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Abstract

This thesis covers Rullo puzzles, which are mathematical puzzles where the player has to
include or exclude numbers in a grid to make the sum of every line equal to the given line-sum.
We decided on a way to determine the difficulty of Rullo puzzles which we use to examine
puzzles. We focus mainly on simple puzzles where guessing is not required to solve them. But
we also touch upon common “deadly patterns” found only in non-simple puzzles.
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1 Introduction

Rullo is a mathematical puzzle where the goal is to eliminate numbers in the grid such that
the numbers on the side of the playing fields equal the sum of all active number in that specific
row or column. A more extensive explanation of the rules and an example game will be given in
Section 1.1.
Rullo was developed in 2017 as an mobile app, it was created by Cresentyr [Cre]. They later
republished the game under the name Meganum.

10 26 16 10 20

23 8 9 8 5 6
13 7 8 3 5 9
17 8 1 8 5 3
8 2 8 5 2 6
21 2 8 4 5 8

10 26 16 10 20

23 8 9 8 5 6
13 7 8 3 5 9
17 8 1 8 5 3
8 2 8 5 2 6
21 2 8 4 5 8

Figure 1: Example 5× 5 puzzle with its solution.

1.1 The rules of Rullo

Rullo is played on a grid of height h and width w, where each square is filled with a number
between 1 and 9. All numbers are given at the start of the puzzle, so a player does not have to
fill in any numbers, unlike a puzzle like Sudoku. On the boundary of the m× n grid there are
numbers. These numbers represent sum of the corresponding rows or columns. However, at the
start the sums do not necessarily correspond correctly with the numbers in their rows or columns.
Going forward, we will call these sums the target-sums of a given line (i.e. row or column). As a
player one has to eliminate numbers in the field such that the sum of each row and column correctly
corresponds with their target-sum.
In this paper we colour code the squares to denote the state they are in. If the background of a
square is white it means that the state is unknown or not yet checked. At the start of a game no
line has been checked so all squares are white. If we know that a square should be excluded because
there is no combination using this element possible to get to the target-sum, we mark this square
as black. Finally, if we are certain a number should be included to get to the desired target-sum we
mark it as green. If we know every square of a certain line we will also make the target-sum green
to denote that the line is completed. See Figure 1 for an example.

1.2 Thesis overview

We explain the formal definitions and explain the rules through an example puzzle in Section 2. In
Section 4 we cover some difficulties found within Rullo. Section 5 lays out the implementation
used. Section 3 presents a discussion of related work. Section 6 provides a detailed explanation of
the conducted experiments and illustrates the respective outcomes they have produced. Section 7
discusses some aspects of Rullo which make puzzles difficult. Section 8 presents the conclusions
drawn from the experiments, and discusses future work. This bachelor thesis was supervised by
Walter Kosters and Luc Edixhoven.
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2 Playing the game

In Section 1.1 we informally have explained the rules of Rullo puzzles, in this section we give
some formal definitions. We also go through an example game, where we show some tactics and
thought processes which help when trying to solve Rullo puzzles manually.

2.1 Definitions

As previously touched upon, a grid in a game of Rullo is of size h × w, where h is the height
of the grid and also the number of rows. And w is the width of the grid and also the number of
columns. Often it is the case that h = w, but this is not necessary.
Because rows and columns have no unique characteristic other than their orientations we will
be using the the term line to denote them. Also, the sum of a row or column will be called the
target-sum.
Furthermore we use a set for which numbers can be put in the grid. We will call this the range R.
R is often a set of consecutive numbers, but this does not have to be the case. A good example
would be the first 10 prime numbers, which will result in interesting puzzles.
If we know the range we can also give some limitations to the target-sum, which satisfies 0 ≤
target-sum ≤ max(R)× ℓ. Here ℓ denotes the length of a line.

2.2 An example game

To give a better understanding of how to achieve the goal, an example game will be played from
start to finish. We use the puzzle discussed in Section 1.1 which can be seen in Figure 2.

10 26 16 10 20

23 8 9 8 5 6
13 7 8 3 5 9
17 8 1 8 5 3
8 2 8 5 2 6
21 2 8 4 5 8

Figure 2: Example 5× 5 puzzle.

If we take a look at the first column we can see that the line-sum should be equal to 10. With
the numbers {2, 2, 7, 8, 8} we can only ever get to 10 by combining a 2 and 8 in any combination.
This leaves the 7 with which it is impossible to make a combination that sums up to 10. Therefore
we can cross out the 7 (depicted with black). For the columns 3 and 4 the thought process is
the same to get to respectively 16 and 10. For column 2 and 5 one would have to approach it
slightly differently, because if we take a closer look at the second column, we find that there is only
one unique combination possible to create 26, which is {1, 8, 8, 9}. Since there are three 8s in this
column we do not know which we need to pick. But the other two numbers 1 and 9 are required to
get to 26, thus we can mark them as included (depicted with green). Looking at the fifth column
we can see a small pattern, because if we want to get the line-sum 20 with any combination from
the multiset {3, 6, 6, 8, 9} we have two possibilities: we can either take {3, 8, 9} or {6, 6, 8}. We can
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see that the 8 is present in both combinations, which means we can mark it as included. But we
can also say something about the other four numbers: if we know one of the four we know the
others as well.

10 26 16 10 20

23 8 9 8 5 6
13 7 8 3 5 9
17 8 1 8 5 3
8 2 8 5 2 6
21 2 8 4 5 8

Figure 3: Board of the example puzzle after the first vertical pass.

