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Abstract

Higher-dimensional automata are a formalism to model the behaviour of concurrent systems.
They are similar to ordinary automata but allow transitions in higher dimensions, effectively
enabling multiple transitions to be executing at the same time. As ordinary automata generate
string languages HDA generate languages of pomsets with interfaces. We develop some
properties of the category of precubical sets and event consistent precubical sets, which provide
the underlying structure of HDA. We show that the category of higher-dimensional automata
is not cocomplete but does have all small coproducts and filtered colimits. We show that a
HDA is compact if and only if it is finite, that every HDA can canonically be expressed as a
filtered colimit of compact/finite HDA and that the category of HDA is finitely accessible. We
extend the definition of tracks from finite HDA to all HDA and use this to introduce their
languages. We show that the language of a colimit of HDA contains the colimit or union of
the languages of the individual HDA, and that in the case of a coproduct or filtered colimit it
is equal to it. We define parallel composition in the form of a tensor product and show that
the tensor product of colimits of HDA is a colimit of the tensor product of their respective
diagrams. Lastly we show that the repeated parallel composition can be expressed as the
coproduct or filtered colimit of a chain of finite parallel compositions.
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1 Introduction

Higher-dimensional automata (HDA) form a model of ”true” concurrency compared to the in-
terleaving concurrency in ordinary automata. HDA were originally introduced by Pratt [Pra91]
and van Glabbeek [vG91]. Where ordinary automata generate languages of strings, HDA generate
languages of partially ordered multisets with interfaces (ipomsets).
The string languages that can be generated by finite ordinary automata are called the regular
languages. The theorem known as the Kleene theorem states that these regular languages are closed
under union, serial composition and serial Kleene star, and that every non-empty regular language
can be generated by basic languages (those languages L = {”a”} for any symbol ”a”) under these
three operations. This gives rise to the question whether such a Kleene theorem exists for HDA
and ipomset languages as well.
This question was explored by Fahrenberg, Johansen, Struth and Ziemiański in their papers [FJSZ21]
and [FJSZ22]. For this, two new operations were introduced: the parallel composition and the
parallel Kleene star. The parallel composition is what separates the interleaving concurrency of
ordinary automata from the ”true” concurrency of HDA: If we have strings ”a” and ”b” then their
interleavings would be the strings ”ab” and ”ba” (as represented by the linearly ordered multisets
(a→ b) and (b→ a)). However in both cases the strings are still ordered. We say that ”a” comes
after ”b” or ”b” comes after ”a”, they do not take place at the same time. The parallel composition

of the languages {(a→ b)} and {(b→ a)} gives us the ipomset language

{
(a→ b),

(
a
b

)
, (b→ a)

}
.

Instead of linearly ordered sets we have partially ordered sets (which become partially ordered

multisets with interfaces later), the elements a and b in

(
a
b

)
are not ordered and are therefore

”happening at the same time”.

b

a

a

b b

a

a

b

Figure 1: To the left an automata where its language represents the interleavings of the strings ”a”
and ”b” and to the right a HDA where its language represents the parallel composition.

The automaton on the left in the figure above is an ordinary automata (note that all ordinary
automata can be represented as HDA, as shown in [vG06]). The automaton on the right is the
same automata but with an added 2-dimensional cell, represented by the grey square. For ordinary
automata there are nodes and edges which represent the transitions between the nodes. In a HDA

an execution can follow any paths admitted by the geometry. The ipomset

(
a
b

)
represents the

execution path that starts in the bottom left node, transitions to the surface and ends in the top
right node. The parallel composition is the operation on the languages, while the tensor product is
the operation on the HDA that generate those languages such that the tensor product of two HDA
generates the language that is the parallel composition of their two languages.

1



The languages of finite HDA are closed under the parallel composition, as shown in [FJSZ21].
However they are not closed under the parallel Kleene star. The tensor product of arbitrary many
HDA generally results in cells of arbitrary large dimension, which means that the resulting HDA is
not finite. The original goal of this thesis was to find ways to give HDA extra structure such that
something similar to the Kleene theorem might be constructed using a condition that is weaker
than finiteness. While this goal was not really achieved, we were able to prove some structural
properties for the category of HDA and the languages of HDA. Among other things, we show a
way to construct a colimit from a diagram of HDA, that the category of HDA is finitely accessible,
that a HDA is finite if and only if it is compact and that the category of HDA is not cocomplete.
We show that the language of a colimit of HDA contains the colimit or union of the languages of
the individual HDA, and that in the case of a coproduct or filtered colimit it is equal to it. We
define parallel composition in the form of a tensor product and show that the tensor product of
colimits of HDA is a colimit of the tensor product of their respective diagrams. Lastly we show that
the repeated parallel composition can be expressed as the coproduct of a chain of finite parallel
compositions.

In section 2, we introduce precubical sets and their morphisms, which form the basis for HDA. We
develop some of their properties, one of which is that a precubical set is compact if and only if it is
finite. With this we also introduce the category of precubical sets Set□

op

, and prove it is locally
finitely presentable. In section 3 we introduce the condition of event consistency and see if the
properties we proved for precubical sets in the previous section apply to event consistent precubical
sets as well. In section 4 we are finally able to introduce higher-dimensional automata. In section 5
we formally introduce ipomsets and define the gluing composition or serial composition. In section
6 we introduce tracks, which are the execution paths mentioned before, of which their labelling
generates the ipomsets and therefore the languages of higher-dimensional automata. The languages
of HDA and their interactions with colimits are covered in section 7. In section 8 we cover the
tensor product of HDA and their colimits.

2 Precubical sets

In this section we introduce precubical sets, which provide the underlying structure of higher-
dimensional automata. We prove some theorems about colimits of precubical sets and compact
precubical sets. We also prove that the category of precubical sets is locally finitely presentable and
explain what this means.

2.1 Definition of precubical sets

We start with a simplified definition:

Definition 2.1. X is a precubical set if

• X is a family of sets {Xn}n∈N.

• X has elementary face maps δnν,a : Xn → Xn−1 for all ν ∈ {0, 1}, a, n ∈ N≥1 with a ≤ n.
These maps must satisfy the following condition:

δn−1
ν,a ◦ δnµ,b = δn−1

µ,b−1 ◦ δ
n
ν,a
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for all n ∈ N≥2, ν, µ ∈ {0, 1} and a, b ∈ N with 1 ≤ a ≤ b ≤ n.

Here Xn for each n ∈ N is a set containing the n-dimensional elements of the precubical set X.
These Xn are given structure by the elementary face maps δ. It is easiest to look at the elements of
Xn as n-dimensional hypercubes, which means that the elements of X0 are nodes, the elements of
X1 are edges, the elements of X2 are squares, the elements of X3 are cubes and the elements of Xn

for all n ∈ N≥4 are n-dimensional hypercubes. The elementary face maps then identify the faces of
these hypercubes. Applying the elementary face maps on an element of X3, which is a cube, gives
us in total 6 possibly different squares. Applying the elementary face maps on a square gives us 4
edges and applying them again on these edges gives us the nodes.

xδ20,1(x)

δ21,2(x)

δ20,2(x)

δ21,1(x)

δ10,1δ
2
0,1(x) = δ10,1δ

2
0,2(x)

δ11,1δ
2
0,1(x) = δ10,1δ

2
1,2(x)

δ10,1δ
2
1,1(x) = δ11,1δ

2
0,2(x)

δ11,1δ
2
1,1(x) = δ11,1δ

2
1,2(x)

Figure 2: The square x ∈ X2, its four elementary faces and their four corners.

We will refer to the compositions of zero or more elementary face maps as just face maps and for
certain n ∈ N, x ∈ Xn we will refer to the elements that can be reached by the elementary face
maps as faces. Since there are two possible choices for ν and n possible choices for a we see that
every face can be represented by a combination of ν and a for a total of 2n possible faces for an
element in Xn.
We say possible because these faces might not always be unique. In the example in figure 2 we
could identify δ20,1(x) = δ21,1(x) which would make the precubical set into a cylinder or tube. If we
were to identify δ20,1(x) = δ20,2(x) instead we would get a confusing shape that looks something like
a cone. Note that by identifying edges we also identify the nodes that are attached to the edges.
However we can also identify the nodes without identifying the edges, which would give us the case
of parallel edges that have the same starting and ending nodes. For cases of precubical sets where
not all of the faces are unique it’s easier to first imagine the case in which they are unique, and
then identify elements with each other until one gets the desired precubical set.
Something we mentioned were the starting and ending nodes of an edge. In the case of figure
2 the bottom edge starts at the bottom-left node and ends at the bottom-right node. Here the
starting node is reached by δ10,1 and the ending node is reached by δ11,1. For the elementary face
maps ν = 0 gives us the start node and ν = 1 gives us the end node. The same works for the square
x ∈ X2, only in two directions. Here a ∈ {1, 2} decides which direction, 1 being vertical and 2
being horizontal, and ν ∈ {0, 1} decides if we go to the start or the end.
For higher-dimensional hypercubes it works similarly. If we have an n-dimensional element there
are n possible directions or dimensions with each a start and an end. By taking ν = 0 and a = 1
we ”remove” the first dimension by moving to its start or end. After that the second dimension
becomes the first, the third becomes the second etc. This is why in definition 2.1 we have b− 1 on
the right side of the equation. For these simple n-dimensional precubical sets it’s possible to see
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every element as an n-dimensional vector of elements in {0, , 1}, where 0 denotes the beginning
of a dimension, 1 the end and  being everything in between. Applying this to figure 2 gives us the
following:

( , )(0, )

( , 1)

( , 0)

(1, )

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Figure 3: The precubical set of figure 2 imagined as a vector space.

This way of looking at things is most useful when looking at a certain higher-dimensional element
and all elements that can be reached by its face maps. However it still works for some more
complicated precubical sets.

( , )(1, ) = (0, )

( , 1)

( , 0)

(1, ) = (0, )

(1, 0) = (0, 0)

(1, 1) = (0, 1)

(0, 0) = (1, 0)

(1, 1) = (0, 1)

Figure 4: The precubical set of figure 3 with (0, ) = (1, ) identified.

(0, , ) ( , 1, )(0, 0, )

(0, , 1)

(0, , 0)

( , 1, 1)

( , 1, 0)

(1, 1, )

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 1, 0)

(1, 1, 1)

Figure 5: A precubical set that is the combination of two square precubical sets with the rightmost
and leftmost edges identified. The unlabelled middle edge is (0, 1, ). The dimensions in the vectors
are in the order of the second horizontal dimension first and the vertical dimension last.

It is clear how figure 4 works. Due to identifying the vertical edges with each other there is no
difference between (0, s) and (1, s), where s ∈ {0, , 1}. This precubical set can therefore be seen
as a cylinder.
Figure 5 is two 2-dimensional precubical sets glued together on their vertical edges. There are three
sets of parallel edges (the two sets of horizontal parallel lines are separate) which gives us three
dimensional vectors. We will later in section 3 expand on this idea of parallel edges with the notion of
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events, where all parallel edges correspond to the same event. As we will see then these event consis-
tent precubical sets will also rule out cases like if we identified the edges δ20,1(x) and δ

2
0,2(x) in figure 2.

We have now defined precubical sets as families of sets on which elementary face maps are
applied. This works for the most part but we still want to use a category theoretical definition
instead, as it would automatically give us many properties such as cocompleteness (theorem 2.11)
and the Yoneda embedding (remark 2.41.1). We use the following definition:

Definition 2.2. A precubical set is a functor X : □op → Set and the category of precubical sets is
the presheaf category Set□

op

.

The definition for the category □ can be found in [FJSZ21], where it is the skeletal subcategory of
the precube category ⊡. We won’t go into much detail here but the result is a definition which gives
something basically identical to our previous definition but this time defined in category theory.
The objects of □ are linear sequences (1 → 2 → ... → n) with n ∈ N≥1 and the morphisms are
such that they generate the face maps we mentioned before. While the reduced precube category □
won’t really be relevant again the fact that the category of precubical sets is a presheaf category
Set□

op

is important and will be used for multiple proofs. An understanding that goes beyond the
abstract idea is however not necessary, though not properly defining the (reduced) precube category
does have the drawback that we won’t be able to use the Yoneda embedding for theorem 2.44.
We are now ready to introduce precubical maps. Category theory wise these are just the natural
transformations between precubical sets. In practice we can define them like this:

Definition 2.3. Suppose that X and Y are precubical sets. A precubical map f : X → Y is a family
of morphisms (fn : Xn → Y n)n∈N which satisfies the requirement that for all n ∈ N≥1, ν ∈ {0, 1}
and all a ∈ N with 1 ≤ a ≤ n we have

fn−1 ◦ δnν,a = δnν,a ◦ fn

Here for each n ∈ N the map fn is called the component of f at n. By definition the precubical
map f preserves the dimension of the elements in its domain and commutes with the elementary
face maps (and therefore with all face maps).

Definition 2.4. Suppose that X and Y are precubical sets and f : X → Y is a precubical map.
We say that f is an injective/surjective/bijective precubical map if for all n ∈ N the component
fn : Xn → Y n is injective/surjective/bijective.

Theorem 2.5. A precubical map is an isomorphism if and only if it is bijective.

Proof. It is clear that if f is an isomorphism then for all n ∈ N the components fn : Xn → Y n

must be bijective as well.
Suppose that for all n ∈ N the components fn : Xn → Y n are bijective and have the inverse maps
gn : Y n → Xn which gives us the family of maps (gn : Y n → Xn)n∈N. For all n ∈ N, y ∈ Y n there
exists a unique x ∈ Xn with fn(x) = y and therefore x = gn(y). This gives us that for all n ∈ N≥1,
ν ∈ {0, 1} and a ∈ N with 1 ≤ a ≤ n we have

gn−1 ◦ δnν,a(y) = gn−1 ◦ δnν,a ◦ fn(x) = gn−1 ◦ fn−1 ◦ δnν,a(x) = δnν,a(x) = δnν,a ◦ gn(y)

which shows that (gn : Y n → Xn)n∈N defines a precubical map g : Y → X that is also the inverse
of f : X → Y . This then makes f an isomorphic precubical map.
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2.2 Face map theorems

Up to now we have mostly used the elementary face maps, but we also want to introduce easy
notations for all face maps. There are many more theorems for the face maps than we cover in this
section, which can be found in appendix A.

Definition 2.6. Let X be a precubical set. Then for all n ∈ N we denote the identity face map as
δnid : X

n → Xn which sends every x ∈ Xn to itself.

Note that these identity face maps can be used to form the identity map idX : X → X, where for
each n ∈ N we have idn

X = δnid.
The face maps are defined as the composition of any amount of elementary face maps, including the
identity map which is defined above. For the compositions of elementary face maps we introduce
the following notation:

Definition 2.7. Let X be a precubical set, let n ∈ N≥1 and let k ∈ N≥1 with 1 ≤ k ≤ n. Let V be
a k-dimensional vector with elements νi ∈ {0, 1} and let A be a k-dimensional vector with elements
ai ∈ N≥1 such that for all 1 ≤ i < j ≤ k we have 1 ≤ ai < aj ≤ n. Then for all x ∈ Xn and all
ν ∈ {0, 1} we define

δnV,A(x) = δn−k+1
ν1,a1

◦ δn−k+2
ν2,a2

◦ ....δn−1
νk−1,ak−1

◦ δnνk,ak(x)

We will use ν ∈ {0, 1} in place of V to denote a vector where all elements are identically ν.

It’s important to note that we require the vector A to be strictly increasing (if looking at A as a
sequence). This is because of the following theorem:

Theorem 2.8. Suppose that we have n, s ∈ N≥1, s ≤ n, ν1, ..., νs ∈ {0, 1} and a1, ..., as ∈ N≥1 with
1 ≤ as−t ≤ n− t for all 0 ≤ t ≤ s− 1. Then there exists an s-dimensional vector A with elements
ai ∈ N≥1 such that for all 1 ≤ i < j ≤ n we have 1 ≤ ai < aj ≤ n and a sequence µ1, ..., µs ∈ {0, 1}
for which the following is true:

δn(ν1,...,νs),(a1,...,as) = δn(µ1,...,µs),A

Proof. This follows from the condition that δn−1
ν,a ◦ δnµ,b = δn−1

µ,b−1 ◦ δnν,a for all n ∈ N≥2, ν, µ ∈ {0, 1}
and a, b ∈ N≥1 with 1 ≤ a < b ≤ n (note that the statement is trivial for n = 1). We have

δn(ν1,...,νs),(a1,...,as) = δn−s+1
ν1,a1

◦ δn−s+2
ν2,a2

◦ ... ◦ δn−1
νs−1,as−1

◦ δnνs,as

Suppose that for a certain t ∈ N≥1, t < n we have at ≥ at+1. Then we get

δn−1
νt,at ◦ δ

n
νt+1,at+1

= δn−1
νt+1,at+1

◦ δnνt,at+1

where we have at + 1 > at+1.
Suppose that we have a s-dimensional vectors (ν1, ..., νs) and (a1, ..., as) as described. We apply the
following algorithm:

1. Let t = 1.

2. If at ≥ at+1 then:
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(a) Swap νt and νt+1

(b) Increment at by 1 and swap (at + 1) and at+1

3. If for all 1 ≤ t ≤ s− 1 we had at < at+1 then stop.

4. Else let t = t+ 1. If t = s jump to step 1 and if t < s jump to step 2.

Let x and y mark two elements in (a1, ..., as) such that if elements are swapped then the marks
move with them. If at any point in the algorithm x and y are compared and we have x < y (or
y < x+ 1 after swapping) then these marks will never be swapped (again). This is because x and
y can only be compared again if they appear consecutively in the sequence which is true if and
only if they have both been moved the same amount of steps to the right. Assuming that x marks
an element before y we know that x can never overtake y in the sequence before having to be
compared to it.
This means that after two elements are compared the algorithm sorts them correctly relative to
each other. Because the input sequence is finite it takes a finite amount of steps to either compare
every possible pair of elements (which will mean that the output sequence is sorted) or to sort the
sequence. Therefore this algorithm will always return a sorted sequence.
The way the algorithm swaps elements is the same as how they are swapped on the face maps.
Therefore this algorithm results in vectors (ν1, ..., νs) and A as required, which proves the statement.

Theorem 2.9. Every face map can be represented as a face map defined in definition 2.6 or
definition 2.7.

Proof. The identity face map is trivial. For the other face maps the statement is proven in theorem
2.8.

For the specific case of the face maps Xn → X1 for all n ∈ N≥2 we use the following notation:

Definition 2.10. Let X be a precubical set, let n ∈ N≥1 and let a ∈ N≥1 with a ≤ n. We define
the n− 1-dimensional vector An

a = (1, 2, ..., a− 1, a+ 1, ..., n− 1, n).

In other words An
a is the n− 1-dimensional vector that contains every element ≥ 1 and ≤ n in order

except for the element a. Because of theorem 2.9 these form all the vectors needed to construct
face maps Xn → X1 for every n ∈ N≥2.
These cover some of the basic notational shortcuts and face map theorems. There are more advanced
face map theorems for which we will refer to appendix A at the end.

2.3 Colimits of precubical sets

Theorem 2.11. The category of precubical sets Set□
op

is cocomplete.

Proof. Proposition 8.8 from [Awo06] gives us that given any two categories C and D, if the
category D is cocomplete then the functor category DC is also cocomplete. Since the category Set

is cocomplete the category of precubical sets Set□
op

is cocomplete as well.
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So now that we know that every small diagram of precubical sets has a colimit we want to gain some
more insight into the structure of these colimits. In this subsection we will prove some structural
theorems. These proofs will be useful later as well as giving us a better understanding of how
colimits of precubical sets work. At the end of this subsection we will give an intuitive explanation
as to how these colimits work.
We start with a very simple condition for a co-cone to be a colimit.

Theorem 2.12. Let X : J → Set□
op

be a small diagram and let (L, ϕ) be a colimit of this diagram.
Let (N,ψ) be a co-cone of X. Then (N,ψ) is a colimit of X as well if the unique precubical map
q : L→ N such that q ◦ ϕi = ψi for all i ∈ J is an isomorphism.

Proof. Let (M, θ) be a co-cone of X and let p : L → M be the unique precubical map such that
p ◦ ϕi = θi for all i ∈ J . Then p ◦ q−1 : N → M is a precubical map with p ◦ q−1 ◦ ψi = θi for
all i ∈ J . Suppose that f : N →M is a different precubical map that satisfies the property with
f ̸= p◦ q−1. Then f ◦ q : L→M is another precubical map that satisfies the property with f ◦ q ̸= p
which is in contradiction with (L, ϕ) being a colimit. Therefore no such f exists which means that
p ◦ q−1 : N → M gives us an unique precubical map which therefore makes (N,ψ) a colimit of
X.

It is important to note that this condition is stronger than L and N just being isomorphic. Take for
example the diagram X : J → Set□

op

with obj(J) = {1, 2}, mor(J) = ∅, X0
1 = {1}, X0

2 = {2} and
Xn

1 = Xn
2 = ∅ for all n ∈ N≥1. A colimit of this diagram is the precubical set Y with Y 0 = {1, 2}

and Y n = ∅ for all n ∈ N≥1 with the precubical maps ϕ0
1(1) = 1 and ϕ0

2(2) = 2. A co-cone of
this diagram is the precubical set Z with Z0 = {1, 2} and Zn = ∅ for all n ∈ N≥1 but with the
precubical maps ψ0

1(1) = 1 = ψ0
2(2). Here we clearly have Y ∼= Z but it is also clear that (Z, ψ) is

not a colimit of X.
In this theorem we proved that (N,ψ) is a colimit if the map q : L → N is an isomorphism.
Something that is true as well is that q : L→ N being an isomorphism is a requirement for (N,ψ)
being a colimit. We will leave this proof up to the reader.
Now a quick theorem about the coproduct, which will be useful at some points later.

Theorem 2.13. Let X : J → Set□
op

be a small diagram. Then for all n ∈ N, x ∈
⊔

i∈J X
n
i there

exists unique j ∈ J , y ∈ Xn
j such that φn

j (y) = x, where φ is the injection map of the coproduct.

Proof. This follows from the definition of the coproduct in Set, which gives us that all elements in
a coproduct or disjoint union

⊔
i∈J X

n
i are uniquely injected.

This is a rather trivial result, but since it is rather useful it’s best to have it written down. Now we
define a certain equivalence relation:

Definition 2.14. Let X : J → Set□
op

be a diagram with J a small category. We define the
equivalence relation ∼ on X to be generated by the following: For all n ∈ N, i, j ∈ J , x ∈ Xn

i and
y ∈ Xn

j we have
x ∼ y ⇐= ∃ (f : i→ j) with Xn

f (x) = y

We claim that this equivalence relation through quotient sets will give us the colimit of a diagram.
To prove this however will take a while. An alternative definition for ∼ is the following:
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Definition 2.15. Let X : J → Set□
op

be a diagram with J a small category. We define the
equivalence relation ∼ on X as{

(x, y)

∣∣∣∣ n ∈ N, i, j ∈ J , x ∈ Xn
i , y ∈ Xn

j such that
∃k ∈ J , (f : i→ k) , (g : j → k) with Xn

f (x) = Xn
g (y)

}T

where T denotes taking the transitive closure of the set.

It is clear that the set above (before taking the transitive closure) describes a reflexive and symmetric
relation. Note that taking the transitive closure is generally necessary. For example in the case
where we have Xf : Xi → Xj and Xg : Xi → Xk but where there exists no maps between Xj and
Xk for every element x ∈ Xn

i we wouldn’t have Xn
f (x) ∼ Xn

g (x) without the transitive closure.

Remark 2.15.1. As a consequence of theorem 2.13 the equivalence relation works the same whether
we are talking about elements of Xn

i and Xn
j or elements of

∐
i∈J X

n
i . We can therefore define a

relation ∼ on
∐

i∈J X
n
i where we have that φn

i (x) ∼ φn
j (y) is equivalent to x ∼ y.

Theorem 2.16. The canonical quotient map [−]n :
⊔

i∈J X
n
i →

⊔
i∈J X

n
i / ∼ exists for all n ∈ N.

Proof. This follows from the properties of equivalence relations on sets.

We eventually want to use the quotient maps [−]n to construct a precubical map to a precubical
set which we will eventually prove is a colimit. We first need to prove that the equivalence relation
∼ and the quotient maps [−]n properly respect the elementary face maps.

Theorem 2.17. Suppose that X : J → Set□
op

is a small diagram. For all n ∈ N≥1, i, j ∈ J x ∈ Xn
i ,

y ∈ Xn
j , ν ∈ {0, 1} and a ∈ N with 1 ≤ a ≤ n we have

x ∼ y =⇒ δnν,a(x) ∼ δnν,a(y)

Proof. Suppose that for certain n ∈ N≥1, i, j ∈ J , x ∈ Xn
i and y ∈ Xn

j there exists a f : i→ j such
that Xn

f (x) = y. By definition for all ν ∈ {0, 1} and a ∈ N with 1 ≤ a ≤ n we have that

δnν,a(y) = δnν,a ◦Xn
f (x) = Xn−1

f ◦ δnν,a(x)

which gives us δnν,a(x) ∼ δnν,a(y). Due to the way the equivalence relation ∼ is generated this gives
us the above result.

Theorem 2.18. For all [x]n ∈
⊔

i∈J X
n
i / ∼ there exists a unique [y]n−1 ∈

⊔
i∈J X

n−1
i / ∼, ν ∈ {0, 1},

a ∈ N with 1 ≤ a ≤ n such that for all z ∈ [x]n we have δnν,a(z) ∈ [y]n−1.

Proof. Because we are talking about equivalence classes every element of
⊔

i∈J X
n
i is in exactly one

equivalence class. Theorem 2.17 gives us that for u, v ∈ Xn
i , i ∈ J , n ∈ N if u ∼ v, then δnν,a(u) ∼

δnν,a(v) for all ν ∈ {0, 1} and a ∈ N with 1 ≤ a ≤ n. Therefore for all z ∈ [x]n the elements δnν,a(z)

are all sent to the same equivalence class by the quotient map [−]n−1 :
⊔

i∈J X
n−1
i →

⊔
i∈J X

n−1
i / ∼,

which proves the theorem.

Theorem 2.19. We can define a precubical set Y such that Y n =
⊔

i∈J X
n
i / ∼ and [−] :

∐
i∈J Xi →

Y is a precubical map with [−]n defined to be the quotient map
⊔

i∈J X
n
i →

⊔
i∈J X

n
i / ∼ for all

n ∈ N.
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Proof. Using theorem 2.18 we define the face map such that for all n ∈ N≥1, [x]
n ∈

⊔
i∈J X

n
i / ∼

we have that δnν,a[x]
n, ν ∈ {0, 1}, 1 ≤ a ≤ n is the equivalence class with δnν,a(y) ∈ δnν,a[x]

n for all
y ∈ [x]n. This gives us [−]n−1 ◦ δnν,a(x) = δnν,a ◦ [x]n.
Suppose that ν, µ ∈ {0, 1}, n ∈ N≥2 and a, b ∈ N with 1 ≤ a < b ≤ n. We need to prove that

δn−1
ν,a ◦ δnµ,b = δn−1

µ,b−1 ◦ δ
n
ν,a

Suppose that [x]n ∈
⊔

k∈J X
n
k / ∼. Then for all y ∈ [x]n we have

δn−1
ν,a ◦ δnµ,b ◦ [y]n =

[
δn−1
ν,a ◦ δnµ,b(y)

]n−2
=
[
δn−1
µ,b−1 ◦ δ

n
ν,a(y)

]n−2
= δn−1

µ,b−1 ◦ δ
n
ν,a ◦ [y]n

With this Y satisfies all of the necessary conditions for being a precubical set. By definition
[−] :

∐
i∈J Xi → Y is now a precubical map as well.

Theorem 2.20. Suppose that X : J → Set□
op

is a diagram and J a small category. (Y, [−] ◦ φ)
with the precubical set Y as defined in theorem 2.19 is a co-cone of this diagram.

Proof. Theorem 2.19 gives us a precubical set Y and a precubical map [−] :
∐

i∈J Xi → Y .
Combining this precubical map with the injection maps φj : Xj →

∐
i∈J Xi for all j ∈ J gives

us the precubical maps [−] ◦ φj : Xj → Y for all j ∈ J . Suppose that f : j → k is a morphism
in J . Then for all x ∈ Xn

j we have x ∼ Xn
f (x), therefore φ

n
j (x) ∼ φn

k ◦ Xn
f (x) and therefore

[−]n ◦ φn
j (x) = [−]n ◦ φn

k ◦Xn
f (x). This makes (Y, [−] ◦ φ) a co-cone.

Theorem 2.21. Suppose that X : J → Set□
op

is a small diagram and that (N,ψ) is a co-cone of
this diagram. For all n ∈ N, i, j ∈ J , x ∈ Xn

i and y ∈ Xn
j we have

x ∼ y =⇒ ψn
i (x) = ψn

j (y)

Proof. For all n ∈ N, i, j ∈ J and x ∈ Xn
i and y ∈ Xn

j we have that if there exists a f : i→ j such
that Xn

f (x) = y then x ∼ y and ψn
i (x) = ψn

j ◦Xn
f (x) = ψn

j (y) due to the properties of the co-cone.
Because of the way the equivalence relation ∼ is generated this gives us the above result.

The opposite isn’t true for every co-cone. However it is true for colimits which we will prove now.
Later we will prove that it is true only for colimits.

Theorem 2.22. Suppose that X : J → Set□
op

is a small diagram with the colimit (L, ϕ). For all
n ∈ N, i, j ∈ J , x ∈ Xn

i and y ∈ Xn
j we have

x ∼ y ⇐⇒ ϕn
i (x) = ϕn

j (y)

Proof. Theorem 2.21 gives us the implication to the right.
From theorem 2.20 it follows that (Y, [−] ◦ φ) is a co-cone of X. Therefore there exists a unique
precubical map q : L→ Y such that for all n ∈ N, i ∈ J and x ∈ Xn

i we have [−]n◦φn
i (x) = qn◦ϕn

i (x).
Suppose that ϕn

i (x) = ϕn
j (y) for certain n ∈ N, i, j ∈ J , x ∈ Xn

i and y ∈ Xn
j . Then we get

[−]n ◦ φn
i (x) = qn ◦ ϕn

i (x) = qn ◦ ϕn
j (y) = [−]n ◦ φn

j (y)

and therefore x ∼ y, which gives us the implication to the left.

10



Theorem 2.23. Let X : J → Set□
op

be a small diagram and let (Y, [−] ◦ φ) be the co-cone with
the precubical set Y as defined in theorem 2.19 and in theorem 2.20. Then (Y, [−] ◦ φ) is a colimit
of X.

