
ICT in Business and
the Public Sector

Master thesis:

Impact of the intelligent lockdown on the Dutch inter-industry

transaction network

Name: Martijn Vlak

Student-no: s1681729

Date: 25/3/2021

Supervisors:
dr. Frank Takes, dr. Fabian Jansen, dr. Carolina Mattsson

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl

Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

www.liacs.leidenuniv.nl


Abstract

We use company transaction data to empirically describe the effects of Covid-19 on the
Dutch economy. By using transaction data, we distinguish ourselves from previous work:
the transaction data spanning the years 2019 and 2020 provides the unique opportunity to
empirically show the actual effect of Covid-19, without making estimations. In particular, we
compare a network from the data during the intelligent lockdown period, with a network from
the data over the same period in 2019.

We compare these networks based on their structure, specifically by analyzing the strength
distributions. Furthermore, we compute the random-walk centrality of industries, to detect
the industries that are most immediately impacted by a shock. Next, we describe the change
of consumer spending behavior in the intelligent lockdown period. We then analyze how the
full inter-industry network was affected by this change, both directly and indirectly, using the
maximum flow metric.

The findings show that even though the economy was impacted during the intelligent
lockdown, the structure of the network remained quite the same. Industries with high random-
walk centrality are mostly industries that offer general services to a wide range of other
industries, such as investment or administration services. Further patterns are hard to distill
because during the intelligent lockdown, a variety of macroeconomic factors either positively or
negatively influence industries in the network. By analyzing consumption, we focused on one
of these factors. We find a decline in card payments here, which are in some cases substituted
by the cashless payments channel. The change in consumer spending behavior affects the
majority of industries negatively. Especially industries in the food and accommodation, and
cultural sector, were directly impacted by a decline in consumer spendings. If there are positive
effects, these tend to be bigger. Examples of industries that directly profit from the lockdown
are supermarkets and webshops. The maximum flow measure indicates if industries’ supply
chains are affected in the intelligent lockdown period. In some cases, these effects are indeed
primarily caused by a change in consumer spending behavior.
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1 Introduction

In this section we first describe the background and relevancy of our problem and provide the
context of this thesis. This includes discussing related work. After this, we define our problem in
more detail and state the research questions.

1.1 Context

The impact of the recent Covid-19 pandemic on the modern day society is massive. In order to
limit the spread of Covid-19, countries around the world introduce restrictions. Examples are
the shutdown of national borders, closing of public facilities, such as schools or restaurants, and
a limit on public gatherings. Also in many cases, cities, regions or even countries entered some
sort of lockdown, closing down nearly all companies and public transport to these areas. In the
Netherlands, an intelligent lockdown was introduced in March. The intelligent lockdown started the
23rd of March, after other measures such as working from home and closing catering establishments
had already been announced. It was called intelligent as it is less strict than a full lockdown,
relying on responsible and “intelligent” behavior [1]. The lockdown heavily impacted the Dutch
economy: the GDP declined with 8.5% in the second quarter of 2020 relative to the first quarter [2].
Companies were affected due to severe drops in demand, especially in certain industries. Examples
are companies in transport, culture and recreation, and food and accommodation sectors. This can
for example be seen in an article by Statistics Netherlands (CBS) [3], which mentions the decrease
in household spending during the intelligent lockdown in the Netherlands, directly impacting the
revenue of companies. Although the revenues of these companies decline, expenditures of the public
sector increase in order to prevent bankruptcies. The drop in household spending is one of the
major causes for the negative trend in the Dutch economy. Other causes are trade impediments
with foreign companies, and declines in investments by local businesses [4].

In an economy, industries depend on each other. Furthermore, economies are subject to shocks:
unexpected or unpredictable events impacting the economy either negatively or positively. A shock
refers to a change in macro economic factors, such as consumption or unemployment. During the
intelligent lockdown period, certain industries were for example subject to demand shocks. The
output of these industries might be affected by this: industries might sell less goods/services because
of the drop in demand. Lower output due to a demand shock, means that these industries also
require less inputs, which again impacts the output of connected industries. By inputs, we mean
resources that are needed for production of goods or services.

To capture the effects of industry linkages, a network of industries can be created. By analyzing the
topology and structure of an inter-industry network, we are able to learn about how that particular
economy functions and changes over time. We can find important industries based on network
properties and analyze the effects of Covid-19 on these industries, or on the economy as a whole.
Linkages in these networks are represented by money flows. Money flows are in a sense equivalent
to the flows of produced goods/services.
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Network science enables us to better understand complex systems such as economies. Complex
systems can be analyzed by encoding the interactions between the system’s components. Examples
of these are (1) social networks, where the links are determined by social ties, (2) neural networks,
mapping connections between neurons and to understand how our brain functions, and (3) commu-
nication networks, such as the WWW, describing how wired or wireless communication devices are
linked to each other [5]. In the following section, we give examples of how network science can be
applied in the financial domain.

1.2 Related Work

In this section we will discuss related research on financial networks at different levels of aggregation.
On one of the highest levels, a particular field of research is receiving much attention, namely that of
international trade networks. In this line of research, the structure of the world-economy is analyzed,
where nodes are countries and ties are international trade flows between these countries [6, 7, 8, 9].
On a lower level, economies within countries can be researched. Here, we can consider interactions
between aggregated entities, such as sectors and industries. Most studies in this field analyze
input-output tables of countries. These tables are constructed by national statistic agencies and
describe how sectors depend on each other, based on money flows. Many studies build upon the
input-output model [10], describing interdependencies between sectors. An example is showing how
idiosyncratic shocks (shocks affecting individual firms or sectors) may lead to aggregate fluctuations
in the presence of inter-sectoral input-output linkages [11]. The research by McNerney et al. [12]
uses input-output tables of 45 national economies, to analyze the network structure of inter-industry
relationships in these different countries.

On an even lower level, there is a field of study that considers the financial ties between individ-
ual organizations, rather than sectors or industries. Financial ties can be reflected by individual
transactions. We distinguish different types of such transaction networks. The work by Iosifidis et
al. [13] studies an intercompany transaction network. In particular, a community of businesses in
Sardinia is analyzed, in which companies make transactions in so-called complementary currencies.
A network analysis is performed to discover various network properties. The research is in particular
focused on cyclic motifs in the network and transactions within these cycles. The aim is to analyze
the stability and the performance of the inter-company system. Similar studies are the study by De
la Torre et al. [14], analyzing the topology of an inter-firm payment network in Estonia and the
work by Kichikawa et al. [15], studying the structure of a Japanese inter-firm transaction network.
Other studies describe cascade effects, caused by idiosyncratic shocks due to natural disasters and
epidemics such as Covid-19 [16, 17, 18]. By cascade effects, the propagation of a shock trough the
network is meant. In other words, industries impacted by financial shocks affect other industries
through their linkages.

A particular area of research is that of inter-bank networks. Some works study the topology of
inter-bank payment networks [19, 20]. Instead of considering the transactions between banks, some
studies analyze networks where banks have other financial interdependencies. These papers analyze
inter-bank networks based on cross-holdings, debts and shares [21, 22, 23]. The aim is to see if there
exists financial contagion as a consequence from a financial shock or particular defaults. This means
that a small group of financial institutions infect other institutions in the economy, after being
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affect by a shock. Financial contagion is an example of cascade effects. A similar term is systemic
risk, referring to how local disruptions can cause global effects in an economy. Equivalently, the
term domino-effect is often used to describe similar mechanisms.

Company networks can also be constructed and analyzed using other interdependencies than
transactions. An example of this is a global corporate ownership network, where the aim is to
identify offshore financial centers, which often facilitate tax avoidance and lenient regulations
network [24]. Furthermore, links can be represented by considering board interlocks [25].

Finally, on the highest level of granularity, various researches analyze transaction records in payment
systems. An example is the study conducted by Mattsson [26]. In this paper, a network representa-
tion of money flows is constructed, based on the transactions made in a particular payment system.
The goal is to discover the underlying network structure of such modern payment systems. This
work does not consider inter-company transactions, but rather transactions between individual
actors. Other research is devoted to the network topology of credit card transactions [27] and
Bitcoin transactions [28]. The authors construct a transaction network, obtain the network topology
and consider basic network characteristics over time.

In the following section we present our problem definition and explain how we are going to apply
the different theories of financial networks. We also mention in what way we differentiate ourselves
from previous work.

1.3 Problem definition

In this thesis, we use company transaction data to empirically describe the effects of Covid-19 on
the Dutch economy. We construct an inter-industry network from this data. In particular, we form
industry linkages, by aggregating payments between companies belonging to certain industries.
Creating a sensible network from raw transaction data is not trivial, so we will carefully explain
the different steps taken in this process. We distinguish ourselves from previous work in a sense
that we use these inter-firm transactions in order to construct an inter-industry network. In other
studies, either input-output tables were used to analyze industry interconnections, or these company
transactions where used to construct and analyze an inter-firm network. Using company transactions
allows us to construct and compare networks over specific periods. An advantage of this, is that
we are able to describe the effect of Covid-19 on the network. In various studies, the impact of a
shock is estimated, using some sort of model. The transaction data is already affected by a shock,
giving us the unique opportunity to empirically show the actual effect of Covid-19, without having
to make estimations.