After applying the steps to all columns we get the board state as shown in Figure 3. We can now
continue with the rows and this should be easier because some squares are already known. For
example, if we take a look at the first row we see that the 9 is already marked as included. This
means that we are looking for combinations of the multiset {5, 6, 8, 8} that sum to 23 − 9 = 14.
The only way to do this is 6 + 8. Since there is only one 6 we can mark that as included. We cannot
conclude anything about the two 8s. But we do know that 5 should be excluded. If we look at the
second row we also have a square already marked, but here we know the 7 should be excluded. This
means we need to find a combination in {3, 5, 8, 9} that sums up to 13. There is only one way to do
this, which is 5 + 8. Thus we can exclude the 3 and the 9, which completes this particular row. In
the third row we already have the 1 marked as included, so this means we need a combination of
the multiset {3, 5, 8, 8} which sums to 17− 1 = 16. There are multiple ways to reach this, so we
cannot mark anything, what we can say with certainty is that if the 5 is required so is the 3, this
works both ways. We also know that at least one of the 8s is required. The fourth row has another
useful peculiarity, because the line-sum is even and there is only one odd number in the line, we
can confidently say that the odd number, in this row the 5, should be excluded. Unfortunately in
this row we still do not know which numbers to include since we can get to the line-sum in two
different ways: either 8 or 2 + 6. The last row has the exact opposite situation compared to the
previous row. Because the target-sum is odd and there is only one odd number in the line we can
mark it as included. This leaves us with a multiset {2, 8} which needs to sum to 21− 8− 5 = 8.
The only option is to include the 8 and exclude the 2.

10 26 16 10 20

23 8 9 8 5 6
13 7 8 3 5 9
17 8 1 8 5 3
8 2 8 5 2 6
21 2 8 4 5 8

Figure 4: Board of the example game after the first horizontal pass.

Now that we have done a vertical and horizontal pass we get to the game state as seen in Figure 4
and we can continue with another vertical pass. We have previously deduced that for the first
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column we need a 2 and 8 in any combination to get to the line-sum of 10. Since there is only one 2
left we can mark it as included, we cannot deduce anything about the 8s. In the second column we
already have four numbers marked as included. These sum up to 1 + 8 + 8 + 9 = 26, which is equal
to the line-sum. Therefore the last unknown number can be marked as excluded. The situation in
the third column is inverted compared to the second column. We already know that three numbers
should be excluded, which leaves us with two 8s which add up to the line-sum. So we can mark
both as included. In the fourth column we have two numbers marked as included and two marked
as excluded. The sum of the two included numbers is 5 + 5 = 10 which is equal to the line-sum 10.
Thus the last unknown number should be excluded as well. Recall from the first pass that if we
know one of the numbers {3, 6, 6, 9} in the fifth column we can deduct the others. We know that
the 6 is included so the other 6 should be included as well. We also know that the 9 is excluded so
we should also exclude the 3.

10 26 16 10 20

23 8 9 8 5 6
13 7 8 3 5 9
17 8 1 8 5 3
8 2 8 5 2 6
21 2 8 4 5 8

Figure 5: Board of the example game after the second vertical pass.

After doing this vertical pass we end up with the game state depicted in Figure 5 and we are left
with only two unknown numbers. These can be solved by doing a final horizontal pass. For the first
row the numbers marked as included add up to 6 + 8 + 9 = 23 which equals the target-sum, thus
we can mark the 8 as excluded. The third row currently sums to 1 + 8 = 9 which means we need
the other 8 to get to the line-sum of 17. Which means we mark it as included. After finishing up
these two rows we get to the final solution which can be seen in Figure 6.

10 26 16 10 20

23 8 9 8 5 6
13 7 8 3 5 9
17 8 1 8 5 3
8 2 8 5 2 6
21 2 8 4 5 8

Figure 6: Example 5× 5 puzzle solved.
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3 Related work

While there has not been any research into Rullo, as far as we could tell, there are many papers
on puzzles that share similarities to Rullo. One of these puzzles are Nonograms, and they share
a similar structure where one has to mark the field based on the numbers on the outside. As [BK12]
describes,“Nonograms are a popular type of logic puzzles, where a pixel grid has to be filled with
black and white pixels, based on a description that indicates the lengths of the consecutive black
segments for each row and column”. If one makes a tomography (for each line adding the given
lengths) of a Nonogram one gets a Rullo puzzle if the range is {1}. But while the Nonogram
might be considered simple and with a unique solution the Rullo puzzle is not necessarily. There
are Nonograms which can be converted to Rullo puzzles with a unique solution, but this is
the exception, not the rule. Some examples are Nonograms which are either completely filled or
completely empty, as they will be exactly the same as Rullo puzzles. The implementation used to
calculate difficulty in [BK12] is a similar approach to the one used for determining the difficulty for
Rullo puzzles.
Another puzzle which is related to Rullo is Kakuro, also known as Cross Sum. Kakuro is a
mathematical puzzle, designed by Nikoli [Nik], where, similar to Rullo, the sums are given outside
of the playing field. However, there are two major differences between Kakuro and Rullo puzzles.
Firstly in Kakuro none of the numbers in the playing field are given, the player has to fill in these
numbers themselves. To make this possible another rule is used, because in Kakuro numbers are
not allowed to appear more than once in a single column or row, similar to Sudoku. There exists
a puzzle which, when solved, adheres to both the rules of Rullo and Kakuro. One can achieve
this on any n× n grid, where the field is a Latin square and the sums equal to n(n+1)

2
. This puzzle

has a unique solution when adhering to Rullo rules, however when adhering to Kakuro rules the
solution is no longer unique. See Figure 7 for a 3× 3 example.