Proof. Suppose that (N,ψ) is a co-cone of X. We start by defining a precubical map p : Y → N as
the following: for all n ∈ N, y ∈ Y n and for all i ∈ J , x ∈ Xn

i such that [−]n ◦ φn
i (x) = y we have

pn(y) = pn ◦ [−]n ◦ φn
i (x) = ψn

i (x)

Note that because of the construction of Y there will always exist such an x. Suppose that i, j ∈ J ,
x ∈ Xn

i and z ∈ Xn
j with [−]n ◦ φn

i (x) = y = [−]n ◦ φn
j (z). This gives us x ∼ z, which as a

consequence of theorem 2.21 gives us that ψn
i (x) = ψn

j (z). This makes pn well-defined for all n ∈ N.
Suppose that n ∈ N≥1, ν ∈ {0, 1} and m ∈ N≥1 with m ≤ n. Suppose that y ∈ Y n. Then for all
i ∈ J , x ∈ Xn

i with [−]n ◦ φn
i (x) = y we have

[−]n−1 ◦ φn−1
i ◦ δnν,a(x) = δnν,a ◦ [−]n ◦ φn

i (x) = δnν,a(y)

This gives us
pn−1 ◦ δnν,a(y) = pn−1 ◦ [−]n−1 ◦ φn−1

i ◦ δnν,a(x) = ψn−1
i ◦ δnν,a(x)

= δnν,a ◦ ψn
i (x) = δnν,a ◦ pn ◦ [−]n ◦ φn

i (x) = δnν,a ◦ pn(y)

making p : Y → N a precubical map. Let r : Y → N be another precubical map with the property
r ◦ [−] ◦ φi = ψi. Suppose that y ∈ Y n for a certain n ∈ N. Then for all i ∈ J , x ∈ Xn

i such that
[−]n ◦ φn

i (x) = y we have

rn(y) = rn ◦ [−]n ◦ φn
i (x) = φn

i (x) = pn ◦ [−]n ◦ φn
i (x) = pn(y)

Therefore for all n ∈ N, y ∈ Y n we have rn(y) = pn(y), which gives us that r = p. Therefore p is a
unique precubical map.
Therefore for all co-cones (N,ψ) of X there exists a unique precubical map p : Y → N such that
p ◦ [−] ◦ φi = ψi for all i ∈ J , which makes (Y, [−] ◦ φ) a colimit of X.

With this we have shown that we can construct our colimit using the coproduct and the quotient
map.

Theorem 2.24. Let X : J → Set□
op

be a small diagram with the colimit (L, ϕ). Then for all n ∈ N,
x ∈ Ln there exists at least one i ∈ J , y ∈ Xn

i such that ϕn
i (y) = x.

Proof. As a consequence of theorem 2.23 we have ϕ = [−] ◦ φ. Theorem 2.13 in combination with
the properties of the quotient map [−]n then gives us the above result.

Theorem 2.25. Let X : J → Set□
op

be a small diagram. Suppose that (L, ϕ) is a co-cone of X
such that for all i, j ∈ J , n ∈ N, x ∈ Xn

i and y ∈ Xn
j we have

x ∼ y ⇐⇒ ϕn
i (x) = ϕn

j (y)

and such that for all n ∈ N, x ∈ Ln there exists a i ∈ J with ϕn
i (y) = x. Then (L, ϕ) is a colimit of

X.
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Proof. Using theorem 2.19, theorem 2.20 and theorem 2.23 we get that (Y, [−] ◦ φ) is a colimit of
X with Y n ∼=

⊔
i∈J X

n
i / ∼ for all n ∈ N. Since we have x ∼ y ⇐⇒ ϕn

i (x) = ϕn
j (y) for all i, j ∈ J ,

n ∈ N, x ∈ Xn
i and y ∈ Xn

j we also have

[−]n ◦ φn
i (x) = [−]n ◦ φn

j (y) ⇐⇒ ϕn
i (x) = ϕn

j (y)

for all i, j ∈ J , n ∈ N, x ∈ Xn
i and y ∈ Xn

j . Because (Y, [−] ◦ φ) is a colimit of X and (L, ϕ) is a
co-cone of X there exists a precubical map q : Y → L such that q ◦ [−] ◦φi = ϕi for all i ∈ J . Using
theorem 2.24 we get that for all n ∈ N, x ∈ Y n there exists at least one i ∈ J , y ∈ Xn

i such that
[−]n ◦ φn

i (y) = x. Suppose that x, y ∈ Y n for a certain n ∈ N. Because there exist i, j ∈ J , x′ ∈ Xn
i ,

y′ ∈ Xn
j with [−]n ◦ φn

i (x
′) = x and [−]n ◦ φn

j (y
′) = y we get

qn(x) = qn(y) =⇒ qn ◦ [−]n ◦ φn
i (x

′) = qn ◦ [−]n ◦ φn
j (y

′)

=⇒ ϕn
i (x

′) = ϕn
j (y

′) =⇒ [−]n ◦ φn
i (x

′) = [−]n ◦ φn
j (y

′) =⇒ x = y

Because we obviously have x = y =⇒ qn(x) = qn(y) we get

qn(x) = qn(y) ⇐⇒ x = y

which means that q : Y → L is injective. Suppose that we have a n ∈ N and x ∈ Ln. Then there
exists a i ∈ J , y ∈ Xn

i with ϕn
i (y) = x which gives us that qn ◦ [−]n ◦ φn

i (y) = x, which makes q
surjective as well. Using theorem 2.5 we then get that q : Y → L is an isomorphism, which means
that (Y, [−] ◦ φ) is isomorphic with (L, ϕ), making (L, ϕ) a colimit of X.

2.3.1 Intuitive explanation of colimits of precubical sets

Now that we have proven some important structural theorems for the colimits of precubical sets,
we want to stop and look at what this looks like in practice.
Let’s start with a simple example of a coproduct. We take the small discrete category J with
obj(J) = N≥1 and mor(J) = ∅. For each i ∈ J let Xi be the precubical set containing two nodes
which are connected by a single edge which we will label xi. This gives us the coproduct

x1
x2
.
.
.
xi
.
.
.

Now we want to look at a colimit that is neither a coproduct nor a filtered colimit. Let J be a
small category with

obj(J) = N≥1 ∪ {(n, n+ 1) | n ∈ N≥1}

mor(J) =
{idi : i→ i | i ∈ obj(J)}∪

{(fn,n+1 : n→ (n, n+ 1)) | n ∈ N≥1}∪
{(fn+1,n : n+ 1 → (n, n+ 1)) | n ∈ N≥1}
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For each i ∈ N≥1 we let Xi again be the precubical set containing two nodes connected by a
single edge labelled xi. For each (i, i+ 1) ∈ {(n, n+ 1) | n ∈ N≥1} let X(i,i+1) be the precubical set
containing three nodes and two edges, where node 1 and 2 are connected by the edge labelled xi
and where node 2 and 3 are connected by the edge labelled xi+1. For all i ∈ N≥1 we define the
precubical maps Xfi,i+1

: Xi → X(i,i+1) and Xfi+1,i
: Xi+1 → X(i,i+1) as mapping the edge labelled

xi in Xi to the edge xi in X(i,i+1) and mapping the edge labelled xi+1 in Xi+1 to the edge xi+1 in
X(i,i+1). For all i ∈ N≥1 this gives us

xi

xi+1

xi xi+1

Xi

X(i,i+1)

Xi+1

:

:

:

Xfi,i+1

Xfi+1,i

With this we have defined the diagram X : J → Set□
op

. Let (L, ϕ) be the colimit of this diagram.
Recall that theorem 2.22 gives us that for all i, j ∈ J , n ∈ N, x ∈ Xn

i and y ∈ Xn
j we have

x ∼ y ⇐⇒ ϕn
i (x) = ϕn

j (y)

To understand what the colimit looks like we need to look at the nodes. Let i ∈ N≥1. In the
precubical set Xi we have a node at the start of the edge xi and one at the end. The end node
of Xi, as shown in the figure above, is mapped to the same node as the start node of Xi+1 in the
precubical set Xi,i+1. Therefore these nodes are equivalent under the relation ∼, which means that
they are also mapped to the same node in the colimit L by the precubical injection maps ϕi and
ϕi+1. The same goes for the end node of Xi+1 and the start node of Xi+2, and the same is true for
all i ∈ N≥1. The colimit will therefore be as follows:

x1 x2 x3

The diagram we just defined is not filtered however. The objects i ∈ N≥1 and i+ 2 ∈ N≥1 are not
mapped to a common object. We want to define a filtered diagram with the same colimit as above.
We define J as the following small category:

obj(J) = {(i, j) | i, j ∈ N≥1, i ≤ j}

mor(J) = {(f : (i1, j1) → (i2, j2)) | i1, i2, j1, j2 ∈ N≥1, i2 ≤ i1 ≤ j1 ≤ j2}

It is clear that this category has all identity morphisms and all compositions of morphisms. It is
not empty, it has no parallel morphisms and for all objects (i1, j1) , (i2, j2) ∈ obj(J) there exists the
object (max (i1, i2) ,max (j1, j2)) for which both objects are mapped onto. Therefore J is a filtered
category.
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We define the diagram X : J → Set□
op

as follows: For all objects (i, j) ∈ J X(i,j) is the precubical
set with j − i+ 2 nodes and j − i+ 1 edges labelled xi, xi+1,..., xj. This gives us:

xi xi+1 xj

The precubical maps we define as inserting the smaller precubical set into the larger one. This gives
us:

X(i1,j1)

X(i2,j2)

xi1 xj1

xi2 xi1 xj1 xj2

Xf(i1,j1),(i2,j2)

for all (i1, j1) , (i2, j2) ∈ obj(J) with i2 ≤ i1 ≤ j1 ≤ j2. Using the same arguments as for the
non-filtered colimit it follows that the filtered colimit of this diagram is the same.

2.3.2 Filtered colimits

While we prove everything for all small colimits, we are specifically interested in filtered colimits.
Something we will prove later is that all precubical sets (and all HDA) are filtered colimits of
a small filtered diagram of finite precubical sets (or finite HDA). For starters we will prove the
following property:

Theorem 2.26. Let X : J → Set□
op

be a small filtered diagram. Let n ∈ N and let I ⊆ obj(J) be a
finite subset. For all i ∈ I we identify the elements xi ∈ Xn

i such that for all i1, i2 ∈ I there exist
j ∈ J and morphisms f : i1 → j and g : i2 → j such that Xn

f (xi1) = Xn
g (xi2). Then there exists a

k ∈ J , y ∈ Xn
k and morphisms hi : i→ k for all i ∈ I such that Xn

hi
(xi) = y.

Proof. The statement is trivial for |I| ∈ {0, 1, 2}. Let I = {i1, i2, i3}. For ease of notation we say
that xi1 = x1, xi2 = x2 and xi3 = x3. We have the objects j1, j3 ∈ J and the morphisms f1 : i1 → j1,
f2 : i2 → j1, g2 : i2 → j3 and g3 : i3 → j3 such that Xn

f1
(x1) = Xn

f2
(x2) and X

n
g2
(x2) = Xn

g3
(x3).

Because J is a filtered category we can use the second property which tells us there exists a
k ∈ obj(J) and morphisms h1 : j1 → k and h3 : j3 → k. Then because h1 ◦ f2 : i2 → k and
h3 ◦ g2 : i2 → k are parallel morphisms the third property then gives us there exists a k′ ∈ obj(J)
and a morphism h : k → k′ such that h ◦ h1 ◦ f2 = h ◦ h3 ◦ g2. Finally this gives us

Xn
h◦h1◦f1 (x1) = Xn

h◦h1◦f2 (x2) = Xn
h◦h3◦g2 (x2) = Xn

h◦h3◦g3 (x3)

which proves the statement for all I with |I| = 3.
Suppose that |I| > 3. We can apply the above for any three elements {i1, i2, i3} of I, which
then gives us a k ∈ J and a y ∈ Xn

k as shown above. We can use this to construct a new set
I ′ ({k} ∪ I) \ {i1, i2, i3} with |I ′| = |I| − 2. Since the statement is true for all |I| ∈ {0, 1, 2, 3} it is
therefore true for all |I| ∈ N.
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Let X : J → Set□
op

be a small filtered diagram. Recall that the relation ∼ is defined as the
transitive closure of the set in the theorem below. In this theorem we will prove that this set is
already transitive.

Theorem 2.27. In the case that J is a filtered category the equivalence relation ∼ can be defined as

∼=

{
(x, y)

∣∣∣∣ n ∈ N, i, j ∈ J , x ∈ Xn
i , y ∈ Xn

j such that
∃k ∈ J , (f : i→ k) , (g : j → k) with Xn

f (x) = Xn
g (y)

}
Proof. Suppose that for certain n ∈ N, i1, i2, i3 ∈ J and x1 ∈ Xn

i1
, x2 ∈ Xn

i2
and x3 ∈ Xn

i3
there exist

j1, j3 ∈ J , f1 : i1 → j1, f2 : i2 → j1, g2 : i2 → j3 and g3 : i3 → j3 such that Xn
f1
(x1) = Xn

f2
(x2) and

Xn
g2
(x2) = Xn

g3
(x3). Then theorem 2.26 gives us that there exists a k ∈ J and maps h1 : j2 → k

and h3 : j3 → k such that h1 ◦ f2 = h3 ◦ g2. This gives us

Xn
h1

◦Xn
f1
(x1) = Xn

h1
◦Xn

f2
(x2) = Xn

h3
◦Xn

g2
(x2) = Xn

h3
◦Xn

g3
(x3)

which shows that for filtered categories the above set is already transitive, making it the same as
the set in definition 2.14.

Theorem 2.28. Let X : J → Set□
op

be a small filtered diagram. Let n ∈ N and let I ⊆ obj(J) be
a finite subset. For all i ∈ I we identify the elements xi ∈ Xn

i such that for all i1, i2 ∈ I we have
xi1 ∼ xi2. Then there exists a k ∈ J , y ∈ Xn

k and morphisms hi : i → k for all i ∈ I such that
Xn

hi
(xi) = y.

Proof. This follows from theorem 2.26 and theorem 2.27.

2.4 Images of precubical sets

In this subsection we introduce a new way of construction precubical sets. Namely through families
of subsets of precubical sets that are closed under the face maps and later through images of
precubical maps. We end this subsection by constructing a certain filtered diagram of certain
precubical sets which will eventually be used to prove that every precubical set is the filtered colimit
of finite precubical sets.
We start with this first theorem:

Theorem 2.29. Let Y be a precubical set. Any family of sets {Xn}n∈N with Xn ⊆ Y n for all n ∈ N
that is closed under the face maps defines a precubical set X and there exists a canonical precubical
map f : X → Y .

Proof. This trivially follows from the fact that Y is a precubical set and we take the definition of
the face maps from there. We can define the precubical map f : X → Y as the one that sends every
x ∈ Xn to fn(x) = x ∈ Y n for all n ∈ N.

The family of sets being closed under the face maps means that for all y ∈ Y n with n ∈ N if we
have y ∈ Xn then for all ν ∈ {0, 1} and a ∈ N≥1 with 1 ≤ a ≤ n we have δnν,a(y) ∈ Xn−1.

Theorem 2.30. Let X and Y be precubical sets and suppose that Xn ⊆ Y n for all n ∈ N. If for all
n ∈ N≥1, all x ∈ Xn ⊆ Y n, ν ∈ {0, 1} and a ∈ N≥1 with 1 ≤ a ≤ n we have (δX)

n
ν,a (x) = (δY )

n
ν,a (x)

then there exists a canonical precubical map f : X → Y .
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Proof. The precubical set X gives us a family of sets {Xn}n∈N that satisfies the conditions in
theorem 2.29. Since the precubical set that is constructed using this theorem has the same elements
and the same face maps as X it is the same as X which therefore gives us the canonical precubical
map f : X → Y .

These first two theorems underline the relation between precubical sets and subsets of the components
of precubical sets. As the image of a map is also a subset of the codomain we get the following
theorem:

Theorem 2.31. Let X and Y be precubical sets and let f : X → Y be a precubical map. Then
the image of f , notation f(X), is a precubical set and there exist canonical precubical maps
g : X → f(X) and h : f(X) → Y with f = h ◦ g.

Proof. From theorem 2.29 it follows that f(X) defines a precubical set. We can simply define a
precubical map g : X → f(X) with gn(x) = fn(x) for all n ∈ N and x ∈ Xn, which by definition of
f preserves the face maps. We can define h as the canonical precubical defined in theorem 2.29,
which by construction gives us f = h ◦ g.

This shows that the image of a precubical map is a precubical set. The same is true for the union
of images of precubical maps (with the same codomain).

Theorem 2.32. Let {Xi}i∈I be a family of precubical sets, Y be a precubical set and let {fi : Xi → Y }i∈I
be a family of precubical maps. Then the union of the images of fi : Xi → Y , notation

⋃
i∈I fi (Xi),

is a precubical set as well and there exist canonical precubical maps Xi →
⋃

i∈I fi (Xi) for all i ∈ I.

Proof. Using theorem 2.29 we define
⋃

i∈I fi (Xi) as the precubical set with
(⋃

i∈I fi (Xi)
)n

=⋃
i∈I (fi (Xi))

n for all n ∈ N. Then for all i ∈ I we can define fi (Xi) using theorem 2.31. Theorem
2.30 then gives us the canonical precubical maps gi : fi (Xi) →

⋃
i∈I fi (Xi) for all i ∈ I, which

combined with the canonical precubical maps hi : Xi → fi (Xi) gives us the precubical map
gi ◦ hi : Xi →

⋃
i∈I fi (Xi).

Theorem 2.33. Let {Xi}i∈I be a family of precubical sets, Y be a precubical set and let {fi : Xi → Y }i∈I
be a family of precubical maps. Then for all S ⊆ T ⊆ I there exist canonical inclusion maps⋃

i∈S fi (Xi) →
⋃

i∈T fi (Xi).

Proof. This follows from theorem 2.30 and theorem 2.32.

In the following theorem we construct the small filtered diagram we mentioned in the beginning.
The goal is that, from some precubical set Y , we can create a small filtered diagram in a specific
way such that every precubical set in the diagram is finite (defined later) and the colimit is Y itself.

Theorem 2.34. Let {Xi}i∈I be a non-empty family of precubical sets, Y be a precubical set and let
{fi : Xi → Y }i∈I be a family of precubical maps. We define the small category J as follows:

obj(J) = {S | S ⊆ I, 1 ≤ |S| <∞}

mor(J) = {(f : S → T ) | S, T ∈ obj(J), S ⊆ T}

We define the diagram D : J → Set□
op

as the following: For all S ∈ obj(J) we define DS =⋃
i∈S fi (Xi).
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For all morphisms f : S → T if S = T we define Df : DS → DT as the identity map and if S ⊊ T
we define Df : DS → DT as the canonical inclusion map.
The category J is filtered. The filtered colimit of this diagram is

(⋃
i∈I fi (Xi) , ϕ

)
, with ϕS : DS →⋃

i∈I fi (Xi) the canonical inclusion maps.

Proof. It is clear that J is not empty. For all S, T ∈ J there exists a S ∪ T ∈ J and by definition
morphisms f : S → S ∪ T and g : T → S ∪ T . By definition the category J contains no parallel
morphisms, which therefore makes it a filtered category.
For all S ∈ obj(J) we define ϕS : DS →

⋃
i∈I fi (Xi) as the canonical precubical maps as defined in

theorem 2.33. We define the precubical maps Df : DS → DT as the canonical inclusion maps from
theorem 2.33, which means that for all x ∈ Dn

S, n ∈ N we have Dn
f (x) = x ∈ Dn

T . Since ϕS and ϕT

are canonical inclusion maps as well this gives us ϕS = ϕT ◦Df . This makes
(⋃

i∈I fi (Xi) , ϕ
)
a

co-cone of the diagram D. We clearly have for all n ∈ N, x ∈
(⋃

i∈I fi (Xi)
)n

that there exists a
S ∈ J and a y ∈ Dn

S such that ϕn
S(y) = x.

For all S, T ∈ J , n ∈ N, x ∈ DS and y ∈ DT if we have ϕn
S(x) = ϕn

T (y) then we have by definition
that x = y. For all S, T ∈ J we have S ∪ T ∈ J with morphisms f : S → S ∪ T and g : T → S ∪ T
which gives us Xn

f (x) = x = y = Xn
g (y) and therefore x ∼ y. Combined with theorem 2.21 this

shows that
(⋃

i∈I fi (Xi) , ϕ
)
satisfies the conditions of theorem 2.25, making it a filtered colimit of

D.

2.5 Finite precubical sets

We now define what finiteness means for precubical sets, which works as one would expect.

Definition 2.35. A precubical set X : □op → Set is called finite if it satisfies the following
conditions:

• For all n ∈ N the set Xn is finite.

• There exists a m ∈ N such that for all n ∈ N with n ≥ m we have Xn = ∅.

Alternatively requiring that
⊔

n∈NX
n must be finite gives us an equivalent definition.

Theorem 2.36. Let {Xi}i∈I be a family of precubical sets, Y be a precubical set and let {fi : Xi → Y }i∈I
be a family of precubical maps. If S ⊆ I is a finite subset and for all i ∈ I the precubical sets Xi

are finite then
⋃

i∈S fi (Xi) is finite as well.

Proof. This follows from the fact that for all n ∈ N we have
(⋃

i∈S fi (Xi)
)n

=
⋃

i∈S (fi (Xi))
n by

definition, since the finite union of finite sets is again a finite set and since for all n ≥ maxi∈S (mi)
with mi being the dimension of fi (Xi) for all i ∈ S we have

(⋃
i∈S fi (Xi)

)n
=
⋃

i∈S (fi (Xi))
n =

∅.

Theorem 2.37. Let X be a precubical set. For all n ∈ N, x ∈ Xn we can construct a precubical set
Yx which contains only x and every element that can be reached with the face maps from x. There
exists a canonical precubical map γx : Yx → X with γnx (x) = x.

Proof. This follows from theorem 2.29.

Theorem 2.38. Every precubical set is the filtered colimit of finite precubical sets.
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Proof. Let X be a precubical set and let {Yx}x∈Xn, n∈N be the family of precubical sets as defined
in theorem 2.37. Since by definition for all x ∈ Xn, n ∈ N we have Yx = γx (Yx) the family with its
precubical maps satisfies the conditions for theorem 2.34.
Theorem 2.36 gives us that for all finite subsets S ⊆ I the precubical set DS is finite. Since by
definition we have X =

⋃
x∈Xn, n∈N Yx this makes X the filtered colimit of a diagram of finite

precubical sets.

2.6 Compact precubical sets

Now we define what compact precubical sets are. In this subsection we want to prove that this
condition is equivalent with finiteness, which means that every compact precubical set is finite and
every finite precubical set is compact.

Definition 2.39. A precubical set X : □op → Set is compact if the corepresentable functor

Hom(X,−) : X → Set

preserves filtered colimits. This means that for every filtered category J and every diagram Y : J →
Set□

op

the canonical morphism

lim−→
i∈J

Hom (X, Yi)
≃−→ Hom

(
X, lim−→

i∈J
Yi

)

is an isomorphism.

This definition requires some explaining. What we first need to do is construct a filtered diagram
Hom (X, Y ) using the filtered diagram Y . For all i ∈ J we have the objects Hom (X, Yi) and for all
i, j ∈ obj(J), (f : i→ j) ∈ mor(J) we have the maps

Hom (X, Yf ) : Hom (X, Yi) −→ Hom (X, Yj)
g 7−→ Yf ◦ g

Where g : X → Yi is a precubical map which is mapped to the precubical map Yf ◦ g : X → Yj.

Let
(
lim−→i∈J Hom (X, Yi) ,Φ

)
be a filtered colimit of this diagram, and let

(
lim−→i∈J Yi, ϕ

)
be a filtered

colimit of the diagram Y : J → Set□
op

. Then
(
Hom

(
X, lim−→i∈J Yi

)
,Hom (X,ϕi)

)
is a co-cone of

the diagram Hom (X, Y ) with

Hom (X,ϕi) : Hom (X, Yi) −→ Hom
(
X, lim−→i∈J Yi

)
g 7−→ ϕi ◦ g

being the injection maps. Note that for all i, j ∈ obj(J) and (f : i→ j) ∈ mor(J) we have
Hom (X,ϕj) ◦ Hom (X, Yf ) = Hom (X,ϕi) since we have ϕj ◦ Yf = ϕi.
Because of the universal property there exists a unique morphism U : lim−→i∈J Hom (X, Yi) →

Hom
(
X, lim−→i∈J Yi

)
, which is the canonical morphism mentioned in definition 2.39. Furthermore

we get the following commutative diagram:
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Hom(X,Yi)

lim−→i∈J Hom(X,Yi) Hom
(
X, lim−→i∈J Yi

)
Φi

Hom(X,ϕi)

U

for all i ∈ J .

Theorem 2.40. Every compact precubical set is finite.

Proof. Suppose that X : □op → Set is a compact precubical set. Theorem 2.34 gives us that X
is the filtered colimit of finite precubical sets. Let D : J → Set□

op

be the diagram defined in this
theorem with X = lim−→i∈J Di. We will use the maps shown above. Because X is compact we get
that the canonical morphism

U : lim−→
i∈J

Hom (X, Yi)
≃−→ Hom (X,X)

is an isomorphism. We have idX ∈ Hom(X,X) and therefore U−1 (idX) ∈ lim−→i∈J Hom (X, Yi). By
definition of the colimit on sets the morphisms Φi are jointly surjective for all i ∈ J . Therefore
there exists a i ∈ J and a g ∈ Hom (X, Yi) such that Φi(g) = U−1 (idX). This then gives us
idX = U ◦Φi(g) which because the above diagram commutes gives us idX = Hom (X,ϕi) (g) = ϕi ◦g.
This means that the identity factors through a finite precubical set Yi. Because idX is surjective
the map ϕi : Yi → X must be surjective as well and since Yi is finite this means that X must be
finite as well.

Definition 2.41. A precubical set X is representable if the following statements are true:

1. There exists a k ∈ N such that |Xk| = 1 and for all n ∈ N with n > k we have Xn = ∅.

2. Every element in X can be reached by the unique element x ∈ Xk through the face maps.

3. Let n,m ∈ N, 1 ≤ m ≤ n and x ∈ Xn. Then for all νi, µi ∈ {0, 1}, ai, bi ∈ N, 1 ≤ ai ≤ n and
1 ≤ bi ≤ n for all i ∈ N, 1 ≤ i ≤ m such that for all i, j ∈ N, 1 ≤ i < j ≤ m we have ai < aj
and bi < bj. Then we have

δn(ν1,...,νm),(a1,...,am)(x) = δn(µ1,...,µm),(b1,...,bm)(x)

if and only if νi = µi and ai = bi for all i ∈ N with 1 ≤ i ≤ m.

This definition also gives us that every representable precubical set is finite as well. From theorem
2.8 it follows that every face map Xn → Xn−m with n,m ∈ N, 1 ≤ m ≤ n can be expressed as a
face map δn(ν1,...,νm),(a1,...,am) with (ν1, ..., νm) and (a1, ..., am) as defined above. Therefore the third
statement states that every pair of different face maps will map the same element to two different
elements.
This definition might look complicated but the result is that the representable precubical sets are
the most ”trivial” precubical sets of their dimension. A representable precubical set of dimension
0 is simply a single node, one of dimension 1 is two nodes connected by a single edge and one of
dimension 2 is a precubical set like in figure 2. The representable precubical sets are the largest
precubical sets of their dimension that satisfy the first two statements of definition 2.41.
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Remark 2.41.1. Our definition of representability is the same as the precubical set being naturally
isomorphic to Hom (−, C) for some C ∈ □. If k ∈ N is the number such that |Xk| = 1 then this
object is C = [k] = (1 → 2 → ...→ k) as described in [FJSZ21].

Note that if Y : □ → Set□
op

is the Yoneda embedding then for all C ∈ □ we have Hom (−, C) =
Y(C). The k-representable precubical sets are also referred to as the standard k-cubes, analogous
to the terminology in simplical sets.
The above remark would be a very useful fact as it would give us that all representable precubical
sets are compact with little proof, but since we haven’t properly defined the category □ we can’t
really do that. Proving it manually will also give us more insight as to how precubical sets, precubical
maps and colimits work.

Theorem 2.42. Let X and Y be finite precubical sets of dimension k ∈ N that satisfy the first
two properties of definition 2.41. Then there exists a precubical map f : X → Y if and only if for
x ∈ Xk and y ∈ Y k we have

δk(ν1,...,νm),(a1,...,am)(x) = δk(µ1,...,µm),(b1,...,bm)(x)

⇓
δk(ν1,...,νm),(a1,...,am)(y) = δk(µ1,...,µm),(b1,...,bm)(y)

for all νi, µi ∈ {0, 1}, ai, bi ∈ N, 1 ≤ ai ≤ n and 1 ≤ bi ≤ n for all i ∈ N, 1 ≤ i ≤ m such that for
all i, j ∈ N, 1 ≤ i < j ≤ m we have ai < aj and bi < bj.

Proof. Let f : X → Y be a precubical map and let x ∈ Xk and y ∈ Y k. Then we have to have
fk(x) = y and because f commutes with the face maps we have

fk−m ◦ δk(ν1,...,νm),(a1,...,am)(x) = fk−m ◦ δk(µ1,...,µm),(b1,...,bm)(x)

⇓
δk(ν1,...,νm),(a1,...,am) ◦ fk(x) = δk(µ1,...,µm),(b1,...,bm) ◦ fk(x)

Suppose that the implication is true. We can define fn : Xn → Y n for all n ∈ N with fk(x) = y and

fk−m ◦ δk(ν1,...,νm),(a1,...,am)(x) = δk(ν1,...,νm),(a1,...,am)(y)

with m = k − n. Because of theorem 2.8 and the third property of representable precubical sets
every element in Xn with n ∈ N, n < k can be described as δn(ν1,...,νk−n),(a1,...,ak−n)

(x) for certain

(ν1, ..., νk−n) and (a1, ..., ak−n). This describes the behaviour of fn for all n ∈ N on every element
of Xn and since the implication in the theorem statement is assumed to be true this makes fn

well-defined. Since the components commute with the face maps by definition the family of maps
{fn}n∈N satisfies the properties for precubical maps and therefore f is a precubical map.

There are two things to note: The first is that the precubical map f : X → Y in the theorem
above is always unique, since there is only one element x ∈ Xk can be mapped to and every other
mapping is then defined by the requirement that f commutes with the face maps. The other thing
to note is that in the case that X is representable then the statement is true for every precubical
set Y that has the required properties. This leads into the following theorem:
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Theorem 2.43. Let X and Y be precubical sets such that X is a representable precubical set of
dimension k ∈ N. Then for every y ∈ Y k there exists a unique precubical map fy : X → Y such
that for the unique element x ∈ Xk we have fk

y (x) = y. These are the only precubical maps X → Y .

