and Expected
SARSA agent, coarseness 3 and coarseness 4
respectively in the Simple world. Coarseness 3
has 64 and coarseness 4 has 256 subdivisions.
The same action happens as in coarseness 2
in figure 12, where the agents jump almost
straight up, then straight right before slowing
down and moving down towards the goal. See
figure 12 for color coding.

Figure 14: One of the performance curves of the
Simple world agents, this one being of coarse-
ness 4. All of the curves of this world look sim-
ilar, only with the lowest rewards going down
due to the coarseness rising. Lower rewards
means bad performance as the agents explore
the world and run into hazards before reaching
the goal. As the agents explore the world they
learn how to reach the goal faster and more
efficiently each time, thus the rewards goes up
the more episodes there are.

Figure 15: On the left is the path length of the agents throughout the coarsenesses of the Simple
world. On the right are the execution times of each program of each coarseness. As the coarseness
rises so does the path length and execution time seemingly exponentially. This can be explained as
the tile size gets multiplied by 2c × 2c
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5.2.3 Short World

Figure 16: These are the best paths of each of the three agents for coarsenesses 0, 1 and 2 of
the short world. Coarseness 0 has no subdivisions per tile, coarseness 1 has 4 subdivisions and
coarseness 2 has 16 subdivisions. Black being walls, Red are hazards, green is the goal down and
left from the center. The players path is a gradient from dark blue to white. Teal is the player in a
position where they take an action. Overall the agents have optimal paths with only the SARSA
agent in coarseness 2 having an extra jump to the left at the start. Some paths opt for moving
under the top middle hazard while others jump over it with preference depending on coarseness.

Figure 17: Continuing from figure 16, these are
the paths of the three agents of coarsenesses 3
and 4 of the short world. Coarseness 3 has 64
and coarseness 4 has 256 subdivisions. Much like
the previous coarsenesses, the paths are mostly
optimal except for a few extra jumps mainly for
SARSA at both coarsenesses and Q-Learning
for coarseness 3, although with no time loss.
The agents mostly show preference at jumping
over the top middle hazard aside from Expected
SARSA at coarseness 4. For color coding see fig-
ure 16

Figure 18: One of the performance curves of
the Short world agents, namely of coarseness
4. As the complexity rises with the coarseness
the performance curves start at a lower reward.
As the coarseness rises it seems that the agents
also take more episodes to converge into a flat
line. Compared to the Simple world in figure
14, the coarseness 4 short test still has not con-
verged after episode 250. In all coarsenesses
but coarseness 0 the SARSA agent shows these
lower performance metrics.
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Discussion

The short world test is rather similar to the simple world test, where the agents are truly capable
of finding a path that works rather optimally. However due to the rise in complexity and length
towards the goal the agents seem to have issues with converging as can be seen in figure 18, where
it takes more than the alotted 250 episodes to do so. The SARSA agent in coarsenesses 1 through 4
have unexpectedly worse performance compared to the other agents being about half as high. Yet
the SARSA agent finds a short path just fine, but cannot seem to exploit this path.
In figure 19 we can see a graph of the path lengths of the agents, this graph tells that the Expected
SARSA agent finds the best shortest paths while just SARSA has trouble finding a short path
length with Q-Learning performing somewhere in the between the two other agents. In the same
figure 19 we see the execution times. Interestingly the coarseness 0 test took longer than coarseness
1, as it seems that coarseness 0 seemingly has a very low reward (far from reward=0) towards the
end compared to the other tests of this world.
We also see an incredible hike in execution time in figure 19 compared to the Simple world in figure
15, going from an already staggering 7.7 hours to an incredible 2.8 days. This can be attributed to
the increased complexity and path length to the goal versus the simple world.

Figure 19: On the left are the best path lengths of each of the three agents at each tested coarseness
level of the short world. We can tell that Expected-SARSA creates the shortest paths while SARSA
is creates the longest. On the right are the execution times for each coarseness test of the short
world. Interestingly coarseness 0 has a higher execution time than coarseness 1. Both graphs follow
a upwards curve corresponding to coarseness seemingly due to the tile size increasing by 2c × 2c

5.2.4 Long World

Discussion

Performance of the SARSA agent proves to be even worse that the previous worlds as can be
seen in figure 23 and a lack of a path in figure 24. In the performance curves SARSA converges
more quickly than the other agents, often to the detriment of finding the end goal. Q-Learning
and Expected SARSA both are very capable of finding a good path towards the goal. We see this
reflected the path length graph in figure 26, where both Q-Learning and Expected SARSA have
similar performance while SARSA’s path length is almost double of the other two in coarseness 3.
Sometimes the agents have a dimple in the performance curve. This can be explained by the two
diverging paths where an agent tries one path, receives too much negative reward before continuing
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Figure 20: The best paths of the three agents for coarseness 0 of the long world with no subdivisions
of the tiles. Black being walls, Red are hazards, green is the goal in the bottom right corner, 1
tile off the ground. The players path is a gradient from dark blue to white. Teal is the player in a
position where they take an action. All three agents take the top path and move to the goal fluently