To be able to quantify these effects, we compare the networks from the period during the intelligent
lockdown in the Netherlands, with the network of the same period in 2019. During this thesis, we
will call these networks the 2019 network and the 2020 network. The networks will be compared by
their topologies and structure, using general network descriptives, as presented in [5]. We will focus
on centrality measures, which unveil important nodes in our network. Also, we will analyze the
distributions of these metrics, which allows us to learn about the general network structure. First
of all, we will consider the strength of nodes, which indicates what the largest industries are in
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the network. If important nodes are impacted by a demand shock, the impact of this shock in the
entire network may be bigger.

Important industries might also be more susceptible to shocks. In order to test this, we consider
the random-walk centrality, proposed by Blöchl et al. [29]. This measures the closeness of nodes in
the network, based on random-walks. We expect that industries to which other industries are close,
have a higher probability of being affected by shocks.

The second part of this research is specifically focused on consumer spending behavior during the
intelligent lockdown. We are interested how this impacts different industries in the network. These
effects can be split into two different categories: 1) direct effects and 2) indirect effects. By direct
effects we mean that industries that highly depend on consumers, so that are downstream on the
supply chain, have less output to consumers. This may also influence suppliers of these industries,
which we refer to as indirect effects. As a measure to describe the effects that reduced consumer
spending has, we propose to use the maximum flow value introduced by Ford and Fulkerson [30].
The corresponding research questions are mentioned in the upcoming section.

1.4 Research questions

This thesis can be divided into two overarching research questions:

• RQ1: What are differences in topology and statistical properties between the
2019 and 2020 Dutch inter-industry transaction network?

• RQ2: To what extent does the change in consumer spending behavior influence
the transaction network?

These questions can be divided into subquestions. For our first question, these are:

• RQ1.1 : How do we construct a sensible aggregated economic network from disaggregated
financial transaction data?

• RQ1.2 : To what extent is the 2019 network different from the 2020 network, when analyzing
their structures?

• RQ1.3 : What are the most important industries based on random-walk centrality in both
the 2019 and 2020 network?

• RQ1.4 : To what extent are industries with a high random-walk centrality more susceptible
to shocks?

The second question is focused on the impact of the lockdown on consumer spendings. The different
subquestions we can ask here are:

• RQ2.1 : To what extent can we use maximum flow to describe cascading effects?

• RQ2.2 : To what extent did consumer spending change during lockdown?
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• RQ2.3 : What are indirect effects of the change in consumer spending?

We start with a brief description of our data in Section 2. The methods that we use to answer our
research questions, are covered in Section 3. In this section we describe our data pre-processing
steps and the methods for our network analysis. We focus on methods for analyzing the change in
network structure, important industries based on random-walk centrality and their relationship
to cascades, and on quantifying the effects of the change in consumer spending. In Section 4, we
describe the results of these analyses. Finally, we draw conclusions in Section 5.
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2 Data

The transaction data that we use, are payment records from business client bank accounts. The data
is provided by ING Wholesale Banking, as part of this internship. We have access to transactions
corresponding to the period of October 2018 until August 2020. We are able to see all the payments
made from and received by ING-accounts. Every transaction consists of a payer, beneficiary, amount
and date. Other attributes considering the payer and beneficiary are the country, name, company
identifier, whether the party is a private individual or not. For companies, we have additional
information, based on Dutch Chamber of Commerce data. This includes for example information
about the sector, location and parent companies. Especially the sector code is relevant for our
research, as we are interested in the industry in which the company is active. To identify this,
the NAICS classification system is used [31]. NAICS is the North-American standard to classify
companies by their industry. A NAICS code is a six-digit number that contains a hierarchy:

• 2-digit code: sector

• 3-digit code: sub-sector

• 4-digit code: industry group

• 5-digit code: NAICS industry

• 6-digit code: national industry

An example of NAICS code breakdown is shown in Figure 1.

Figure 1: NAICS example
source: Economic census [32]

For this research, we want to give an insight in the Dutch economy, and how it was affected by
Covid-19. An implication is that our dataset is limited to ING customers. Hence, we deal with
a subsample of all company transactions in the Netherlands. As ING is the biggest bank in the
Netherlands, it should still give a fair overview of the Dutch economy. A rough estimate is that
half of the Dutch companies is an ING client. We must take into account that we use a sample,
which might be biased towards certain companies/industries.
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In the second part of this thesis, we analyze consumer spending behavior. We refer to consumers by
using the term private individuals. In this category, we only want actual end-consumers. However,
self-employed individuals, investors and even small to medium size enterprises often times are also
seen as private individuals. We need to distinguish between these types of payments. Furthermore,
private individual payments to companies are sometimes difficult to detect, as private individuals
use a range of different payment channels. It is important to make a distinction between the different
payment methods, as the type of payment method is closely related to the effects of the intelligent
lockdown: in many cases, “physical” payments were ruled out as possible payment method. As
the payment method is relevant, we briefly explain the different payment channels that private
individuals might use.

With the help of various domain and data experts, we have been able to identify the main channels
that consumers use to transfer money. We divide the private individual payments into two groups:
(1) card payments and (2) cashless payments. Card payments consist of PIN transactions. This
is the most used payment channel in physical stores. The cashless payments category contains
the other cashless payment channels that consumers use. This category mostly consists of online
payments, for example via iDEAL.

Card and iDEAL payments via ING are collected by ING internal accounts, transferring this money
in batches to organizations. In this case, ING acts as intermediary party. In many cases, more
intermediary parties are involved in the process of a private individual payment, making it hard to
detect individual payments. This is called disintermediation. For companies with an ING account,
we can see all the incoming transactions. Hence, we are also able to see when third parties pay
these organization. By carefully analyzing the transaction data and consulting domain experts, we
were able to detect a large fraction of these third party payments, which we can consider as private
individual payments. Some of these are associated with card payments, others can be associated
with cashless payments. We are not able to give examples due to client confidentiality.

When there is no intermediary party involved, private individuals directly transfer money to
organizations. Most of these payments are online transactions, via a SepaCreditTransfer (SECT).
We need to separate consumption and business payments in this category. In cases for which we
are not certain whether a private individual is actually a consumer or not, we filter high value
transactions, to filter out investment payments. The other remaining transactions are added to the
cashless payments category.
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3 Methods

In this section, we mention all different methods used in this thesis, from constructing the network
to analyzing the network.

3.1 Data pre-processing and selection

We begin with addressing our first research question: How do we construct a sensible aggregated
economic network from disaggregated financial transaction data? We mention the most important
steps that we undertook to obtain an inter-industry network, starting with the complete transaction
dataset. These steps are shown in Figure 2. The process involves using knowledge about the ING
dataset and its domain, as well as using best practices in related network science papers.

Figure 2: Different steps to take in order to achieve a industry network

3.1.1 Filtering transactions

We start with an initial filtering step. The full dataset contains transactions that are not relevant
for our network: we are only interested in Dutch companies. If the payer or beneficiary is relevant,
we keep all the transactions corresponding to this party. The criteria are:
The payer or beneficiary

1. has to be an company,

2. needs to have an ING account,

3. needs be registered in the Netherlands,

4. may not make a payment to itself/receive a payment from itself.

The reason that we want the payer or beneficiary to have an ING account, is that we have complete
information over these accounts. We are able to see all the transactions corresponding to these
payers or beneficiaries. For payers or beneficiaries with other bank accounts, we only see the
transactions they make to ING accounts. This means that we will not get a fair picture of the
transactions of these companies. Furthermore, we do not consider transactions where companies
pay themselves. This is the case when companies have multiple accounts, and move their money
from one account to another account. If we would consider these transactions, this would increase
the outflow and inflow of these companies, whereas these companies did not receive or spend any
money. This would leave to an overestimation of these companies’ flows.
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3.1.2 Label payers and beneficiaries

The last step we take before aggregating transactions, is labelling payers and beneficiaries based on
their NAICS-code. If a party does not have a NAICS-code, it is automatically labeled as “external
party”. All external parties are mentioned in Table 1. External parties essentially are non-business
entities. We can not remove flows from and towards external parties entirely from our data, as they
contain information about the revenue and costs of industries in the internal network. This is why
we model external parties by creating external nodes, which are connected to our internal network.
The internal network consists of all industries that we analyze in this research. The external flows
can be seen as exogenous forces which might influence the behavior of internal parties. Transactions
between two external parties are removed entirely from our dataset. In the remainder of this section,
we elaborate on why some parties are seen as external.