6 6 6

6 1 2 3
6 2 3 1
6 3 1 2

Figure 7: Solved puzzle which is both a Rullo and a Kakuro

An approach to solving similar pencil-puzzles to Rullo is to describe them as a Constraint
Satisfactions Problem (CSP [RN20, Chapter 6]). If we do that we can use generic CSP solvers
to tackle Rullo puzzles. Some others have already done this for previously mentioned puzzles.
For Nonogram puzzles there have been multiple approaches. Yu, Lee and Chen [YLC11] used a
chronological backtracking algorithm for solving the CSP, while Batenburg and Kosters [BK09]
used combining relaxations into a 2-Satisfiability problem instead. Kakuro has also been converted
to a CSP [Sim08]. Simonis used a “generalized arc consistent (GAC) version of the alldifferent-sum
constraint” to solve Kakuros and compared the results to models using MILP (mixed integer
linear programming) and a PseudoBoolean mapped to a SAT solver.
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4 Difficulties

When solving Rullo puzzles it is not always possible to solve a puzzle without guessing. In this
paper our goal is to find puzzles with a unique solution. When one has to guess to solve a puzzle
perhaps this puzzle does not have a unique solution. There are some common patterns which, when
they are present in a puzzle, make the puzzle not unique. To differentiate between puzzles for
which you have to make a guess and puzzles which do not require any guessing we use the terms
non-simple and simple puzzles respectively. When we are talking about non-simple puzzles, this
means that the player has to make a guess in order to get to a solution. A simple puzzle on the
other hand can be solved step by step without any guessing.

4.1 Variants

There is almost an endless number of possible puzzles for a certain grid size, namely |R|h∗w ∗2h∗w. It
is also possible to think of many different variations. One such variation concerns the numbers that
are filled in the grid. In the example above we used the range R = {1, 2, 3, 4, 5, 6, 7, 8, 9}, denoted
by 1–9, to make it easier to understand for people who are used to Sudokus, however one can
also go for the numbers 1–19 or 2–4. It is even possible to limit the numbers to 1s and 2s. Another
variant is to change the way the numbers on the side are reached. One could multiply each number
in the row instead of adding them. But it is also possible to subtract or divide. When subtracting
or dividing there are different numbers on the top side versus the bottom side. In that case the
number on top minus all numbers in the playing field should equal the number on the bottom. It is
also possible to combine the previous two types of variants, which would result in a playing board
where each field not only contains a number but also contains a sign.

4.2 Deadly patterns

Not every puzzle is of the same difficulty, some are easy, others are hard. But there is another
distinction between puzzles, which is whether they have a unique solution or not. The ideal situation
would be that each puzzle would have one and only one solution, but that is often not the case.
One of the reasons a puzzle does not have a unique solution is a so-called “deadly patterns”, a
term which is used in Sudokus [Sud] to denote groups of squares which can be filled in in multiple
combinations and still have a correct solution. For Rullo it means a group of squares with usually
the same numbers which can be selected in multiple ways.

2 2

2 2 2
2 2 2

2 2

2 2 2
2 2 2

Figure 8: A simple example of a “deadly pattern” in Rullo.

Figure 8 shows a trivial example of a “deadly pattern”. There are also more complex situations
where not all numbers are the same but there are multiple numbers which together cause multiple
“deadly patterns”, see Figure 9 for an example. In this example we have set all numbers which are
not part of the “deadly pattern” to 0. On the right we have guessed the top left number to be
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included. This reveals that there are actually two separate “deadly patterns” in this puzzle. One
is simple and consists of the four 6’s in the puzzles. The other one is more complex consisting of
both 4’s and 2’s, spanning over multiple columns and rows. But it still only contains two different
solutions.

4 10 4 6

2 2 2 0 0
4 0 4 4 0
6 0 6 0 6
8 2 6 2 6
4 2 2 2 0

4 10 4 6

2 2 2 0 0
4 0 4 4 0
6 0 6 0 6
8 2 6 2 6
4 2 2 2 0

Figure 9: A more complex example of a “deadly pattern” in Rullo.
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5 Methodology

In Section 1.1 it was explained that fields in a solved board can have one of two states, either they
are included or they are excluded. But while we are solving the puzzle we have a third state, namely
unknown. At the start of the puzzle every field is in the unknown state and it indicates that we are
not certain in what state the field needs to be. At the start this is the case because we have not yet
checked any lines/fields. The addition of this extra state will help us with solving puzzles.

5.1 Solving a line

To solve a single line we need to have an array of numbers in that line and the line-sum. Before
we will try to solve the line we need to check if we already know the solution to the line. There
are two scenarios which need to be considered. The first one is straightforward and this is a row
that is already completely known and correct. These lines do not need any further processing. The
other scenario exists because of the added unknown state. It is possible that all numbers marked as
included already add to the line-sum even though there are still unknown numbers. This means
that all unknown numbers left need to be marked as excluded. The easiest example of this is a line
with a line-sum of 0, because all numbers need to be marked as excluded.
After all completed lines have been filtered out we get to the main loop for solving a single line.
We have chosen to go through every possible combination within a line. But before check these
combination we filter out all combinations which have a number which is bigger then target-sum,
since these can never be included. If we have a combination, we first check if the combination
corresponds with what we currently already know. This means that if we know a number is excluded
we should filter out all combinations that do not have that number excluded. The same thing needs
to be done for all included numbers.
After filtering the combinations down to all combinations that comply with what we already know,
we calculate the line-sum that combination will result in. If the calculated line-sum equals the
target-sum, we know that that specific combination is a possible combination. We mark all numbers
used in that combination. If we do this for all possible combinations we get a list of all numbers
in the line and how often they appear in combinations. If the number does not appear in any
combination with a correct sum we can mark that number as excluded. Conversely, if a number
appears just as often as there are valid combinations we can mark that number as included.
In Figure 10 we can see an example of a line. This line has been ordered from small to large, but
the same idea applies if the order is different. As we can see the target-sum is 14 which means
that we instantly exclude 15 since it is too big. Then since 14 is an even number and we have only
one odd number left we can also exclude the 3. Furthermore we can see that to get to 14 with the
remaining numbers {2, 4, 8, 8} we need to have one 2, one 4 and one 8. Since there is only one 2
and also one 4 we can include both. But since we have two eights and need only one we cannot say
anything about them. We need to get a hint from one of the columns to be able to make a decision.