Proof. Using theorem 2.29 we can create a precubical set Z with Zk = {y} which is closed under
the face maps (Zk−1 contains every element that can be reached by an elementary face map from
y, Zk−2 contains every element that can be reached by an elementary face map from an element
in Zk−1 etc.). This gives us the precubical map g : Z → Y with gk(y) = y. Theorem 2.42 then
gives us that there exists a precubical map h : X → Z, which then gives us the precubical map
fy : X → Y with fy = g ◦ h.
Since we must have hk(x) = y (with x ∈ Xk) this gives us fk

y (x) = y as required. Note that fy
must be unique, since the requirement fk

y (x) = y determines the mapping of the other elements
because precubical maps must commute with face maps and every other element can be reached by
x through the face maps.
Note that because x ∈ Xk needs to be mapped to some y ∈ Y k these precubical maps are the only
precubical maps X → Y .

This means that any precubical map f : X → Y with X a k-dimensional representable precubical
set can be uniquely identified with a y ∈ Y k. We can now finally prove the following:

Theorem 2.44. All representable precubical sets are compact.

Proof. Let X be a representable precubical set of dimension n and let D : J → Set□
op

be a small

filtered diagram with the colimit
(
lim−→i∈J Di, ϕ

)
. Recall the diagram below theorem 2.39. Suppose

that lim−→i∈J Di is not empty (in which case the statement would be trivial, since then both sets in

the top of the diagram would be empty as well).

Let f ∈ Hom
(
X, lim−→i∈J Di

)
. Because of theorem 2.43 there exists a unique y ∈ lim−→i∈J D

n
i such

that for the unique element x ∈ Xn we have fn(x) = y. Also note that f is the only precubical

map in Hom
(
X, lim−→i∈J Di

)
that sends x to y. Theorem 2.24 then gives us that there exists a i ∈ J

and a xi ∈ Dn
i such that ϕn

i (xi) = y. Using theorem 2.43 again gives us that there exists a unique
precubical map g ∈ Hom (X,Di) with g

n(x) = xi and therefore ϕn
i ◦ gn(x) = ϕn

i (xi) = y. Therefore
the morphism Hom (X,ϕi) sends g to f , which also means that U ◦ Φi ◦ g = f . This then gives us
that U is surjective.

Let f1, f2 ∈ lim−→i∈J Hom (X,Di), f ∈ Hom
(
X, lim−→i∈J Di

)
such that U ◦f1 = U ◦f2 = f . Then there

exist i, j ∈ J , gi ∈ Hom (X,Di) and gj ∈ Hom (X,Dj) such that Φi ◦ gi = f1 and Φj ◦ gj = f2. This
then also gives us that U ◦Φi ◦ gi = f and U ◦Φj ◦ gj = f which gives us that ϕi ◦ gi = ϕj ◦ gj = f .
Because of theorem 2.43 there exist unique xi ∈ Dn

i , xj ∈ Dn
j and y ∈ lim−→i∈J D

n
i such that

gni (x) = xi, g
n
j (x) = xj and f

n(x) = y. This gives us ϕn
i (xi) = ϕn

j (xj) = y, which due to theorem
2.22 means that there exist k ∈ J , hi : Di → Dk and hj : Dj → Dk such that hi◦gi (xi) = hj ◦gj (xj)
and therefore hi ◦ gi = hj ◦ gj. This means that we have Hom (X, hi) (gi) = Hom (X, hj) (gj) and
therefore f1 = Φi ◦ gi = Φj ◦ gj = f2. This then gives us that U is injective.

Therefore the canonical morphism U : lim−→i∈J Hom (X,Di) → Hom
(
X, lim−→i∈J Di

)
is an isomorphism

for every small filtered diagram D : J → Set□
op

, which means that X is a compact precubical
set.
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Theorem 2.45. The finite colimit of compact precubical sets is again a compact precubical set.

Proof. This follows from proposition 1.3 of [AR94].

Theorem 2.46. Every finite precubical set is compact.

Proof. Let X be a finite precubical set of dimension k ∈ N. We define the small category J as

obj(J) =
⊔
n∈N

Xn

mor(J) =
{(
f : δnV,A(x) → x

) ∣∣n,m ∈ N, x ∈ Xn, V,A with |V | = |A| = m
}

We define the diagram D : J → Set□
op

where for all n ∈ N, x ∈ Xn the precubical set Dx is a
representable precubical set of dimension n and for all

(
f : δnV,A(x) → x

)
we define Df : DδnV,A(x) →

Dx as the precubical map that sends the unique element of Dm
δnV,A(x) to δ

n
V,A(y), with y being the

unique element of Dn
x .

We can then define (X,ϕ), with for all n ∈ N, x ∈ Xn the injection maps ϕx : Dx → X being the
canonical precubical maps that send the unique element of Dn

x to x ∈ Xn. Suppose that we have
i, j ∈ J and a morphism f : i → j. Let x ∈ Xn with n ∈ N be the element x = j. By definition
we have i = δnV,A(x). The precubical map ϕi sends the unique element of Dn

i to δnV,A(x) and the
precubical map ϕj sends the unique element of Dn

j to x. Because of theorem 2.43 there exists at
most one precubical map from Di to X. Since we have ϕi : Di → X and ϕj ◦Df : Di → X this
means that we must have ϕi = ϕj ◦Df . This makes (X,ϕ) a co-cone of D.
Suppose that we have n ∈ N, i, j ∈ J , x ∈ Dn

i and y ∈ Dn
j such that x ∼ y. Theorem 2.21 then

gives us that ϕn
i (x) = ϕn

j (y).
Suppose that we have n ∈ N, i, j ∈ J , x ∈ Dn

i and y ∈ Dn
j such that ϕn

i (x) = ϕn
j (y) = z. Then

there exist precubical maps Dz → Di and Dz → Dj which send the unique element of Dn
z to x and

y respectively. This then gives us that x ∼ y.
For all n ∈ N, x ∈ Xn we have x ∈ J such that ϕi : Dx → X sends the unique element of Dn

x to x.
Therefore (X,ϕ) satisfies the requirements for theorem 2.25 which makes it a colimit of D.
Because X is a finite precubical set

⊔
n∈NX

n is finite as well and therefore J is a finite category.
The precubical sets Di are representable for all i ∈ J which because of theorem 2.44 makes them
compact. Therefore X is the finite colimit of compact precubical sets which because of theorem
2.45 makes it compact.

Corollary 2.46.1. A precubical set is finite if and only if it is compact.

Proof. This follows from theorem 2.40 and theorem 2.46.

2.7 Category of precubical sets

We can now understand the following definition:

Definition 2.47. A category C is locally finitely presentable if it satisfies the following condition:

1. C is cocomplete.

2. The full subcategory Cc of C consisting of the compact objects is essentially small.
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3. Any object in C is a filtered colimit of a diagram of compact objects.

As we have proven before of course we can replace ”compact” with ”finite” in the above definition.

Theorem 2.48. For C any small category the category of presheaves SetC is locally finitely
presentable.

Proof. This follows from remark 3 of [CRV0401].

Theorem 2.49. The category of precubical sets Set□
op

is locally finitely presentable.

Proof. Since □op is small theorem 2.48 gives us that Set□
op

is locally finitely presentable.

In later chapters we will keep checking how many of the conditions stated in definition 2.47 remain
true for the category of event consistent precubical sets and the category of HDAs. While these
categories might not turn out to be locally finitely presentable it’s still interesting to see why not
and what does turn out to be true. The same goes for the equivalence of finiteness and compactness.

3 Event consistent precubical sets

In this section we introduce event consistent precubical sets, which are precubical sets that satisfy
a certain condition. This condition introduces the idea of events, which will become relevant
when we move on to higher-dimensional automata. We will look at colimits of diagrams of event
consistent precubical sets, we will introduce the category of event consistent precubical sets as a full
subcategory of Set□

op

and look at what of the conditions for local finite presentability it inherits.

3.1 Definition event consistency

Using lemma 18 from [FJSZ21] we get the following:

Definition 3.1. A precubical set X is event consistent if and only if there exists an equivalence
relation ≡ on X1 such that for all x ∈ X2, ν, µ ∈ {0, 1} and a, b ∈ {1, 2} we have δ2ν,a(x) ≡ δ2µ,b(x)
if and only if a = b.

Here we have defined an equivalence relation on the set of edges of a precubical set. To understand
how this equivalence relation works it is best to look at the following example again.

xδ20,1(x)

δ21,2(x)

δ20,2(x)

δ21,1(x)

δ10,1δ
2
0,1(x) = δ10,1δ

2
0,2(x)

δ11,1δ
2
0,1(x) = δ10,1δ

2
1,2(x)

δ10,1δ
2
1,1(x) = δ11,1δ

2
0,2(x)

δ11,1δ
2
1,1(x) = δ11,1δ

2
1,2(x)

Figure 6: The square x ∈ X2, its four elementary faces and their four corners.
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The condition on the equivalence relation is that for all x ∈ X2, ν, µ ∈ {0, 1} and a, b ∈ {1, 2} we
have δ2ν,a(x) ≡ δ2µ,b(x) if and only if a = b. This means that in the example above we must have
δ20,1(x) ≡ δ21,1(x) and δ20,2(x) ≡ δ21,2(x) and we must also have δ20,1(x) ̸≡ δ20,2(x), δ

2
0,1(x) ̸≡ δ21,2(x),

δ21,1(x) ̸≡ δ20,2(x) and δ
2
1,1(x) ̸≡ δ21,2(x). In other words: the parallel edges are equivalent under ≡

and edges that have a common higher face (in this case x) but that are not parallel cannot be
equivalent under ≡. A precubical set is event consistent if such an equivalence relation can be
realized without contradiction. The above precubical set is a very simple and clear example of an
event consistent precubical set. For an example of a precubical set that is not event consistent we
have the following: We start with a precubical set

x y zδ20,1(x)

δ20,2(z)

which consists of three squares x, y and z glued together by identifying δ21,1(x) = δ20,1(y) and
δ21,1(y) = δ20,1(z). This precubical set is still event consistent. We can define an equivalence relation
with four different equivalence classes: one containing all of the vertical edges and three containing
both horizontal edges for each of x, y and z. This is the smallest possible equivalence relation as
defined in definition 3.1, which we will later refer to the event relation. With this it becomes clear
what we can do to make the precubical set not event consistent. By identifying δ20,1(x) = δ20,2(z) we
get the following precubical set:

x y z

Figure 7: Example of a precubical set that is not event consistent (left and bottom right edges
identified). Taken from [FJSZ21].

Here we have to have δ20,1(z) ≡ δ20,1(x), but since we have identified δ20,1(x) = δ20,2(z) this then also
gives us δ20,1(z) ≡ δ20,2(z). This means that there exists no equivalence relation that satisfies both
conditions as defined in definition 3.1, which means that this precubical set is not event consistent.
One might look at this example and think that a precubical set cannot be event consistent if for
certain x, y ∈ X2 and ν, µ ∈ {0, 1} we have δ2ν,1(x) = δ2µ,2(y), but this is not the case. It is only a
problem if we would also have δ2ν,2(x) ≡ δ2µ,2(y), since this would by the transitive property give us
δ2ν,1(x) ≡ δ2µ,2(x). A precubical set is not event consistent if it contains a square of which all of the
edges have somehow become parallel.
Event consistency of a precubical set depends on the existence of an equivalence relation that
satisfies certain properties. We can instead using one of the properties define a unique equivalence
relation which we will refer to as the event relation.
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Definition 3.2. Any event consistent precubical set X admits a smallest equivalence relation owing
to lemma 18 from [FJSZ21]. It is given as the transitive closure of{(
δ2ν,a(x), δ

2
µ,a(x)

)
| x ∈ X2, ν, µ ∈ {0, 1}, a ∈ {1, 2}

}
. We will refer to this smallest equivalence

relation as the event relation, and we call its equivalence classes the universal events of X.

We will now mostly refer to the event relation, instead of a possible different equivalence relation.
It is by definition the smallest equivalence relation such that for all x ∈ X2, ν, µ ∈ {0, 1} and
a, b ∈ {1, 2} if a = b, and therefore if it doesn’t satisfy the ”only if” part of the condition then
no equivalence relation will (since this requires certain element to not be equivalent). Note that
the event relation exists for all precubical sets, but doesn’t always satisfy the ”only if” part of the
condition.
It is now clear what we mean when we are talking about events of precubical sets. Edges correspond
to single events, the squares correspond with two events executing at the same time and the cubes
correspond with three events executing at the same time. This continues for higher dimensions.
The event consistent precubical sets will eventually become the base for our higher-dimensional
automata.
We have looked at some examples of event consistent precubical sets. In the next theorem we will
prove that all representable precubical sets are event consistent, which because of the proof of
theorem 2.46 can be used to construct any other finite precubical set through a colimit, which
then can be used to construct any non-finite precubical set through a filtered colimit as proven in
theorem 2.38.

Theorem 3.3. All representable precubical sets are event consistent.

Proof. Let X be a k-dimensional representable precubical set with k ∈ N≥2. Note that the statement
is trivial for 0-dimensional and 1-dimensional precubical sets, since by definition they are always
event consistent. From theorem 2.9 it follows that all face maps Xk → X1 can be represented as
δk
V,Ak

a
(x), with x ∈ Xk the unique element, V a k − 1-dimensional vector of elements νi ∈ {0, 1}

and Ak
a as defined in definition 2.10 with a ∈ N, 1 ≤ a ≤ k. Note that because of the definition of

representable precubical sets the representation for every element X1 is unique.
Let a, b ∈ N with 1 ≤ a ≤ k and 1 ≤ b ≤ k and let V and U be k − 1-dimensional vector of
elements νi, µi ∈ {0, 1}. Suppose that there exists a y ∈ X2, c ∈ {1, 2} such that δ20,c(y) = δk

V,Ak
a
(x)

and δ21,c(y) = δk
U,Ak

b
(x). Then we have a = b and the vectors V and U are the same except for a

single element. This follows from the fact that y can also be uniquely represented as y = δkW,A(x)
with k − 2-dimensional vectors W and A as in definition 2.7. Then we get δk

V,Ak
a
(x) = δ20,c ◦ δkW,A(x)

and δk
U,Ak

b
(x) = δ21,c ◦ δkW,A(x) from which we get δk

V,Ak
a
(x) and δk

U,Ak
b
(x) through applying the same

identities, which proves the statement.
Note that the opposite is true as well. Let a ∈ N with 1 ≤ a ≤ k and let V0 and V1 be k − 1-
dimensional vectors of elements νi, µi ∈ {0, 1}. Suppose that there exists a j ∈ N, 1 ≤ j ≤ k − 1
such that for all i ∈ N, 1 ≤ i ≤ k− 1 we have νi = µi if and only if i ̸= j. This gives us the elements
δk
V0,Ak

a
(x) and δk

V1,Ak
a
(x). There exists a k − 2-dimensional vector A with every element of Ak

a except
for aj and a k − 2-dimensional vector V with every element of V0 and V1 except for νj and νi such
that δk

V0,Ak
a
(x) = δ20,aj−j+1 ◦ δkV,A(x) and δkV1,Ak

a
(x) = δ21,aj−j+1 ◦ δkV,A(x).

We now define the equivalence relation ≡X on X1 as{(
δkV,Ak

a
(x), δkU,Ak

a
(x)
)
| x ∈ Xk, a ∈ N, 1 ≤ a ≤ k, V, U ∈ {0, 1}k

}
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It’s clear that this relation ≡X is reflexive, symmetric and transitive. Suppose that we have y ∈ X2,
ν, µ ∈ {0, 1}, b, c ∈ {1, 2} with δ2ν,b(y) ≡x δ

2
µ,c. Then we have δ2ν,b(y) = δk

V,Ak
a
(x) and δ2µ,c = δk

U,Ak
a
(x)

for certain vectors V , U and Ak
a which is true if and only if b = c. This shows that ≡X satisfies the

conditions of definition 3.1 which makes X an event consistent precubical set.

3.2 Preserving event consistency

Theorem 3.4. Let X and Y be precubical sets, let f : X → Y be a precubical map and let ≡X and
≡Y be the event relations on X1 and Y 1. For all x1, x2 ∈ X1 we have

x1 ≡X x2 =⇒ f 1 (x1) ≡Y f 1 (x2)

Proof. The equivalence relation ≡Y is defined as the transitive closure of{(
δ2ν,a(y), δ

2
µ,a(y)

)
| y ∈ Y 2, ν, µ ∈ {0, 1}, a ∈ {1, 2}

}
and the equivalence relation ≡X is defined as the transitive closure of{(

δ2ν,a(x), δ
2
µ,a(x)

)
| x ∈ X2, ν, µ ∈ {0, 1}, a ∈ {1, 2}

}
We define ≡f(X) as the transitive closure of{(

δ2ν,a ◦ f 2(x), δ2µ,a ◦ f 2(x)
)
| x ∈ X2, ν, µ ∈ {0, 1}, a ∈ {1, 2}

}
which is equal to the transitive closure of{(

δ2ν,a(y), δ
2
µ,a(y)

)
| y ∈ Y 2, ∃x ∈ X2 s.t. f 2(x) = y, ν, µ ∈ {0, 1}, a ∈ {1, 2}

}
Here we clearly have for all x1, x2 ∈ X1 that x1 ≡X x2 =⇒ f 1 (x1) ≡f(X) f

1 (x2). Since ≡f(X)

must be contained within ≡Y we get the result.

Theorem 3.5. Let X and Y be precubical sets and let f : X → Y be a precubical map. If Y is
event consistent then X is event consistent as well.

Proof. Suppose that X is not event consistent. Then there exists a x ∈ X2 and ν, µ ∈ {0, 1} such
that δ2ν,1(x) ≡X δ2µ,2(x). Theorem 3.4 then gives us that

δ2ν,1 ◦ f 2(x) = f 1 ◦ δ2ν,1(x) ≡Y f1 ◦ δ2µ,2(x) = δ2µ,2 ◦ f 2(x)

which would make Y not event consistent. This means that no such x ∈ X2 can exist and therefore
X is event consistent as well.

Theorem 3.6. Let X : J → Set□
op

be a small diagram. If X has an event consistent co-cone then
Xi is event consistent for all i ∈ J .

Proof. Let (N,ψ) be an event consistent co-cone of X. Then for all i ∈ J there exists the precubical
map ψi : Xi → N which using theorem 3.5 gives us that Xi is event consistent for all i ∈ J .

Theorem 3.7. Let X : J → Set□
op

be a small diagram. If X has an event consistent co-cone then
it has an event consistent colimit.
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Proof. Let (N,ψ) be an event consistent co-cone. From theorem 2.11 it follows that X has a colimit
(L, ϕ). By definition there must exist a precubical map q : L→ N , which because of theorem 3.5
gives us that L is event consistent as well.

Theorem 3.8. Let X : J → Set□
op

be a small diagram and let (L, ϕ) be the colimit of this diagram.
For all i ∈ J let ≡i be the event relation on X1

i .
We define the relation ≡L on L1 as the following: for every two elements y1, y2 ∈ L1 we have
y1 ≡L y2 if and only if there exist i ∈ J , Xi with x1, x2 ∈ X1

i such that ϕ1
i (x1) = y1, ϕ

1
i (x2) = y2

and x1 ≡i x2. If J is a discrete or filtered category then this relation ≡L is well-defined and is equal
to the event relation.

Proof. It is clear that the relation ≡L is reflexive and symmetric. Suppose that we have y1, y2, y3 ∈ L1

with y1 ≡L y2 and y2 ≡L y3. Then there exist i, j ∈ J , x1, x2 ∈ X1
i and x′2, x3 ∈ X1

j with ϕ1
i (x1) = y1,

ϕ1
i (x2) = y2 = ϕ1

j (x
′
2) and ϕ

1
j (x3) = y3 such that x1 ≡i x2 and x2 ≡j x3.

In the case that J is discrete theorem 2.13 gives us that x2 = x′2 and i = j, which because ≡i is
transitive gives us x1 ≡i x3 and therefore y1 ≡L y3.
Let J be a filtered category. Theorem 2.22 gives us that since we have ϕn

i (x2) = ϕn
j (x

′
2) we therefore

have x2 ∼ x′2. Theorem 2.24 then gives us that there exists a k ∈ J and morphisms f : i → k
and g : j → k in J such that Xn

f (x2) = Xn
g (x′2). As a result of theorem 3.4 the event relation is

preserved through precubical maps which gives us

Xn
f (x1) ≡k X

n
f (x2) = Xn

g (x′2) ≡k X
n
g (x3)

which gives us Xn
f (x1) ≡k X

n
g (x3) and therefore y1 ≡L y3.

In both cases the relation ≡L is therefore an equivalence relation.
Let y ∈ L2 and let i ∈ J , x ∈ X2

i such that ϕn
i (x) = y. Then because for all a ∈ {1, 2} and

ν, µ ∈ {0, 1} we have δ2ν,a(x) ≡i δ
2
µ,a(x) we by definition also have δ2ν,a(y) ≡L δ

2
µ,a(y). Since the event

relation is the transitive closure of these relations and since ≡L is transitive this gives us that if
two elements are equivalent by the event relation then they are equivalent by ≡L as well.
Let y1, y2 ∈ Y 1 such that y1 ≡L y2. By definition there must exist i ∈ J , x1, x2 ∈ X1

i with
ϕ1
i (x1) = y1 and ϕ1

i (x2) = y2 such that x1 ≡i x2. Theorem 3.4 then gives us that y1 and y2 must
also be equivalent by the event relation.
This gives us that two elements are equivalent by the event relation if and only if they are equivalent
by ≡L, which gives us that ≡L is the event relation.

Theorem 3.9. Let X : J → Set□
op

be a small discrete diagram. The coproduct of this diagram is
event consistent if and only if Xi is event consistent for all i ∈ J .

Proof. From theorem 3.6 it follows that if the coproduct is event consistent then for all i ∈ J , Xi is
event consistent as well.
Let (L, φ) be a coproduct of the diagram, let ≡L be the event relation on L1 and for all i ∈ J let ≡i

be the event relation on X1
i . Suppose that there exists a y ∈ L2 such that there exist ν, µ ∈ {0, 1}

for which we have δnν,1(y) ≡L δ
n
µ,2(y). Theorem 2.13 gives us that there exists a unique i ∈ J , x ∈ X2

i

such that φ2
i (x) = y. We have to have φ1

i ◦ δnν,1(x) = δnν,1(y) and φ
1
i ◦ δnµ,2(x) = δnµ,2(y) due to theorem

2.13 again. Then because of theorem 3.8 we have to have δnν,1(x) ≡i δ
n
µ,2(x), which is in contradiction

with Xi being event consistent. Therefore such an element y ∈ L2 cannot exist, making L event
consistent as well.
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Theorem 3.10. Let X : J → Set□
op

be a small filtered diagram. The filtered colimit of this diagram
is event consistent if and only if Xi is event consistent for all i ∈ J .

Proof. From theorem 3.6 it follows that if the filtered colimit is event consistent then for all i ∈ J ,
Xi is event consistent as well.
Let (L, φ) be a filtered colimit of the diagram, let ≡L be the event relation on L1 and for all
i ∈ J let ≡i be the event relation on X1

i . Suppose that there exists a y ∈ L2 such that there exist
ν, µ ∈ {0, 1} for which we have δnν,1(y) ≡L δ

n
µ,2(y).

Theorem 2.24 and theorem 3.8 gives us that there exists a i, j ∈ J , x ∈ X2
i , x1 ∈ X1

j and x2 ∈ X2
j

such that ϕ2
i (x) = y, ϕ1

j (x1) = δnν,1(y) and ϕ1
j (x2) = δnµ,2(y) with x1 ≡j x2. Since J is a filtered

category and by theorem 2.24 we have x1 ∼ δnν,1(x) and x2 ∼ δnµ,2(x) there exists a k ∈ J and maps
f : i→ k, g : j → k such that X1

f ◦ δnν,1(x) = X1
g (x1) and X

1
f ◦ δnµ,2(x) = X1

g (x2). Theorem 3.5 then
gives us that X1

f ◦ δ2ν,1(x) ≡k X
1
f ◦ δ2µ,2(x) and therefore δ2ν,1 ◦X2

f (x) ≡k δ
2
µ,2 ◦X2

f (x), which is in
contradiction with Xk being event consistent.

Theorem 3.11. Not every colimit of event consistent precubical sets is event consistent.

Proof. We can show this using a simple example. We define J as the small category with obj(J) =
{1, 2} and mor(J) = {(f : 1 → 2) , (g : 1 → 2)}. We define the diagram X : J → Set□

op

as the
following:

a

X1

x y zX1
f (a)

X1
g (a)

X2

Here the precubical maps Xf : X1 → X2 and Xg : X1 → X2 send the element a ∈ X1
1 to

the elements δ20,1(x) and δ20,2(z) respectively. This gives us that δ20,1(x) ∼ δ20,2(z), and therefore
ϕ1
2 ◦ δ20,1(x) = ϕ1

2 ◦ δ20,2(z) with ϕ the injection map for the colimit (L, ϕ) of the diagram X. If we
take ≡L as the event relation on L1 then we get

δ20,1 ◦ ϕ2
2(x) ≡L δ

2
1,1 ◦ ϕ2

2(x) = δ20,1 ◦ ϕ2
2(y) ≡L δ

2
1,1 ◦ ϕ2

2(y) = δ20,1 ◦ ϕ2
2(z)

which gives us that δ20,1 ◦ ϕ2
2(x) ≡L δ

2
0,1 ◦ ϕ2

2(z). Because we have δ20,1 ◦ ϕ2
2(x) = δ20,2 ◦ ϕ2

2(z) this then
gives us that δ20,1 ◦ ϕ2

2(z) ≡L δ
2
0,2 ◦ ϕ2

2(z), which means that L is not event consistent. Moreover, the
colimit L is actually also the precubical set shown in figure 7.

3.3 The category ECPS

As we have defined the category of precubical sets Set□
op

, we now also want to define the category
of event consistent precubical sets.

Definition 3.12. The category ECPS is the full subcategory of the category of precubical sets Set□
op

containing only the event consistent precubical sets and their morphisms.
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The category ECPS is a subcategory of Set□
op

, which means that it inherits many of the properties
of the precubical sets. We are specifically interested in local finite presentability, but before that we
first need to make sure colimits and compactness work properly.

Theorem 3.13. The category of event consistent precubical sets ECPS is not cocomplete.

Proof. As a result of theorem 3.11 the category of event consistent precubical sets is not cocomplete,
since there exist diagrams of event consistent precubical sets with colimits that are not event
consistent.

Definition 3.14. We define v : ECPS → Set□
op

as the canonical inclusion functor.

The reason why we define something like this is because we need to make sure colimits and
compactness are the same irregardless if we are working in the category Set□

op

or ECPS.

Theorem 3.15. Any diagram in ECPS is an event consistent diagram in Set□
op

and any event
consistent diagram in Set□

op

is a diagram in ECPS.

Proof. Let X : J → Set□
op

be an event consistent diagram in Set□
op

. The fact that it is a diagram
in ECPS as well follows from the fact that ECPS is a full subcategory of Set□

op

, containing all event
consistent precubical sets and all precubical maps between event consistent precubical sets. This
means that for all objects i ∈ J and all morphisms f ∈ J the event consistent precubical sets Xi

and the precubical maps Xf are contained in ECPS and have the same properties, which gives us
that X is a diagram in Set□

op

as well.
Similarly all of the objects and morphisms in ECPS are contained in Set□

op

, therefore ifX : J → ECPS

is a diagram in ECPS then it must be an event consistent diagram in Set□
op

as well.

Theorem 3.16. Any co-cone in ECPS is an event consistent co-cone in Set□
op

and any event
consistent co-cone in Set□

op

is a co-cone in ECPS.

Proof. This is due to the same reasons as stated in theorem 3.15. Both the precubical sets and the
precubical maps are in both categories, and since the diagrams are as well and the conditions on
the injection maps on the co-cones remain untouched it follows that the statement is true.

Theorem 3.17. The functor v : ECPS → Set□
op

reflects colimits.

Proof. Let X : J → ECPS be a small diagram and let (L, ϕ) be a co-cone of this diagram in ECPS.
We want to prove that if (L, ϕ) is a colimit of X in Set□

op

, then it is a colimit of X in ECPS as well.
Suppose that (L, ϕ) is a colimit of X in Set□

op

, but not a colimit in ECPS. Because of theorem 3.16
it is still a co-cone, which means that there must exists a co-cone (N,ψ) in ECPS such that there
exists no unique precubical map q : L→ N such that q ◦ ϕi = ψi for all i ∈ J . This cannot be true
since the co-cone (N,ψ) is a co-cone in Set□

op

as well which means that this unique precubical map
q : L→ N does exist.

Note that the above is also a consequence of v being fully faithful (see [Rie17]).

Theorem 3.18. The functor v : ECPS → Set□
op

preserves colimits.
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Proof. Let X : J → ECPS be a small diagram and let (L, ϕ) be a co-cone of this diagram in ECPS.
We want to prove that if (L, ϕ) is a colimit of X in ECPS, then it is a colimit of X in Set□

op

as well.
From theorem 3.16 it follows that (L, ϕ) is an event consistent co-cone of X in Set□

op

. From theorem
3.7 it follows that there exists an event consistent colimit (N,ψ) of X in Set□

op

. From theorem 3.17
it then follows that (N,ψ) is also a colimit of X in ECPS. This gives us that the unique precubical
map q : L→ N is an isomorphism, which because of theorem 2.12 means that L is a colimit of X
in Set□

op

as well.

This shows that diagrams, co-cones and colimits work the same on ECPS as they do on Set□
op

.

Theorem 3.19. Every event consistent precubical set is the filtered colimit of a diagram of finite
event consistent precubical sets.

Proof. This follows from theorem 2.38 and theorem 3.10.

Theorem 3.20. An object in ECPS is compact in ECPS if and only if it is compact in Set□
op

.

Proof. Let X be an event consistent precubical set and suppose X is compact in Set□
op

. Then for
every filtered category J and every diagram Y : J → Set□

op

the canonical morphism

lim−→
i∈J

Hom (X, Yi)
≃−→ Hom

(
X, lim−→

i∈J
Yi

)

is an isomorphism. This refers to all event consistent filtered diagrams which because of theorem
3.15 means it refers to every filtered diagram in ECPS. Therefore X is compact in ECPS as well.
Suppose that X is compact in ECPS. Theorem 3.19 gives us that X is a colimit of a filtered diagram
of finite event consistent precubical sets, which following the proof of theorem 2.40 gives us that X
is finite as well. Because of theorem 2.46 this then means that X is compact in Set□

op

.

Recall definition 2.47 for local finite presentability.