External Party
Public Administration
Non-business Organizations
Agriculture, Forestry, Fishing and Hunting
ING
Parent Companies
Private Individuals
Self Employed Individuals
Foreign Counterparties
iDEAL Payments (processed by ING)
Card Payments
Payment Service Providers
Other

Table 1: Different external parties

Sometimes if a company contains a NAICS-code, we still might label it as external party. This
is in particular the case for Public Administration industries. The first reason for this is that the
organizations in this sector are funded by the government. Their revenue does not depend on
economical circumstances. Another reason is that the public sector accounts for the largest amount
of money flow in this network, making it more difficult to find effects for other industries in the
network. We also will not consider other industries that are government led or non-business. To
determine this, we use only the NAICS-codes that are included by the Economic Census Bureau.
This bureau provides data about the economy in the United States [32]. For this, we assume that
the economy of the United States and the Netherlands are similar, hence we can exclude the same
industries. Next, we filter out transactions from and to ING bank. The reason for this, is that
there is a bias towards ING; we see payments from the bank’s transaction system. First of all,
these withdrawals and deposits are not interesting, as money is not moved from one company to
another, meaning it does not contribute to economic activity. Secondly, we might see relatively
more transactions with banks, than these companies perform in reality when we would consider all
transactions. This is because we consider payments from the bank’s perspective.
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Finally, We also consider parent companies as external parties. Larger organizations often consist
of holding and subsidiary companies. The money flows between these companies do not represent
industry dependencies and can affect the results. This is because these flows tend to be large, as
they are associated with the biggest corporations. A company is attributed as parent company,
when it is either a direct parent or higher in the same branch of the corresponding organization tree.

3.2 Network construction

In this section, we describe the process of inter-industry network construction, over the pre-processed
dataset. We start with the most important step: aggregating parties and creating the actual network.
After that we explain how and why we remove insignificant edges.

3.2.1 Aggregate payers and beneficiaries

Constructing the network is done by aggregating transactions. A network is a set of nodes connected
by links. In our case, the set of nodes contains either industries or external parties. Industries are
represented by their 6-digit NAICS-codes. We use the 6-digit NAICS-codes to obtain the maximum
level of granularity. The different external parties are mentioned in Table 1.

As mentioned in the introduction, we consider transactions over two periods: the months March,
April and May in 2019 and the same months in 2020. We need to consider the same months in 2019
and 2020 for a fair comparison, as the data is subject to seasonality effects. An edge between two
industries is formed, if one or more companies from a certain industry make at least one payment
to one or more companies from another industry, in either the 2019 period or the 2020 period. The
same principle holds for links between industries and external parties. Transactions from one node
to another node are modeled by one single weighted directed edge. For every edge, we consider
the 2019 and the 2020 weights: transaction count and sum of transaction values over the 2019
period and over the 2020 period. The weights reflect monthly averages: we compute the transaction
count and sum for every individual month (March, April and May) and take the average over these
months, for the years 2019 and 2020. In the end, we have two networks: the 2019 network and the
2020 network, with the same edges and with different values for the edge weights. Having the same
edges, makes it easier to compare the networks with each other.

3.2.2 Removing insignificant edges

The linkages in the network that we construct, must represent dependencies between industries. If
a link is formed by two companies making a small amount of minor payments to each other, this
does not indicate that the industries of these companies have a dependency. Such linkages do not
reflect representative behavior of the industries as a whole. Next to this, most smaller edges have
no transactions associated with them in one of the two periods, or the relative change is much
bigger compared to edges with larger weights. We remove insignificant links between industries
based on the count of transactions and the sum of the values, corresponding to these links. In
Figure 3, we see that by far the most edges are positioned in the bottom corner (the vertical axes
of the histograms are logarithmic). This means that most links between industries represent only a
few transactions with a low sum.
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Edge weight scatterplots 2019 and 2020

Figure 3: Scatterplots of the transaction count vs. the sum, of the 2019 and the 2020 network,
before removing insignificant edges. The plots show 99% of the data, not displaying 1% of the
outliers, with higher transaction count and/or sum.

To filter insignificant linkages, we use a threshold for both the transaction count and the sum. In
particular, we prune edges from the left bottom corner: we keep edges if they have a transaction
count of bigger than 5 or a sum bigger than 10,000, either in 2019 or in 2020. In this way, we have
the same edges for both the 2019 and 2020 network, making it easier to compare both networks.
Using these “hard thresholds” has the advantage that apart from removing insignificant edges, we
also filter out the smallest industries. In this way, we do not see industries that virtually have no
impact on the economy. A disadvantage is that we will consider links that are relatively small for
larger industries. An approach to counter this, would be to filter links proportionally to the size
of industries. In Section 4.2.1, we show that we remove most edges using our filtering approach.
However, as we only remove low value edges, we remove only a small fraction in terms of the total
sum of edge values. This means that the findings in terms of absolute flow will remain similar
compared to before the removal of edges.

3.3 Methods for analyzing structure of the 2019 and 2020 network

In this section we explain the different methods that we use to analyze the structure of our inter-
industry networks, as constructed in Section 3.2. We start by introducing network notation used
throughout this thesis.

3.3.1 Network notation

We represent both the 2019 and 2020 network, using two adjacency matrices: C and V . C denotes the
adjacency matrix, where weights reflect the average monthly transaction count between industries.
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Matrix V represents the average monthly sum of transaction values between industries. This means
that Cij shows the amount of transactions that industry j made to i and Vij represents a money
flow from industry j to industry i. A dummy example of adjacency matrices is depicted in Figure 4.
As we can see, C and V contain the same edges, but with different values. We do not take linkages
between external parties into account. We do allow for self-loops as self-loops are a major part of
the economy: companies often times interact with companies from the same industry. Furthermore,
we deal with external flows. These consist of inflows and outflows: flows coming into the network,
and flows leaving the network. In Figure 4, the external parties are “Private Individuals” and
“Public Administration”. The corresponding network representation of these adjacency matrices is
depicted in Figure 5.

Figure 4: We represent a network by using two adjacency matrices C and V .
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Figure 5: Corresponding network representation of the matrices C and V from the dummy example
in Figure 4, without edge weights that are stored in these matrices.

To give an idea of what the actual network looks like, a snapshot of the network is depicted
in Figure 6. The visualization was created in Gephi, during the pre-processing stage and is not
representative for the final network. To make the image more clear, the smallest edges were filtered
based on weight. In a network without filtering, the visualization would become very unclear.
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Figure 6: An example visualization of the inter-industry transaction network, created during the
pre-processing stage

3.3.2 Density

Network density describes what fraction of the potential edges in a network are actual edges.
Real-world networks often are sparse, meaning that the number of edges that are present in the
network is much lower than the total number of edges that this network can possibly have. If a
network contains all possible edges, it is complete. In complete directed networks, the number of
edges equals: n(n− 1), where n is the number of nodes in the network. To compute the density of
a network, we divide the actual number of edges m by the maximum number of edges in the case
of a complete network: m

n(n−1) [5].

3.3.3 Components

In a network, nodes are connected if there exists a path between them. A network is connected if
all pairs of nodes in the network are connected. A network is disconnected if this is not the case,
meaning there exists at least one pair of nodes without a path between them. Components are
subgraphs for which there is a path between all the node pairs belonging to this subgraph [5]. We
can differentiate between the undirected and directed case. The largest component where all nodes
are connected to each other via undirected paths, is called the Giant Weakly Connected Component
(GWCC). We can break the GWCC up into smaller components. First of all, the nodes in the
Giant Strongly Connected Component (GSCC) can all reach each other via directed paths. The
Giant In-Component (GIN) has paths towards the GSCC, the Giant Out-Component has paths
from the GSCC. Then there is also tendrils that do not have directed paths to or from the GSCC,
but to GIN or from GOUT. Apart from the GWCC, networks often contain smaller Disconnected
Components (DC’s). We show the different components in Figure 7 [14].By considering connected
components, we learn how well the network is connected. The GSCC forms the foundation of the
economy. Industries not in the GSCC do not play a central role in the economy. These industries
may for example have a role of money creator (GIN) or money sink (GOUT).
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Figure 7: Different components in a directed network [14]

3.3.4 Degree and strength

We first consider two relevant properties of our network the degree and strength. Because we
deal with a directed network we distinguish in- and out-degree. The in-degree for a node i, kini , is
the number of incoming links of a node. The out-degree for a node i, kout, equals the number of
outgoing links. The in and out-strength are the weighted equivalent of degree; we sum the weights
of incoming and going transactions to obtain the in and out-strength. The degree or strength can
provide us with information about the importance of different industries in the economy: if you
have a high degree, you interact with many other industries, meaning that many industries depend
on you, or vice versa. The strength is important, to see to what extent an industry contributes to
economic activity. For a network with n nodes, we define the following strengths for a node i:

Total number of incoming transactions: cini =
∑n
k=1Cki

Total number of outgoing transactions: couti =
∑n
k=1Cik

Total incoming flow: vini =
∑n
k=1 Vki

Total outgoing flow: vouti =
∑n
k=1 Vik

The average degree or strength is an important property of a network. For a directed network, the
average degree equals the number of links m, divided by the number of nodes n. The number of
links is namely equivalent to the sum of in-degree or out-degree over all nodes. Hence, the average
degree equals:

〈kin〉 = 1
n

∑n
i=1 k

in
i = 〈kout〉 = 1

n

∑n
i=1 k

out
i = m

n

We can use a similar definition for the average strengths:

〈cin〉 = 1
n

∑n
i=1 c

in
i = 〈cout〉 = 1

n

∑n
i=1 c

out
i

〈vin〉 = 1
n

∑n
i=1 v

in
i = 〈vout〉 = 1

n

∑n
i=1 v

out
i
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3.3.5 Degree and strength distributions

Much research has been conducted in the field of degree distributions. The shape of the distribution
determines many network related phenomena, such as epidemical spread and robustness. A property
of many real world networks, is that they are scale-free, indicating a power-law degree distribution.
In practice, empirical power-law distributions are not always detected. According Broido et al. [33],
log-normal distributions fit the data better than the power-law, in most cases.