14 2 3 4 8 8 15 14 2 3 4 8 8 15

Figure 10: Example of a line.
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5.2 Solving puzzles

In this section it is explained how our algorithm generates and solves puzzles, as well as which
problems can be encountered when solving Rullo puzzles.

5.2.1 Generating puzzles

Before we can solve a puzzle we first need to generate a new puzzle. To generate a random puzzle
we will start by filling every field on the board with a random number in range R. After every field
is filled we generate a solution mask. To do this, we will randomly select a 1 or 0 for a field. This
mask will decide if a field is going to be included (1) or excluded (0) in the final solution. So now
we have a solution mask and a board filled with numbers, so we can now calculate which line-sums
should be used. This is done by looking at each line, and adding the numbers marked as included
to each other, the resulting sum is the line-sum.
This implementation has a pretty big flaw, which is that it is unknown whether a puzzle has a
unique solution. This means that while after we have generated the puzzle we do not know if the
puzzle contains a “deadly pattern” or not. This would be useful information before we start solving
the puzzle, but right now we will have to figure out whether the puzzle contains a “deadly pattern”
or not during the solving of the puzzle.

5.2.2 Solving the puzzle

We start by solving for the columns, we do this by going over each column and solve it as described
in Section 5.1. We then check if the result is the correct solution, if it is not than we will also solve
for every row in the same manner. After one iteration of solving the columns and rows we check if
we actually made any changes. Because if we did not that means that we have reached a “deadly
pattern” which is not solvable by just looking at a single line. This will require us to use a different
approach as explained in Section 5.2.3.

5.2.3 Exhaustive search

The exhaustive search should only be used when a “deadly pattern” has been found since it is
significantly slower than the solution described in Section 5.1. However, there is one problem which
is that it is hard to detect which fields are part of the “deadly pattern”. Therefore we decided
to exhaustively search through all unknown fields at the moment this method is used. For each
unknown field we mark it both included and excluded and in both cases we use the method described
above (Section 5.2.2) to solve the new puzzle. For some puzzle it is necessary that you have to
guess again, this means that Exhaustive search will be used again. After we have gone through
all unknown fields and solved them we compare all found solutions and see how many different
solutions there are. This is useful information for the experiments (see Section 6).

5.2.4 Difficulty measure

Now that we know the approach for solving Rullo puzzles, we can think about how we should
classify the difficulty. There are different approaches to do this, but we chose a simple approach.
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We look at how often we have to check the rows and columns. But since there are puzzles where it
matters whether one starts with rows or columns we use the following formula:

Drow +Dcol

2

So we take the difficulty achieved when starting with rows (Drow) and add that to the difficulty
achieved when starting with columns (Dcol) and we take the average. This means that we have to
do the steps described in Section 5.2.2 twice, firstly starting with checking the columns and then
starting with checking the rows. We have tried to make it as straight forward as possible for the
non-simple puzzles. What we have done is exhaustively search through all possible guesses and
take the difficulty from that point forward and add this to the already achieved difficulty.

5.3 Inverted puzzles

Something worth noting is that when a puzzle gets inverted, the order of steps towards solving the
puzzle stays the same. Inverting a puzzle means that we invert the solution and recalculate the
sums. So if a square is included in one puzzle, it should be excluded it its inverse.

26 9 8 1 8 8 8 9 8 1 8 8

Figure 11: Example of an inverted line.

In Figure 11 we see the second column from the example puzzle. And as we found in Section 2.2
we know in the original line that the 9 and 1 are required to get to 26. In the inverted line the
opposite happens, because here it is impossible to make 8 with either the 9 or the 1 included, and
therefore both are excluded. This logic can be extended to the complete example puzzle, which
results in Figure 12. Here we can see the original puzzle on the left and the inverted puzzle on the
right. Trying to solve this puzzle with the exact same steps as used in Section 2.2, we get to the
solution on the right. The only difference is that when you originally could include a number, we
can now exclude it.
Knowing that inverting a puzzle keeps the difficulty the same and also the approach to solving the
puzzle we will only look at half of the puzzles going forward. To be more specific, we will look at
the puzzles with fewer than or equal to half of the fields required. We did this because we found it
easier to understand puzzles with fewer required fields compared to puzzles with more required
fields when manually solving puzzles.

10 26 16 10 20

23 8 9 8 5 6
13 7 8 3 5 9
17 8 1 8 5 3
8 2 8 5 2 6
21 2 8 4 5 8

17 8 14 12 12

13 8 9 8 5 6
19 7 8 3 5 9
8 8 1 8 5 3
15 2 8 5 2 6
6 2 8 4 5 8

Figure 12: The example puzzle and its inverted counterpart.
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6 Experiments

We ran multiple experiments searching for the most difficult puzzle. Because the number of puzzles
increases exponentially as the size of the puzzles scales, we had to find a balance between size and
thoroughness. This means that for the smaller puzzles we look at all possible puzzles but as the
size increases we only look at a random subset of puzzles.

6.1 Small-sized puzzles

Starting with the smallest puzzles and working our way up, we begin with experiments on a
3× 3 grid. The goal of this first experiment is to go through all possible puzzles and see if there
is anything extraordinary. To be able to solve all possible puzzles we need to limit R. Because
if we use same R as the example puzzle where R = {1, 2, 3, 4, 5, 6, 7, 8, 9} this will result in too
many puzzles, which is not feasible to solve in a reasonable amount of time. To put a concrete
number on this, if we use a R of 1–9 we would have 99 = 387, 420, 489 possible ways to fill the
grid with numbers, and each possibility has 29 = 512 different solutions. This means that there
are 387, 420, 489 × 512 = 198, 359, 290, 368 different puzzles and trying to solve all of them will
take too much time. Therefore we have decided to limit the range to 2–4. This means there are
39 = 19, 683 different ways to fill the grid and thus 19, 683× 512 = 10, 077, 696 different puzzles,
this does include symmetrical puzzles (see Section 5.3, which is still a significant number of puzzles
but it is solvable in a reasonable amount of time. Run time is about 5 minutes.