Theorem 3.21. The following statements about the category ECPS are true:

1. The category ECPS is not cocomplete, but does have all small coproducts and filtered colimits.

2. The full subcategory of ECPS consisting of the compact objects is essentially small.

3. Any object in ECPS is a filtered colimit of a diagram of compact objects.

Proof. Statement 1 follows from theorem 3.9, theorem 3.10 and theorem 3.11.
Because of theorem 3.20 an object is compact in ECPS if and only if it is compact in Set□

op

.
Statement 2 then follows from the fact that ECPS is a full subcategory of Set□

op

, which means that
the same is true for the full subcategories containing the compact objects.
Statement 3 follows from theorem 3.19.

This means that ECPS is not locally finitely presentable, because it does not satisfy the first condition
of cocompleteness. It does however satisfy the other conditions. A property that is weaker than
local finite presentability is the following:

Definition 3.22. A category C is finitely accessible if
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1. C is locally small.

2. C has all small filtered colimits.

3. There is a set of compact objects that generate C under small filtered colimits.

Theorem 3.23. The category ECPS of event consistent precubical sets is finitely accessible.

Proof. The category ECPS is locally small since it is a full subcategory of Set□
op

which is essentially
small.
Theorem 3.10 gives us that ECPS has all small filtered colimits.
The third statement follows from the second and third statements of theorem 3.21.

4 Higher-Dimensional Automata

4.1 Labelled precubical sets

The last thing we need to define before we can introduce higher-dimensional automata are the
labelled precubical sets, which are event consistent precubical sets combined with something called
the labelling function. Unlike with event consistent precubical sets we are not going to prove any
properties for them. This is because they are not sufficiently different to the higher-dimensional
automata themselves, and it is a lot easier to just prove the properties for HDA directly. Before we
define labelled precubical sets we first need to define the labelling object.

Definition 4.1. Let Σ be a non-empty set. The labelling object on Σ is the precubical set !Σ with
(!Σ)0 =!Σ0 = {ε} and (!Σ)n =!Σn =

∏n
i≥1 Σ for all n ∈ N≥1. Here we define ε as a unique element

such that ε ̸∈ Σ. The face maps are defined by

δnν,a ((x1, ..., xn)) = (x1, ..., xa−1, xa+1, ..., xn)

for all n ∈ N, ν ∈ {0, 1}, a ∈ {1, 2, ..., n} and x = (x1, ..., xn) ∈!Σn with xi ∈ Σ for all i ∈ N≥1,
i ≤ n.

In other words the delta map δnν,a removes the a’th element from the vector. It’s easy to see that
these elementary face maps satisfy the condition for precubical sets, since for all a, b ∈ N≥1 with
a < b removing the b’th element first and the a’th element second is the same as removing the a’th
element first and the b− 1’th element second. Also note that the precubical set !Σ is never event
consistent, since the face maps δn0,a and δn1,a do exactly the same for all n, a ∈ N, 1 ≤ a ≤ n.

Theorem 4.2. Let X be a precubical set and let Σ be a set. Any function λ1 : X1 → Σ for which
λ1◦δ20,1(x) = λ1◦δ21,1(x) and λ1◦δ20,2(x) = λ1◦δ21,2(x) for all x ∈ X2 extends uniquely to a precubical
map λ : X →!Σ.

Proof. For all x ∈ X1 we have λ1(x) defined. For all x ∈ X0 we have λ0(x) = ϵ = (−), as in the
empty tuple. For all n ∈ N≥2, x ∈ Xn we define

λn(x) =
(
λ1 ◦ δnν,An

1
(x), ..., λ1 ◦ δnν,An

n
(x)
)
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for a certain ν ∈ {0, 1}. Because of theorem A.8 it does not matter if we have ν = 0 or ν = 1 since
λ1 ◦ δn0,An

t
(x) = λ1 ◦ δn1,An

t
(x) for all 1 ≤ t ≤ n. Suppose that we have n ∈ N≥2, x ∈ Xn−1, ν ∈ {0, 1}

and a ∈ N≥1, a ≤ n. Then we have
δnν,a ◦ λn(x) =(

λ1 ◦ δnν,An
1
(x), ..., λ1 ◦ δnν,An

a−1
(x), λ1 ◦ δnν,An

a+1
(x), ..., λ1 ◦ δnν,An

n
(x)
)

λn−1 ◦ δnν,a(x) =(
λ1 ◦ δn−1

ν,An−1
1

◦ δnν,a(x), ..., λ1 ◦ δn−1

ν,An−1
a−1

◦ δnν,a(x),

λ1 ◦ δn−1

ν,An−1
a+1

◦ δnν,a(x), ..., λ1 ◦ δn−1

ν,An−1
n−1

◦ δnν,a(x)
)

Using theorem A.6 we get that

δn−1

ν,An−1
t

◦ δnν,a(x) =

{
δnν,An

t
(x) for all a > t

δnν,An
t+1

(x) for all a ≤ t

for all 1 ≤ t ≤ n− 2. This gives us
λn−1 ◦ δnν,a(x) =(

λ1 ◦ δnν,An
1
(x), ..., λ1 ◦ δnν,An

a−1
(x), λ1 ◦ δnν,An

a+1
(x), ..., λ1 ◦ δnν,An

n
(x)
)

and therefore λn−1 ◦ δnν,a(x) = δnν,a ◦ λn(x) for all n ∈ N≥1, ν ∈ {0, 1}, a ∈ N≥1 with a ≤ n and
x ∈ Xn. This makes λ : X →!Σ into a unique precubical map.

Note that because of the way the elementary face maps on !Σ are defined the condition λ1 ◦δ20,1(x) =
λ1 ◦ δ21,1(x) and λ1 ◦ δ20,2(x) = λ1 ◦ δ21,2(x) for all x ∈ X2 is required for every precubical map
λ : X →!Σ.

Theorem 4.3. For every non-empty set Σ and every precubical set X there exists a precubical map
λ : X →!Σ.

Proof. We can simply define λ1 : X1 → Σ as the morphism with λ1 (x1) = λ1 (x2) for all x1, x2 ∈ X1.
This morphism then clearly satisfies λ1 ◦ δ20,1(x) = λ1 ◦ δ21,1(x) and λ1 ◦ δ20,2(x) = λ1 ◦ δ21,2(x) for all
x ∈ X2. Because of theorem 4.2 this then extends uniquely to a precubical map λ : X →!Σ.

Definition 4.4. A labelled precubical set is a pair (X,λ) with X an event consistent precubical set
and λ : X →!Σ a precubical map which we call the labelling or labelling function.

Because of theorem 4.3 every event consistent precubical set has a labelling function which means
that every event consistent precubical set can be converted to a labelled precubical set.
In section 6 we will introduce what are called the event object and the event identifications, which
work similarly to the labelling object and labelling functions and can be seen as an alternative
definition for event consistency. The labelling of any event consistent precubical set will factor
through this event object.
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4.2 Definition of HDA

We can now finally define higher-dimensional automata.

Definition 4.5. A Higher-Dimensional Automata or HDA is a tuple (X, I, F, λ) consisting of

• X an event consistent precubical set,

• I = {In}n∈N the initial cells with In ⊆ Xn for all n ∈ N,

• F = {F n}n∈N the accepting cells with F n ⊆ Xn for all n ∈ N and

• λ : X →!Σ the labelling function.

Like with ordinary automata we will not pay much attention to the alphabet Σ and simply assume
it is the same for all HDA mentioned. When talking about a HDA (X, I, F, λ) we will often only
mention X instead of the entire tuple.
Let’s take a look at an example:

b

a

a

b

Figure 8: The HDA where the underlying event consistent precubical set is the one shown in figure
2, the labelling is defined by λ1 ◦ δ10,1(x) = λ1 ◦ δ11,1(x) = b and λ1 ◦ δ10,2(x) = λ1 ◦ δ11,2(x) = a, the
node in the bottom left being the sole initial cell and the node in the top right being the sole final
cell.

We denote initial and final cells with incoming and outgoing arrows. When a higher-dimensional
element is an initial/final cell we will denote it as the following:

b

a

a

b

Figure 9: The HDA as in figure 8 where the node in the bottom left is not an initial cell but the
left-most edge is and where the node in the top right and the right-most edge are final cells.

In the next section we will actually use these initial and final cells in what will be called (accepting)
tracks. For now we will just leave it at this. While HDA with initial or final cells that are of higher
dimension than 0 or 1 do exist, we don’t actually have a good way to denote these kind of cells in a
figure. We will therefore not really bother with examples that have these initial or final cells, but
know that they do exist.
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Definition 4.6. Suppose that (X, IX , FX , λX) and (Y, IY , FY , λY ) are HDAs. A HDA-map is a
precubical map f : X → Y such that for all n ∈ N, x ∈ Xn the following statements are true:

• If x ∈ IX we have fn(x) ∈ IY ,

• if x ∈ FX we have fn(x) ∈ FY ,

• λnX(x) = λnY ◦ fn(x).

In other words: HDA maps are precubical maps that preserve the labelling and the initial and final
cells.

Definition 4.7. Let X = (X, IX , FX , λX) and Y = (Y, IY , FY , λY ) be HDA and let f : X → Y
be a HDA map. Then f is a HDA isomorphism if there exists a HDA map g : Y → X such that
g ◦ f = idX and f ◦ g = idY .

4.3 Category of HDA

The main goal of this subsection is to show the connection between colimits of HDA and colimits
of (event consistent) precubical sets.

Definition 4.8. We define the forgetful functor u : HDA → ECPS which sends HDAs (X, I, F, λ) to
the event consistent precubical sets X and HDA maps f to precubical maps f .

The below simply follows from u being a functor:

Remark 4.8.1. The functor u : HDA → ECPS maps small diagrams X : J → HDA with Xi =
(Xi, Ii, Fi, λi) onto small diagrams X : J → ECPS and co-cones (N , ψ) of X onto co-cones (N,ψ)
of X.

This means that every small diagram of HDA forms a small diagram of event consistent precubical
sets and every co-cone of HDA also forms a co-cone of event consistent precubical sets. What we
now want to show is that we can canonically construct a HDA from an event consistent precubical
set with a precubical map where the codomain is a HDA.

Theorem 4.9. Suppose that X and Y are event consistent precubical sets, Y = (Y, IY , FY , λY ) is
a HDA and f : X → Y is a precubical map. We can construct a HDA X = (X, IX , FX , λX) from
X in the following way:

• For all n ∈ N, x ∈ Xn we take x ∈ IX if fn(x) ∈ IY .

• For all n ∈ N, x ∈ Xn we take x ∈ FX if fn(x) ∈ FY .

• λX = λY ◦ f .

This gives us the HDA X and by construction makes f a HDA-map.

Proof. It’s clear that λ1X satisfies the conditions of theorem 4.2 as it inherits them from λ1Y , making
it a labelling function. The initial and final cells are clearly well-defined. This makes X a HDA, and
due to the way it was constructed the precubical map f automatically becomes a HDA map.
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We can apply this theorem to small diagrams and co-cones as well.

Theorem 4.10. Let X : J → ECPS be a small diagram of event consistent precubical sets and let
(N,ψ) be a co-cone. Suppose that N = (N, IN , FN , λN) is a HDA. Then we can define the small
diagram X : J → HDA of HDA with Xi = (Xi, Ii, Fi, λi) for all i ∈ J such that (N , ψ) is a co-cone
of this diagram as well.

Proof. Since for all Xi with i ∈ J we have the precubical maps ψi : Xi → N we can use theorem
4.9. This gives us the HDA Xi = (Xi, Ii, Fi, λi) and HDA maps ψi : Xi → N for all i ∈ J .
Now we need to prove that for all i, j ∈ J , f : i → j the precubical maps Xf : Xi → Xj are
HDA maps. For all n ∈ N, x ∈ Xn

i we have ψn
i (x) = ψn

j ◦ Xn
f (x) and by definition we have

λni (x) = λnN ◦ ψn
i (x) and λ

n
j ◦Xn

f (x) = λnN ◦ ψn
j ◦Xn

f (x) = λnN ◦ ψn
i (x) which therefore gives us that

λni (x) = λnj ◦Xn
f (x). We have x ∈ Ii if and only if ψn

i (x) ∈ IN and since ψn
j ◦Xn

f (x) = ψn
i (x) this

gives us Xn
f (x) ∈ Ij. Analogously the same is true for the final cells. This makes Xf a HDA map

which we will refer to as Xf , which therefore makes X : J → HDA a small diagram of HDA. For all
i ∈ J we have the HDA maps ψi : Xi → N such that for all j ∈ J , f : i→ j we have ψi = ψj ◦ Xf ,
which therefore makes (N , ψ) a co-cone of the diagram H.

This gives us a nice connection between diagrams of HDA and diagrams of event consistent
precubical sets. Do note however that generally speaking the above diagram is not the only diagram
of HDA that one can generate using the specified co-cone. It’s possible for some HDA in the
diagram to have smaller sets of initial and final cells, or even empty ones, which doesn’t matter for
the co-cone of the diagram. It does matter for the colimit of the diagram, which is proven in the
following theorem:

Theorem 4.11. Let X : J → ECPS be a small diagram of event consistent precubical sets and
let (L, ϕ) be a colimit. Suppose that L = (L, IL, FL, λL) is a HDA. Then we can define the small
diagram X : J → HDA of HDA with Xi = (Xi, Ii, Fi, λi) for all i ∈ J such that (L, ϕ) is a colimit of
this diagram as well.

Proof. Theorem 4.10 gives us the diagram X : J → HDA and that (L, ϕ) is a co-cone of this diagram.
Suppose that (N , ψ) with N = (N, IN , FN , λN) is a co-cone of the diagram X . Then remark 4.8.1
gives us that (N,ψ) is a co-cone of X : J → ECPS as well. Because (L, ϕ) is a colimit we get the
unique precubical map q : L→ N such that for all i ∈ J we have q ◦ϕi = ψi. Let n ∈ N and y ∈ Ln.
Then because of theorem 2.24 there exists a i ∈ J and a x ∈ Xn

i such that ϕn
i (x) = y. Then by

definition we have

λnL(y) = λnL ◦ ϕn
i (x) = λni (x) = λnN ◦ ψn

i (x) = λnN ◦ qn ◦ ϕn
i (x) = λnN ◦ qn(y)

which shows that q : L→ N preserves the labelling functions. Similarly if y ∈ IL then by construction
we have x ∈ Ii and therefore ψn

i (x) ∈ IN and qn(y) ∈ IN since qn(y) = qn ◦ ϕn
i (x) = ψn

i (x).
Analogously the same is true for the final cells. This makes q : L → N a HDA map which is unique
because it is unique as a precubical map. Therefore (L, ϕ) is a colimit of the diagram X .

Like previously this isn’t the only diagram that has the colimit (L, ϕ). We don’t always need every
initial and final cell in the diagram. We only need the following:
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Theorem 4.12. Let X : J → HDA be a small diagram of HDA with for all i ∈ J we have
Xi = (Xi, Ii, Fi, λi) and let L = (L, IL, FL, λL) be a HDA and (L, ϕ) be a colimit of the diagram X .
Then for all n ∈ N, y ∈ Ln if we have y ∈ IL or y ∈ FL then there exists a i ∈ J and a x ∈ Xn

i

with ϕn
i (x) = y and x ∈ Ii or x ∈ Fi.

Proof. Suppose that the statement is false, which means that there exists a n ∈ N, y ∈ Ln with
y ∈ IL (or y ∈ FL, it does not matter) such that for all i ∈ J , x ∈ Xn

i with ϕn
i (x) = y we have x ̸∈ Ii.

We define the HDA L′ = (L, IL, FL, λL) with I
′n
L = InL\{y} and I ′mL = ImL for all m ∈ N, m ̸= n. We

define (L′, ψ) as the co-cone where ψi : Xi → L′ is identical to ϕi : Xi → L. These precubical maps
are HDA maps since by definition of I ′L they still preserve the initial cells which is the only thing
different from L. Since (L′, ψ) is a co-cone there exists a unique HDA map q : L → L′ such that for
all i ∈ J we have q ◦ ϕi = ψi. Because of theorem 2.24 there exists at least one i ∈ J , x ∈ Xn

i with
ϕn
i (x) = y. This gives us qn(y) = qn ◦ ϕn

i (x) = ψn
i (x) = y however since we have y ∈ IL but also

y ̸∈ I ′L this means that q : L → L′ does not preserve the initial cells, which is in contradiction with
(L, ϕ) being a colimit. Therefore there exists no such y ∈ Ln, n ∈ N with y ∈ IL but where for all
i ∈ J , x ∈ Xn

i with ϕn
i (x) = y we have x ̸∈ Ii. Analogously the same is true for y ∈ FL.

Before we can finally properly connect colimits of HDA and of event consistent precubical sets we
first prove the following theorem, which is an application of theorem 2.12 to HDA. While it should
also follow from abstract principles we have written out the proof just to be sure.

Theorem 4.13. Let X : J → HDA be a small diagram of HDA with for all i ∈ J we have
Xi = (Xi, Ii, Fi, λi) and let L = (L, IL, FL, λL) be a HDA and (L, ϕ) be a colimit of the diagram X .
Let (N , ψ) be a co-cone of X with N = (N, IN , FN , λN). Then (N , ψ) is a colimit of X as well if
and only if the unique HDA map q : L → N such that q ◦ ϕi = ψi for all i ∈ J is an isomorphism.

Proof. Let q : L → N be the unique HDA map such that q ◦ ϕi = ψi for all i ∈ J .
Suppose that q is an isomorphism and let p : N → L be its inverse. Let (M, ψ) be a co-cone of
X with M = (M, IM , FM , λM) and let f : L → M be the unique HDA map such that f ◦ ϕi = θi
for all i ∈ J . Then f ◦ p : N → M is a HDA map with f ◦ p ◦ ψi = θi for all i ∈ J . Suppose that
g : N → M is a different HDA map that satisfies the property with g ≠ f ◦ p. Then g ◦ q : L → M
is another HDA map that satisfies the property with g ◦ q ̸= f ◦ p ◦ q = f which is in contradiction
with (L, ϕ) being a colimit. Therefore no such g exists which means that f ◦ p : N → M gives us
an unique HDA map which therefore makes (N , ψ) a colimit of X.
Suppose that (N , ψ) is a colimit of X. There exists a unique HDA map p : N → L and we have
q ◦ ϕi = ψi and p ◦ ψi = ϕi for all i ∈ J . Therefore p ◦ q ◦ ϕi = ϕi and q ◦ p ◦ ψi = ψi for all
i ∈ J . Theorem 2.24 gives us that for every n ∈ N, y ∈ Ln there exists a i ∈ J , x ∈ Xn

i such that
ϕn
i (x) = y, and the same is true for (N , ψ). For all n ∈ N every element y ∈ Ln and z ∈ Nn can

therefore be expressed as ϕn
i (x) or ψ

n
i (x) for certain i ∈ J and x ∈ Xn

i . This gives us

pn ◦ qn(y) = pn ◦ qn ◦ ϕn
i (x) = ϕn

i (x) = y

qn ◦ pn(z) = qn ◦ pn ◦ ψn
i (x) = ψn

i (x) = z

and therefore p ◦ q = idL and q ◦ p = idN . This shows that p and q are bijective as precubical maps
and therefore because of theorem 2.5 this means that p and q are isomorphisms as precubical maps.
Because they are also both HDA maps they are both HDA isomorphisms by definition 4.7.
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Now we can finally prove the following theorem:

Theorem 4.14. Let X : J → HDA be a small diagram of HDA with for all i ∈ J we have
Xi = (Xi, Ii, Fi, λi) and let L = (L, IL, FL, λL) be a HDA and (L, ϕ) be a co-cone of the diagram X .
Then (L, ϕ) is a colimit of X if and only if the following conditions are true:

1. For all n ∈ N, y ∈ Ln if we have y ∈ IL or y ∈ FL then there exists a i ∈ J and a x ∈ Xn
i

with ϕn
i (x) = y and x ∈ Ii or x ∈ Fi.

2. (L, ϕ) is a colimit of the diagram X : J → HDA.

Proof. Suppose that the two conditions are true and let (N , ψ) with N = (N, IN , FN , λN) be a
co-cone of X . Then because of remark 4.8.1 (N,ψ) is a co-cone of the diagram X : J → ECPS. This
gives us a unique precubical map q : L→ N such that for all i ∈ J we have q ◦ ϕi = ψi. Because of
the first condition for all y ∈ Ln, n ∈ N if y ∈ IL or y ∈ FL there exists a i ∈ J and x ∈ Xn

i with
ϕn
i (x) = y such that x ∈ Ii and x ∈ Fi respectively. Because ψi are HDA maps for all i ∈ J they

preserve initial and final cells which then gives us that if y ∈ IL or y ∈ FL we must have qn(y) ∈ IN
and qn(y) ∈ IL respectively. Similarly because of theorem 2.24 every element in y ∈ Ln, n ∈ N is
injected through at least one x ∈ Xn

i , i ∈ J which gives us

λnL(y) = λni (x) = λnN ◦ ψn
i (x) = λnN ◦ qn ◦ ϕn

i (x) = λnN ◦ qn(y)

which shows that q : L→ N preserves the labelling function, making it a HDA map. Because q is
unique as a precubical map it is unique as a HDA map as well, since there is only one way to map
each element of L onto elements of N . This shows that for all co-cones (N , ψ) of X there exists a
unique HDA map q : L → N such that for all i ∈ J we have q ◦ ϕi = ψi, therefore making (L, ϕ) a
colimit of X .
Theorem 4.12 gives us that the first condition needs to be true for (L, ϕ) to be a colimit.
Finally suppose that the second condition is false, which means that (L, ϕ) is not a colimit of
X : J → ECPS. Because of remark 4.8.1 it is still a co-cone, which because of theorem 3.7 gives us
that there exists an event consistent colimit (N,ψ) of X. Then there exists a unique precubical
map q : N → L, with which through theorem 4.9 we can construct the HDA N = (N, IN , FN , λN)
and the HDA map q : N → L. We know that the first condition is true. Therefore because of
the construction of N we also get that the first condition is true for (N , ϕ), which because of our
previous proof gives us that (N , ϕ) is a colimit of X . Because of theorem 4.13 this gives us that the
HDA map q : N → L is an isomorphism, which is the unique HDA map from the definition of the
colimit, since it satisfies the requirements. Then that means that the precubical map q : N → L is
an isomorphism as well, which because of theorem 2.12 gives us that (L, ϕ) is a colimit of X.

This then gives us the following theorem:

Theorem 4.15. The functor u : HDA → ECPS preserves colimits, but does not reflect them.

Proof. The first statement follows from theorem 4.14. For the second statement we can take a
diagram of HDA with a colimit such that not every element of this colimit is an initial and final cell.
Then we can create a HDA based on this colimit for which it is true that every element is an initial
and final cell. This is clearly still a co-cone. Then because of theorem 4.14 its underlying event
consistent precubical set is the colimit of the underlying diagram of event consistent precubical
sets, but it isn’t a colimit of the diagram of HDA since it doesn’t satisfy the second property.
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Having covered the relation between the category of event consistent precubical sets and the
category of higher-dimensional automata we will prove that HDA does not have all small colimits,
but does have all small coproducts and filtered colimits. The proof of this will build on the fact
that this is the case for ECPS as well.

Theorem 4.16. Suppose that X : J → HDA is a diagram in HDA with J a small category. For all
i ∈ J we have Xi = (Xi, Ii, Fi, λi). Then we have for all n ∈ N, i, j ∈ J , x ∈ Xn

i and y ∈ Xn
j

x ∼ y =⇒ λi(x) = λj(y)

Proof. Suppose that we have i, j ∈ J , f : i → j. Then Xf : Xi → Xj is a HDA map and for all
n ∈ N, x ∈ Xn

i and y ∈ Xn
j such that Xn

f (x) = y we have λi(x) = λj ◦Xn
f (x) = λj(y). In other

words we have Xn
f (x) = y =⇒ λi(x) = λj(y). Through the construction of the equivalence relation

∼ we then get x ∼ y =⇒ λi(x) = λj(y).

Theorem 4.17. Suppose that X : J → HDA is a diagram in HDA with J a small category. Then X :
J → ECPS is a diagram of event consistent precubical sets with Xi = uXi (with Xi = (Xi, Ii, Fi, λi)).
If X has an event consistent colimit then X has a colimit as well.

Proof. Suppose that (L, ϕ) is an event consistent colimit ofX. We define the HDA L = (L, IL, FL, λL)
as the following:

• For all n ∈ N, x ∈ Xn if there exists a i ∈ J , y ∈ Xn
i with ϕn

i (y) = x and y ∈ Ii then x ∈ IL.

• For all n ∈ N, x ∈ Xn if there exists a i ∈ J , y ∈ Xn
i with ϕn

i (y) = x and y ∈ Fi then x ∈ FL.

• For all n ∈ N, x ∈ Xn we define λL(x) = λi(y) for all i ∈ J , y ∈ Xn
i such that ϕn

i (y) = x.

Theorem 2.24 gives us that for all n ∈ N, x ∈ Xn there exists at least one i ∈ J , y ∈ Xn
i with

ϕn
i (y) = x.

We still need to show that this labelling on L is well-defined. Suppose that for certain n ∈ N,
x ∈ Xn there exists i, j ∈ J , y ∈ Xn

i and z ∈ Xn
j such that ϕn

i (y) = x and ϕn
j (z) = x. Therefore

ϕn
i (y) = ϕn

j (z), which as a consequence of theorem 2.22 gives us that y ∼ z. Using theorem 4.16 we
then get λi(y) = λj(z).
Therefore the above defines the labelling function and the initial and final cells for all n ∈ N,
x ∈ Xn. This makes L a HDA and by definition the precubical maps ϕi for all i ∈ J HDA maps.
Because for all i, j ∈ J and (f : i→ j) ∈ J we by definition have ϕj ◦ Xf = ϕi this makes (L, ϕ) a
co-cone. Theorem 4.14 then gives us that (L, ϕ) is a colimit of X since the requirements are met by
construction.

Theorem 4.18. The category of higher-dimensional automata HDA is not cocomplete but does have
all small coproducts and small filtered colimits.

Proof. Recall the diagram given in theorem 3.11, which does not have an event consistent colimit.
Because of theorem 4.3 there exists a trivial labelling for the event consistent precubical sets in the
diagram. Taking the I1, I2, F1 and F2 as completely empty then gives us a diagram of HDA. Then
because of theorem 4.14 any colimit of this diagram must correspond to a colimit of the underlying
diagram of event consistent precubical sets. Since this doesn’t exist there cannot exist a colimit of
the diagram of HDA either. This shows that the category HDA is not cocomplete.
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Suppose that X : J → HDA is a diagram of HDAs with J a small category that is either discrete or
filtered. Since as a consequence of theorem 3.21 the category of event consistent precubical sets
has all small coproducts and small filtered colimits. Therefore because of theorem 4.17 any small
discrete or filtered diagram of HDA has a coproduct or filtered colimit.

4.4 Finite/compact HDA

In this subsection we will cover finite/compact HDA. We define finite HDA as the following:

Definition 4.19. A HDA X = (X, IX , FX , λX) is finite if and only if the event consistent precubical
set X is finite.

In the rest of this subsection we will work towards proving that a HDA is compact if and only if it
is finite. Because of the way that finite HDA are defined this will also make it so that a HDA is
compact if and only if its underlying event consistent precubical set is compact.

Theorem 4.20. Every HDA is the filtered colimit of finite HDAs.

Proof. Let Y = (Y, IY , FY , λY ) be a HDA. Let X : J → ECPS be the diagram defined in theorem
3.19 of which (Y, ϕ) is the colimit. Then theorem 4.11 gives us a filtered diagram X : J → HDA of
which (L, ϕ) is the colimit. Since for all i ∈ J the event consistent precubical set Xi is finite the
HDA Xi = (Xi, Ii, Fi, λi) are finite as well.

Unlike with the event consistent precubical sets we can’t reuse most of the proofs of compact
precubical sets. Therefore we define the following:

Definition 4.21. A representable HDA X = (X, IX , FX , λX) is a HDA where X is a representable
precubical set.

Note that unlike with precubical sets two n-dimensional representable HDA can be completely
different due to the labelling function and the initial and final cells not being the same for all
representable HDA. The following theorem is therefore also slightly different than the corresponding
theorem 2.43 for precubical sets.

Theorem 4.22. Let X = (X, IX , FX , λX) and Y = (Y, IY , FY , λY ) be HDA such that X is a
representable HDA of dimension k ∈ N. Then for every y ∈ Y k there exists at most one HDA
map fy : X → Y such that for the unique element x ∈ Xk we have fk

y (x) = y. These are the only
possible HDA maps X → Y.

Proof. For all y ∈ Y k theorem 2.43 gives us that there exists a unique precubical map fy : X → Y
with fk

y (x) = y for the unique element x ∈ Xk, and that these make up the only precubical maps
X → Y . Because HDA maps are precubical maps that preserve the labelling and initial and final
cells, these precubical maps also define the possible HDA maps. However since not all precubical
maps between HDA are HDA maps we get that there exists at most one HDA map fy : X → Y
such that for the unique element x ∈ Xk we have fk

y (x) = y.

Theorem 4.23. Let X : J → HDA be a small filtered diagram of HDA with for all i ∈ J we have
Xi = (Xi, Ii, Fi, λi) and let L = (L, IL, FL, λL) be a HDA and (L, ϕ) be a filtered colimit of the
diagram X . For all k ∈ N, y ∈ Lk there exists at least one i ∈ J such that there exists a xi ∈ Xk

i

with ϕk
i (xi) = y such that any element in Xi that can be reached by xi through the face maps is an

initial or final cell if and only if it is mapped to an initial or final cell in L.
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Proof. Theorem 2.24 gives us a HDA Xi and an element xi ∈ Xk
i with ϕk

i (xi) = y. It also gives
us that for every element z ∈ Ln that can be reached by y through the face maps there exists at
least one j ∈ J , xj ∈ Xn

j with ϕn
j (xj) = z such that xj ∈ Ii and xj ∈ Fi if z ∈ IL and z ∈ FL

respectively.
Since y ∈ Xk can only reach a finite amount of elements through its face maps this gives us a finite
set of HDA in the diagram X . Then theorem 2.26 gives us that there exists a i ∈ J such that there
exist precubical maps (and therefore HDA maps) from the mentioned HDA to Xi such that all the
mentioned elements overlap.

The above theorem can be a little confusing. Theorem 4.12 gives us that for any element in L
that is an initial or final cell there must exist a i ∈ J and an element in Xi that is mapped to this
element in L that is also an initial and final cell respectively. The above theorem is essentially the
same but applied to a specific finite set of elements. The reason why we choose the elements that
can be reached by a certain top element through the face maps becomes clear in the next theorem:

Theorem 4.24. All representable HDA are compact.