For a power-law distribution, the logarithm of the probability ln pk of a certain degree k is ex-
pected to depend linearly on ln k, multiplied by the degree exponent γ, indicating the slope of
the line. In other words, we see a straight line when plotting a power-law on a log-log scale: pk ∼ k−y.

Power-law : f(x) = Ax−y

In the case a network has a power-law degree distributions, it is called scale-free. A property of the
power-law degree distribution is that compared to random networks, there tend to be some hubs
(large degree nodes) and relatively many small degree nodes. This means that in general, nodes
have only a small influence, leading to a robust structure. However, the large degree nodes can
impact the network on larger scale. In practice, distributions may have an exponential bound. In
this case, a power-law with exponential cutoff is used:

Power-law with exponential cutoff : f(x) = Ax−ye−λx

In many cases, distributions are not bounded, but decay faster, compared to a power-law. These
distributions are still characterized by having a fat-tail. To describe this phenomenon, two types of
distributions are commonly used: a stretched exponential distribution (Weibull) and log-normal
distributions.

Weibull : f(x) = k
λ
(x
λ
)k−1 exp[−(x

λ
)k]

In this case, k is the stretching component, indicating the “fatness” of the tail of the distribution.

The log-normal degree distribution is found when ln k, resembles a normal distribution. A variable
typically follows such a distribution, when it is the product of many independent random (positive)
numbers. This is for example the case for returns on stock market, which is assumed to be random,
and is a multiplication of different bets.

Log-normal : f(x) = 1√
2πσx

exp[− (lnx−µ)2
2σ2 ]

The function for a log-normal distribution is the same as the function for a normal distribution,
except that the variable in the exponential term is lnx and not x.

Although degree distributions have been studied more elaborately, we expect the same phenomena
for strength distributions. When edge weights come at play, log-normal distributions might still
occur, assuming that wealth of entities is a product of random numbers, similar to the stock
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market returns example. In real-world inter-industry networks, the distribution of money flow
strength, tends to indeed follow a Weibull or log-normal distribution [12]. Weibull and log-normal
distributions are generated by similar mechanisms.

3.4 Random-walk centrality

Degree or strength determines the size of industries, which also tells us something about the
importance of industries in the network. If high degree nodes are directly affected by a shock, many
connected industries could potentially also suffer indirectly from this. The relation between cascade
effects and degree has for example been researched by Acemoglu et al. [11]. However, only the size
of industries might not suffice to describe the role of industries during economic shocks. Blöchl et
al. [29], propose a metric called random-walk centrality, which can be interpreted as the “susceptibil-
ity during a supply shock”. This metric is specifically designed for input-output matrices, which are
highly connected networks with strong self-loops. The metric resembles closeness centrality, which
describes the mean geodesic distance from all nodes to one. In other words, it describes how close
other nodes are to you [5]. The intuition behind random-walk centrality is similar, but in this case
the distance from other nodes to you is determined by random walks. Specifically, the Mean First
Passage Time (MFPT) is used. The MFPT H(s, t), from a source node s, to a target node t, equals
the expected number of steps that a random walker needs to reach t for the first time, starting from s:

H(s, t) =
∑∞
r=1 r ∗ P (s→r t)

Here, r is the exact amount of steps it takes to reach t, and P (s→r t), is the probability of this.
The random walker decides which edges it follows, based on a probability distribution determined
by edge weights. More specifically, if we represent our network as a matrix, we divide the entire
matrix by its row sums. The row sums are equivalent to the out-strength vout of industries. Now,
each entry in the matrix represents the transition probability. Intuitively, a random walk reflects
how money may flow through a network. More specifically, a random walker reflects the way in
which a random euro traverses through the network. A random walker is more likely to progress
over edges with a relatively large edge weight for a certain industry.

After computing H(s, t) for all s, t ∈ N , where N is the set of nodes, the random-walk centrality is
defined as “the inverse of the average MFPT to a given node”:

RWC(i) = n∑
j∈N

H(j,i)

According Blöchl et al., nodes with a high random-walk centrality, are more sensitive to supply
conditions in the economy, due to economic shocks. This is because many supplier industries are
close to industries with a high random-walk centrality. In this research, we assume that the shock is
already present in the network, caused by the intelligent lockdown. Thus, we expect to see cascade
effects for nodes with a high random-walk centrality. We have concretely formulated this in research
question 1.4: To what extent are industries with a high random-walk centrality more susceptible to
shocks?. Here, we define the total sum of money flows to neighbouring industries as a performance
indicator. Thus, industries need less input from other industries, when impacted by a shock.
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3.5 Maximum flow

In this section we describe the maximum flow metric, which we use to answer research question 2,
including its subquestions. First of all, we answer research question 2.1: To what extent can we use
maximum flow to describe cascading effects?

We use the minimum cut-maximum flow theorem as proposed by Ford-Fulkerson to describe the
impact of the change in consumer spending, during lockdown [30]. The intuition behind using this
measure is that we analyze the maximum flow of value to industries, given that private individuals
are the only external source of money. Maximum flow gives an upper-bound or carrying capacity
on a flow network between a source and a target node. Essentially, we compute the maximum flow
over different supply chains. The amount of value that can flow over the supply chains serves as a
performance metric. A decline in maximum flow value for an industry, indicates overall disruptions
on the supply chains from consumers to this particular industry.

For this theorem, we propose a directed network G = (N,E), where N is the set of nodes, and E
is the set of edges E ⊆ {(i, j) ∈ N | i 6= j}. This theorem assumes that flow runs from a source
node s ∈ N to a sink node t ∈ N . Edges have capacities cap(i, j), indicating the maximum amount
of flow that can pass this edge. A flow is a nonnegative function flow(i, j), defined for all edges
i, j ∈ E, for which the following applies:

• For every edge i, j ∈ E, flow(i, j) ≤ cap(i, j)

• for every node i ∈ N , where i 6= s and u 6= t:
∑
j flow(i, j)−∑

i flow(j, i) = 0

Thus, flow can not exceed the capacity of an edge and nodes may not have more flow coming in
than going out, except for the source and sink node. The goal is to maximize the flow between s
and t, preserving the constraints. According to the minimum cut-maximum flow theorem, this is
equal to the cut with the minimum capacity, or bottleneck capacity. For computing the maximum
flow, we use the Edmonds-Karp implementation of the Ford-Fulkerson theorem, which uses BFS to
find augmenting paths [34].

In reality, there are more external sources than private individuals, but by modelling it this way, we
try to get an idea of 1) the direct effect and 2) the indirect effect of a change in consumer spending.
In this research, we aim to discover such effects, which is also reflected in research question 2.2
and 2.3. The change in maximum flow describes a combination of direct and indirect effects: there
can be a direct link from private individuals to a particular industry over which value flows, which
comprises the direct component of maximum flow. The indirect component consists of all flows
through other industries. Some industries might be more directly depending on private individuals,
some are higher upstream on the supply chain, meaning that certain industries will be more likely
to be affected directly by consumer spending behavior.

We compute the maximum flow values for every industry in the network. This means that for
every industry, we construct a flow network with private individuals as source and the industry
for which we compute the maximum flow, as target. By comparing the maximum flow values for
the 2019 and the 2020 weights, we can see whether capacities in flow networks between consumers
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and industries have changed or not. Capacities of edges are equivalent to overall spending from
one industry to another industry. A decline means that an industry spends less money on another
particular industry. If maximum flow declines, this means that overall, the capacities have changed
in such a way, that less value can flow over the supply chains. This may indicate cascade effects.
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4 Results

This chapter contains the most important findings of our research. First, we describe the transaction
data in more detail. After this, we show the results from our network analysis. This particular
section is divided into two parts: general network description and the influence of consumer spending
behavior.

4.1 Data description

In this section, we describe properties of the raw transaction data, before aggregation. We do this
in order to see the effect of the different filtering choices and to get an overview of the transaction
data. We will show distributions of the transactions, the transaction data over time, and specifically
consider the 2019 with the 2020 period. As described in Section 3.1, there are two occasions
during the data pre-processing and selection stage, when we remove transactions: (1) when filtering
irrelevant transactions and (2) when removing transactions between external parties.

The distributions of the individual transaction values are depicted in Figure 8. Not taking the
left-hand side of the distribution into account, we note a straight line on log-log scale, indicating
a power-law distribution. This means that most transactions are “small” and there is only few
large transactions. After filtering irrelevant transactions, many small transactions are removed.
The median of the distribution also shifts to the right. After also removing external to external
transactions, we especially notice that the largest transactions are removed. This is mostly due to
the removal of public sector transactions.

Figure 8: Distribution of the transaction amounts in EUR, for the different data selections

We can also see these effects in Table 2. Initially, the mean transaction value is 1820.73. After
removing irrelevant transactions, this is 3477.40. We retain slightly more than 1/6th of the total

23



number of transactions. If we look at the sum of the transaction values, this equals about 1/3th,
again indicating that we remove a large quantity of smaller transactions. After removing irrelevant
and external to external transactions, the average number of transactions per month equals 47.3
million. The average volume of these transactions is 164.4 billion. Finally, in the total dataset, there
are 1,537,059 unique company identifiers. After removing transactions, this is 1,284,658.