Figure 21: Paths of the three agents with coarseness 1 of the long world where the tiles are
subdivided into 4. We see an interesting occurrence, both the Q-Learning and Expected SARSA
agents take the bottom path to reach the goal. For color coding see figure 20

Figure 22: Paths of the three agents with coarseness 2 of the long world where the tiles are
subdivided into 16. In contrast to coarseness 1 in figure 21 no agents take the bottom paths, instead
doing some extra jumps in the beginning. For color coding see figure 20

Figure 23: Paths of the three agents with coarseness 3 of the long world where the tiles are
subdivided into 64. The same behaviour as the previous coarseness level in figure 22 when it comes
to the early jumping. Now there is a difference where SARSA is being incapable of creating a
straight line towards the goal, doing several extra jumps and even moving backwards before finally
reaching the goal. For color coding see figure 20
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Figure 24: Path of the Q-Agent and Expected SARSA agent with coarseness 4 in the long world
where each tile is subdivided into 256. Both the Q-Agent and Expected SARSA’s paths look
very similar and optimal. SARSA was unable to finish this coarseness, unable to reach the goal,
somewhat expectable considering the performance of SARSA in the previous coarseness level in
figure 23. For color coding see figure 20

Figure 25: One of the performance curves of the Long world agents, this one being of coarseness 3.
Most curves either look like a normal performance curve or with a small dip in the middle. This
can be the agents trying the bottom path, receiving too much negative reward and then going
to the top path. At higher coarseness levels both Q-Learning and Expected SARSA have trouble
converging to a high reward in the 250 episodes of time they have. In this figure SARSA converges
normally, avoiding hazards but often also being unable to find the goal effectively as seen in figure
23.
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onto the other path. We see in a multitude of paths(22, 23, 24) sometimes multiple jumps in the
beginning. Perhaps this is so that the agents can find a good setup to do the first real jump with
hazards around.
In this world we can see how the physics can allow some moves in some coarsenesses, but disallow
it in others. In figure 21 we can see that deviation from the norm: both Q-Learning and Expected
SARSA take the bottom path, just barely making the jump over the hazards, while none of the
other examples use this bottom path.
In figure 26 we see the execution times, the curve between the coarseness levels is nothing new,
but with another leap in complexity there is another increase in execution time as well, this time
ranging from 4.8 hours to 4.2 days. Ignoring the SARSA path length in the path length graph we
can once again see the same exponential curve where the tile size increases by 2c × 2c

Figure 26: On the left are the path lengths of the Long world at each coarseness level. We can see
that SARSA at coarseness 3 has worse performance compared to the other two agents and previous
coarseness levels, to the point where in coarseness 4 SARSA was unable to finish the test. On the
right we see the execution times of the Long world, where there are no anomalies. Ignoring the
SARSA paths the graphs follow the same trend of growing exponentially with the tile size growing
by 2c × 2c

5.2.5 Tall World

Discussion

Even though the Tall world is completable in every coarseness, it is proving very difficult for the
agents to finish due to the sparse moves that can complete some jumps or falls. Thus the agents
were not able to finish coarseness 4 and surprisingly coarseness 0 neither. SARSA was only able to
finish coarseness 1 as seen in the left image in figure 27.
In this world as can be seen in figure 28 a high exploration value is very important to find the end
goal of the world. With this high exploration perimeter more states are more quickly explored which
leads to finding a way into the next section. In all graphs but coarseness 0, there is a large dip in
the reward curve that both Q-Learning and Expected SARSA experience. This can be explained
by the amount of hazards in the second half of the world. By exploring this section the agents
experience a lot of deaths, which in turn gives a lot of negative reward until they find the end goal,
where the reward curve starts to rise again.
Using the graphs in figure 29 we can draw a better picture. Due to the precise nature of this
world the execution time start off rather high steadily increasing with coarseness, from 14.3 hours
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Figure 27: Coarseness 0 and 4 of the Tall world none of the agents made it to the goal. Only with
coarseness 1 one the left were all agents able to get to the goal, with SARSA having much trouble
at the start. With coarseness 2 in the center and 3 on the right only Q-Learning and Expected
SARSA found a path to the goal, both being quite optimal paths. Coarseness 1 has 4 subdivisions
per tile, 2 has 16 and 3 has 64. Colors are Black being walls, Red are hazards, green is the goal
in the bottom center of the right column. The players path is a gradient from dark blue to white.
Teal is the player in a position where they take an action.