	0
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Figure 13: Average difficulty based on number of fields required in solution for 3× 3 puzzles.
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In Figure 13 we provide the average difficulty compared to the number of required fields in a
solution. With the number of required fields in a solution we mean that given the solution how
many squares should be marked as included. The average difficulty does not go above 2, this means
that in an average puzzle the player only needs to check the rows once as well as the columns once.
And it does not matter which direction one starts the puzzle.

Difficulty Simple Exhaustive
1 166,371 0
1.5 1,395,258 0
2 2,640,060 0
2.5 511,848 0
3 106,596 87
3.5 13,284 0
4 1,368 183,690
4.5 108 216
5 0 19,962

Required fields Simple Exhaustive
0 19,683 0
1 177,147 0
2 695,466 13,122
3 1,589,394 63,978
4 2,353,203 126,855

Table 1: Distribution between normal and exhaustive search for a given difficulty (left) or number
of required fields (right) on 3× 3 puzzles.

Table 1 shows a table with the exact number of puzzles that require exhaustive search, grouped by
difficulty and number of required fields in the solution. As we can see from the tables there are no
non-simple puzzles when there 0 or 1 required fields, this is because if there are zero the puzzles is
already solved and if there is 1 required field there is only one unknown number, and this is always
in the same position. But as we increase the number of required fields the number of puzzles which
include a “deadly pattern” also increases. There are a total of 4,834,893 simple puzzles and 203,955
non-simple puzzles, this means that 95.95% of the puzzles are simple and can be solved without
guessing. For the other 4.05% one has to make at least one guess to be able to solve them.

4 4 4

4 2 2 2
4 2 2 4
4 4 4 4

4 4 4

2 2 2 2
4 2 2 4
6 2 4 2

Figure 14: The most difficult simple puzzles on a 3× 3 grid. These puzzles have a difficulty score of
4.5.

Figure 14 shows the most difficult puzzles that were found. This might give us some insight in how
difficult puzzles can be made and we might see some returning patterns in experiments on bigger
grid sizes. If we also count the inversions of all puzzles, then for 3× 3 puzzles there are a total of
216 simple puzzles with the highest difficulty found, which is 4.5. But since rearranging the columns
and rows does not change the puzzle in a meaningful way we can always sort the grid in the same
way, with the smallest number in the top left and the biggest in the bottom right. This leaves
us with two unique puzzles with a difficulty of 4.5. These difficult puzzles share some common
characteristics, for starters the first square one can mark can only be marked when checking either
the rows or columns, the other direction does not yield any progress. For the first puzzle one has
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to start with checking the columns and the first known field is the 2 in row 1, column 3. For the
second puzzle we have to start with the rows, here the first known field is the 4 in row 3, column 2.

4 5 6

4 2 2 4
5 2 3 2
6 2 2 4

Figure 15: Most difficult 3× 3 puzzle which uses all number in R. Difficulty score of 4.

As we have seen before the most difficult 3× 3 puzzles do not use all numbers in the range. They
only require two different numbers, but ignore the existence of the 3. If we require all numbers to
be included at least once, the most difficult puzzle we get can be seen in Figure 15. Contrary to the
most difficulty 3× 3 puzzle, for this puzzle it does not matter whether one starts checking the rows
or columns first.

6.2 Medium-sized puzzles

We decided on a more random approach for the 5× 5 puzzles, since going over all possible puzzles
is simply not possible. For any 5× 5 grid, disregarding the range of the puzzle, there are a total of
225 = 33, 554, 432 possible solutions. Even if we were to limit the other variables to extremes one
would still end up with too many puzzles. If we for example take a range R = {2, 3, 4}, which we
used for the 3× 3 puzzles, we would still end up with 325 × 33, 553, 543 ≈ 2.843× 1019 different
puzzles which we need to solve. Not only is this more puzzles than we evaluated on a 3× 3 grid,
each puzzle will also take more time to solve since there are more possibilities to check in each line.
Thus we came to a compromise: we will create a grid filled with random numbers, and then we will
try to solve every possible solution on that grid. We did this on 200 different grids. This results in
a total of 200× 33, 554, 432 = 6, 710, 886, 400 puzzles being evaluated.
Figure 16 shows the maximum difficulty for simple and non-simple puzzles as well as the average
difficulty based on the required fields in the solution. As we can see the average barely increases
between a solution size of 4 with a difficulty of 2 and 12 with a difficulty of 2.5. We can also see
that the peak of the highest difficulty for simple puzzles is higher than the peak of the non-simple
puzzles. This has to do with the fact that we fill a grid completely random. While there are some
“deadly patterns”, none of these 200 boards has more then a few “deadly patterns”.
As indicated in Table 2, the higher difficulty simple puzzles defy initial expectations, showcasing an
unexpected and intriguing pattern. Note that difficulty 9 has no simple puzzles at all but difficulty
9.5 has 1, 192 simple puzzles. This phenomenon can be explained by the fact that if one gets the
same difficulty no matter the starting direction the puzzle is inherently easier, since both directions
have a starting point, while if only one puzzle has a starting point and the other direction gives
no information the puzzle will always be more difficult. For the exhaustive puzzles this somewhat
inverted where difficulty 8.5 has no non-simple puzzles and difficulty 9 has 7, 664 non-simple puzzles.
This is most likely for a similar reason as for the simple puzzles. Since a “deadly pattern” does
not care about which direction one is checking it from, we suspect that some of the non-simple
puzzles with a difficulty of 9 have a “deadly pattern” at the start. This means that the difficulty
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Figure 16: Average difficulty based on number of fields required in solution for 5× 5 puzzles.

for starting with either direction is always the same since the first number we mark as included or
excluded is always going to be a guess.
In Table 2 on the right we can see that the percentage of non-simple puzzles, compared to the
total number of puzzles given a set number of required fields, increases as the number of required
fields also increases. This goes from 0.14% for 2 required fields up to 3.14% for 12 required fields.
As previously mentioned there are two correct solutions for a “deadly pattern”. Combining this
knowledge with the fact that there are 86 non-simple puzzles with 2 required fields, we can say
that there are at least 43 different “deadly patterns” spread out over the 200 boards. This does
however not mean that there are 43 boards with a “deadly pattern”, since it is possible that one
board has multiple unrelated “deadly patterns” present.