All transactions After filtering After removing ext. to ext.
Total sum (billions) 11,226.2 8243.4 3944.8
Count (millions) 6165.8 1708.6 1134.4
Sum per month (billions) 467.8 343.5 164.4
Count per month (millions 256.9 71.2 47.3
Mean value amount per transaction) 1820 4824 3477
Amount of companies 1,537,059 1,432,393 1,284,658

Table 2: Properties of different data selections for the period of October 2019 until September 2020

Considering Figure 9, we see a large difference between months. The 2019 and 2020 period are
highlighted. Some properties of this period are also shown in Table 3. We see that overall, the
difference of the sum and count of transactions between months remains largely the same before and
after removing transactions. There is some regularity here, but it is hard to spot clear seasonality
patterns. Considering the lockdown period, there especially is a drop in April, both in count and
sum of transaction values. This is not visible in the 2019 period. For the month March of 2020, the
sum of transactions is much higher, compared to March 2019.

Looking at Table 3, the total sum and count of transactions is lower in 2020, regardless of which data
selection we take. The relative difference is also quite similar, for each data selection. Considering
the monthly mean of the count and sum of transactions, we see that this is lower in the intelligent
lockdown period, compared to the total averages of Table 2. For 2019 period, the averages are slightly
higher compared to these total averages. Finally, we see that less companies make transactions in
2020 period, compared to the 2019 period.

Figure 9: Total monthly sum and count of transactions of different data selections over time
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2019 period 2020 period
All transactions After filtering After remov-

ing ext. to
ext.

All transactions After filtering After remov-
ing ext. to
ext.

Total sum (billions e) 1470.1 1098.8 521.0 1295.0 949.1 456.4
Count (millions) 779.3 216.5 143.1 697.3 211.4 140.0
Sum per month (billions e) 490.0 366.3 173.7 431.7 316.4 152.1
Count per month (millions) 259.8 72.2 47.7 232.4 70.5 46.7
Mean amount per transaction (e) 1886 5075 3640 1857 4488 3260
Amount of companies 1,168,739 1,079,709 912,246 1,137,278 1,051,775 890,866

Table 3: Properties of different data selections where the 2020 period is compared to the 2019
period

4.2 Network description

In this section we analyze the network that we can create from the transaction data. For this we
study the statistical properties and structure of the 2019 and 2020 network, using various network
metrics.

4.2.1 Density of the network

First, we describe the effect of the removal of edges on the density of the network. As mentioned, we
removed insignificant edges from the network that did not reflect dependencies between industries,
based on thresholds. The choice of threshold values, will not majorly affect our findings in terms of
total flow, as we remove only edges with negligible weights. We remove 85% of all the edges, using
our filtering approach. This is depicted in Table 4. The number of nodes and edges before removing
noise was respectively 928 and 175,798. The density of this network was 0.204, meaning that
the network contains rouglhy 1/5th of the total amount of possible edges. This is relatively dense
considering the density of most real-world networks [5]. After removing insignificant edges, the
network contains 788 nodes and 28,007 edges. The density is now 0.045. We removed most edges,
but considering the sum of edge values, we removed only 1.2%.

Before removing edges After removing edges
Number of nodes 928 788
Number of edges 175,798 28,007
Density 0.204 0.045

Table 4: Properties of the network before and after the removal of insignificant edges

4.2.2 Components

In Table 5, we see that nearly all 788 industries are part of the GWCC. This means that the
majority of the economic activity is captured in the GWCC, which allows us to reliably use methods
that operate on only one component. An example of such a method is for example the maximum
flow algorithm. The GSCC contains 674 nodes of the in total 788 nodes. The GIN consists of 65
nodes, the GOUT of 45 nodes and there are 4 industries in the DC’s.
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Number of nodes 788
Number of nodes in GWCC 784
Number of nodes in GSCC 674
Number of nodes in GIN 65
Number of nodes in GOUT 45
Number of nodes in DC 4

Table 5: Amount of nodes in different components

The sum of the monthly transaction amount over all edges in the inter-industry network are
respectively 18.220 billion in 2019 and 19.525 billion during the intelligent lockdown period. These
numbers are without flows from external parties. This means that during the intelligent lockdown
period, the total sum of inter-industry transactions was actually higher, compared to the same
period in 2019.

4.2.3 Strength distributions

In this section we analyze the strength property of the different nodes in the network. We analyze
the different strength distributions by considering the shape and the mean of these distributions.
The shape is determined by determining which function is a best-fit for the distribution: power-law,
Weibull or log-normal. For the strength distributions, we consider the networks without the removal
of insignificant edges (mentioned in Section 3.2.2). This is not needed, as we look at an aggregate
metric. Removing insignificant edges disrupts the left-hand side of our distributions, making it more
difficult to fit a probability distribution. In terms of total flow in euro’s, removing insignificant edges
has virtually no impact. Figure 10 and 12 show the in-strength vin, out-strength vout, in-strength
cin and out-strength cout distributions of 2019 and 2020. For all eight distributions, we also show
the best fitting probability distribution functions. The data is plotted on a log-log scale, using
logarithmic binning. This also means that industries with a strength of 0 are not displayed in
the histograms. In the appendix we show all the strength distributions, including the different
probability distribution functions that we fitted on the data (Figure 26, 27, 28 and 29).

For all distributions, it is clear that the power-law function does not fit well. Similar to [12], the
distributions decay faster than a power-law. The Weibull and the log-normal functions provide
better fits for the data. In Figure 10, we can see that the log-normal distribution fits the best for
both distributions. However, the fits are quite different. In Figure 12, we see that for the 2019 data,
a Weibull is the best fit. For the 2020 data, log-normal provides a better fit. In Table 6, we can see
that for the out-strength vout, both log-normal fits do have rather similar parameters.

Considering both figures, it is difficult to clearly differentiate between the 2019 and 2020 strength
V distributions. On average industries have a higher industry output/input during the 2020 period.
This can be explained by the largest industries. In Table 10 and 11 we depict the largest industries
based on their in-strength vin and out-strength vout, for both the 2019 and 2020 weights. We can see
that the largest hub, “Supermarkets and Other Grocery (except Convenience) Stores”, especially
had a spectacular increase in industry inflows and outflows.
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Figure 10: In-strength vin and out-strength vout distributions of 2019 and 2020 plotted on top of
each other, including the best fitting probability density function

As noted in [35], there are two apparent reasons for the increase: first of all, consumers displayed
hoarding behavior, stocking up on supplies which they normally would not have bought. Secondly,
restaurants and many other food and drink related establishments were forced to close during the in-
telligent lockdown period. Supermarkets form a substitute for this demand, increasing their revenues.
Next, the top 10 industry “Drugs and Druggists’ Sundries Merchant Wholesalers” nearly doubled in
both in-strength vin and out-strength vout. The reason for this is that consumers stock up on medical
products, also for precautionary reasons. Other hubs, like “Third Party Administration of Insurance
and Pension Funds” and “Miscellaneous Financial Investment Activities” also increased. Another
example is “Toy and Hobby Goods and Supplies Merchant Wholesalers”, which enters the top 10
of out-strength vout. This may be explained by the fact that certain web shops fall under this category.

There is also some examples of industries declining in in-strength vin and/or out-strength vout, like
“Direct Life Insurance Carriers” and “Security Guards and Patrol Services”. For the life insurance
carriers, this can be explained by a decline for regular healthcare demand, due to the Corona virus.
It is also quite obvious why there is a decline for “Security Guards and Patrol Services”, as stores
and businesses had to close their doors and events were cancelled.

Most of the declines tend to be smaller. We can also see this in Figure 11, which depicts the
difference in out-strength vout between 2019 and 2020. The average in-strengths 〈vin〉 of 2019 and
2020 respectively equal 15,470,327 and 16,459,709 (〈vin〉=〈vout〉). We can see that much more
industries actually declined in their out-strength vout. However, the increases tend to be larger.