Proof. For this proof we will mostly follow the proof of theorem 2.44. We will repeat this proof but
change things where necessary.
Let X = (X, IX , FX , λX) be a representable HDA of dimension n and let X : J → HDA be a small
filtered diagram with the colimit (L, ϕ) with Xi = (Di, Ii, Fi, λi) for all i ∈ J and L = (L, IL, FL, λL).
Recall the diagram below theorem 2.39, which works the same for HDA instead of precubical sets.
Suppose that Hom (X ,L) is not empty (in which case the statement would be trivial, since then
both sets in the top of the diagram would be empty).
Let f ∈ Hom (X ,L). Because of theorem 4.22 there exists a unique y ∈ L such that for the unique
element x ∈ Xn we have fn(x) = y. Also note that f is the only HDA map in Hom (X ,L) that
sends x to y.
From theorem 4.23 it follows that there exists a i ∈ J such that there exists a xi ∈ Xn

i with
ϕn
i (xi) = y such that any element in Xi that can be reached by xi through the face maps is an

initial or final cell if and only if it is mapped to an initial or final cell in L by ϕi : Xi → L. Using
theorem 2.43 gives us that there exists a unique precubical map g ∈ Hom (X,Di) with g

n(x) = xi
and therefore ϕn

i ◦ gn(x) = ϕn
i (xi) = y and therefore ϕi ◦ g = f . This precubical map g therefore

preserves the labelling function and because of our choice of Xi it must also preserve the initial
and final cells. This makes g : X → Xi a HDA map and therefore the morphism Hom (X , ϕi) sends
g to f , which also means that U ◦ Φi ◦ g = f . This then gives us that U is surjective.
Let f1, f2 ∈ lim−→i∈J Hom (X ,Xi), f ∈ Hom (X ,L) such that U ◦ f1 = U ◦ f2 = f . Then there exist

i, j ∈ J , gi ∈ Hom (X,Di) and gj ∈ Hom (X,Dj) such that Φi ◦ gi = f1 and Φj ◦ gj = f2. This then
also gives us that U ◦ Φi ◦ gi = f and U ◦ Φj ◦ gj = f which gives us that ϕi ◦ gi = ϕj ◦ gj = f .
Because of theorem 4.22 there exist unique xi ∈ Dn

i , xj ∈ Dn
j and y ∈ Ln such that gni (x) = xi,

gnj (x) = xj and f
n(x) = y.

This gives us ϕn
i (xi) = ϕn

j (xj) = y, which due to theorem 2.22 means that there exist k ∈ J ,
hi : Xi → Xk and hj : Xj → Xk such that hi ◦gi (xi) = hj ◦gj (xj) and therefore hi ◦gi = hj ◦gj . This
means that we have Hom (X , hi) (gi) = Hom (X , hj) (gj) and therefore f1 = Φi ◦ gi = Φj ◦ gj = f2.
This then gives us that U is injective.
Therefore the canonical morphism U : lim−→i∈J Hom (X ,Xi) → Hom (X ,L) is an isomorphism for
every small filtered diagram X : J → HDA, which means that X is a compact HDA.
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Theorem 4.25. The finite colimit of compact HDA is compact.

Proof. This again follows from proposition 1.3 of [AR94].

Theorem 4.26. A HDA X = (X, IX , FX , λX) is compact if and only if the event consistent
precubical set X is compact. Equivalently every HDA is compact if and only if it is finite.

Proof. Note that from theorem 2.40, theorem 2.46 and theorem 3.20 it follows that the event
consistent precubical set X is compact if and only if it is finite, making the two statements
equivalent.
Because of theorem 4.20 we can replace the precubical sets in the proof of theorem 2.40 with HDA
which gives us that every compact HDA is finite.
The proof of theorem 2.46 and theorem 4.11 give us that every finite HDA is the finite colimit
of representable HDA. Then theorem 4.24 and theorem 4.25 give us that every finite HDA is
compact.

As promised we will check what conditions of local finite presentability (definition 2.47) the category
of HDA satisfies.

Theorem 4.27. The following statements about the category HDA are true:

1. The category HDA is not cocomplete, but does have all small coproducts and filtered colimits.

2. The full subcategory of HDA consisting of the compact objects is essentially small.

3. Any object in HDA is a filtered colimit of a diagram of compact objects.

Proof. Statement 1 follows from theorem 4.18 and statement 3 follows from theorem 4.20.
Statement 2 is somewhat more complicated. Note that because of theorem 4.26 a HDA is compact
if and only if it is finite. Let Σ be a set and let X = (X, I, F, λ) be a finite HDA. Using this HDA
we can then construct the following finite set:{(

x, n,
(
δnν,a(x)

)
ν∈{0,1}, a∈N≥1, a≤n

, λn(x), (x ∈ I) , (x ∈ F )
)
| n ∈ N, x ∈ Xn

}
Here x ∈ Xn is an element, n ∈ N represents the dimension of this element,

(
δnν,a(x)

)
ν∈{0,1}, a∈N≥1, a≤n

is the sequence of elements that can be reached by x through the elementary face maps for which
one can decide any canonical order, λn(x) is the labelling of of x and (x ∈ I) ∈ {0, 1} and
(x ∈ F ) ∈ {0, 1} state whether x is an initial and/or a final cell. With this the category of HDA
is equivalent to a subcategory of the category of finite sets. Since the category of finite sets is
essentially small the category of HDA must be essentially small as well.

Theorem 4.28. The category of HDA is finitely accessible.

Proof. For two HDA X and Y every HDA map X → Y is simply a precubical map that preserves
the labelling function and the initial and final cells. Theorem 3.23 gives us that the category ECPS

is locally small which gives us that Hom(X, Y ) is a set. Therefore Hom(X ,Y) must be a set as well.
Theorem 4.18 gives us that the category of HDA has all small filtered colimits.
The third statement follows from the second and third statements of theorem 4.27.
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5 Ipomsets

5.1 Posets and pomsets

Definition 5.1. A partially ordered set or poset is a pair (P, 99K), with P a set and 99K a strict
partial order on P .

We will assume that the set P in (P, 99K) is finite.
Let (P, 99K) be a poset and let p, q ∈ P . If we have p = q, p 99K q or q 99K p then the elements
p and q are comparable. If we have p ̸= q, p ̸99K q and q ̸99K p then the elements p and q are
incomparable, notation p ∥ q. Note that because 99K is a strict partial order exactly one of p ∥ q,
p = q, p 99K q and q 99K p is true.

Definition 5.2. Let (P, 99KP ) and (Q, 99KQ) be posets such that P ⊆ Q and such that for all
p1, p2 ∈ P we have p1 99KP p2 if and only if p1 99KQ p2. Then (P, 99KP ) is a subposet of (Q, 99KQ).

Definition 5.3. For any set Σ a partially ordered multiset or pomset is a triple (P, 99K, λ) with
(P, 99K) a poset and λ : P → Σ a labelling function.

As one can see pomsets are just posets with a labelling function.

Definition 5.4. Let (P, 99KP , λP ) and (Q, 99KQ, λQ) be pomsets such that the poset (P, 99KP ) is a
subposet of (Q, 99KQ). If for all p ∈ P we have λP (p) = λQ(p) then (P, 99KP , λP ) is a subpomset
(Q, 99KQ, λQ).

When talking about a poset (P, 99K) or a pomset (P, 99K, λ) we will often refer to it by just the
set P . In this case one can assume that the relation on P is denoted with 99K or in the case of
multiple posets with 99KP . Similarly the labelling function is λ or λP . For subposets or subpomsets
we might also just use the notation P ⊆ Q, as long as the meaning is clear from context.
The following definitions apply to both posets and pomsets in the same way.

Definition 5.5. Let P be a poset or a pomset. An element p ∈ P is called 99K-minimal of P if
there exists no q ∈ P such that q 99K p. An element p ∈ P is called 99K-maximal of P if there exists
no q ∈ P such that p 99K q.

Definition 5.6. Let (P, 99KP ) be a subposet of (Q, 99KQ). Then P is called a 99K-antichain of Q
if for all p1, p2 ∈ P we have p1 = p2 or p1 ∥ p2.

Definition 5.7. A pomset (P, 99K, λ) or a poset (P, 99K) is linear if for all p, q ∈ P we have p = q,
p 99K q or q 99K p.

In other words: if no two elements are incomparable. Equivalently this means that P has no
non-trivial 99K-antichains (a subposet or subpomset that is empty or has only one element is always
a 99K-antichain).

Theorem 5.8. Let P = (P, 99KP ) and Q = (Q, 99KQ) be two linear posets. Then there exists a
bijection f : P → Q that preserves the 99K-relation if and only if |P | = |Q|. This bijection if it
exists is unique.

42



Proof. We can define f : P → Q as the map that sends the 99K-smallest element of P to the
99K-smallest element of Q, the second smallest element of P to the second smallest element of Q
etc. If |P | = |Q| then it is clear that this map exists and it is also clear that there exists no other
way to map the elements of P onto the elements of Q that also preserves the 99K-relation.

Theorem 5.9. Let P = (P, 99KP , λP ) and Q = (Q, 99KQ, λQ) be two linear pomsets. If there exists
a bijection f : P → Q that preserves the relation 99K and the labelling function then this bijection
is unique.

Proof. Reducing P and Q to posets then theorem 5.8 gives us that there exists a unique bijection
f : P → Q that preserves the relation 99K if and only if |P | = |Q| (if |P | ≠ |Q| then there exists no
bijection f : P → Q). Whether f : P → Q preserves the labelling function or not it is the only
bijection that preserves the relation 99K.

5.2 Definition of ipomsets

We can now define partially ordered multisets with interfaces or ipomsets for short. These ipomsets
are build on pomsets, where cells can be marked as source and/or target cells.

Definition 5.10. An ipomset is a tuple (P,≺, 99K, λ, S, T ) where

• P is a finite set,

• ≺ and 99K are strict partial orders on P such that 99K is linear on ≺-antichains.

• λ : P → Σ is the labelling function.

• S ⊆ P is a subset of the ≺-minimal elements of P called the source set.

• T ⊆ P is a subset of the ≺-maximal elements of P called the target set.

The condition that 99K is linear on ≺-antichains implies that 99K and ≺ together form a total
order.

Definition 5.11. Let P = (P,≺P , 99KP , λP , SP , TP ) and Q = (Q,≺Q, 99KQ, λQ, SQ, TQ) be ipomsets
and Σ be a set with λP : P → Σ and λQ : Q → Σ. We say that P and Q are isomorphic if there
exists a bijective map f : P → Q such that for all p1, p2 ∈ P we have

f (p1) ≺Q f (p2) ⇐⇒ p1 ≺P p2

f (p1) 99KQ f (p2) ⇐⇒ p1 99KP p2

and for all p ∈ P we have λP (p) = λQ ◦ f(p), f (SP ) = SQ and f (TP ) = TQ. We refer to this
bijective map as the ipomset isomorphism.

Definition 5.12. Let P = (P,<, 99K, λ, S, T ) be an ipomset. Let (Pi)0≤i≤n be a finite sequence of
subsets of P such that P0 is the subset of the ≺-minimal elements of P , P1 is the subset of the
≺-minimal elements of P\P0 and let Pi be the subset of ≺-minimal elements of Pi−2\Pi−1. In other
words we split P up based on ≺, which gives us that

⋃n
i≥0 Pi = P .

We then define the strict linear order < on P as the following: For all i, j ∈ N with 0 ≤ s ≤ t ≤ n,
x ∈ Pi and y ∈ Pj we have

x < y ⇐⇒ s < t or s = t and x 99K y
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Theorem 5.13. The relation < as defined above is a strict linear order.

Proof. Let p ∈ P . By definition there exists a unique t ∈ N such that p ∈ Pt. It is clear that we
cannot have p < p, since that would mean p 99K p which is in contradiction with 99K being a strict
partial order. Therefore ≺ is irreflexive.
Let p1 ∈ Ps and p2 ∈ Pt for certain s, t ∈ N. Suppose that we have p1 < p2. If we have s < t then
we cannot have p2 < p1 by definition. If we have s = t then p1 < p2 implies p1 99K p2, which means
that p2 ̸99K p1 and therefore p2 ̸< p1. This shows that < is asymmetric.
Let p1 ∈ Pr, p2 ∈ Ps and p3 ∈ Pt for certain r, s, t ∈ N. Suppose that we have p1 < p2 and p2 < p3.
Then we have r < s < t, r = s < t, r < s = t or r = s = t. In the first three cases we get r < t,
which by definition gives us p1 < p3. Suppose that r = s = t. Then p1 < p2 and p2 < p3 implies
p1 99K p2 and p2 99K p3, which gives us p1 99K p3 and therefore p1 < p3. This shows that < is
transitive.
Let p1 ∈ Ps and p2 ∈ Pt for certain s, t ∈ N. If we have s < t or t < s then we have p1 < p2 or
p2 < p1. If we have s = t then because Ps = Pt is linearly ordered by 99K we have p1 99K p2 or
p2 99K p1, which gives us p1 < p2 or p2 < p1. Therefore all elements in P are comparable by <.
This proves that < is a strict linear order.

Theorem 5.14. Let P = (P,≺P , 99KP , λP , SP , TP ) and Q = (Q,≺Q, 99KQ, λQ, SP , TP ) be ipomsets
and Σ be a set with λP : P → Σ and λQ : Q → Σ. Suppose that there exists a bijective map
f : P → Q that satisfies the conditions in definition 5.11. Then this map is unique.

Proof. For this we define the strict linear orders <P on P and <Q on Q as in definition 5.12 and
theorem 5.13. Let g : Q → P be the inverse of f : P → Q. Because the bijective maps f and g
respect the strict partial orders ≺P and ≺Q we have that f sends all ≺P -minimal elements of P to
≺Q-minimal elements of Q and g sends all ≺Q-minimal elements of Q to ≺P -minimal elements of
P . This gives us that P0 = g (Q0) and Q0 = f (P0). The same goes for Pt = g (Qt) and Qt = f (Pt)
for all t ∈ N. Because f and g respect the strict partial orders 99KP and 99KQ as well we have that
for all t ∈ N, p, p′ ∈ Pt that if p 99KP p′ then f(p) 99KQ f (p′) (analogously the same is true for g).
Therefore for all p1 ∈ Ps, p2 ∈ Pt, q1 ∈ Qs, q2 ∈ Qt, s, t ∈ N we have

p1 <P p2 ⇐⇒ f (p1) <Q f (p2)

g (q1) <P g (q2) ⇐⇒ q1 <Q q2

Therefore every bijective map f : P → Q that satisfies the conditions in definition 5.11 must preserve
the strict linear order <P in the sense that for all p, p′ ∈ P we have p <P p

′ ⇐⇒ f(p) <Q f (p
′).

Since P and Q are the same size there is only one way to injectively map the elements of P onto
Q while preserving the linear order (since the smallest element in P needs to be mapped to the
smallest element of Q, the second smallest element of P needs to be mapped to the second smallest
element of Q etc.). Since the preservation of <P is a requirement this means that for all ipomsets
P and Q there exists at most one bijective map that satisfies the conditions in definition 5.11.

We have now defined ipomset isomorphisms, and shown that if two ipomsets are isomorphic then
their isomorphism is unique. Let (P,≺, 99K, λ, S, T ) be an ipomset. Due to the labelling function
it does not really matter what the elements in P are exactly. Isomorphic ipomsets are therefore
functionally the same, however enforcing them being different will cause some of the later definitions
and theorems to become extremely complicated. Therefore we will define ipomsets as isomorphism
classes of ipomsets instead. We therefore make the following assumption:
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Assumption 5.15. Let (P,≺, 99K, λ, S, T ) be an ipomset. There exists a m ∈ N for which we have
P = [0,m] = {n | n ∈ N, n < m} is a finite set. We also require that relation < on N is the same
as the relation < as defined in definition 5.12 and theorem 5.13.

The reason why we need this is due to the gluing composition defined in the next subsection, and
due to the maps of ipomset languages as defined in section 7.

5.3 Gluing composition

In this subsection we want to define a gluing composition on the ipomsets which works similarly to
the serial composition of strings. However where the composition of ab and cd clearly results in
abcd it isn’t that straightforward for ipomsets. For ipomsets we will glue the target elements of the
first onto the source element of the second ipomset. This is only possible if these source and target
sets are isomorphic, as defined below:

Definition 5.16. Let P = (P,<P , 99KP , λP , SP , TP ) and Q = (Q,<Q, 99KQ, λQ, SQ, TQ) be ipom-
sets. We say that TP is isomorphic to SQ, notation TP ∼= SQ, if there exists a bijective map
κ : TP → SQ such that for all p, p1, p2 ∈ TP we have

λP (p) = λQ ◦ κ(p)

p1 99KP p2 ⇐⇒ κ (p1) 99KQ κ (p2)

Note that the relations ≺P and ≺Q are not relevant here since TP is a subset of the set of ≺P -maximal
elements and SQ is a subset of the set of ≺Q-minimal elements.

The isomorphism κ : TP → SQ is unique for the same reasons as given in theorem 5.14. We can
now define the gluing composition on isomorphisms (as defined in assumption 5.15).

Definition 5.17. Let P = (P,≺P , 99KP , λP , SP , TP ) and Q = (Q,≺Q, 99KQ, λQ, SQ, TQ) be ipomsets
with P = [0,m] and Q = [0, n] such that TP ∼= SQ as defined in definition 5.16. For ipomsets with
P ̸= TP and Q ̸= SQ we define the gluing composition as the following:

P ∗ Q = (P ∪ [m+ 1,m+ n+ 1− |SQ|] ,≺, 99K, λ, SP , T )

P ∗ Q = (R,≺, 99K, λ, S, T )
with

R = P ∪ [m+ 1,m+ n+ 1− |SQ|] = [0,m+ n+ 1− |SQ|]
Let κ : SQ → TP be the inverse of the unique isomorphism κ : TP → SQ. We define the following
maps:

f : P → R, g : SQ → R and h : Q\SQ → R

For all p ∈ P we define f(p) = p. For all q ∈ SQ we define g(q) = f ◦ κ(q).
Defining the map h : Q\SQ → R is more complicated. We can define (Q\SQ, <Q) as a linear poset
for which there exists a unique map to [m+ 1,m+ n+ 1− |SQ|] ⊆ R. We define h : Q\SQ → R
as this map.
We can now define the relation ≺. Let x, y ∈ R with x < y. If x < y < m then

x ≺ y ⇐⇒ f−1(x) ≺P f
−1(y)
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If x < m ≤ y and f−1(x) ∈ TP then

x ≺ y ⇐⇒ g−1(x) ≺Q h
−1(y)

Note that if f−1(x) ∈ TP then SQ is not empty and g−1(x) exists. If x < m ≤ y and f−1(x) ̸∈ TP
then we always have x ≺ y. Lastly if m ≤ x < y then we have

x ≺ y ⇐⇒ h−1(x) ≺Q h
−1(y)

To define the relation 99K we will first define the relation 99K∗, which is done in similar fashion to
the relation ≺: Let x, y ∈ R with x < y. If x < y < m then

x 99K∗ y ⇐⇒ f−1(x) 99KP f
−1(y)

If x < m ≤ y and f−1(x) ∈ TP then

x 99K∗ y ⇐⇒ g−1(x) 99KQ h
−1(y)

however here if x < m ≤ y and f−1(x) ̸∈ TP then we never have x 99K∗ y. Lastly if m ≤ x < y then
we have

x 99K∗ y ⇐⇒ h−1(x) 99KQ h
−1(y)

We then define 99K as the transitive closure of 99K∗. Having defined the relations we can now define
the labelling function λ : R → Σ. For all r ∈ R with r < m we define λ(r) = λP ◦ f−1(r) and for
all r ∈ R with m ≤ r we define λ(r) = λQ ◦ h−1(r).
Lastly we can define the source and target sets. For the source set we define S = SP . For the target
set we define T = g (TQ ∩ SQ) ∪ h (TQ\SQ).

We decided to treat the cases of P ̸= TP and Q ≠ SQ and P = TP and/or Q = SQ separately. This
distinction is not entirely necessary, however since we will use the case of P = TP and/or Q = SQ

quite often and since the definition below is a lot simpler and easier to use then the definition above
we decided to use this distinction anyways.

Definition 5.18. Let P = (P,≺P , 99KP , λP , SP , TP ) and Q = (Q,≺Q, 99KQ, λQ, SQ, TQ) be ipomsets
with P = [0,m] and Q = [0, n] such that TP ∼= SQ as defined in definition 5.16. For ipomsets with
P = TP we define the gluing composition as the following:

P ∗ Q = (Q,≺Q, 99KQ, λQ, SP , TQ)

For ipomsets with Q = SQ we define the gluing composition as the following:

P ∗ Q = (P,≺P , 99KP , λP , SP , TQ)

Note that if P = TP and Q = SQ then both ≺P and ≺Q must be empty and since P = TP ∼= SQ = Q
as pomsets we have P = Q (since they must be the same size). In this case it therefore does not
matter which of the above definitions we use, since the result is the same.

6 Tracks and labelling

In the previous section we defined higher-dimensional automata. In the next section we will define
the languages of higher-dimensional automata. This section bridges the two by defining tracks and
their labelling, which will eventually form the elements of the languages.
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6.1 Definition of tracks

In this subsection we will define tracks of HDA. For this we first need to define (elementary)
upper/lower faces.

Definition 6.1. Let X be an event consistent precubical set, n, s ∈ N with s ≥ 1 and let x ∈ Xn

and y ∈ Xn+s.
Suppose that there exists a s-dimensional vector A as defined in definition 2.7 such that x = δn+s

0,A (y).
Then we say that x is a s-lower face of y, notation x ◁s y. The upper faces work analogously.
Suppose that there exists a s-dimensional vector A such that x = δn+s

1,A (y). Then we say that x is a
s-upper face of y, notation y ▷s x.
If we have s = 1 then we say that x is an elementary lower/upper face of y, notation x ◁ y and
y ▷ x. For any s ∈ N≥1 we can also just say that x is a lower/upper face of y, notation x ◁∗ y and
y ▷∗ x.

The element x being a face of the element y simply means that x can be reached by y through
the face maps. The element x being an lower or upper face of y then means that the vectors V of
elements in {0, 1} are all exclusively 0 or 1 respectively. Note that this means that all elementary
faces are lower/upper faces. We will give an intuitive explanation with the following example:

Figure 10: The 3-dimensional representable HDA X = (X, IX , FX , λX) with a certain labelling.

Let x ∈ X3 be the unique 3-dimensional element. Then the elements δ30,1(x), δ
3
0,2(x) and δ

3
0,3(x) are

its elementary lower faces and the elements δ30,1(x), δ
3
0,2(x) and δ

3
0,3(x) are its elementary upper

faces. The initial state and the three edges coming from it are lower faces as well and the final state
and the three edges going to it are upper faces. The six nodes other than the initial and final nodes
are faces of x, but not lower or upper faces. The same is true for the six edges between these nodes.
We can now define tracks:

Definition 6.2. A track in an event consistent precubical set X is a non-empty finite sequence
ρ = (x1, ..., xm), m ∈ N≥1 of elements of X, with xt ∈ Xnt, nt ∈ N for all 1 ≤ t ≤ m such that
xt ◁∗ xt+1 or xt ▷∗ xt+1 for all 1 ≤ t ≤ m− 1.

The tracks of size 1 and 2 are special cases which we will refer to as:

Definition 6.3. Let X be a precubical set and let ρ be a track in X. We say that ρ is a single track
if ρ = (x) for some x ∈ Xn, n ∈ N.

Definition 6.4. Let X be a precubical set and let ρ be a track in X. We say that ρ is a basic track
if ρ = (x1, x2) for some x1 ∈ Xn, x2 ∈ Xm, n,m ∈ N.
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The reason for these tracks being noteworthy is because we can express any track as a composition
of single and basic tracks:

Definition 6.5. Let X be a precubical set and let ρ = (x1, ..., xm) and τ = (y1, ..., yl) be tracks in
X. If we have xm = y1 then we define the composition of these tracks as

ρ ∗ τ = (x1, ..., xm, y2, ..., yl)

Theorem 6.6. Let X be a precubical set and let ρ = (x1, ..., xm) be a track in X. Then ρ is the
composition of single and basic tracks with

ρ = (x1, ..., xm) = (x1) ∗ (x1, x2) ∗ (x2, x3) ∗ ... ∗ (xm−2, xm−1) ∗ (xm−1, xm)

Proof. This follows from definition 6.4 and definition 6.5.

Note that we included the single track (x1) in the above theorem just to make it applicable to all
tracks. In the case that ρ is of size two or longer we get (x1) ∗ (x1, x2) ∗ ... = (x1, x2) ∗ ... where the
single track works as a sort of identity. We can only compose tracks of which the last element of
the first is the same as the first element of the second.
We will use the following figure as an example:

xab

bd

ac

cd

a

b

c

d

Figure 11: A 2-dimensional representable HDA. Here the letters do not denote the labelling but
are just names for clarity.

First we have 9 single tracks of one element each. Suppose that we have a basic track of two
elements of which the first is the element a. Since a is a node it has no faces, which means that
the second element needs to be one of which a is a lower face. This gives us the possible tracks
(a, ab), (a, ac) and (a, x). Suppose that we have a basic track of two elements of which the first is
the element ab. Because ab is a lower face of x and because b is an upper face of ab we get the
tracks (ab, x) and (ab, b). Similarly we get the basic tracks (ac, x) and (ac, c). The nodes b and c
are only the lower face of the edges bd and cd respectively, and these edges only have the lower face
d which gives us the basic tracks (b, bd), (bd, d), (c, cd) and (cd, d). If our first element is x we get
the basic tracks (x, bd), (x, d) and (x, cd).
With this we have defined all of the single and basic tracks of the above HDA. Now using theorem
6.6 we can get all of the tracks of size 3 or greater. We for example get the tracks (a, ab, x, d),
(a, ab, b, bd, d) and (ab, x, cd).
In the example above we have defined no initial or final cells. Moving forward what we are most
interested in are accepting tracks.

Definition 6.7. A track ρ = (x1, ..., xm) with m ∈ N, m ≥ 1 in a HDA X = (X, IX , FX , λX) is
called an accepting track if x1 ∈ IX and xm ∈ FX .
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With this it becomes clear why we want to look at tracks in the first place. The accepting tracks of
a HDA are its possible execution paths, where a HDA can be defined to describe something like a
computer program or algorithm. Eventually we will, using the labelling function, define labellings
of accepting tracks which will form the languages of higher-dimensional automata.

6.2 Properties of tracks

Theorem 6.8. Let X be an event consistent precubical set and let (x, y) be a track with x ∈ Xn

and y ∈ Xm, n,m ∈ N. We have x ◁∗ y or x ▷∗ y which means that there exists a vector A as
described in definition 2.7 such that x = δm0,A(y) or δ

n
1,A(x) = y. This vector is unique.

The following theorem shows that tracks are preserved by precubical maps.

Proof. Suppose that n < m. Then we have to have x = δm0,A(y). Suppose that there exists a vector
B such that x = δm0,B(y). Then we have δm0,A(y) = δm0,B(y). In the case that n > m instead we
analogously get δn1,A(x) = δn1,B(x). Then from theorem A.1 it follows that A = B.

Theorem 6.9. Let X and Y be event consistent precubical sets and let f : X → Y be a precubical
map. Let ρ = (x1, ..., xm) be a track in X with xt ∈ Xnt, nt ∈ N for all 1 ≤ t ≤ m. Then
f (ρ) = (fn1 (x1) , ..., f

nm (xm)) is a track in Y and for all 1 ≤ t ≤ m− 1 we have

xt ◁
s xt+1 ⇐⇒ fnt (xt) ◁

s fnt+1 (xt+1)

xt ▷
s xt+1 ⇐⇒ fnt (xt) ▷

s fnt+1 (xt+1)

for a certain s ∈ N.
Proof. Let t ∈ N with 1 ≤ t ≤ m − 1. Suppose that we have xt ◁∗ xt+1. Then for s = nt+1 − nt

we have xt ◁s xt+1 and therefore there exists a vector A such that xt = δ
nt+1

0,A (xt+1). This gives us
fnt (xt) = δ

nt+1

0,A ◦ fnt+1 (xt+1) which means that we have fnt (xt) ◁s fnt+1 (xt+1). Analogously the
same is true for xt ▷∗ xt+1.
Now suppose that fnt (xt) ◁s fnt+1 (xt+1). This means that s = nt+1 − nt and nt+1 > nt. Since
ρ is a track we therefore must have xt ◁s xt+1. Analogously the same is true for fnt (xt) ▷s

fnt+1 (xt+1).

Remark 6.9.1. Because of theorem 6.8 there can only be one face map such that xt = δ
nt+1

0,A (xt+1)
or δnt

0,A (xt) = xt+1, and since all precubical maps commute with face maps this face map is the same
for xt, xt+1 and fnt (xt) , f

nt+1 (xt+1).

Theorem 6.10. Let X and Y be event consistent precubical sets, let f : X → Y be a precubical
map and let ρ1 and ρ2 be tracks in X such that ρ1 ∗ ρ2 is a track in X. Then we have

f (ρ1 ∗ ρ2) = f (ρ1) ∗ f (ρ2)

Proof. From theorem 6.9 it follows that f (ρ1 ∗ ρ2), f (ρ1) and f (ρ2) are tracks in Y .
Let ρ1 = (x1, x2, ...xm) and ρ2 = (xm, xm+1, ..., xn). Then we have ρ1 ∗ ρ2 = (x1, x2, ..., xn) and

f (ρ1 ∗ ρ2) = (f (x1) , f (x2) , ..., f (xn))

and theorem 6.6 gives us that

(f (x1) , f (x2) , ..., f (xm)) ∗ (f (xm) , f (xm+1) , ..., f (xn)) = f (ρ1) ∗ f (ρ2)
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As precubical maps preserve tracks, HDA maps preserve accepting tracks.

Theorem 6.11. Let X = (X, IX , FX , λX) and Y = (Y, IY , FY , λY ) be HDAs and let f : X → Y be
a HDA map. For all accepting tracks ρ = (x1, ..., xm) in X we have that f (ρ) = (f (x1) , ..., f (xm))
is an accepting track in Y.

Proof. From theorem 6.9 it follows that for every accepting track ρ = (x1, ..., xm) in X we have
that f (ρ) = (f (x1) , ..., f (xm)) is a track in Y . Since x1 ∈ IX and xm ∈ FX imply f (x1) ∈ IY and
f (xm) ∈ FY we have that f(ρ) is an accepting track in Y .

As we are mostly interested in accepting tracks and HDA we will at times only prove things for
HDA. The following theorem is true for diagrams of event consistent precubical sets as well:

Theorem 6.12. Let X : J → HDA be a small diagram and let (N , ψ) be a co-cone. Let τ be a track
in Xi for a certain i ∈ J . Suppose that there exist j ∈ J , f : i→ j. Then we have

ψi(τ) = ψj ◦ Xf (τ)

Proof. Let τ = (x1, ..., xm). Then for all 1 ≤ t ≤ m we have ψi (xt) = ψj ◦ Xf (xt). This gives us

ψi(τ) = (ψi (x1) , ..., ψi (xm)) = (ψj ◦ Xf (x1) , ..., ψj ◦ Xf (xm)) = ψj ◦ Xf (τ)

which proves the statement.