12 13 8 8 13

11 4 3 7 1 8
9 3 4 1 5 8
15 9 6 4 5 7
7 2 4 3 7 1
12 3 7 4 3 5

Figure 17: One of the most difficult simple puzzles on a 5× 5 grid we found. The difficulty of this
puzzle is 11.5.

In Figure 17 we can see the most difficult 5× 5 puzzle which we have found. This puzzles has some
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Difficulty Simple Exhaustive
1 84,072 0
1.5 37,493,040 0
2 2,259,840,718 0
2.5 2,308,181,300 0
3 1,301,983,058 0
3.5 463,709,884 0
4 94,626,372 87,766,456
4.5 42,225,718 218,396
5 4,406,920 97,400,764
5.5 3,685,510 371,644
6 214,946 6,088,704
6.5 392,180 27,668
7 4,946 1,835,672
7.5 53,140 3,216
8 142 252,400
8.5 10,274 0
9 0 7,664
9.5 1,192 0
10 0 0
10.5 268 0
11 0 0
11.5 136 0

Required fields Simple Exhaustive
0 200 0
1 5,000 0
2 59,914 86
3 458,163 1,837
4 2,511,371 18,629
5 10,506,662 119,338
6 34,878,006 541,994
7 94,283,622 1,856,378
8 211,336,054 4,978,946
9 397,878,896 10,716,104
10 634,939,154 18,812,846
11 864,249,640 27,230,360
12 1,007,350,226 32,709,774

Table 2: Distribution between normal and exhaustive search for a given difficulty (left) or number
of required fields (right) on a 5× 5 puzzles.

interesting characteristics about it. For example, even though the difficulty differs depending on in
which direction one starts, one can in both directions mark the 6 as included in the second column
and third row, as well as the 5 in the fifth column and row. But because both the 6 and 5 do not
have any further implications one still gets a lower difficulty when starting with the rows. Another
thing worth noting is that in the first few steps one can progress with 2 new squares. After a few
switches one starts to be able to only go further one square at a time. To get to the most difficulty
puzzle, this streak of only being able to progress one square for each step would need to be as long
as possible. Going back to this 5× 5 puzzle, once one is past the series of steps were one is able
to progress one square at a time, the puzzles starts ramping up in pace and one can fill in more
squares with each step. Until eventually the puzzle is completely solved. We have counted how
many squares of progress one can make with each step, given one starts checking the columns first.
This results in the following list: {2− 1− 1− 1− 2− 3− 2− 2− 3− 3− 3− 2}. So it starts of great
with only being able to progress one or two squares each step, but near the end one can progress
three squares each step for multiple steps in a row, which is less than ideal.
As we saw with the most difficult 3 × 3 puzzles, the most difficult puzzle does not necessarily
contain all numbers in range R. However, this puzzle does contain all numbers in R, but this does
not say anything about the difficulty of the puzzle.
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6.3 Large-sized puzzles

For our final experiment we decided to look at even bigger puzzles, namely 7 × 7 puzzles. As
explained previously we cannot compute all possible 5× 5 puzzles, let alone 7× 7 puzzles. And
since bigger puzzles require more time to solve we also cannot use the same approach as we used
for the 5× 5 puzzles. So we have decided to make the puzzles completely random. We generate
both a completely random board as well as a random solution and we try to solve this. All puzzles
are generated independently and we also do not have a check to see if the puzzle has already been
solved, so it is theoretically possible that there are one or more duplicate puzzles in the examples.
But there are a total of 949 ≈ 5.73 × 1046 possible ways to fill a 7 × 7 grid with the numbers in
R = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Add to that the fact that there are 249 ≈ 5.63× 1014 possible solutions
on one grid. This means that the chances that we have included a duplicate or an inversion of a
puzzle are extremely small.
We have evaluated 100, 000, 000 puzzles and while this number seems quite small compared to the
number of 5 × 5 puzzles we have evaluated it still took more time to finish them all. The time
needed to solve all of the 5× 5 puzzles was approximately 4.5 hours. Solving all the 7× 7 puzzles
that we generated took 15 hours. This has a few reasons, firstly because we randomly generate the
solution and we only look at one solution at a time there is a small chance that we get a solution
with very few required fields. In addition the grid size nearly doubled, which means that there
are more combinations to check in each line. Another issue is the existence of non-simple puzzles,
because if we hit a “deadly pattern” too soon we will exhaustively solve a puzzle with too many
unknowns and this takes most of the time. We have tried to prevent this as much as possible by
setting a requirement for exhaustive searching. We will only try to solve non-simple puzzles if we
have already 20 certain squares before we start guessing. Without this limitation it can take hours
before we can solve a single puzzle if we are unlucky.
In Figure 18 we can see the result of this limitation. Because we set this limitation on non-simple
puzzles they do not reach the same difficulty as the simple puzzles. A result of the randomness of
this experiment is the fact that the difficulty peak for simple puzzles is at 23 required fields instead
of 24 as we might expect. We believe that we got “lucky” with a puzzle of size 23 and not with any
puzzle with 24 required fields. The same principle applies to the maximum difficulty of non-simple
puzzles. This fluctuates quite drastically and we believe this is caused by the randomness of the
puzzles in combination with the limitation we set on guessing.
Based on Table 3 we can deduct that the percentage of non-simple puzzles increases as the number
of required fields increases. Even though the puzzles are completely random. There is one exception
to this which is 8 required fields. Here 5.56% of the puzzles are non-simple and for 9 required fields
it goes back down to 1.88%. This outlier is likely caused by the random nature in combination
with the low sample size of 54 puzzles with 8 required fields. In the 5× 5 puzzles we saw that at
most 3.14% of the puzzles were non-simple. For the 7× 7 puzzles this goes up to 10.47%. While
this is only a comparison between two experiments, we can observe that augmenting either the
randomness or the grid size leads to a higher percentage of non-simple puzzles.
On the left in Table 3 we can again see that the highest difficulty for non-simple puzzles does not
go above 16.5, because we have limited when the solver is allowed to switch to guessing. Something
that is interesting to note is the fact that the highest number of games of non-simple puzzle is
more difficult than the peak of the simple puzzles. There are 8 million non-simple puzzles with
a difficulty of 6 up to 6.5, which is the most common for non-simple puzzles. For simple puzzles
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Figure 18: Average difficulty based on number of fields required in solution for 7× 7 puzzles.