Figure 28: This is a performance curve for the Q-Learning agent of the tall world. In this world
we have an upwards and a downwards section as can be seen in figure 10. This is reflected in the
performance curves as well, where the reward stays mostly constant and no hazards are met until
the agents reach the top of the world and need to move downwards where there are a lot of hazards.
Both explorations values α = 0.5 and α = 0.9 follow this downward trend before rising again by
exploiting a found path towards the goal. Neither α = 0.01 and α = 0.1 have been capable of
reaching the downwards section in this example.
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to 3 days. The latter of which still was not enough to let the agents finish the last coarseness
level, it merely did not have enough steps and episodes to finally find a path to the end goal.
The Expected SARSA and Q-Learning agents show the same downwards trend in figure 28 that
should consequently lead to an upwards trend again thus telling that the agent have found the goal.
Perhaps with enough time even SARSA would follow that same trend.

Figure 29: On the left is the path length of the three agents of the tall world with coarsenesses 1,
2 and 3. No agent was able to complete the level with coarseness 0 and 4 and SARSA was only
able to complete coarseness 1. Expected SARSA looks to be a bit more efficient on finding the best
path compared to Q-Learning. On the right we see the execution times, once again following the
same exponential pattern where the tile size increases by 2c × 2c

5.2.6 Endurance World

Testing of the endurance world was aborted due to the high execution times of the program. Not
only can higher coarsenesses take multiple days, with the enormous state-space the programs can
already use more than 10GBs of RAM at its peak. Running multiple programs on the same system
in a short amount of time would be impossible.
Additionally, looking at the tall world we can tell that the agents have trouble with vertical sections.
With the addition of extra length the agents would have trouble reaching the end at all with the
current settings and features.

5.3 Enveloping Discussion

With complexity of the levels comes a longer path for the agents to find with a longer execution
time which can easily be seen in figure 30. If these paths are too precise the agents may have
difficulty reaching the end goal as not enough states are explored in the allotted timeframe.
We can see that the physics slightly change depending on coarseness, where in coaseness 1 in the
Long world in figure 21 it allows for a clearly faster path than is normally possible.

6 Conclusions and Further Research

In conclusion we now know for certain that increasing the coarseness for observing a world and
increasing the state-space is detrimental to especially execution time. Agents will have a harder time
exploring all the enormous state-space and reaching the goal. This however does not keep the agent
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Figure 30: Comparing Execution time of the 4 different worlds, which clearly shows that all worlds
follow the exponential trend where the tile size increases by 2c × 2c. Two anomalies are the Short
world coarseness 0, that strangely had a longer execution time than coarseness 1, and the Simple
world, that had an overall quick execution time across all coarseness levels compared to the other
worlds

from finding a very optimised path if they are given enough time and time-steps. SARSA however
seems to be unable to keep exploring newer areas when met with many deaths that cause a lot of
negative reward. Q-Learning and Expected SARSA do much better in the regard of coarsenesses
higher than 0 in more complex worlds.
As seen with the Simple and Short worlds it instead may be smarter to subdivide worlds with
longer paths into subsections. Then an agent requires less time exploring this subsection saving
time getting to the subsection of that world.
For further research we can also toy with sub-rewards, where agents receive a one-time reward
reaching a point or section of a world, increasing the likelihood of the agent reaching newer areas.
As a second point of exploration quarter steps can be expanded further. As the physics engine of
the program runs in quarter steps, perhaps the inputs of the agents can be used in the quarter
steps as well, where the agent can change directions and time jumps more precisely during the
quarter steps. This would allow for a more flexible moveset and it would not increase the size of the
state-space, as the agent exists within the world and state-space within quarter steps. Just merely
acceleration has to be calculated differently, but even so requires a large rewrite of the codebase.
Another point would be adjusting the agents to better adapt to the environments, such as having an
exploration focused α value during the start of the program, but later on, such as upon finding the
goal it starts to focus more on exploitation by lowering the α value. To add to this we could adjust
the state-space, such as to include distance to the goal or by adjusting the current state-space like
shortening the state-space to only include whether a speed value is positive or negative and leave
out whether the agent is touching the ground altogether. The distance towards the goal could also
adjust the way rewards are calculated, where getting closer to the goal will give positive rewards
and moving further from the goal will give negative rewards. Though this distance value will be
calculated either through a straight line to the goal or a pathway, may it be an impossible shortest
one, that leads to the goal.
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