Theorem 6.13. Let X : J → HDA be a small discrete diagram, let (L, ϕ) be a coproduct of X and
let ρ be an accepting track in X . Then there exists a unique i ∈ J and a unique accepting track τ in
Xi such that ϕi(τ) = ρ.

Proof. Let L = (XL, IX , FX , λL), let ρ = (x1, x2, ..., xm) be the accepting track and let Xi =
(Xi, Ii, Fi, λi) for all i ∈ J .
From theorem 2.13 it follows that for all 1 ≤ t ≤ m there exists a unique it ∈ J such that there
exists a unique yt ∈ Xit with ϕit (yt) = xt.
For all 1 ≤ t ≤ m− 1 we have xt ◁∗ xt+1 or xt ▷∗ xt+1, which gives us that there exists a n ∈ N
and a vector A as described in definition 2.7 such that xt = δn0,A (xt+1) or δ

n
1,A (xt) = xt+1.

This gives us that we have ϕi (yt) = xt = ϕt+1 ◦ δn0,A (yt+1) or ϕt ◦ δn1,A (yt) = xt+1 = ϕt+1 (yt+1)
which gives us it = it+1 and yt = δn0,A (yt+1) or δ

n
1,A (yt) = yt+1 for all 1 ≤ t ≤ m− 1.

Therefore we have i1 = i2 = ... = im, which means that there exists a unique i ∈ J such
that for all 1 ≤ t ≤ m there exists a yt ∈ Xi such that ϕi (yt) = xt. This also gives us that
xt ◁∗ xt+1 ⇐⇒ yt ◁∗ yt+1 and xt ▷∗ xt+1 ⇐⇒ yt ▷∗ yt+1 for all 1 ≤ t ≤ m − 1. Therefore
τ = (y1, y2, ..., ym) is a unique track in Xi such that ϕi(τ) = ρ. Theorem 2.13 gives us that i ∈ J is
unique and y1, ym ∈ Xi are the only elements with ϕi (y1) = x1 and ϕi (ym) = xm and theorem 4.12
then gives us that y1 ∈ Ii and ym ∈ Fi. This makes τ an accepting track in Xi with ϕi(τ) = ρ.

Theorem 6.14. Let X : J → HDA be a small filtered diagram and let (L, ϕ) be a filtered colimit of
this diagram. Suppose that we have i ∈ J with τ a track in Xi such that ϕi(τ) is an accepting track
in L. Then there exist a j ∈ J and an accepting track ρ in Xj such that ϕi(τ) = ϕj(ρ).
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Proof. Let τ = (y1, ..., ym) be a track in Xi for a certain i ∈ J and let ϕi(τ) = (x1, ..., xm) be an
accepting track in L.
Theorem 4.12 gives us that there exist k, l ∈ J , z1 ∈ Xk and zm ∈ Xl with z1 ∈ Ik and zm ∈ Fl such
that ϕk (z1) = x1 and ϕl (zm) = xm. From theorem 2.22 and theorem 2.28 it then follows that since
ϕi (y1) = ϕk (z1) and ϕi (ym) = ϕl (zm) there exists a j ∈ J and morphisms f : i→ j, g : k → j and
h : l → j such that Xf (y1) = Xg (z1) and Xf (ym) = Xh (zm).
Because τ is a track in Xi we get that Xf (τ) is a track in Xj and since we have z1 ∈ Ik and zm ∈ Fl

we have Xf (y1) = Xg (z1) ∈ Ij and Xf (ym) = Xh (zm) ∈ Fj . Therefore Xf (τ) is an accepting track
in Xj and we have ϕj ◦Xf (τ) = ϕi(τ).

Theorem 6.15. Let X : J → HDA be a small filtered diagram, let (L, ϕ) be the filtered colimit
of this diagram and let ρ1 = (x1, x2, ..., xm) and ρ2 = (xm, xm+1, ..., xn) be tracks in L such that
ρ1 ∗ ρ2 = (x1, x2, ..., xn) is defined and a track in L.
Suppose that τ1 = (y1, y2, ..., ym) is a track in Xi for i ∈ J and τ2 = (zm, zm+1, ..., zn) is a track in
Xj for j ∈ J such that ϕi (τ1) = ρ1 and ϕj (τ2) = ρ2.
Then there exists a k ∈ J and morphisms f : i→ k and g : j → k such that Xf (ym) = Xg (zm) and
τ3 = Xf (τ1) ∗ Xg (τ2) is a track in Xk with ϕk (τ3) = ρ1 ∗ ρ2.

Proof. Since we have ϕi (τ1) = ρ1 and ϕj (τ2) = ρ2 we have ϕi (ym) = xm = ϕj (zm). Theorem
2.22 therefore gives us that ym ∼ zm which as a result of theorem 2.27 gives us that there exists
a k ∈ J and morphisms f : i → k and g : j → k such that Xf (ym) = Xg (zm). Theorem 6.10
then gives us that τ3 = Xf (τ1) ∗ Xg (τ2) is a track in Xk with ϕk (τ3) = ϕk (Xf (τ1) ∗ Xg (τ2)) =
ϕk (Xf (τ1)) ∗ ϕk (Xf (τ2)) = ρ1 ∗ ρ2.

Theorem 6.16. Let X : J → HDA be a small filtered diagram and let (L, ϕ) be the filtered colimit of
this diagram. Suppose that ρ is an accepting track of L. Then there exists a i ∈ J and an accepting
track τ in Xi such that ϕi(τ) = ρ.

Proof. First suppose that ρ = (x1). Then from theorem 2.24 we get that there exists a i ∈ J and a
y1 ∈ Xi such that ϕi (y1) = x1. Then τ = (y1) is a track in Xi such that ϕi(τ) = ρ.
Suppose that ρ = (x1, x2). We have x1 = δ0,A (x2) or δ1,A (x1) = x2 for a certain vector A as
described in definition 2.7. Therefore from theorem 2.24 it follows that there exists a i ∈ J such
that there exist y1, y2 ∈ Xi with y1 = δ0,A (y2) or δ1,A (y1) = y2 and ϕi (y1) = x1 and ϕi (y2) = x2.
Suppose that ρ = (x1, x2, ..., xm) for a certain m ≥ 3. We have ρ = (x1, x2) ∗ (x2, x3) ∗ .... ∗
(xm−1, xm) = ρ1 ∗ ρ2 ∗ ... ∗ ρm−1. Then for every track ρt = (xt, xt+1) with 1 ≤ t ≤ m− 1 there exists
a it ∈ J and a track τt = (yt, zt+1) in Xi with ϕit (τt) = ρt as we have proven previously.
From theorem 6.15 it follows that there exists a j1 ∈ J and a track σ1 in Xj1 with ϕj1 (σ1) = ρ1 ∗ ρ2.
Applying theorem 6.15 again gives us that there exists a j2 ∈ J and a track σ2 in Xj2 with
ϕj2 (σ2) = ρ1 ∗ ρ2 ∗ ρ3. Repeating this step m− 4 more times (for a total of m− 2 times) gives us a
jm−2 ∈ J and a track σm−2 in Xjm−2 with ϕjm−2 (σm−2) = ρ1 ∗ ρ2 ∗ ... ∗ ρm−1 = ρ.
This means that for every track ρ in L there exists a i ∈ J and a track τ in Xi such that ϕi(τ) = ρ.
Then theorem 6.14 gives us that for every accepting track ρ in L there exists a i ∈ J and an
accepting track τ in Xi such that ϕi(τ) = ρ.

For discrete and filtered diagrams we have proven that if ρ is an accepting track of L there exists a
i ∈ J and an accepting track τ in Xi such that ϕi(τ) = ρ. This is not true for every small diagram,
even if we don’t require ρ and τ to be accepting tracks.

51



Theorem 6.17. There exists a small diagram X : J → HDA with the colimit (L, ϕ) such that there
exists a track ρ in L such that for all i ∈ J there exists no track τ in Xi with ϕi (τ) = ρ.

Proof. We can prove this with a very simple example: Let J be the small category with obj(J) =
{1, 2, 3} and mor(J) = {f : 2 → 1, g : 2 → 3}. Let X : J → HDA be the diagram with:

X1

X2

X3

L

x1

x3

Xf

Xg

y1 y3

ϕ1

ϕ2

ϕ3

x2

y2

Here we have three HDA in the diagram and their colimit L. The HDA X1 =
(
X1,

{
δ10,1 (x1)

}
, ∅, λ1

)
consists of a single edge x1 and where the node δ10,1 (x1) is the only initial cell. The HDA
X2 = (X2, ∅, ∅, λ2) is only a single node x2 with no initial or final cells and the HDA X3 =(
X3, ∅,

{
δ12,1 (x3)

}
, λ3
)
consists of a single edge x3 and where the node δ11,1 (x3) is the only final cell.

There are two HDA maps: Xf : X2 → X1 and Xg : X2 → X3 which are defined as X 0
f (x2) = δ10,1 (x1)

and X 0
g (x2) = δ11,1 (x3). This means that δ10,1 (x1) ∼ x2 ∼ δ11,1 (x3) which means that for the colimit

we have to have ϕ0
1 ◦ δ10,1 (x1) = ϕ0

2 (x2) = ϕ3 ◦ δ11,1 (x3). This then gives us the colimit L as depicted
above.
It is clear that ρ = (y1, y2, y3) is a track in L however there exists no track τ in X1, X2 or X3 such
that ϕi(τ) = ρ. We also have that ρ =

(
δ10,1 (y1) , y1, y2, y3, δ

1
1,1 (y3)

)
is an accepting track in L but

X1, X2 and X3 have no accepting tracks themselves. This proves the theorem.

These results about tracks and accepting tracks for diagrams and colimits will be useful again in
section 7, where we will define languages of higher-dimensional automata.

6.3 Event identification

Before we can move on to the labelling of tracks we first need to define event identification. This
works similar to the labelling function in subsection 4.1 and this subsection will have approximately
the same structure. We will also show that the event identification is equivalent with the event
relation we defined in section 3.

Definition 6.18. Let Σ be a set. The event object on Σ is the precubical subset !!Σ ⊆!Σ with

!!Σn = {(x1, ..., xn) | (x1, ..., xn) ∈!Σn, xs ̸= xt whenever s ̸= t}

Definition 6.19. Let X be a precubical set and Σ a set. An event identification on X is a precubical
map ev : X →!!Σ.
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The following theorem proves that event identifications generate equivalence relations as defined in
definition 3.1 uniquely.

Theorem 6.20. Let X be a precubical set and let Σ be a set. Let ev1 : X1 → Σ be a function for
which ev1 ◦ δ2ν,a(x) = ev1 ◦ δ2µ,b(x) for all ν, µ ∈ {0, 1} and a, b ∈ {1, 2} if and only if a = b. Then
ev1 extends to an equivalence relation ≡X as defined in definition 3.1 with

ev1(x) = ev1(y) ⇐⇒ x ≡X y

for all x, y ∈ X1.

Proof. By definition we have δ2ν,a(x) ≡X δ2µ,b(x) if a = b. Since ev1 ◦ δ21,1(x) = ev1 ◦ δ20,1(x) ̸=
ev1 ◦ δ20,2(x) = ev1 ◦ δ21,2(x) this also automatically gives us that for all x ∈ X2, ν, µ ∈ {0, 1} and
a, b ∈ {1, 2} we have δ2ν,a(x) ≡X δ2µ,b(x) if and only if a = b.
It is clear that ≡X is reflexive and symmetric. Since the relation = on Σ is transitive ≡X is transitive
as well. Therefore ≡X is an equivalence relation on X1 as defined in definition 3.1.

Note that the equivalence relation described here does not have to be the event relation as defined
in definition 3.2. We can still have ev1(x) = ev1(y) for unrelated x, y ∈ X1 for example.

Theorem 6.21. Let X be a precubical set and let Σ be a set. Any function ev1 : X1 → Σ for
which ev1 ◦ δ20,1(x) = ev1 ◦ δ21,1(x), ev1 ◦ δ20,2(x) = ev1 ◦ δ21,2(x) and ev1 ◦ δ20,1(x) ̸= ev1 ◦ δ20,2(x) for
all x ∈ X2 extends uniquely to a precubical map ev : X →!!Σ.

Proof. Using theorem 4.2 we define the precubical map ev : X →!Σ. This gives us for all n ∈ N,
x ∈ Xn

evn(x) =
(
ev1 ◦ δnν,An

1
(x), ..., ev1 ◦ δnν,An

n
(x)
)

for all ν ∈ {0, 1}. As a result of theorem A.7 and theorem 6.20 we get that for all 1 ≤ s, t ≤ n we
have ev1 ◦ δnν,An

s
(x) = ev1 ◦ δnν,An

t
(x) if and only if s = t. This gives us that all elements in evn(x)

are unique. Therefore evn(x) ∈!!Σ for all n ∈ N, x ∈ Xn which makes ev a unique precubical map
ev : X →!!Σ.

We will now move on to new theorems that will be used in the next subsection for the labelling of
tracks.

Definition 6.22. Let X be an event consistent precubical set and let ≡X be the event relation on
X1. We define EX = X1/ ≡X which we call the set of universal events of X.

Theorem 6.23. Let X be an event consistent precubical set and let EX be the set of universal
events of X as given in definition 6.22. Then the quotient map X → EX extends uniquely to an
event identification ev : X →!!EX .

Proof. Suppose that qX : X → EX is the quotient map. By definition we then have qX ◦ δ20,1(x) =
qX ◦δ21,1(x), qX ◦δ20,2(x) = qX ◦δ21,2(x) and qX ◦δ20,1(x) ̸= qX ◦δ20,2(x) for all x ∈ X2. Using theorem 6.21
we then get that this extends uniquely to an event identification ev : X →!!EX with ev1 = qX .

Theorem 6.24. Let (X,λ) be a labelled precubical set and let ≡X be the event relation. Then for
all x, y ∈ X1 we have

x ≡X y =⇒ λ1(x) = λ1(y)
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Proof. This follows from the fact that λ1 ◦ δ20,1(x) = λ1 ◦ δ21,1(x) and λ1 ◦ δ20,2(x) = λ1 ◦ δ21,2(x) for
all x ∈ X2 and the fact that ≡X is generated by the transitive closure of{(
δ2ν,a(x), δ

2
µ,a(x)

)
| ν, µ ∈ {0, 1}, x ∈ X2, a ∈ {1, 2}

}
.

Theorem 6.25. Let (X,λ) be a labelled precubical set. Then there exists a unique precubical map
λev :!!EX →!Σ such that λ = λev ◦ ev : X →!!EX →!Σ, with EX and ev as defined in definition
6.22 and theorem 6.23.

Proof. From theorem 6.24 it follows that for all e ∈ EX , x, y ∈ X1 such that ev1(x) = e, ev1(y) = e
we have λ1(x) = λ1(y) since x ≡X y. We define the function λ1ev : EX → Σ (or equivalently
λ1ev :!!E

1
X → Σ) as

λ1ev(e) = λ1ev
(
ev1(x)

)
= λ1(x)

for all x ∈ X1 such that ev1(x) = e. Since for all e ∈ EX there exists such x ∈ X1 and all of these
x ∈ X1 have the same labelling λ1(x) we have that λ1ev is well-defined.
We have that !!EX is a precubical set. For all e ∈!!E2

X we have by definition that δ2ν,a(e) = δ2µ,b(e) if
and only if a = b. This gives us λ1ev ◦ δ2ν,a(e) = λ1ev ◦ δ2µ,b(e) for all e ∈!!E2

X if a = b. Therefore we
can use theorem 4.2 which gives us the precubical map λev :!!EX →!Σ.
Since we have λ1ev ◦ ev1 = λ1 and because λ is uniquely generated using λ1 and theorem 4.2 we get
λev ◦ ev = λ, which proves the theorem.

In other words we have that by definition of the labelling function two elements in X1 that are
equivalent by the event relation must have the same label. This is then extended to elements Xn

for all n ∈ N since ev : X →!!EX and λ : X →!Σ are uniquely defined by ev1 and λ1.

6.4 Labelling

For this subsection it is important to recall the definitions and theorems of section 5. Here we will
define a labelling function ℓ which for a track gives us an ipomset. Before we do this we first define
a labelling function on individual elements.

Definition 6.26. Let (X,λ) be a labelled precubical set. The label of an element x ∈ Xn for a
certain n ∈ N is the linear pomset

ℓ(x) = (EV(x), 99K, λev)

with EV(x) =
(
ev1 ◦ δnν,An

1
(x) 99K ... 99K ev1 ◦ δnν,An

n
(x)
)
and λev :!!EX →!Σ as defined in theorem

6.25.

Note here that EV(x) is equivalent to ev(x) but instead of a vector it is a linear poset. Recall
that as a result of theorem A.7 and theorem 6.20 we get that for all 1 ≤ s, t ≤ n we have
ev1 ◦ δnν,An

s
(x) = ev1 ◦ δnν,An

t
(x) if and only if s = t. This means that every element in EV(x) as

described above is unique.

Theorem 6.27. Let (X,λ) be a labelled precubical set. For all n,m ∈ N, x ∈ Xn and y ∈ Xm we
have ℓ(x) ⊆ ℓ(y) if x ◁∗ y or y ▷∗ x.

54



Proof. Suppose that x ◁∗ y or y ▷∗ x. Then there exist a ν ∈ {0, 1} and a vector A such that
x = δmν,A(y). We have

ℓ(y) =
((

ev1 ◦ δmν,Am
1
(y) 99K ... 99K ev1 ◦ δmν,Am

m
(y)
)
, 99Ky, λev

)
ℓ(x) =

((
ev1 ◦ δnν,An

1
(x) 99K ... 99K ev1 ◦ δnν,An

n
(x)
)
, 99Kx, λev

)
Every element in

(
ev1 ◦ δnν,An

1
(x) 99K ... 99K ev1 ◦ δnν,An

n
(x)
)
is by definition unique. Since x = δmν,A(y)

for all e ∈ EV(x) we have e ∈ EV(y) (replace x in ℓ(x) with δmν,A(y) and note that all (m − 1)-
dimensional vectors A are of the form Am

a ). Suppose that we have s, t ∈ N, 1 ≤ s < t ≤ n. Then we
have

ev1 ◦ δnν,An
s
◦ δmν,A(y) 99K ev1 ◦ δnν,An

t
◦ δmν,A(y)

Let A = (a1, ..., al). Then we get

ev1 ◦ δnν,An
s
◦ δmν,A(y) = ev1 ◦ δnν,An

s
◦ δn+1

ν,a1
◦ ... ◦ δmν,al(y)

Using theorem A.6 we get

δnν,An
s
◦ δn+1

ν,a1
=

{
δn+1

ν,An+1
s

for all a1 > s

δn+1

ν,An+1
s+1

for all a1 ≤ s

If a1 > s, then we have ai > s for all 2 ≤ i ≤ l. If a1 ≤ s then we need to compare a2 with s+ 1
instead. Let rs be the smallest integer 1 ≤ rs ≤ l such that ars > s+ rs − 1. Then we get

ev1 ◦ δnν,An
s
◦ δn+1

ν,a1
◦ ... ◦ δmν,al(y) = δmν,Am

s+rs−1
(y)

Let rt be defined analogously. Since for all 1 ≤ i ≤ l if ai > t+ i− 1 we have ai > s+ i− 1, since
s < t. Therefore rs ≤ rt, which gives us s+ rs − 1 < t+ rt − 1 and therefore

ev1 ◦ δnν,An
s
◦ δmν,A(y) = ev1 ◦ δmν,Am

s+rs
(y)

99Ky ev
1 ◦ δmν,Am

t+rt
(y) = ev1 ◦ δnν,An

t
◦ δmν,A(y)

This shows that ℓ(x) ⊆ ℓ(y) as pomsets, since EV(x) ⊆ EV(y) as posets and since λev is defined the
same on both ℓ(x) and ℓ(y).

To understand how the labeling works, let’s look at an example:

(a, d) (b, d) (c, d)(d) (d)

(a) (b) (c)

(a) (b) (c)

ε

ε

ε

ε

ε

ε

ε

ε

Figure 12: A 2-dimensional rectangular HDA with labels for the elements. The two unlabeled
vertical arrows have the labels (d).
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Here we have used the vector notation for the labels. The vertical arrows are all labeled (d), and the
pairs of parallel horizontal arrows are labeled (a), (b) and (c). The labels of the three 2-dimensional
elements are then determined by the labels of their adjacent arrows, giving us (a, d), (b, d) and (c, d).
The nodes all have the empty labeling ε = (). This figure also intuitively explains why theorem
6.27 is true.
For an intuitive explanation for HDA with dimension greater than 2 we can use the idea of direction
as introduced in subsection 2.1 again. If x ∈ Xn is a higher-dimensional element then EV(x) is a
linear poset containing the equivalence classes of the elements of X1 that can be reached by x in
canonical order. Applying the unique labelling function λev as defined in theorem 6.25 on each of
these equivalence classes then gives us the labelling of x.
For the next definition we will make use of the theorems and definitions in section 5 to define
labelling on tracks. We will add an intuitive explanation with some examples after the definition.

Theorem 6.28. Let (X,λ) be a labelled precubical set, let n ∈ N and x ∈ Xn. Then there exists a
unique bijection ξ : EV(x) → [0, n− 1] such that the for all a, b ∈ EV(x) we have

a 99K b ⇐⇒ ξ(a) < ξ(b)

note that if n = 0 then we define [0, n− 1] = [0,−1] = ∅.

Proof. This follows from the fact that EV(x) and [0, n− 1] are both linear posets of the same size,
since |EV(x)| = n by definition. If EV(x) = ∅ then the bijection is the identity on ∅.

Definition 6.29. Let (X,λ) be a labelled precubical set. We define the label ℓ(ρ) of a track
ρ = (x1, ..., xm, ) as follows:

• If we have m = 1 and therefore ρ = (x1) we define ℓ(ρ) as the following: Let n = |EV (x1)|
and let ξ : EV (x1) → [0, n− 1] be the bijection as defined in theorem 6.28. Then we have

ℓ(ρ) = (ξ ◦ EV (x1) , ∅, 99K, λ, ξ ◦ EV (x1) , ξ ◦ EV (x1))

where the relation 99K is equal to the <-relation on N. For all a ∈ [0, n− 1] we define
λ(a) = λev ◦ ξ−1(a).

• If we have m = 2 and therefore ρ = (x1, x2) we define ℓ(ρ) as the following: If x1 ▷∗ x2 we
define a = 1 and if x1 ◁∗ x2 we define a = 2. Let n = |EV (xa)| and let ξ : EV (xa) → [0, n− 1]
be the bijection as defined in theorem 6.28. Then we have

ℓ(ρ) = (ξ ◦ EV (xa) , ∅, 99K, λ, ξ ◦ EV (x1) , ξ ◦ EV (x2))

where the relation 99K is equal to the <-relation on N. For all b ∈ [0, n− 1] we define
λ(b) = λev ◦ ξ−1(b). It’s important to note here that as a result of theorem 6.27 we have
ℓ (x1) ⊆ ℓ (xa) ⊇ ℓ (x2), which means that λev works the same on EV (x1) and EV (x2).

• If we have m ≥ 3 we can split ρ as in theorem 6.6. Then we define

ℓ(ρ) = ℓ ((x1, ..., xm, )) = ℓ ((x1, x2) ∗ ... ∗ (xm−1, xm))

= ℓ ((x1, x2)) ∗ ... ∗ ℓ ((xm−1, xm))

It’s important to note here that ξ1 ◦EV (xt) ∼= ξ2 ◦EV (xt) for bijections ξ1 and ξ2 as in theorem
6.28.
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Theorem 6.30. Let X and Y be HDA and let f : X → Y be a HDA map. For all x ∈ Xn, n ∈ N
we have ℓ(x) ∼= ℓ ◦ fn(x).

Proof. Let X = (X, IX , FX , λX) and Y = (Y, IY , FY , λY ). We have

ℓ(x) = (EV(x), 99Kx, λev,X)

ℓ ◦ fn(x) = (EV ◦ fn(x), 99Ky, λev,Y )

with
EV(x) =

(
ev1X ◦ δnν,An

1
(x) 99K ev1X ◦ δnν,An

2
(x) 99K ... 99K ev1X ◦ δnν,An

n
(x)
)

for any ν ∈ {0, 1}. Here we will simply refer to δnν,An
t
(x) as xt for all 1 ≤ t ≤ n. Since we have

δnν,An
t
◦ fn(x) = f 1 ◦ δnν,An

t
(x) this gives us

EV(x) =
(
ev1X (x1) 99Kx ev

1
X (x2) 99Kx ... 99Kx ev

1
X (xn)

)
EV ◦ fn(x) =

(
ev1Y ◦ f 1 (x1) 99Ky ev

1
Y ◦ f 1 (x2) 99Ky ... 99Ky ev

1
Y ◦ f 1 (xn)

)
Since EV(x) and EV ◦ fn(x) are both linear posets of the same size there exists a unique bijection
g : EV(x) → EV ◦ fn(x) with g ◦ ev1X (xt) = ev1Y ◦ f 1 (xt) for all 1 ≤ t ≤ n that preserves the 99Kx
relation as 99Ky.
Recall from theorem 6.25 that λev,X :!!EX →!Σ is the unique precubical map such that λX =
λev,X ◦ evX with evX : X →!!EX . Similarly we also have λY = λev,Y ◦ evY with evY : Y →!!EY .
Therefore for all 1 ≤ t ≤ n we have

λ1ev,Y ◦ ev1Y ◦ f 1 (xt) = λ1Y ◦ f 1 (xt) = λ1X (xt) = λ1ev,X ◦ ev1X (xt)

which shows that g : EV(x) → EV ◦ fn(x) preserves the labelling function as well. Therefore this
makes g : ℓ(x) → ℓ ◦ fn(x) a pomset isomorphism which means that we have ℓ(x) ∼= ℓ ◦ fn(x).

Theorem 6.31. Let X and Y be HDA, let f : X → Y be a HDA map and let ρ be a track in X .
Then we have ℓ(ρ) = ℓ ◦ f(ρ).

Proof. We have
ρ = (x1, x2, ..., xm) = (x1, x2) ∗ (x2, x3) ∗ ... ∗ (xm−1, xm)

for a certain m ∈ N, m ≥ 1. From theorem 6.9 it follows that

f (ρ) = (f (x1) , f (x2) , ..., f (xm))

= (f (x1) , f (x2)) ∗ (f (x2) , f (x3)) ∗ ... ∗ (f (xm−1) , f (xm))

For ease of notation we define

f(ρ) = τ = (y1, y2, ..., ym) = (y1, y2) ∗ (y2, y3) ∗ ... ∗ (ym−1, ym)

with yt = f (xt) for all 1 ≤ t ≤ m. For all t ∈ N, 1 ≤ t ≤ m− 1 we have

ℓ (xt, xt+1) = (ξa ◦ EV (xa) , ∅, 99KX , λX , ξa ◦ EV (xt) , ξa ◦ EV (xt+1))
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ℓ (yt, yt+1) = (ζa ◦ EV (ya) , ∅, 99KY , λY , ζa ◦ EV (yt) , ζa ◦ EV (yt+1))

for a certain a ∈ {t, t+1} and certain bijections ξa : EV (xa) → [0, na−1] and ζa : EV (ya) → [0, na−1]
with na = |EV (xa)| = |EV (ya)| as defined in theorem 6.28. Note that as a result of theorem 6.9 we
have xt ◁∗ xt+1 ⇐⇒ yt ◁∗ yt+1 and xt ▷∗ xt+1 ⇐⇒ yt ▷∗ yt+1.
Theorem 6.30 gives us the bijection g : EV (xa) → EV (ya) which preserves the 99K-relation and the
labelling function. This makes ζz ◦ g : EV (xa) → [0, n− 1] a bijection that preserves the 99K-relation.
Theorem 5.9 then gives us that ζa ◦ g = ξa, which means that we have ℓ (xt, xt+1) = ℓ (yt, yt+1).
Since therefore for all 1 ≤ t ≤ n − 1 we have ℓ (xt, xt+1) = ℓ (yt, yt+1) this also gives us ℓ(ρ) =
ℓ(τ) = ℓ ◦ f(ρ), which proves the theorem.

7 Languages of Higher-Dimensional Automata

In this section we introduce the languages of higher-dimensional automata and their maps. After
that we show that coproducts and colimits of HDA are equivalent with the union of the languages
of the HDA in the diagrams.
Throughout this section the set of labels Σ is fixed. We can only describe the relation between
languages that use the same labelling set Σ.

7.1 HDA languages

Definition 7.1. Let X be a HDA. We define the language of X as

L (X ) = {ℓ(ρ) | ρ is an accepting track in X}

We then define the maps between languages as inclusion maps.

Definition 7.2. Let L1 and L2 be languages. If we have L1 ⊆ L2 then we define the unique language
map F : L1 → L2 as the inclusion map such that for all P ∈ L (X ) we have P = F (P ).

Remark 7.2.1. From the reflexivity and transitivity of the inclusion relation ⊆ we get that we
have all identity language maps and compositions of language maps.

Definition 7.3. We define HLang as the category of languages generated by HDA with the morphisms
being language maps.

One can also define a subcategory of Lang of which the objects are languages that are generated by
finite HDA. The category of languages of HDA is part of a broader category of interval ipomset
languages, which are covered by the paper [FJSZ21] (we describe interval ipomsets in appendix B).
While we won’t cover these languages specifically, it is important to consider them when discussing
colimits of languages.

Definition 7.4. The category Lang is the category of interval ipomset languages, where the
morphisms send interval ipomsets in the source language to the same ipomsets in the target
language.

By definition we have that HLang is a full subcategory of Lang.
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Theorem 7.5. Let X and Y be HDA and let f : X → Y be a HDA map. Then we have
L (X ) ⊆ L (Y).
Let F : L (X ) → L (Y) be the unique language map as in definition 7.2. Then for every accepting
track ρ in X we have F ◦ ℓ(ρ) = ℓ ◦ f(ρ).

Proof. Theorem 6.31 gives us that for every accepting track ρ in X we have ℓ(ρ) = ℓ ◦ f(ρ). Since
f : X → Y is a HDA map it follows from theorem 6.11 that f(ρ) is an accepting track in Y . Since
every element P ∈ L (X ) is by definition generated by an accepting track in X this gives us that
L (X ) ⊆ L (Y).
Let F : L (X ) → L (Y) be the unique language map as in definition 7.2. For every accepting track
ρ in X we have F ◦ ℓ(ρ) = ℓ(ρ) = ℓ ◦ f(ρ).

Theorem 7.6. The language operator L is a functor L : HDA → Lang that sends HDA to their
languages and HDA maps to the respective language maps.

Proof. This follows from definition 7.1, definition 7.2 and theorem 7.5.