The in-strength cin and out-strength cout distributions of 2019 and 2020 are depicted in Figure 12.
Both the log-normal and the Weibull functions provide better fits for these four distributions,
compared to the in-strength vin and out-strength vout distributions. The average in-strength
〈cin〉 of 2019 and 2020 respectively equal 1784 and 1593. We can clearly see that in 2019 much
more transactions were made, compared to the lockdown period of 2020. This can also be seen in
the picture, as the 2019 distributions cover a slightly bigger areas compared to the 2020 distributions.
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Figure 11: Distributions of absolute and relative differences for out-strength vout of industries, 2019
compared to 2020

Figure 12: In-strength cin and out-strength cout distributions of 2019 and 2020 plotted on top of
each other, including the best fitting probability density function

Overall, we can conclude that in terms of total value flow, the negative impact on the economy as a
whole is difficult to detect. There are more industries that slightly decline in out-strength vout and
in-strength vin, but there is also industries that profit from the intelligent lockdown effects. In terms
of transaction counts, it is clear that the intelligent lockdown causes a decline here. However, the
transactions in the 2020 period tend to be bigger. An explanation for this might be that consumers
have less opportunity to visit stores meaning they make less transactions, but have to buy more
when they do. Consumer payments are not represented within these distributions, however in
general we could say that inter-industry payments higher on the supply chain often follow consumer
demand patterns.
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Distribution Period Weibull Log-normal Log-likelihood Best fit
k λ µ σ

In-strength vin (value in) 2019 0.333 23,493,156 13.760 3.741 -285.103 Log-norm
2020 0.305 49,294,457 13.634 7.121 -276.636 Log-norm

Out-strength vout (value out) 2019 0.930 19,652,489 13.992 3.265 -292.259 Weibull
2020 0.374 25,275,083 13.852 3.314 -287.960 Log-norm

In-strength cin (transaction count in) 2019 0.470 1352.680 5.223 2.720 -167.148 Log-norm
2020 0.574 1384.707 5.039 2.748 -167.933 Log-norm

Out-strength cout (transaction count out) 2019 0.453 2772.828 5.728 2.341 -157.457 Weibull
2020 0.453 2470.017 5.615 2.328 -156.238 Weibull

Table 6: Overview of the Weibull and log-normal fits on the different strength distributions

4.3 Random-walk centrality

In this section, we analyze the random-walk centrality RWC of industries in the network. We
describe the most important industries based on the random-walk centrality, as well as the question
to what extent industries with a high random-walk centrality are more susceptible to shocks
(research question 1.3 and 1.4). The top ten industries for both 2019 and 2020 are depicted in
Table 7.

Industry RWC 2019 Industry RWC 2020
Miscellaneous Financial Investment Activities 0.0448 Miscellaneous Financial Investment Activities 0.0441
Offices of Notaries 0.0160 Offices of Other Holding Companies 0.0276
Offices of Other Holding Companies 0.0157 Offices of Notaries 0.0147
General Freight Trucking, Local 0.0145 General Freight Trucking, Local 0.0135
Commercial and Institutional Building Construction 0.0140 Administrative Management and General Management Consulting Services 0.0123
Employment Placement Agencies 0.0133 Employment Placement Agencies 0.0119
Direct Life Insurance Carriers 0.0127 Direct Life Insurance Carriers 0.0113
Commercial Banking 0.0125 Offices of Real Estate Agents and Brokers 0.0111
All Other Legal Services 0.0083 Insurance Agencies and Brokerages 0.0110
Other Heavy and Civil Engineering Construction 0.0081 Commercial and Institutional Building Construction 0.0010

Table 7: Top 10 industries based on random-walk centrality RWC in 2019 and 2020

Most industries in the top 10 are the same for 2019 and 2020. The industries that score high on RWC

are generally industries that provide services for a wide range of other industries. An example of this
is the largest industry in both 2019 and 2020 is “Miscellaneous Financial Investment Activities”.
Other highly ranked industries are administrative industries, such as: “Offices of Notaries” and
“Offices of Other Holding Companies”. A decline or increase in RWC would not necessarily mean
a decline in incoming money flows for a certain industry. It could for example also mean that
neighbouring industries pay relatively more or less to other industries, compared to the 2019 period.
In other words, the industry is less central in the network.

According Blöchl et al., industries with a high RWC are most immediately impacted by a shock.
By relating the absolute change in out-strength vout to the random-walk centrality of industries in
2019, we try to get an idea of this effect. We consider the absolute value as there are industries that
profit from the intelligent lockdown and industries that do not. In this way, we consider the change
in out-strength vout, either negatively or positively. We take the RWC of 2019, as we consider this
to be the ground-truth value for industries, in a “normal situation”. We expect that industries that
are central in the normal situation, are more susceptible for shocks.
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Figure 13 shows the random-walk centrality plotted against the absolute change in out-strength
vout, including two zoomed-in plots. In the most left plot, there is a correlation of 0.5236, which
indicates a weak correlation. This could be highly influenced by the outliers. For the highest industry
regarding RWC , “Miscellaneous Financial Investment Activities”, we also see a high absolute change
in out-strength vout. In this case, we notice an increase. As many other industries are close to this
industry, this increase might be an aggregation over different shocks. When removing few of the
outliers, we obtain a slightly lower correlation value, as is depicted in “Zoom1”. A clear pattern
is still difficult to detect here, and might also be affected to much by bigger industries. Finally,
when zooming in even more, we find a correlation value of 0.5765, which is shown in the most right
plot. We see that some industries with a high random-walk centrality indeed have a high absolute
change in out-strength vout. However, we also can spot many cases for which this is not true. When
zooming even further in, we do not obtain clearer patterns. These plots are given in the Appendix.

Correlation between RWC 2019 value and absolute difference in out-strength vout

Zoom1 Zoom2

Figure 13

To conclude, we can see that the expectation of Blöchl et al. does not hold up, when empirically
testing it using a real-world example. Although there is a slight correlation between the change in
out-strength vout and the random-walk centrality, the evidence that centrality indicates a higher
susceptibility for shocks is too weak. This means that it is not the case that industries with a high
random-walk centrality are more likely to be affected during the shock of the intelligent lockdown.
An explanation for this might be that we can not speak of “one clear shock”. The impact of the
Corona crisis depends on a range of different factors, affecting the economy at multiple places at
the same time. This also leads to a set of different positive and negative shocks.

In the Appendix we include related findings, where we also tried to detect a relation between shock
susceptibility and random-walk centrality. We were however not able to find such a relation in
these plots. In Figure 32, we depict the relative change in out-strength vout plotted against the
random-walk centrality. Next to this, we consider the “reduced” random-walk centrality, where
the transition probabilities are altered in such a way, that self-loops and node pairs receive less
weight. Finally, in Figure 33, we plotted the relation between average MFPT and relative change in
out-strength vut, where we colored industries based on the sector they belong to. We did this to see
whether the relation between MFPT and susceptibility for a shock is influenced by sector or not.
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4.4 Impact of the consumer

In this section, we specifically analyze consumer spending behavior. During the intelligent lockdown,
consumer spending declined. Some industries were impacted directly by this decline, some industries
more indirectly. We want to quantify these effects. First, we consider total consumer spendings
over time, where we distinguish between card payments and cashless payments. This is depicted in
Figure 14. We can see that in total, consumers spend more on cashless transactions compared to
card payments. As already mentioned, the cashless category comprises all transactions that can be
related to private individuals and are not associated with card payments. This category consists
mostly of online payments. Considering the entire course of the plot, we first notice two peaks in
the December months, both for cards and cashless payments. This effect is caused by the holiday
period in December. When specifically comparing the 2020 period to the 2019 period, we see that
for cashless payments, the consumer spendings were slightly lower in March and May. However,
we can see an increase in April 2020, compared to 2019. Over the sum of all relevant transactions
(Figure 3), we could see a clear decline in April. This discrepancy may be explained by the growth
of the online payment channel, during the lockdown period, causing the sum of cashless payments
to increase.

Figure 14: Sum of payment values for cashless and card payments of consumers over time. The top
chart is the stacked chart of the other two graphs. The highlighted areas depict the 2019 and 2020
period
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For card payments however, we do notice a clear decline, especially for the month April. The fact
that physical stores had to close, would be the most logical explanation for this. The reason we
do not see a clear decline in March, might be caused by the hoarding behavior of consumers in
the first weeks of March 2020. The cashless payment channel appears to have become a substitute
of the card payments channel in some cases, although this does not completely make up for the
decline in card payments. This is especially the case for companies in the Wholesale Trade sector,
as we can also see in Figure 15 and Figure 16. These figures give a broad idea which parts of the
economy were affected the most by changes in consumer spendings during lockdown.

Figure 15: Sectors sorted on absolute change in total cashless consumer income, over the intelligent
lockdown period compared to the same period in 2019 (the text displays the relative changes)

We must note that we look at an highly aggregated level, meaning there is a plethora of factors at
play. In the next section, we will analyze more closely what industries cause these effects. For cashless
payments, we see the biggest increase for “Wholesale Trade” and “Retail Trade”. This is largely
influenced by the rise of supermarkets and web shops. Further, the increase in “Information” sector
may be explained by a higher usage of wireless telecommunication and other information services.
The biggest decline we can see is for sector “Administrative and Support and Waste Management
and Remediation Services”, which amongst others consists of travel agency organizations. Further,
we see a decrease for “Arts, Entertainment, and Recreation”, which forms the “Cultural sector”.
The change in cards expenditures for individual sectors is depicted in Figure 16. Here, it is clear
that most sectors declined. As expected, we notice big decreases for the “Accommodation and Food
Services” and “Arts, Entertainment and Recreation” sector. Next, we see sectors decline associated
with transportation and traveling. In the next section we will take a closer look at these results.
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Figure 16: Sectors sorted on absolute change in total card consumer income, over the intelligent
lockdown period compared to the same period in 2019 (the text displays the relative changes)

4.5 Maximum flow analysis

In this section, we analyze the maximum flow results, in order to get an idea of the effects of the
changed consumer spending behavior. In particular, we try to get an idea of the indirect effect of
this, using the maximum flow value as mentioned in Section 3.5.