the most common difficulty is between 4 and 4.5, with 61.5 million puzzles. While the number of
puzzles for each difficulty is always greater for simple puzzles compared to the non-simple puzzles,
the peak differs. This is because it is unlikely to have a puzzle with both very low difficulty and
which includes one or more “deadly patterns”.

8 14 16 26 13 12 18

16 3 6 2 6 5 2 1
22 7 8 7 8 1 3 6
12 1 2 4 8 1 7 1
26 8 1 3 9 2 3 9
10 6 7 4 6 3 5 3
11 5 5 1 3 1 7 3
10 1 1 2 1 9 6 9

Figure 19: The most difficult simple puzzles on a 7× 7 grid we found. This puzzles has a difficulty
score of 23.5.

The most difficult simple puzzle we found can be seen in Figure 19. When trying to solve this puzzle
one might find out that starting with trying the columns does not yield any progress whatsoever.
But if one starts with the rows one will be able to fill in two different fields. However these two
fields are both in the sixth column, which means that in the next step one can only mark fields in
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Difficulty Simple Exhaustive
2.0/2.5 566,524 0
3.0/3.5 24,553,506 0
4.0/4.5 61,564,060 18,092
5.0/5.5 46,004,624 4,701,448
6.0/6.5 22,678,964 8,144,660
7.0/7.5 10,079,992 4,013,450
8.0/8.5 4,660,222 1,668,608
9.0/9.5 2,249,700 615,720
10.0/10.5 1,131,952 192,964
11.0/11.5 564,944 52,356
12.0/12.5 277,816 12,232
13.0/13.5 131,206 2,528
14.0/14.5 59,642 450
15.0/15.5 25,464 64
16.0/16.5 10,672 14
17.0/17.5 4,270 0
18.0/18.5 1,618 0
19.0/19.5 630 0
20.0/20.5 216 0
21.0/21.5 70 0
22.0/22.5 22 0
23.0/23.5 6 0

Required fields Simple Exhaustive
7 5 0
8 47 2
9 311 7
10 1,543 49
11 6,616 305
12 24,347 1,340
13 75,884 4,585
14 207,045 14,300
15 498,512 38,141
16 1,080,104 91,415
17 2,108,990 192,769
18 3,731,251 364,210
19 6,032,168 619,096
20 8,940,764 960,087
21 12,185,841 1,354,013
22 15,320,772 1,749,462
23 17,832,131 2,071,155
24 19,236,729 2,250,357

Table 3: Distribution between normal and exhaustive search for a given difficulty (left) or number
of required fields (right) on 7× 7 puzzles.

one column. But one is able to almost solve the complete column, the only numbers uncertain are
the 7’s, since one is needed but at this moment it is not known which should be included and which
excluded. If one would start with checking the rows the number of found fields goes as follows:
2− 3− 3− 3− 1− 1− 2− 2− 1− 1− 3− 2− 3− 2− 2− 1− 2− 3− 1− 1− 1− 2− 4− 3. As
one can see it fluctuates between being able to solve 1, 2 or 3 fields each step. To get to the most
difficult puzzle, one would need the streak of being a progress one field at a time to be as long
as possible. In this puzzle we only have a streak of 3 consecutive steps each only being able to
progress one field.
Figure 20 shows one of the most difficult non-simple puzzle we found. We found multiple non-simple
puzzle with a difficulty of 16. This puzzle contains multiple intertwined “deadly patterns”, so to
be able to solve this puzzle we have to guess multiple times. In the left puzzle we have marked
each “deadly pattern” in a different color. This puzzle also contains a complex “deadly pattern” as
explained in Section 4.2.
The right puzzle shows how far one can get in the puzzles before one is forced to make a guess
to solve the puzzle. As we can see, we can get quite far without having to make a single guess,
but to know the last 8 squares we have to make a few guesses. There are two intertwined “deadly
patterns”, one in row 1 and 4, and column 2 and 4 consisting of only ones; the other “deadly
patern” can be found in row 2 and 5, and column 4 and 6 consisting of threes. Since these two
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21 14 10 12 10 12 21

5 4 1 5 1 8 2 4
15 4 8 6 3 2 3 8
16 6 5 2 6 1 9 2
12 9 1 3 1 3 9 2
11 9 4 1 3 3 3 4
22 8 3 7 3 1 1 3
19 9 4 1 5 6 2 8

21 14 10 12 10 12 21

5 4 1 5 1 8 2 4
15 4 8 6 3 2 3 8
16 6 5 2 6 1 9 2
12 9 1 3 1 3 9 2
11 9 4 1 3 3 3 4
22 8 3 7 3 1 1 3
19 9 4 1 5 6 2 8

Figure 20: One of the most difficult non-simple puzzles we have found on a 7× 7 grid. This puzzle
has a difficulty score of 16.