7.2 Colimits of languages of HDA

In this subsection we will cover the diagrams of languages of HDA and their colimits and describe
the connection to diagrams of HDA.

Theorem 7.7. Let L : J → Lang be a small diagram of languages. For every i ∈ J define the
language map Θi : Li →

⋃
i∈J Li as the inclusion. Then

(⋃
i∈J Li,Θ

)
is the colimit of the diagram

L.

Proof. Note that
⋃

i∈J Li is defined if and only if obj(J) is a set (which is true if J is small).
For all i ∈ J the maps Θi : Li →

⋃
i∈J Li clearly exist as defined in definition 7.2. Let i, j ∈ J be

such that there exists a morphism f : i→ j. Then there exists a language map Lf : Li → Lj. By
definition for all P ∈ Li we have P = Lf (P ) and therefore Θi(P ) = P = Lf (P ) = Θj ◦Lf (P ). This
makes

(⋃
i∈J Li,Θ

)
a co-cone of L.

Suppose that (LN ,Ψ) is a co-cone of L. Then for all i ∈ J we have to have Li ⊆ LN and
therefore

⋃
i∈J Li ⊆ LN . Then definition 7.2 gives us that there exists a unique language map

F :
⋃

i∈J Li → LN . Since by definition for all P ∈
⋃

i∈J Li we have P = F (P ) and therefore
F ◦ Θi(P ) = F (P ) = P = Ψi(P ) this gives us that F satisfies the requirements for a unique
language map with F ◦Θi = Ψi for all i ∈ J .
This proves that

(⋃
i∈J Li,Θ

)
is a colimit of the diagram L.

Theorem 7.8. Let X : J → HDA be a small diagram of HDA. Then L (X ) : J → Lang is a small
diagram of languages. If X is a discrete or filtered diagram then L(X ) is discrete or filtered as well.

Proof. Theorem 7.5 gives us that for every i, j ∈ J such that there exists a morphism f : i → j
the HDA map Xf : Xi → Xj generates a unique language map Lf : L (Xi) → L (Xj). Due
to the uniqueness of language maps if there exists a k ∈ J and a morphism g : j → k then
Lg : L (Xj) → L (Xk) and Lg◦f : L (Xi) → L (Xk) are language maps such that Lg ◦ Lf = Lg◦f .
Therefore L (X ) : J → Lang is a small diagram of languages.
In the case that X is a discrete or filtered diagram we have that J is a discrete or filtered category
which automatically gives us that L(X ) is a discrete or filtered diagram.
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Theorem 7.9. Let X : J → HDA be a small diagram of HDA and let (N , ψ) be a co-cone of
X . For all i ∈ J define Ψi : L (Xi) → L (N ) such that for every accepting track ρ in Xi we
have Ψi ◦ ℓ(ρ) = ℓ ◦ ϕi(ρ). Then (L (N ) ,Ψ) is a co-cone of the diagram L(X ) and we have⋃

i∈J L (Xi) ⊆ L (N ).

Proof. Suppose that we have i, j ∈ J with a morphism f : i→ j. Then we have the language maps
Ψi : L (Xi) → L (N ), Ψj : L (Xj) → L (N ) and Lf : L (Xi) → L (Xj). Remark 7.2.1 gives us that
Ψj ◦ Lf is also a language map and definition 7.2 then gives us that Ψi = Ψj ◦ Lf . This then gives
us that (L (N ) ,Ψ) is a co-cone of the diagram L(X ) and since

(⋃
i∈J L (Xi) ,Θ

)
is a colimit of

L(X ) there exists a unique language map
⋃

i∈J L (Xi) → L (N ). Definition 7.2 then gives us that⋃
i∈J L (Xi) ⊆ L (N ).

Theorem 7.10. Let X : J → HDA be a small discrete diagram of HDA and let (N , ψ) be a coproduct
of X . Then (L (L) ,Φ) is a coproduct of L(X ) with L (L) =

⋃
i∈J L (Xi).

Proof. Theorem 7.9 gives us that (L (L) ,Φ) is a co-cone of L(X ) and that we have
⋃

i∈J L (Xi) ⊆
L (L). From theorem 6.13 it follows that for every accepting track ρ in L there exists a i ∈ J
and an accepting track τ in Xi such that ϕi(τ) = ρ. Since by definition every element of L (L)
is the labelling of an accepting track of L and since theorem 6.31 and theorem 7.5 give us that
Φi ◦ℓ(τ) = ℓ◦ϕi(τ) = ℓ(ρ) this means that for every P ∈ L (L) there exists a i ∈ J and a Q ∈ L (Xi)
such that Φi(Q) = P . This gives us L (L) =

⋃
i∈J L (Xi). Since definition 7.2 gives us that the

language map L (Xi) →
⋃

i∈J L (Xi) is unique this gives us Φi = Θi for all i ∈ J and therefore
(L (L) ,Φ)

Theorem 7.11. Let X : J → HDA be a small filtered diagram of HDA and let (N , ψ) be a filtered
colimit of X . Then (L (L) ,Φ) is a filtered colimit of L(X ) with L (L) =

⋃
i∈J L (Xi).

Proof. This proof is analogous to the proof of theorem 7.10 with the reference to theorem 6.13
replaced with theorem 6.16.

Theorem 7.12. There exists a small diagram of HDA X : J → HDA with the colimit (L, ϕ) such
that (L (L) ,Φ) is not a colimit of L(X ) and L (L) ⊋

⋃
i∈J L (Xi).

Proof. This follows from theorem 6.17. Note that in the example given the languages L (X1), L (X2)
and L (X3) are all empty since each of the HDA X1, X2 and X3 has no initial or final cells. Since
ρ =

(
δ10,1 (y1) , y1, y2, y3, δ

1
1,1 (y3)

)
is an accepting track in L the language L (L) is not empty which

means that we have L (L) ̸=
⋃

i∈J L (Xi).

Theorem 7.13. Every HDA language is the union of languages of finite HDA.

Proof. This follows from theorem 4.20 and theorem 7.11.

For the proof of the theorem above one could also show that for every interval ipomset there exists
a finite HDA that generates it. However with this approach the original HDA might not be the
colimit of the diagram of finite HDA that generates its language.

Theorem 7.14. The functor L : HDA → Lang preserves small coproducts and small filtered colimits.

Proof. This follows from theorem 7.10 and theorem 7.11.
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8 Tensor Product

We have defined the higher-dimensional automata and their languages. Similarly to ordinary
automata there are a few operations that can be applied to the HDA and the HDA languages. In
the previous sections we have seen the coproduct, with its equivalent on languages being the union.
In this section we will cover the tensor product, equivalently the parallel composition on languages.
In essence this operation will represent executing two or more HDA in parallel.

8.1 Tensor product definition

First we define the tensor product on precubical sets. To avoid confusion we will sometimes denote
the face maps on a precubical set X with δX .

Definition 8.1. Let X and Y be precubical sets. We define tensor product X ⊗ Y = Z as the
family of sets Z = (Zn)n∈N with

Zn =
⊔

k+l=n

Xk × Y l

For all k, l, n ∈ N with k + l = n and for all x ∈ Xk, y ∈ Y l we define the face maps on Z as

δnν,a ((x, y)) =


(
(δX)

k
ν,a (x), y

)
if a ≤ k(

x, (δY )
l
ν,a−k (y)

)
if a > k

for all ν ∈ {0, 1} and a ∈ N, 1 ≤ a ≤ n.

Theorem 8.2. Let X and Y be precubical sets. Then X ⊗ Y is a precubical set as well.

Proof. Let Z = X ⊗ Y and recall definition 2.2. For all k, l ∈ N with k + l = n we have that Xk

and Y l are sets and therefore Xk × Y l and
⊔

k+l=nX
k × Y l = Zn are sets as well.

We now want to prove that for all n ∈ N, z ∈ Zn, ν, µ ∈ {0, 1} and a, b ∈ N with 1 ≤ a < b ≤ n we
have

δn−1
ν,a ◦ δnµ,b(z) = δn−1

µ,b−1 ◦ δ
n
ν,a(z)

Let z ∈ Zn for a certain n ∈ N. By definition there exist unique x ∈ Xk and y ∈ Y l for certain
k, l ∈ N, k + l = n such that z = (x, y). Suppose that we have a < b ≤ k. Then we have

δn−1
ν,a ◦ δnµ,b ((x, y)) = δn−1

ν,a

(
(δX)

k
µ,b (x), y

)
=
(
(δX)

k−1
ν,a ◦ (δX)kµ,b (x), y

)
because a < b ≤ k implies that a ≤ k − 1. This gives us(

(δX)
k−1
ν,a ◦ (δX)kµ,b (x), y

)
=
(
(δX)

k−1
µ,b−1 ◦ (δX)

k
ν,a (x), y

)
We have

δn−1
µ,b−1 ◦ δ

n
ν,a ((x, y)) =

(
(δX)

k−1
µ,b−1 ◦ (δX)

k
ν,a (x), y

)
because a ≤ k and b− 1 ≤ k − 1. This proves the statement for a < b ≤ k.
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Suppose that a ≤ k < b. Then we have

δn−1
ν,a ◦ δnµ,b ((x, y)) = δn−1

ν,a

(
x, (δY )

l
µ,b−k (y)

)
=
(
(δX)

k
ν,a (x), (δY )

l
µ,b−k (y)

)
Here the first step is because k < b, and since this only reduces the dimension of the Y part by 1
(and not the X part, we get k + (l− 1) = n− 1) we still have a ≤ k which gives us the second step.

δn−1
µ,b−1 ◦ δ

n
ν,a ((x, y)) = δn−1

µ,b−1

(
(δX)

k
µ,a (x), y

)
=
(
(δX)

k
ν,a (x), (δY )

l
µ,b−1−(k−1) (y)

)
=
(
(δX)

k
ν,a (x), (δY )

l
µ,b−k (y)

)
= δn−1

µ,b−1 ◦ δ
n
ν,a ((x, y))

which proves the statement.
Suppose that k < a < b. This gives us

δn−1
ν,a ◦ δnµ,b ((x, y)) = δn−1

ν,a

(
x, (δY )

l
µ,b−k (y)

)
=
(
x, (δY )

l−1
ν,a−k ◦ (δY )

l
µ,b−k (y)

)
and

δn−1
µ,b−1 ◦ δ

n
ν,a ((x, y)) = δn−1

µ,b−1

(
x, (δY )

l
ν,a−k (y)

)
=
(
x, (δY )

l−1
µ,b−1−k ◦ (δY )

l
ν,a−k (y)

)
=
(
x, (δY )

l−1
ν,a−k ◦ (δY )

l
µ,b−k (y)

)
because Y is a precubical set. This proves the statement for k < a < b, and therefore the statement
is true for all a, b ∈ N with 1 ≤ a < b ≤ n, which makes Z = X ⊗ Y a precubical set.

Theorem 8.3. Let X and Y be event consistent precubical sets. Then X ⊗Y is an event consistent
precubical set as well.

Proof. Theorem 8.2 gives us that X ⊗ Y is a precubical set.
We define ≡X and ≡Y as the event relations relations on X1 and Y 1 as defined in definition 3.2.
We define ≡ on Z1 as the transitive closure of{(

δ2ν,a(z), δ
2
µ,a(z)

)
| z ∈ Z2, ν, µ ∈ {0, 1}, a ∈ {1, 2}

}
Note that every element of Z2 is an element of X2 × Y 0, X1 × Y 1 or X0 × Y 2. This gives us

δ2ν,a(z) = δ2ν,a ((x, y)) =


(
δ2ν,a(x), y

)
if (x, y) ∈ X2 × Y 0(

δ1ν,1(x), y
)

if (x, y) ∈ X1 × Y 1 and a = 1(
x, δ1ν,1(y)

)
if (x, y) ∈ X1 × Y 1 and a = 2(

x, δ2ν,a(y)
)

if (x, y) ∈ X0 × Y 2

for all z ∈ Z2, z = (x, y), a ∈ {1, 2} and ν ∈ {0, 1}.
It’s important to note here that ν ∈ {0, 1} does not influence which of the four cases above δ2ν,a(z)

falls under. Therefore in the pairs
(
δ2ν,a(z), δ

2
µ,a(z)

)
both elements will always fall under the same

case, meaning that both are elements of either X1 × Y 0 or X0 × Y 1. This means that the same is
true for elements of the transitive closure as well.
A result of this is that for all z ∈ Z2, z = (x, y), a ∈ {1, 2} and ν, µ ∈ {0, 1} the elements
δ2ν,a(z) = (xν , yν) and δ

2
µ,a(z) = (xµ, yµ) we must have xν = xµ = x or yν = yµ = y. The same is
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therefore true for elements of the transitive closure ≡. This then gives us that for all z1, z2 ∈ Z1

with z1 = (x1, y1) and z2 = (x2, y2) we have z1 ≡ z2 if and only if x1 = x2 and y1 ≡Y y2 or x1 ≡X x2
and y1 = y2. Note that in the first case we have (x1, y1) , (x2, y2) ∈ X0 × Y 1 and in the second case
we have (x1, y1) , (x2, y2) ∈ X1 × Y 0.
Recall definition 3.1. Suppose that there exist z ∈ Z2, z = (x, y), ν, µ ∈ {0, 1} and a, b ∈ {1, 2}
with a ̸= b such that δ2ν,a(z) ≡ δ2µ,b(z). Let δ

2
ν,a(z) = (x1, y1) and δ

2
µ,b(z) = (x2, y2).

The first thing we want to do is figure out which of the four cases δ2ν,a(z) and δ
2
µ,b(z) can fall into.

If (x, y) ∈ X2 × Y 0 or (x, y) ∈ X0 × Y 2 then the both fall under the same case, which can be the
first or fourth. In the first case we have y1 = y2 = y which means that x1 ≡X x2. However since
x1 = δ2ν,a(x) and x2 = δ2µ,b(x) with a ̸= b this is in contradiction with ≡X being the event relation
on X and X being event consistent. Analogously the fourth case results in a contradiction as well,
since it would require δ2ν,a(y) ≡Y δ2µ,b(y) with a ̸= b.
Now suppose that (x, y) ∈ X1 × Y 1. Without loss of generality we assume that a = 1 and b = 2.
Then we have (x1, y1) =

(
δ1ν,1(x), y

)
and (x2, y2) =

(
x, δ1ν,1(y)

)
. However we cannot have δ1ν,1(x) = x

or y = δ1ν,1(y), which means we cannot have
(
δ1ν,1(x), y

)
≡
(
x, δ1ν,1(y)

)
.

From our definition of ≡ it is clear that for all z ∈ Z2, z = (x, y), ν, µ ∈ {0, 1} and a, b ∈ {1, 2} if
a = b then we have δ2ν,a(z) ≡ δ2µ,b(z) and if a ̸= b then we have δ2ν,a(z) ̸≡ δ2µ,b(z). This proves that ≡
is an equivalence relation as in definition 3.1 which makes X ⊗ Y an event consistent precubical
set.

Remark 8.3.1. Due to the way we defined ≡ in the previous theorem it is equal to the event
relation as defined in definition 3.2.

Theorem 8.4. Let X and Y be precubical sets. Then for all z ∈ (X ⊗ Y )n, n ∈ N, n ≥ 2, z = (x, y),
x ∈ Xk, y ∈ Y l, k + l = n, k, l ≥ 1 we have

δnν,An
t
((x, y)) =


(
δk
ν,Ak

t
(x), δl

ν,Al(y)
)

if t ≤ k(
δk
ν,Ak(x), δ

l
ν,Al

t−k
(y)
)

if t > k

for all ν ∈ {0, 1} and 1 ≤ t ≤ n, where Ak = (1, 2, ..., k) and Al = (1, 2, ..., l).

Proof. For all 1 ≤ t ≤ n we have

δnν,An
t
(z) = δ2ν,1 ◦ δ3ν,2 ◦ ... ◦ δtν,t−1 ◦ δt+1

ν,t+1 ◦ ... ◦ δn−1
ν,n−1 ◦ δnν,n(z)

with k + l = n and k, l ≥ 1.
Suppose that t ≤ k. Then we have

δnν,An
t
(z) = δkν,Ak

t
◦ δk+1

ν,k+1 ◦ ... ◦ δ
n−1
ν,n−1 ◦ δnν,n(z)

We know that an elementary face map δnν,a on an element z ∈ Zn with z = (x, y), x ∈ Xk, y ∈ Y l,
n = k + l applies to the y part if a > k, or the dimension of the x part. In this case it decreases the
dimension of the y part by one, meaning that if k < b < a then δn−1

ν,b will also apply to the y part

of δnν,a(z). Therefore all of the face maps δk+1
ν,k+1, ..., δ

n−1
ν,n−1, δ

n
ν,n apply to the y part which gives us

δkν,Ak
t
◦ δk+1

ν,k+1 ◦ ... ◦ δ
n−1
ν,n−1 ◦ δnν,n ((x, y)) = δkν,Ak

t

((
x, δ1ν,1 ◦ ... ◦ δl−1

ν,l−1 ◦ δ
l
ν,l(y)

))
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= δkν,Ak
t

((
x, δlν,Al(y)

))
=
(
δkν,Ak

t
(x), δlν,Al(y)

)
Analogously for t > k we get

δnν,An
t
(z) = δk+1

ν,Ak ◦ ... ◦ δtν,t−1 ◦ δt+1
ν,t+1 ◦ ... ◦ δn−1

ν,n−1 ◦ δnν,n ((x, y))

= δk+1
ν,Ak

((
x, δk+2

ν,k+1 ◦ ... ◦ δ
t−k
ν,t−1−k ◦ δ

t+1−k
ν,t+1−k ◦ ... ◦ δ

l−1
ν,l−1 ◦ δ

l
ν,l(y)

))
= δk+1

ν,Ak

((
x, δlν,Al

t−k
(y)
))

=
(
δk+1
ν,Ak(x), δ

l
ν,Al

t−k
(y)
)

which proves the statement.

Theorem 8.5. Let (X,λX) and (Y, λY ) be labelled precubical sets with λX : X →!Σ and λY : Y →!Σ.
We define the labelling function λ : X ⊗ Y →!Σ as

λn ((x, y)) =

(
λ1X ◦ δk

ν,Ak
1
(x), ..., λ1X ◦ δk

ν,Ak
k
(x),

λ1Y ◦ δl
ν,Al

1
(y), ..., λ1Y ◦ δl

ν,Al
l
(y)
)

for all (x, y) ∈ Xk × Y l, k, l ∈ N, n = k + l and any ν ∈ {0, 1}. Then (X ⊗ Y, λ) with λ as defined
above is a labelled precubical set as well.

Proof. From theorem 8.3 it follows that X ⊗ Y is an event consistent precubical set. Theorem 4.2
gives us that we can define the labelling λ : X ⊗ Y →!Σ using the function λ1 : (X ⊗ Y )1 → Σ. We
define

λ1 ((x, y)) =

{
λ1X(x) if (x, y) ∈ X1 ⊗ Y 0

λ1Y (y) if (x, y) ∈ X0 ⊗ Y 1

for all z ∈ (X ⊗ Y )1, z = (x, y). For all n ∈ N, n ≥ 2 and z ∈ Zn with z = (x, y), x ∈ Xk, y ∈ Y l

such that k + l = n we get

λn(z) =
(
λ1 ◦ δnν,An

1
(z), ..., λ1 ◦ δnν,An

k
(z), λ1 ◦ δnν,An

k+1
(z), ..., λ1 ◦ δnν,An

n
(z)
)

for a any ν ∈ {0, 1}. As a result of theorem 8.4 for all 1 ≤ t ≤ k we have

λ1 ◦ δnν,An
t
(z) = λ1 ◦

(
δkν,Ak

t
(x), δlν,Al(y)

)
= λ1X ◦ δkν,Ak

t
(x)

and for all k + 1 ≤ t ≤ n we have

λ1 ◦ δnν,An
t
(z) = λ1 ◦

(
δkν,Ak(x), δ

l
ν,Al

t−k
(y)
)
= λ1Y ◦ δlν,Al

t−k
(y)

This shows that our original definition for λ : X ⊗ Y →!Σ defines a labelling function, making
(X ⊗ Y, λ) a labelled precubical set.

Depending on the context we might use λX⊗Y as the notation for the labelling function on X ⊗ Y .

Theorem 8.6. Let X = (X, IX , FX , λX) and Y = (Y, IY , FY , λY ) be HDA. Let λX⊗Y : X ⊗ Y →!Σ
be the labelling function as defined in theorem 8.5. Then X ⊗Y = (X ⊗ Y, IX × IY , FX × FY , λX⊗Y )
is a HDA as well.
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Proof. From theorem 8.5 we get that (X ⊗ Y, λX⊗Y ) is a labelled precubical set. For all x ∈ Xk and
y ∈ Yl if x ∈ IX and y ∈ IY then (x, y) ∈ Xk × Y l and therefore (x, y) ∈ (X ⊗ Y )k+l. Analogously
the same is true for all x ∈ Xk and y ∈ Yl with x ∈ FX and y ∈ FY . This gives us that every
element of IX × IY and FX × FY is an element of X ⊗ Y . Therefore X ⊗ Y is a HDA.

The tensor product on HDA has the property that there exists something similar to an identity.
However due to the way HDA are defined an actual identity is not possible, but we do have
something similar:

Theorem 8.7. Let S be any precubical set with |S0| = 1 and Sn = ∅ for all n ∈ N, n ≥ 1. Since
S contains no elements of dimension 0 there exists a unique labelling function λid : S →!Σ which
sends the unique element of S0 to the empty vector ε = ().
We define the parallel identity HDA as Xid = (S, Iid, Fid, λid) with Iid = S = Fid. Then for every
HDA X = (X, IX , FX , λX) we have X ⊗ Xid

∼= X ∼= Xid ⊗X .

Proof. Let S0 = {s} and let Z = X ⊗ Xid. For all n ∈ N we have Zn = Xn × S0. Since |S0| = 1 it
is then clear that X ∼= Z. We can define a HDA map f : X → X ⊗ Xid as the following: for all
n ∈ N, x ∈ Xn we have fn(x) = (x, s). It is clear that f is a precubical map. If x ∈ IX since s ∈ Iid
we have (x, s) ∈ IX × Iid. Analogously the same is true for the final cells. From the definition of
λX ⊗ λid it also follows that f preserves the labelling function, making it a HDA map. It is clear
that f : X → X ⊗Xid is an isomorphism, proving the statement.

Again this is not an actual identity, though it functions similarly.

8.1.1 Intuitive explanation of the tensor product

To understand how the tensor product works in practice let’s look at two examples:

X Y X ⊗ Y

Figure 13: Here the HDA X has an initial node and a final node, but the HDA Y only has a final
node. Their tensor product X ⊗ Y will therefore also only have a final node and no initial cells.

X Y X ⊗ Y

Figure 14: Here the HDA Y has an edge as initial cell. Because X has an initial node the tensor
product X ⊗ Y has two initial edges. Note that if x ∈ IX with x ∈ X0 and y ∈ IY with y ∈ Y 1

then we have (x, y) ∈ X0 × Y 1 = (X ⊗ Y )1.
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8.2 Tensor product of maps

In this subsection we will define the tensor product of precubical maps and HDA maps.

Theorem 8.8. Let U , V , X and Y be precubical sets and let f : U → X and g : V → Y be
precubical maps. Then h : U ⊗ V → X ⊗ Y defined as

hn ((u, v)) =
(
fk(u), gl(v)

)
for all k, l, n ∈ N with k + l = n, u ∈ Uk and v ∈ V l is a precubical map.

Proof. Recall definition 2.3. If (u, v) is an element in Uk × V l then
(
fk(u), gl(v)

)
is an element in

Xk × Y l, making it clear that hn exists and is well defined for all n ∈ N, k, l ∈ N with k + l = n
and (u, v) ∈ Uk × V l.
We want to prove that for all n, k, l ∈ N with k + l = n, (u, v) ∈ Uk × V l, ν ∈ {0, 1} and a ∈ N,
1 ≤ a ≤ n we have

hn−1 ◦ δnν,a ((u, v)) = δnν,a ◦ hn ((u, v))

Suppose that a ≤ k. Then we have

hn−1 ◦ δnν,a ((u, v)) = hn−1
(
(δU)

k
ν,a (u), v

)
=
(
fk−1 ◦ (δU)kν,a (u), g

l(v)
)

δnν,a ◦ hn ((u, v)) = δnν,a
(
fk(u), gl(v)

)
=
(
(δU)

k
ν,a ◦ f

k(u), gl(v)
)

and because f is a precubical map we get(
fk−1 ◦ (δU)kν,a (u), g

l(v)
)
=
(
(δU)

k
ν,a ◦ f

k(u), gl(v)
)

which proves the statement for a ≤ k.
Suppose that a > k. Then we have

hn−1 ◦ δnν,a ((u, v)) = hn−1
(
u, (δV )

l
ν,a (v)

)
=
(
fk(u), gl−1 ◦ (δV )lν,a (v)

)
δnν,a ◦ hn ((u, v)) = δnν,a

(
fk(u), gl(v)

)
=
(
fk(u), (δV )

l
ν,a ◦ f

l(v)
)

and because g is a precubical map we get(
fk(u), gl−1 ◦ (δV )kν,a (v)

)
=
(
fk(u), (δV )

l
ν,a ◦ g

l(v)
)

which proves the statement for a > k which gives us that the statement is true for all a ∈ N,
1 ≤ a ≤ n. Therefore h : U ⊗ V → X ⊗ Y is a precubical map.

The precubical map h : U ⊗ V → X ⊗ Y as defined above is denoted with h = f ⊗ g.

Theorem 8.9. Let XU , XV , X and Y be HDA and let f : XU → X and g : XV → Y be HDA maps.
Then the precubical map h : U ⊗ V → X ⊗ Y as defined in theorem 8.8 constructs a HDA map
h : XU ⊗XV → X ⊗ Y.
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Proof. Theorem 8.8 gives us that h : U ⊗ V → X ⊗ Y is a precubical map with

hn ((u, v)) =
(
fk(u), gl(v)

)
for all k, l, n ∈ N with k + l = n, u ∈ Uk and v ∈ V l.
Suppose that u ∈ IU and v ∈ IV . Since f and g are HDA maps this gives us that fk(u) ∈ IX and
gl(v) ∈ IY , which means that hn ((u, v)) ∈ IX × IY = IX⊗Y . Analogously the same is true for the
final cells. This means that h = f ⊗ g preserves initial and final cells. We also have

λnU⊗V ((u, v)) =

(
λ1U ◦ δk

ν,Ak
1
(u), ..., λ1U ◦ δk

ν,Ak
k
(u),

λ1V ◦ δl
ν,Al

1
(v), ..., λ1V ◦ δl

ν,Al
l
(v)
)

Let x = fk(u) and y = gl(v). Then we have

λnX⊗Y ((x, y)) =

(
λ1X ◦ δk

ν,Ak
1
(x), ..., λ1X ◦ δk

ν,Ak
k
(x),

λ1Y ◦ δl
ν,Al

1
(y), ..., λ1Y ◦ δl

ν,Al
l
(y)
)

=

(
λ1X ◦ δk

ν,Ak
1
◦ fk(u), ..., λ1X ◦ δk

ν,Ak
k
◦ fk(u),

λ1Y ◦ δl
ν,Al

1
◦ gl(v), ..., λ1Y ◦ δl

ν,Al
l
◦ gl(v)

)
=

(
λ1X ◦ f 1 ◦ δk

ν,Ak
1
(u), ..., λ1X ◦ f 1 ◦ δk

ν,Ak
k
(u),

λ1Y ◦ g1 ◦ δl
ν,Al

1
(v), ..., λ1Y ◦ g1 ◦ δl

ν,Al
l
(v)
)

Since f and g are HDA maps we get λX ◦ f = λU and λY ◦ g = λV which gives us λnU⊗V ((u, v)) =
λnX⊗Y

((
fk(u), gl(v)

))
. This means that h = f ⊗ g also preserves the labelling function, therefore

making it a HDA map.

Theorem 8.10. Let X1, X2, Y1, Y2, Z1 and Z2 be precubical sets and let f1 : X1 → Y1, f2 : X2 → Y2,
g1 : Y1 → Z1 and g2 : Y2 → Z2 be precubical maps. Then we have (g1 ⊗ g2) ◦ (f1 ⊗ f2) =
(g1 ◦ f1)⊗ (g2 ◦ f2).

Proof. Let (x1, x2) ∈ Xk
1 ×X l

2 for certain k, l ∈ N, n = k + l. We have

(f1 ⊗ f2) (x1, x2) =
(
fk
1 (x1) , f

l
2 (x2)

)
(g1 ⊗ g2) ◦ (f1 ⊗ f2) (x1, x2) = (g1 ⊗ g2)

(
fk
1 (x1) , f

l
2 (x2)

)
=
(
gk1 ◦ fk

1 (x1) , g
l
2 ◦ f l

2 (x2)
)
= ((g1 ◦ f1)⊗ (g2 ◦ f2)) (x1, x2)

which proves the theorem.

The above theorem automatically works for HDA and HDA maps as well, since if HDA maps are
equal as precubical maps then they are equal as HDA maps as well.
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8.3 Tensor product of diagrams

Definition 8.11. Let J and K be small categories. We define J ×K as the product category of J
and K, which means that we have

obj (J ×K) = {(j, k) | j ∈ obj(J), k ∈ obj(K)}

mor (J ×K) =

{
(f, g) : (j1, k1) → (j2, k2)

∣∣∣∣ f ∈ mor(J), f : j1 → j2
g ∈ mor(K), g : k1 → k2

}
Theorem 8.12. The product J ×K as defined in definition 8.11 is a small category.

Proof. We know that obj (J ×K) has as many elements as obj (J)× obj (K) and mor (J ×K) has
as many elements as mor (J)×mor (K), making J ×K a small category.

Theorem 8.13. Let J and K be small discrete categories. Then J ×K is a small discrete category
as well.

Proof. Let (j, k) ∈ J × K be an object. The only morphism with j as source or target is the
identity morphism ij and the only morphism with k as source or target is the identity morphism
ik. Therefore the only morphism with (j, k) as source or target is (ij, ik), which is the identity
morphism. This means that the category J ×K only has identity morphisms, making it a discrete
category.

Theorem 8.14. Let J and K be small filtered categories. Then J ×K is a small filtered category
as well.

Proof. Because J and K are filtered and therefore not empty J ×K is not empty as well.
Suppose that (j1, k1) and (j2, k2) are objects of J ×K. Then j1 and j2 are objects of J and k1 and
k2 are objects of K. Therefore there exist objects j3 in J and k3 in K and morphisms f1 : j1 → j3,
f2 : j2 → J3 in J and morphisms g1 : k1 → k3, g2 : k2 → k3 in K. This gives us the morphisms
(f1, g1) : (j1, k1) → (j3, k3) and (f2, g2) : (j2, k2) → (j3, k3).
Suppose that (j1, k1) and (j2, k2) are objects of J×K and suppose that there are parallel morphisms
(f1, g1) : (j1, k1) → (j2, k2) and (f2, g2) : (j1, k1) → (j2, k2). Then there exist objects j3 in J and
k3 ∈ K and morphisms f3 : j2 → j3 in J and g3 : k2 → k3 in K such that f3f1 = f3f2
and g3g1 = g3g1. This gives us that there exists a morphism (f3, g3) : (j2, k2) → (j3, k3) with
(f3, g3) (f1, g1) = (f3, g3) (f2, g2).
Therefore J ×K is a filtered category.