4.5.1 Maximum flow results

The maximum flow values for industries in 2020 opposed to 2019 are depicted in Figure 17. We
also provide zoomed-in versions to see changes in maximum flow for smaller industries. The aver-
age maximum flow value in 2020 is 25,760,655 is slightly higher compared to 2019, where it is
25,257,358. This is not according to expectation, however, we also saw this for the average in- and
out-strength vin and vout: the hubs that increase, influence the averages. In the plots in Figure 17,
we can also see that the industries with the biggest flow tend to be on the left side of the dashed
line. When zooming in, we can however see that for most industries there tends to be a decline in
maximum flow, especially for smaller industries. We can also see this in Figure 19.

The industries for which the maximum flow declined and increased the most, are depicted in
Figure 18. We could say that these industries are impacted the most by the changing consumer
spending behavior, as well directly as indirectly. In Figure 19, we can see that most industries
declined in maximum flow. The highest increases tend to be bigger in absolute terms, compared to
declines in maximum flow.
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Maximum Flow values

Figure 17: Maximum flow values 2019 vs. 2020, with two zoomed-in plots

Figure 18: Top ten biggest increases and decreases in Max flow

Figure 19: Distributions of absolute and relative differences for Max. flow of industries 2019
compared to 2020
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The maximum flow gives a combined metric for direct and indirect effects of changes in consumer
spending behavior. Some industries rely mostly on direct flow, some industries mostly on indirect
flow and for other industries the maximum flow value is an equal mix of both components. On
average, over all industries, roughly 43% of the maximum flow can be contributed to direct flow. It
is interesting to consider the direct and indirect effects separately and also which of these effects
contributes most to the maximum flow value. In the following sections we analyze these effects.

4.5.2 Direct effect: To what extend did consumer spending change during lockdown?

First we analyze how the direct consumer spending changed in the intelligent lockdown. 747 out of
784 industries received direct flow from consumers, either in 2019 and/or in 2020 (given our removal
of insignificant edges). However, some of these industries depend more on consumer inflow than
others. For the direct effect, we only consider the industries that depend most on consumer spending.
Here, we introduce a threshold: if an industry receives more than 10% of its total inflow from
consumers, either in 2019 or 2020, then we state that this industry depends on direct inflow. This
applies for 296 out of 784 industries. The average of direct consumer payments for these industries
declined with 3.6%. For 2019, 10,462,364 card payments and 10,924,893 cashless payments were
made on average over all industries. In 2020 this was 9,636,099 and 10,984,241 respectively. So
we see on average a decline of 7.9% in card payments, and a small increase of 0.5% in cashless
payments. As already mentioned, the decline in card payments may be explained by the decline
in “physical payments”. In Figure 20, the direct flow of the 2020 period versus the 2019 period
is depicted. It is clear that most industries have declined, as we can also see in the histograms of
the change in direct flow in Figure 22. The top ten biggest increasing and decreasing industries
regarding direct flow are shown in Figure 21.

Direct Flow values

Figure 20: Direct flow values 2019 vs. 2020, with two zoomed-in plots
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Figure 21: Top ten biggest increases and decreases in Direct flow

Figure 22: Distributions of absolute and relative differences of direct flow for industries in 2019 and
2020

4.5.3 Indirect effect: What are indirect effects of the change in consumer spending?

We have seen the change in direct consumer spendings. Indirectly, industries might also be impacted
by a change in consumer expenditures. For this we consider the industries that do not receive
more than 10% of their total income from consumers, both in 2019 and 2020. This is true for
488 industries out of the 784. We could say that these industries are higher on the supply chains
starting from consumers. For the indirect component, we subtract the direct consumer spending
from the maximum flow value. In Figure 23, we see plot the change for the indirect flow value
for these 488 industries. The average in 2020 is higher than in 2019, namely 22,107,872 versus
21,175,247. We can see some major increases, as Figure 24 and Figure 25 also indicate. This is
not the case for decreasing industries. Overall, we see that more industries decline for indirect flow.
In total, 288 industries decline and 160 increase. Figure 24 depicts the top ten biggest increases
and decreases regarding the indirect component of the maximum flow.

36



Indirect Flow values

Figure 23: Indirect flow values 2019 vs. 2020, the middle and right plot are zoomed-in versions of
the left plot

Figure 24: Top ten biggest increases and decreases in indirect flow for industries in 2019 and 2020.
The “531456” industry refers to some real estate industry

We see similar results when separating the maximum flow measure into its direct and indirect
components: more industries decrease than increase and considering the biggest differences, the
increases tend to be larger than the decreases, which influences the averages of the metrics. Consid-
ering Figure 18, some of the biggest differences are caused by a change in direct flow, as we can also
see these industries back in Figure 21. Examples are “Travel Agencies” and “Supermarkets and
Other Grocery (except Convenience) Stores”. Some of these biggest differences are caused primarily
by the indirect effect, as we can see these industries back in Figure 24. Examples are “Security
Guards and Patrol Services” and “All Other Telecommunications”. The direct flow component
gives a representation of industries that are initially impacted by the external shock. This gives
intuitive results, as for most industries in Figure 21, there is an explanation for the difference in
consumer spending, caused by the intelligent lockdown.
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Figure 25: Distributions of absolute and relative differences of Indirect flow

The indirect component tries to capture network effects. Considering the top ten increasing and
decreasing industries in Figure 24, there are indeed examples for which we can attribute the decrease
in indirect flow to a decrease in consumer expenditures in a downstream industry. The decline for
“General Line Grocery Merchant Wholesalers” might be explained by the fact that food and leisure
organizations do not need to buy supplies anymore. The decline for “ Petroleum and Petroleum
Products Merchant Wholesalers” is a logical consequence of the lower expenditures at gasoline
stations. For other examples, it is hard to determine whether these effects are actually caused
by the decline in consumer spendings for most of them. In general, we could say that these are
industries that are affected most by Covid-19 measures. We already saw the decline for “Security
Guards and Patrol Services”, which is partly caused by the fact that consumers do not visit physical
establishments anymore. Furthermore, we notice declines for construction industries. We can also
notice effects of the “reduce in movements”, regarding the decline for petroleum wholesalers and
“Passenger Car Leasing”. For the top 10 increases, we again notice the increase for “All Other
Telecommunications”, which might be an indirect effect of the fact that consumers need to be able
to communicate remotely. Furthermore, we notice many increases for administrative services. For
most industries it is difficult to claim that the increase is due to a rise in consumer demand. The
indirect component seems to give an indication of industries’ supply chains that are in general
mostly affected by the intelligent lockdown and not necessarily by consumer spending behavior.
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5 Conclusion

In this thesis, we empirically described the effect of the intelligent lockdown on the Dutch inter-
industry transaction network. Using transaction data is an appropriate method to describe changes
in an economy. However, explaining why these changes occur is difficult, as it is hard to attribute
them to one or a few factors. Constructing a sensible aggregated network from raw company
transaction data is not trivial. It requires a careful process of data pre-processing and selection,
as well as aggregation and filtering. However, creating a network from the data allowed us to go
beyond counting transactions and to describe network effects.

The impact of the intelligent lockdown was measured by comparing two networks with each
other, constructed from different snapshots of the data. These networks were first of all compared
by their strength distributions. Doing this, we were able to learn about the structure of both
networks. Even though we can see a decline in the raw transaction data over the 2020 period,
both for the transaction count and transaction value, the structure of both networks remained
quite similar. The shape of the strength distributions can be estimated by either a log-normal or
Weibull function. Considering the strength in terms of the value of transactions, most industries de-
clined. The average strength actually increased, primarily caused by hubs. For the strength in terms
of the transaction count, we could both see a decline for most industries as well as for average values.

Next to strength, we also considered the random-walk centrality of nodes. This metric learned
us which industries are most central in an economy, in terms of how close industries are to you,
based on money flows. The intuition behind random-walk centrality is, that industries with a
high value are more susceptible for shocks. Findings showed that the top 10 industries for this
metric are generally industries that offer services to a wide range of other industries, such as
such as investments, administration and transport services. It was difficult to test whether these
industries were most immediately affected by the intelligent lockdown shock, as we can not speak
of “one shock”: during the intelligent lockdown, various macro-economic factors either positively or
negatively affected industries in the network.

By analyzing consumption, we focused on one of these factors. Here, we could also see a mixture of
positive and negative effects. Especially industries in the food and accommodation, and cultural
sector, were directly impacted by a decline in consumer spendings. Supermarkets and webshops
were positively affected. The type of payment method that consumers use, either cashless or by
card, also influences the effect. To take also the indirect effect of the change in consumer spending
into account, we used the maximum flow metric. Considering the difference in maximum flow over
the 2019 and 2020 network, could indicate network effects. This is because it depicts a change in
how much value can flow through edges over the network, also for industries higher on the supply
chain. In some cases, we can clearly see that a decline in consumer spending to a downstream
industry, can affect upstream industries. However, in most cases, the change in maximum flow
seems to give a general indication of the impact of the lockdown on industries’ supply chains. It
is hard to attribute findings in the network to only one external factor, as in reality, a variety of
factors are at play.
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Future Work

This work can be improved in several ways. First of all, the used methods can be extended. We
can for example use the mean first passage time, used to compute the random-walk centrality,
to determine which industries are closest to private individuals and relate this to the change in
the output or input of industries. Regarding the maximum flow measure, we can consider other
external parties to be the source of the money. An example is foreign organizations. A consequence
of the intelligent lockdown is an impediment on foreign trades. This could also be the cause of a
shock, influencing certain industries directly and indirectly.