“deadly patterns” have no overlap, it is required to make two different guesses to be able to get to a
solution.
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7 Difficult puzzles

We have made an attempt at creating a generic puzzle which has the maximum difficulty. Unfortu-
nately we did not manage to create such a puzzle. In this section we will go over some approaches
we tried which unfortunately did not yield any success.

15 8 8 4 4 2 2 1 1 15 8 8 4 4 2 2 1 1

Figure 21: Example consisting of powers of 2.

Looking at just a single line we can create pairs, where if the first number of a pair needs to be
included the second one should be the opposite. We can add multiple of these pairs to create a
longer line. An example can be seen in Figure 21. We choose these pairs such that they do not
interact with each other. If we use numbers which are a power of two we get the example row. The
sum required should be 2

ℓ
2 − 1. Here ℓ is the length of the line. This is assuming we start with 1 as

the lowest number, and only use consecutive powers of two.
The right line in Figure 21 shows a potential solution of this particular line. But the interesting
fact about this line is that we can switch the inclusion and exclusion of any number without
affecting the end result. This is a helpful characteristic when trying to create more difficult puzzles.
Unfortunately it is not possible to create difficult puzzles consisting entirely of lines which are
similar, because one runs into a few problems. Firstly, as we noticed before with difficult puzzles,
we want that the starting orientation matters, however with a line like this it is impossible to create
a starting point that results in a simple puzzle and which does not yield all information when
starting with either the rows or columns.

a+ b 2(a+ b)

b a+ b
b b
a a
a a+ b

Figure 22: Example pattern across two columns.

Previously we have looked at a single line, but if we try to combine multiple lines together we have
also come up with a potential pattern for difficult puzzles. In this pattern, seen in Figure 22, we
have tried to create a zigzag pattern, where if one knows one field, one knows all other fields, but
one only progresses one square each step.
In Figure 22 we used a and b, which are numbers in range R, but they should be different from
each other. This pattern only works if the a in the bottom left is known first, and it is included. If
we know that we know that the first a in row 3 is not included. Because we use the same principle
as before we can also say something about the a on the third row and second column.
There are still a few unanswered questions with this pattern, since we need to have a starting point,
which is ideally the a in the bottom left. We can do this by adding one or more columns which
force the a in the bottom left to be included. These additional columns should not be able to give
the player any further hints, which is difficult to create. We have not yet been able to create some
padding for this pattern to be able to create a simple puzzle with a high difficulty. While we do not
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have an answer for the padding, we can extend the pattern to the right multiple times without any
limit.
However, extending the pattern vertically is much more difficult. We would need to introduce a
third variable. We have added an attempt in Figure 23. The first column can still be kept easy
by using the first pattern from this section. For the second column we need to make sure that we
do not give any hints too early. We have added an example for this pattern with a = 1, b = 2
and c = 4. This gives a good indication on how it works and what the potential problems are.
Because while this works for two columns one still runs into some issues when looking at the rows.
Take for example row 3, where we want to go from a known b to an unknown a+ b. This is only
possible because of the padding of other rows. An even more complicated situation is the second
row, because here one wants to go from a a+ b which is known to a c. For this to work one either
needs to make sure that c = a+ b or have some values in the padding which make this step possible.
Trying to expand it even further than 6 rows will create even more of these problems.

a+ b+ c 3(a+ b) + c

c a+ b+ c
c a+ b
b a+ b
b b
a a
a a+ b+ c

7 13

4 7
4 3
2 3
2 2
1 1
1 7

Figure 23: Example pattern across two columns.
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8 Conclusions and further research

In this thesis Rullo is studied. Rullo is a mathematical puzzle game where the player has to
include or exclude numbers in a grid to make the sums of each line equal to their respective line-sum
which is shown on the outside of the grid. We differentiate between non-simple and simple puzzles:
in a non-simple puzzle the player has to guess at least one field to be able to solve the puzzle.
Puzzles which do not require any guessing to get the solution are simple puzzles, and they are the
main focus.
There are some common patterns which, if they are present, require guessing to solve the puzzle.
These patterns are “deadly patterns”. They appear in a multitude of ways, from simple “deadly
patterns” which only include one number which is present on four squares, to more complex “deadly
pattenns” which exists of more numbers across multiple rows and columns.
We have also found another pattern which helps tremendously when trying to solve all possible
puzzles, which is invertibility. We have found that all puzzle are invertible, which means that we
only need to calculate the difficulty of half of the puzzles. Invertibility means that if we have a
puzzle, inverting the solution and recalculating the line-sums the puzzle requires the exact same
steps to solve as the original puzzle. And since the steps to solve the puzzles are the same the
difficulty of both is also equal.
We have ran experiments on three different grid sizes. For each grid size the approach used is
slightly different. While for the small-sized puzzles we can go through all of the possible puzzles, for
the medium-sized and large-sized puzzles this was not possible. Even though the experiments are
slightly different and can not be compared easily, we still found some interesting patterns. Because
to get the most difficult simple puzzle, one requirement is that it matters whether one starts with
checking the rows or columns.

8.1 Further research

There is still many aspects of Rullo puzzles undiscovered. But some things we found interesting
and warrant additional research. Firstly, we suspect that the question of whether a Rullo puzzle
is solvable or not, is NP-complete, although we have not proved it. Similar puzzles are already
proven to be NP-complete, e.g., Nonograms [UN96], Kakuro [Set02, RH10], Sudoku [YS03],
and more. Therefore we suspect that Rullo puzzles are as well.
We have also tried to create difficult puzzles ourselves, but we did not manage to create a generic
approach to create them. This aspect of Rullo puzzles can be further expanded upon. Another
possibility related to creating the most difficult puzzle, is calculating the theoretical maximum
difficulty for any m× n sized puzzle.
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