Theorem 8.15. Let X : J → Set□
op

and Y : K → Set□
op

be small diagrams of precubical sets.
Then Z : J ×K → Set□

op

with Z(j,k) = Xj ⊗ Yk for all j ∈ J and k ∈ K and Zf⊗g = Xf ⊗ Yg for
all morphisms f : j1 → j2 and g : k1 → k2 is a small diagram of precubical sets.

Proof. For every i ∈ J × K the precubical set Zi is well-defined. For every i1, i2 ∈ J × K
with a morphism h : i1 → i2 the precubical map Zf : Zi1 → Zi2 is also well-defined. For all
j ∈ J , k ∈ K and the identity morphisms idj : j → j and idk : k → k the precubical maps
Xidj : Xj → Xj and Yidk : Yk → Yk are well-defined and identity maps. This them automatically
makes Z(idj ,idk) : Xj ⊗ Yk → Xj ⊗ Yk an identity map as well. Theorem 8.10 gives us that the
compositions of precubical maps are well-defined as well and theorem 8.12 gives us that J ×K is a
small category. This makes Z : J ×K → Set□

op

a small diagram.
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Theorem 8.16. Let X : J → HDA and Y : K → HDA be small diagrams of HDA. Then X ⊗ Y :
J ×K → HDA with (X ⊗ Y)(j,k) = Xi ⊗Yk for all j ∈ J and k ∈ K and (X ⊗ Y)f⊗g = Xf ⊗Yg for
all morphisms f : j1 → j2 and g : k1 → k2 is a small diagram of HDA.

Proof. This follows from the same reasoning as used for theorem 8.15.

We will now just prove everything for HDA immediately, instead of proving things for precubical
sets first.

Theorem 8.17. Let X : J → HDA and Y : K → HDA be small diagrams of HDA. Suppose that (L, ϕ)
is a co-cone of X and (N , ψ) is a co-cone of Y. Then (L ⊗N , ϕ⊗ ψ) with (ϕ⊗ ψ)(j,k) = ϕj ⊗ ψk

for all (j, k) ∈ J ×K is a co-cone of X ⊗ Y.

Proof. From theorem 8.16 it follows that X ⊗Y : J×K → HDA is a diagram of HDA. From theorem
8.6 it follows that L ⊗N is a HDA and from theorem 8.9 it follows that ϕj ⊗ ψk = (ϕj, ψk) is a
HDA map for all objects (j, k) of J ×K.
Suppose that j1, j2 are two objects of J with the morphism f : j1 → j2 and suppose that k1, k2 are
two objects of K with the morphism g : k1 → k2. Then we have ϕj2 ◦ Xf = ϕj1 and ψk2 ◦ Yg = ψk1

which gives us (ϕj2 , ψk2) ◦ (Xf ,Yg) = (ϕj1 , ψk1).
Therefore (L ⊗N , ϕ⊗ ψ) is a co-cone of X ⊗ Y .

Theorem 8.18. Let X : J → HDA and Y : K → HDA be small diagrams of HDA. Suppose that (L, ϕ)
is a colimit of X and (N , ψ) is a colimit of Y. Then (L ⊗N , ϕ⊗ ψ) with (ϕ⊗ ψ)(j,k) = ϕj ⊗ ψk

for all (j, k) ∈ J ×K is a colimit of X ⊗ Y.

Proof. From theorem 8.17 it follows that (L ⊗N , ϕ⊗ ψ) is a co-cone.
Theorem 2.25 states that (L ⊗N , ϕ⊗ ψ) is a colimit if for all (j1, k1) , (j2, k2) ∈ J ×K, m, l, n ∈ N
with m+ l = n, (x1, y1) ∈ Xm

j1
⊗ Y l

k1
and (x2, y2) ∈ Xm

j2
⊗ Y l

k2
we have

(x1, y1) ∼ (x2, y2) ⇐⇒
(
ϕm
j1
(x1) , ψ

l
k1
(y1)

)
=
(
ϕm
j2
(x2) , ψ

l
k2
(y2)

)
and for all n,m, l ∈ N with m + l = n, (x1, y1) ∈ Lm ⊗ N l there exists a (j, k) ∈ J ⊗ K,
(x2, y2) ∈ Xm

j ⊗ Y l
k with

(
ϕm
j (x2) , ψ

l
k (y2)

)
= (x1, y1).

Suppose that we have (x, y) ∈ Lm ×N l for a certain m, l ∈ N. Then from theorem 2.24 it follows
that there exist j ∈ J , k ∈ K, xj ∈ Xm

j and yk ∈ Y l
k such that ϕm

j (xj) = x and ψl
k (yk) = y. This

gives us (ϕj ⊗ ψk)
m+l (xj, yk) = (x, y).

Theorem 2.22 and theorem 2.21 gives us

x1 ∼ x2 ⇐⇒ ϕm
j1
(x1) = ϕm

j2
(x2)

y1 ∼ y2 ⇐⇒ ψl
k1
(y1) = ψl

k2
(y2)

(x1, y1) ∼ (x2, y2) =⇒
(
ϕm
j1
(x1) , ψ

l
k1
(y1)

)
=
(
ϕm
j2
(x2) , ψ

l
k2
(y2)

)
Here ∼ means the equivalence relation on X, Y or X ⊗ Y depending on the context. This gives us

x1 ∼ x2, y1 ∼ y2 ⇐⇒
(
ϕm
j1
(x1) , ψ

l
k1
(y1)

)
=
(
ϕm
j2
(x2) , ψ

l
k2
(y2)

)
x1 ∼ x2, y1 ∼ y2 ⇐= (x1, y1) ∼ (x2, y2)
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Recall the construction of ∼ in definition 2.14. From this it follows that x1 ∼ x2 ⇐⇒ (x1, y) ∼
(x2, y) and y1 ∼ y2 ⇐⇒ (x, y1) ∼ (x, y2). This gives us

x1 ∼ x2, y1 ∼ y2 ⇐⇒ (x1, y1) ∼ (x2, y2)

and therefore

(x1, y1) ∼ (x2, y2) ⇐⇒
(
ϕm
j1
(x1) , ψ

l
k1
(y1)

)
=
(
ϕm
j2
(x2) , ψ

l
k2
(y2)

)
which shows that (L ⊗N , ϕ⊗ ψ) satisfies the conditions of theorem 2.25, making it a colimit of
the diagram X ⊗ Y : J ×K → HDA.

It is obvious that the above theorem applies to diagrams of precubical sets as well. Because of
theorem 8.13 and theorem 8.14 the tensor product of two coproducts is a coproduct and the tensor
product of two filtered colimits is a filtered colimit as well.

Theorem 8.19. Let X : J → HDA and Y : K → HDA be small diagrams of HDA, let (L, ϕ) be
a colimit of X and let (N , ψ) be a colimit of Y. Suppose that J and K are both discrete or both
filtered diagrams. Then we have

L (L ⊗N ) =
⋃

(j,k)∈J×K

L (Xj ⊗ Yk)

Proof. From theorem 8.13, theorem 8.14 and theorem 8.18 it follows that (L ⊗N , ϕ⊗ ψ) is a
coproduct or filtered colimit of X ⊗ Y . The statement then follows from theorem 7.10 and theorem
7.11.

8.4 Tensor product and languages

For this subsection we will mostly just refer to the paper [FJSZ21]. Specifically the operation
parallel composition on HDA languages as defined in definition 106 on page 35. Actually defining
this parallel composition ourselves is outside the scope of this thesis, so we will just make do with
three of its properties:

1. For all HDA X and Y we have

L (X ⊗ Y) = L (X ) ∥ L (Y)

2. Let (Li)i∈I and (Mj)j∈J be families of languages. Then we have(⋃
i∈I

Li

)
∥

(⋃
j∈J

Mj

)
=

⋃
(i,j)∈I×J

Li ∥Mj

3. The language Lε = {Pε}, with Pε being the empty ipomset, is the identity of the parallel
composition such that for all languages L we have

L ∥ Lε = L = Lε ∥ L
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The first property follows from theorem 108 on page 36 and the second and third properties follow
from the definition itself. For the actual definition of this operation one must refer to [FJSZ21].
Here we will simply assume it exists and that it is well-defined and works as described above.
Now it’s important to note why we need all three of these properties for the parallel composition
on the languages to be equivalent to the tensor product on the HDA.
It is obvious why we need the first property. The need for the second property is highlighted with
the following remark:

Remark 8.19.1. Let X : J → HDA and Y : K → HDA be small diagrams of HDA, let (L, ϕ) be
a colimit of X and let (N , ψ) be a colimit of Y. Suppose that J and K are both discrete or both
filtered diagrams. From theorem 8.19 and the properties described above it follows that we have

L (L) ∥ L (N ) = L (L ⊗N ) =
⋃

(j,k)∈J×K

L (Xj ⊗ Yk) =
⋃

(j,k)∈J×K

L (Xj) ∥ L (Yk)

=

(⋃
j∈J

L (Xj)

)
∥

(⋃
k∈K

L (Yk)

)
= L (L) ∥ L (N )

If the second property wasn’t there then there could be a case in which we have
⋃

(j,k)∈J×K L (Xj) ∥
L (Yk) ̸=

(⋃
j∈J L (Xj)

)
∥
(⋃

k∈K L (Yk)
)
, which would lead to a contradiction as it would mean

that L (L) ∥ L (N ) ̸= L (L) ∥ L (N ).
The third property we need for the following definition:

Definition 8.20. Let L be a language. Then the parallel Kleene star of L is defined as

L(∗) =
⋃
i∈N

Li

with L0 = Lε and Li = Li−1 ∥ L for all i ∈ N, i ≥ 1.

Recall theorem 8.7, which defines something similar to the identity for the tensor product on HDA.
It is clear that we have L (Xid) = Lε. This then gives us the following:

Theorem 8.21. Let X be a HDA. Then we have

L (X )(∗) =
⋃
i∈N

L

(⊗
0<k≤i

X

)
= L

(⊔
i∈N

(⊗
0<k≤i

X

))

where we define
⊗

0<k≤i X =
(⊗

0<k≤i−1X
)
⊗X for all i ∈ N, i ≥ 1 and

⊗
0<k≤0X = Xid.

Proof. The HDA Xid is defined in theorem 8.7. From theorem 8.6 it then follows that
⊗

0<k≤i X is

a HDA for all i ≥ 0. From theorem 4.18 it follows that
⊔

i∈N
(⊗

0<k≤i X
)
is a HDA as well. The

rightmost equality then follows from theorem 7.10.
Let L = L (X ) and define the languages Li as in definition 8.20. Suppose that for all j ≤ i− 1 we

have Lj = L
(⊗

0<k≤j X
)
. Then we have

Li = Li−1 ∥ L = L

( ⊗
0<k≤i−1

X

)
∥ L (X ) = L

(⊗
0<k≤i

X

)
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which shows that for all i ∈ N we have Li = L
(⊗

0<k≤i X
)
. This therefore proves the leftmost

equality to be true as well.

This gives us a HDA equivalent to the parallel Kleene star on languages. However for this we used
the coproduct, while we might want to use the filtered colimit instead. The question of how to do
this we leave open for now.

9 Conclusion

For the precubical sets, event consistent precubical sets, higher-dimensional automata and the
languages of higher-dimensional automata we were able to contribute some structural theorems
mainly regarding colimits. The category of HDA is finitely accessible. Every HDA can be canonically
expressed as the filtered colimit of a diagram of finite HDA, and its language can be expressed as
the union of the languages of the HDA in this diagram.

We discussed the relation between colimits and the coproduct and tensor product. We did not cover
serial composition of ipomset languages as defined in [FJSZ22]. Further research could be done
on the relation between the serial composition (and serial Kleene star) and colimits. Some other
research could also be done into limits of HDA and their languages, and whether the category of
HDA is complete or not.
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A Face map theorems

This section contains some miscellaneous theorems specific to the face maps. They were omitted
from the main sections for having proofs that are too long and results that are uninteresting.
Recall definition 2.7 and definition 2.10 for notation.

Theorem A.1. Let X be an event consistent precubical set. For all n ∈ N, x ∈ Xn, ν ∈ {0, 1} and
for all n-dimensional vectors A and B with elements ai, bi ∈ N≥1 such that for all 1 ≤ i < j ≤ n
we have 1 ≤ ai < aj ≤ n and 1 ≤ bi < bj ≤ n the following statement is true:

δnν,A (x) = δnν,B (x) ⇐⇒ A = B

Proof. This follows from lemma 22 from [FJSZ21].

Theorem A.2. Let X be a precubical set, n ∈ N≥3, ν, µ ∈ {0, 1}, B ⊆ An
1 , |B| = m ≤ n− 1 and

1 ≤ a ≤ n such that a < min(B). Then we have

δn−m
ν,a ◦ δnµ,B(x) = δn−1

ν,B′ ◦ δnν,a(x)

where B′ is the m-dimensional vector with b′i = bi − 1 for all 1 ≤ i ≤ m.

Proof. We take B = {b1 → ...→ bm} and B−1 = {b1 − 1 → ...→ bm − 1} which gives us

δn−m
ν,a ◦ δnµ,B(x) = δn−m

ν,a ◦ δn−m+1
µ,b1

◦ ... ◦ δnµ,bm(x)

Since a < min(B) we have a < bt for all t ∈ N, 1 ≤ t ≤ m. This gives us

δn−m
ν,a ◦ δn−m+1

µ,b1
◦ ... ◦ δnµ,bm(x) = δn−m

µ,b1−1 ◦ δ
n−m+1
ν,a ◦ δn−m+2

µ,b2
◦ ... ◦ δnµ,bm(x) = ...

= δn−m
µ,b1−1 ◦ ... ◦ δ

n−1
µ,bm−1 ◦ δ

n
ν,a(x) = δn−1

µ,B−1 ◦ δnν,a(x)
which proves the statement.

Theorem A.3. Let X be a precubical set, n ∈ N≥3, ν, µ ∈ {0, 1}, A ⊆ An
n, |A| = m ≤ n− 1 and

1 ≤ b ≤ n such that b > max(A). Then we have

δn−1
ν,A ◦ δnµ,b(x) = δn−m

µ,b−m ◦ δnν,A(x)

Proof. We take A = {a1 → ...→ am}. Therefore we have b < at for all t ∈ N, 1 ≤ t ≤ m. Since A
is increasing we also have at < at+1 for all t ∈ N, 1 ≤ t ≤ m− 1. Therefore we have am−1 < b− 1,
am−2 < b− 2... or am−t < b− t for all 1 ≤ t ≤ m− 1. This gives us

δn−1
ν,A ◦ δnµ,b(x) = δn−m

ν,a1
◦ ... ◦ δn−1

ν,am ◦ δnµ,b(x) = δn−m
ν,a1

◦ ... ◦ δn−2
ν,am−1

◦ δn−1
µ,b−1 ◦ δ

n
ν,am(x)

= δn−m
µ,b−m ◦ δn−m+1

ν,a1
◦ ... ◦ δnν,am(x) = δn−m

µ,b−m ◦ δnν,A(x)
which proves the statement.

Theorem A.4. Let X be a precubical set, n ∈ N0, ν, µ, τ ∈ {0, 1}, A,B ⊆ An
n, |A| = l, |B| = m ≤

n− 2, m+ l ≤ n− 1 and 1 ≤ c ≤ n such that max(A) < c < min(B). Then we have

δn−m−1
ν,A ◦ δn−1

µ,B ◦ δnτ,c(x) = δn−m−1
ν,A ◦ δn−m

τ,c ◦ δnµ,B+(x) = δn−m−l
τ,c−l ◦ δn−m

ν,A ◦ δnµ,B+(x)

where B+ is the m-dimensional vector with b+i = bi + 1 for all 1 ≤ i ≤ m.
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Proof. This follows from the inversion of theorem A.2 and theorem A.3.

Theorem A.5. Let X be a precubical set, n ∈ N0, ν, µ, τ, σ ∈ {0, 1}, A,B ⊆ An
n, |A| = l, |B| = m,

1 ≤ c ≤ n such that max(A) < c < min(B). Then we have

δn−m−2
ν,A ◦ δn−m−1

σ,c ◦ δn−1
µ,B ◦ δnτ,c(x) = δn−m−2

ν,A ◦ δn−m−1
τ,c ◦ δn−m

τ,c ◦ δnµ,B+(x)

= δn−m−2
ν,A ◦ δn−m−1

τ,c ◦ δn−m
τ,c+1 ◦ δnµ,B+(x) = δn−m−l−1

τ,c−l ◦ δn−m−1
ν,A ◦ δn−m

τ,c+1 ◦ δnµ,B+(x)

where B+ is the m-dimensional vector with b+i = bi + 1 for all 1 ≤ i ≤ m.

Proof. The first equality follows from the inversion of theorem A.2. The second equality follows
from the definition of the face maps and the third equality follows from theorem A.3.

Theorem A.6. Let X be a precubical set. Suppose that we have n, t, a ∈ N, n ≥ 2, 1 ≤ t ≤ n− 1,
1 ≤ a ≤ n, ν ∈ {0, 1} and x ∈ Xn. Then we have

δn−1

ν,An−1
t

◦ δnν,a(x) =

{
δnν,An

t
(x) for all a > t

δnν,An
t+1

(x) for all a ≤ t

Proof. If a = t the result follows from theorem A.4. If a < t or a > t the result follows from theorem
A.5.

Theorem A.7. Let X be an event consistent precubical set and let ≡X be an equivalence relation
as defined in definition 3.1. Suppose that we have n ∈ N≥2, x ∈ Xn. Then for all ν ∈ {0, 1} and
s, t ∈ N≥1 with s, t ≤ n we have

δnν,An
s
(x) ≡X δnν,An

t
(x) ⇐⇒ s = t

Proof. The statement is trivial for n = 2. Suppose that n = 3. Then all of the possible subsequences
of {1 → 2 → 3} of size 2 are {1 → 2}, {1 → 3} and {2 → 3}. Then for all x ∈ X3 and a certain
ν ∈ {0, 1} we get

δ2ν,1 ◦ δ3ν,2(x) = δ2ν,1 ◦ δ3ν,1(x)

δ2ν,1 ◦ δ3ν,3(x) = δ2ν,2 ◦ δ3ν,1(x)

δ2ν,2 ◦ δ3ν,3(x) = δ2ν,2 ◦ δ3ν,2(x)

By definition we have δ2ν,1 ◦δ3ν,1(x) ̸≡X δ2ν,2 ◦δ3ν,1(x), δ2ν,1 ◦δ3ν,2(x) ̸≡X δ2ν,2 ◦δ3ν,2(x) and δ2ν,1 ◦δ3ν,3(x) ̸≡X

δ2ν,2 ◦ δ3ν,3(x). Therefore the statement is true for n = 3.
Suppose that the statement is true for all n− r, n ∈ N≥2, r ∈ N with 1 ≤ r ≤ n− 2. Suppose that
we have s, t ∈ N≥1, s, t ≤ n and suppose that δnν,An

s
(x) ≡X δnν,An

t
(x) for a certain x ∈ Xn.

Suppose that s ≠ t. Without loss of generality we assume that s < t. Let a ∈ N be a number such
that 1 ≤ a ≤ n and a ̸= s and a ̸= t. Such a number exists for all n ≥ 3. Using theorem A.6, if
a < s < t we get

δnν,An
s
(x) = δn−1

ν,An−1
s−1

◦ δnν,a(x)

δnν,An
t
(x) = δn−1

ν,An−1
t−1

◦ δnν,a(x)
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if s < a < t we get
δnν,An

s
(x) = δn−1

ν,An−1
s

◦ δnν,a(x)

δnν,An
t
(x) = δn−1

ν,An−1
t−1

◦ δnν,a(x)

and if s < t < a we get
δnν,An

s
(x) = δn−1

ν,An−1
s

◦ δnν,a(x)

δnν,An
t
(x) = δn−1

ν,An−1
t

◦ δnν,a(x)

For all of these cases since the statement applies to all elements of Xn−1 and since δnν,a(x) ∈ Xn−1.
This gives us a contradiction for the cases a < s < t and s < t < a. In the case of s < a < t it is
only possible if s = t− 1, which is in contradiction with a, s and t being integers and s < a < t.
This means that δnν,An

s
(x) ≡X δnν,An

t
(x) if and only if s = t. Therefore the statement is true for the

case n if it is true for all n− r, n ∈ N≥2, r ∈ N with 1 ≤ r ≤ n− 2. Since the statement is true for
n = 2 and n = 3, it is therefore true for all n ∈ N.

Theorem A.8. Let X be a precubical set, let Σ be a set and let f : X → Σ be a function such
that for all x ∈ X2, a ∈ {1, 2} we have f ◦ δ20,a(x) = f ◦ δ21,a(x). Then for all n ∈ N, x ∈ Xn and
t ∈ N≥1 such that 1 ≤ n we have

f ◦ δn0,An
t
(x) = f ◦ δn1,An

t
(x)

Proof. The statement is trivial for n = 2. Suppose that n = 3. Then all of the possible subsequences
of {1 → 2 → 3} of size 2 are {1 → 2}, {1 → 3} and {2 → 3}. Then for all x ∈ X3 we get

f ◦ δ20,1 ◦ δ30,2(x) = f ◦ δ21,1 ◦ δ30,2(x) = f ◦ δ20,1 ◦ δ31,1(x)

= f ◦ δ21,1 ◦ δ31,1(x) = f ◦ δ21,1 ◦ δ31,2(x)

f ◦ δ20,1 ◦ δ30,3(x) = f ◦ δ21,1 ◦ δ30,3(x) = f ◦ δ20,2 ◦ δ31,1(x)

= f ◦ δ21,2 ◦ δ31,1(x) = f ◦ δ21,1 ◦ δ31,3(x)

f ◦ δ20,2 ◦ δ30,3(x) = f ◦ δ21,2 ◦ δ30,3(x) = f ◦ δ20,2 ◦ δ31,2(x)

= f ◦ δ21,2 ◦ δ31,2(x) = f ◦ δ21,2 ◦ δ31,3(x)

Therefore the statement is true for n = 3. Suppose that the statement is true for all n− r, n ∈ N≥2,
r ∈ N with 1 ≤ r ≤ n− 2. Suppose that we have x ∈ Xn and t ∈ N with 1 ≤ t ≤ n.
Suppose that t = n. Then we have

f ◦ δn0,An
t
(x) = f ◦ δn0,An

n
(x) = f ◦ δ20,1 ◦ δ30,2 ◦ ... ◦ δn0,n−1(x)

= f ◦ δ21,1 ◦ δ30,2 ◦ ... ◦ δn0,n−1(x)

since δ30,2 ◦ ... ◦ δn0,n−1(x) ∈ X2.

= f ◦ δ20,1 ◦ δ31,1 ◦ ... ◦ δn0,n−1(x) = f ◦ δ20,1 ◦ ... ◦ δn−3
0,n−3 ◦ δn−2

1,1 ◦ δn0,n−1(x)

= f ◦ δ20,1 ◦ ... ◦ δn−1
0,n−2 ◦ δn1,1(x) = f ◦ δn−1

0,An−1
n−1

◦ δn1,1(x) = f ◦ δn−1

1,An−1
n−1

◦ δn1,1(x)

75



= f ◦ δn1,An
n
(x) = f ◦ δn1,An

t
(x)

as a result of theorem A.6. Suppose that t > 1. Then we have

f ◦ δn0,An
t
(x) = f ◦ δ20,1 ◦ ... ◦ δt0,t−1 ◦ δt+1

0,t+1 ◦ ... ◦ δn0,n(x)

= f ◦ δ21,1 ◦ ... ◦ δt0,t−1 ◦ δt+1
0,t+1 ◦ ... ◦ δn0,n(x) = f ◦ δ20,1 ◦ ... ◦ δt−1

0,t−2 ◦ δt1,1 ◦ δt+1
0,t+1 ◦ ... ◦ δn0,n(x)

= f ◦ δ20,1 ◦ ... ◦ δt−1
0,t−2 ◦ δt0,t ◦ δt+1

1,1 ◦ ... ◦ δn0,n(x)

= f ◦ δ20,1 ◦ ... ◦ δt−1
0,t−2 ◦ δt0,t ◦ ... ◦ δn−1

0,n−1 ◦ δn1,1(x) = f ◦ δn−1

0,An−1
t−1

◦ δn1,1(x)

= f ◦ δn−1

1,An−1
t−1

◦ δn1,1(x) = f ◦ δn1,An
t
(x)

as a result of theorem A.6. Suppose that t = 1. Then we have

f ◦ δn0,An
1
(x) = f ◦ δ20,2 ◦ ... ◦ δn0,n(x) = f ◦ δ21,2 ◦ ... ◦ δn0,n(x)

= f ◦ δ20,2 ◦ ... ◦ δn−1
0,n−1 ◦ δn1,2(x) = f ◦ δn−1

0,An−1
1

◦ δn1,2(x) = f ◦ δn−1

1,An−1
1

◦ δn1,2(x)

= f ◦ δn1,An
1
(x)

Therefore the statement is true for all n ∈ N.

B Interval ipomsets

In this appendix section we will define interval ipomsets. These are relatively important to the
languages of higher-dimensional automata, since as we will see at the end of this section for any
track its labelling generates an interval ipomset. We don’t really use the interval ipomsets in
this thesis, but they are used extensively in [FJSZ21] from which we use many results. They are
especially necessary for defining the parallel composition of languages. Interval ipomsets are often
referred to as iipomsets.

Definition B.1. An ipomset (P,≺, 99K, SP , TP ) is called an interval ipomset if for all unique
elements p1, p2, q1, q2 ∈ P with p1 ≺ p2 and q1 ≺ q2 there exist a, b ∈ {1, 2} for which we either have
pa ≺ qb or qb ≺ pa.

Theorem B.2. Let P = (P,≺P , 99KP , SP , TP ) and Q = (Q,≺Q, 99KQ, SQ, TQ) be interval ipomsets
such that P ∗ Q exists. Then P ∗ Q is an interval ipomset as well.

Proof. Suppose that we have P = TP or Q = SQ. Then we have

P ∗ Q = (Q,≺Q, 99KQ, λQ, SP , TQ)

or
P ∗ Q = (P,≺P , 99KP , λP , SP , TQ)

The first ipomset is the same as P with a different target set. The second ipomset is the same as
Q with a different source set. Since P and Q are both interval ipomsets and since the source and

76



target sets have no effect on whether or not an ipomset is an interval ipomset in both cases we
have that P ∗ Q is an interval ipomset as well.
Suppose that P ̸= TP and Q ̸= SQ. Then we have

R = P ∗ Q = (R,≺, 99K, S, T )

Recall definition 5.17. Let x1, x2, y1, y2 ∈ R with x1 ≺ x2 and y1 ≺ y2 such that for all a, b ∈ {1, 2}
we have xa ̸≺ yb and yb ̸≺ xa. Let f : P → R, g : SQ → R and h : Q\SQ → R be the maps as
defined in definition 5.17.
For each pair z1, z2 ∈ R with z1 ≺ z2 there are four cases:

z1, z2 ∈ im(f) z1 ≺ z2 ⇐⇒ f−1 (z1) ≺P f
−1 (z2)

z1 ∈ im(f), z1 ̸∈ im(g), z2 ∈ im(h) z1 ≺ z2 ⇐⇒ always
z1 ∈ im(g), z2 ∈ im(h) z1 ≺ z2 ⇐⇒ g−1 (z1) ≺Q h

−1 (z2)
z1, z2 ∈ im(h) z1 ≺ z2 ⇐⇒ h−1 (z1) ≺Q h

−1 (z2)

Suppose that x1, x2, y1, y2 ∈ im(f). Then we have f−1 (x1) ≺P f−1 (x2) and f
−1 (y1) ≺P f−1 (y2)

and since P is an interval ipomset there must be a a, b ∈ {1, 2} such that f−1 (xa) ≺P f
−1 (yb) or

f−1 (yb) ≺P f
−1 (xa), which results in a contradiction.

Suppose that x1, x2 ∈ im(f) and y1 ∈ im(f), y1 ̸∈ im(g), y2 ∈ im(h). Since we cannot have
x1 ∈ im(g) and x2 ∈ im(g) (since SQ contains only ≺Q-minimal elements) there exists a a ∈ {1, 2}
such that xa ̸∈ im(g) and therefore xa ≺ y2, which results in a contradiction.
Suppose that x1, x2 ∈ im(f) and y1, y2 ∈ im(h). As explained above there must exist a a ∈ {1, 2}
such that xa ̸∈ im(g) and therefore xa ≺ y1 ≺ y2, which results in a contradiction.
Suppose that x1, y1 ∈ im(f), y1 ̸∈ im(g), x2, y2 ∈ im(h). Then we automatically have x1 ≺ y2 and
y1 ≺ x2 as well, which results in a contradiction.
Suppose that x1 ∈ im(f), y1 ̸∈ im(g), x2 ∈ im(h) and y1, y2 ∈ im(h). Then we automatically have
x1 ≺ y2, y2, which results in a contradiction.
Suppose that x1, x2, y1, y2 ∈ im(h). Then we have h−1 (x1) ≺Q h−1 (x2) and h

−1 (y1) ≺Q h−1 (y2)
and since Q is an interval ipomset there must be a a, b ∈ {1, 2} such that h−1 (xa) ≺Q h

−1 (yb) or
h−1 (yb) ≺Q h

−1 (xa), which results in a contradiction.
Analogously the cases where x1, x2 and y1, y2 are switched all result in contradictions as well.
Therefore the statement is false, which makes P ∗ Q an interval ipomset.

Theorem B.3. Let (X,λ) be a labelled precubical set and let ρ be a track in X. Then ℓ(ρ) is an
interval ipomset.

Proof. Suppose that ρ = (x1) is a track of size 1. Then the ≺-relation on ℓ(ρ) must be empty
making ℓ(ρ) an interval ipomset. Similarly if ρ = (x1, x2) is a track of size 2 then the ≺-relation on
ℓ(ρ) must be empty as well making it an interval ipomset.
Let ρ = (x1, x2, ..., xm) be a track with m ≥ 2. Then we have

ℓ(ρ) = ℓ (x1, x2) ∗ ℓ (x2, x3) ∗ ... ∗ ℓ (xm−1, xm)

The fact that the labels of basic tracks are always interval ipomset combined with theorem B.2
gives us that ℓ(ρ) is an interval ipomset.
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