Regarding both the random-walk centrality and maximum flow measure, it is difficult to find actual
network effects and especially to attribute them to certain factors. An alternative way to quantify
network effects, is describing the cascade in the network. This can be done using an input-output
model, as described in Section 1.2. Some of these models include macroeconomic factors in order
to make the prediction more realistic. There are also variations on input-output models, that
incorporate the fact that a cascade is caused by either demand or supply shocks, as described in [36].
A drawback to using input-output models, is the assumption that a cascade is a linear function.

Another possibility would be to use other flow-based metrics, apart from the ones used in this work.
An example is using the Hemholtz-Hodge decomposition or the map equation method [15]. The
Heholtz-Hodge decomposition could be especially useful to analyze the hierarchical structure of
the network, learning us more about the position of industries on the supply chain. This could be
related to the impact of shocks. The map equation is a flow-based community detection algorithm.
The community structure might also be related to the impact of the intelligent lockdown: industries
within communities might be more susceptible for cascade effects, as they interact more intensively
with each other.
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[29] F. Blöchl, F. J. Theis, F. Vega-Redondo, and E. O. Fisher, “Vertex centralities in input-output
networks reveal the structure of modern economies,” Physical Review E, vol. 83, no. 4, p. 046127,
2011.

[30] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,” Canadian journal of
Mathematics, vol. 8, pp. 399–404, 1956.

[31] O. of Management and B. U. States, North American industry classification system. Bernan
Press, 1998.

[32] Economic Census, “Naics codes & understanding industry classification systems.” https://

www.census.gov/programs-surveys/economic-census.html. Accessed at December 2020.

[33] A. D. Broido and A. Clauset, “Scale-free networks are rare,” Nature communications, vol. 10,
no. 1, pp. 1–10, 2019.

[34] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic efficiency for network
flow problems,” Journal of the ACM (JACM), vol. 19, no. 2, pp. 248–264, 1972.

[35] ING, “Nowcast: Corona en het effect op de economie.” https://www.ing.nl/zakelijk/

kennis-over-de-economie/onze-economie/de-nederlandse-economie/publicaties/

nowcast-impact-van-coronavirus-op-de-economie.html. Accessed at January 2021.

[36] S. Kelly, “Estimating economic loss from cascading infrastructure failure: a perspective on
modelling interdependency,” Infrastructure Complexity, vol. 2, no. 1, pp. 1–13, 2015.

43

https://www.census.gov/programs-surveys/economic-census.html
https://www.census.gov/programs-surveys/economic-census.html
https://www.ing.nl/zakelijk/kennis-over-de-economie/onze-economie/de-nederlandse-economie/publicaties/nowcast-impact-van-coronavirus-op-de-economie.html
https://www.ing.nl/zakelijk/kennis-over-de-economie/onze-economie/de-nederlandse-economie/publicaties/nowcast-impact-van-coronavirus-op-de-economie.html
https://www.ing.nl/zakelijk/kennis-over-de-economie/onze-economie/de-nederlandse-economie/publicaties/nowcast-impact-van-coronavirus-op-de-economie.html


6 Appendix

Figure 26: Different probability density functions, fitted on the in-strength vin distributions of
2019 and 2020. The bottom plots show the best fitting distributions, including the distribution
parameters.
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Figure 27: Different probability density functions, fitted on the out-strength vout distributions of
2019 and 2020. The bottom plots show the best fitting distributions, including the distribution
parameters.
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Figure 28: Different probability density functions, fitted on the in-strength cin distributions of
2019 and 2020. The bottom plots show the best fitting distributions, including the distribution
parameters.
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Figure 29: Different probability density functions, fitted on the out-strength cout distributions of
2019 and 2020. The bottom plots show the best fitting distributions, including the distribution
parameters.
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Industry In-strength cin 2019 Industry In-strength cin 2020
Wireless Telecommunications Carriers (except Satellite) 121644.00 Wireless Telecommunications Carriers (except Satellite) 126272.33
Offices of Other Holding Companies 52738.33 Insurance Agencies and Brokerages 47256.33
Insurance Agencies and Brokerages 47059.67 Offices of Other Holding Companies 45508.00
General Freight Trucking, Local 37527.33 General Freight Trucking, Local 34599.00
Miscellaneous Financial Investment Activities 33891.67 Electric Power Distribution 32908.00
Water Supply and Irrigation Systems 33264.33 Water Supply and Irrigation Systems 31611.33
Wired Telecommunications Carriers 31852.00 Miscellaneous Financial Investment Activities 31256.00
Electric Power Distribution 31201.67 Wired Telecommunications Carriers 28215.67
Custom Computer Programming Services 30967.67 Pharmacies and Drug Stores 23156.33
Other Grocery and Related Products Merchant Wholesalers 27711.33 Direct Property and Casualty Insurance Carriers 22715.00

Table 8: The ten biggest industries based on in-strength cin

Industry Out-strength cout 2019 Industry Out-strength cout 2020
Direct Health and Medical Insurance Carriers 55422.33 Direct Health and Medical Insurance Carriers 50189.00
Insurance Agencies and Brokerages 41713.67 Insurance Agencies and Brokerages 41339.33
Third Party Administration of Insurance and Pension Funds 35730.00 Miscellaneous Financial Investment Activities 34316.33
Miscellaneous Financial Investment Activities 34968.67 Third Party Administration of Insurance and Pension Funds 30961.67
Full-Service Restaurants 32848.33 General Freight Trucking, Local 24967.00
General Freight Trucking, Local 26553.00 Full-Service Restaurants 24267.67
Custom Computer Programming Services 26189.33 Offices of Other Holding Companies 23073.67
Offices of Other Holding Companies 23766.33 Security Guards and Patrol Services 19007.67
Security Guards and Patrol Services 23494.33 Commercial and Institutional Building Construction 18638.67
Collection Agencies 20776.33 Offices of Real Estate Agents and Brokers 16764.67

Table 9: The ten biggest industries based on out-strength cout

Industry In-strength vin 2019 Industry In-strength vin 2020
Supermarkets and Other Grocery (except Convenience) Stores 971.3 Supermarkets and Other Grocery (except Convenience) Stores 1667.8
Third Party Administration of Insurance and Pension Funds 885.2 Miscellaneous Financial Investment Activities 1033.6
Direct Life Insurance Carriers 835.0 Third Party Administration of Insurance and Pension Funds 979.1
Miscellaneous Financial Investment Activities 819.6 Drugs and Druggists’ Sundries Merchant Wholesalers 861.0
Offices of Other Holding Companies 561.7 Direct Life Insurance Carriers 678.0
Drugs and Druggists’ Sundries Merchant Wholesalers 489.9 Offices of Other Holding Companies 465.1
Employment Placement Agencies 483.4 All Other Telecommunications 409.0
Security Guards and Patrol Services 480.5 General Freight Trucking, Local 398.0
Offices of Notaries 401.0 Offices of Notaries 381.3
Commercial and Institutional Building Construction 374.5 Wired Telecommunications Carriers 377.2

Table 10: The ten biggest industries based on in-strength vin (millions)

Industry Out-strength vout 2019 Industry Out-strength vout 2020
Direct Health and Medical Insurance Carriers 1341.3 Supermarkets and Other Grocery (except Convenience) Stores 1634.9
Supermarkets and Other Grocery (except Convenience) Stores 936.1 Direct Health and Medical Insurance Carriers 1505.1
Direct Life Insurance Carriers 831.8 Miscellaneous Financial Investment Activities 1085.2
Miscellaneous Financial Investment Activities 560.0 Drugs and Druggists’ Sundries Merchant Wholesalers 855.0
Offices of Other Holding Companies 585.8 Direct Life Insurance Carriers 807.4
Insurance Agencies and Brokerages 570.4 Insurance Agencies and Brokerages 619.1
Security Guards and Patrol Services 475.8 Toy and Hobby Goods and Supplies Merchant Wholesalers 397.3
Drugs and Druggists’ Sundries Merchant Wholesalers 470.1 Offices of Other Holding Companies 388.3
Third Party Administration of Insurance and Pension Funds 352.5 All Other Telecommunications 371.7
Commercial Banking 340.5 Third Party Administration of Insurance and Pension Funds 370.0

Table 11: The ten biggest industries based on out-strength vout (millions)
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Figure 30: Zoom3

Figure 31: Zoom4
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Figure 32: The left figure shows the relative change in out-strength vout plotted against the random-
walk centrality. The right plot shows the same, but with a “reduced” random-walk centrality.
Computing this metric, works the same as for the standard random-walk centrality. We only change
the transition probabilities in the matrix M . Specifically, we alter the matrix M in such a way,
that self-loops and node-pairs receive less weight. The matrix M was obtained simply by dividing
edge weights in the matrix by its row sums. To get the reduced probabilities, we multiply M by
1−M−1, and then again divide the transition probabilities by its row sums. In this way, if much
value immediately flows back through self-loops or neighbours, the transition probability will be
lower.

Figure 33: Relation between out-strength ratio vout and average MFPT, where industries are colored
according the sector they belong to.
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