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Abstract

Gene co-expression network is a statistical framework that can identify clusters
of functionally related genes, named modules. Weighted Gene Correlation Net-
work Analysis (WGNCA) is widely applied in biological conditions with high
contrast. In this work, it was explored whether specific gene modules can be
identified between closely related biological tissues with mild differences. In hu-
man, dierent skeletal muscles may have different physiological and biomechani-
cal function. Molecular differences between skeletal muscles are predominantly
unknown. In the group, a pilot study generated RNA-sequencing data from 3
subjects and 6 muscles. In that study dierences between skeletal muscles were
smaller than the inter-individual dierences. The aim of this project was to inves-
tigate a better method to identify muscle-specific modules. To reach a statistical
significance, simulated data was generated from the pilot with dierent degrees
of inter-individual dierences. Using the simulated data, muscle-specific modules
are compared that were identified with the classical WGCNA to a consensus
network. This work shows that the consensus network performs better. The
advantages and disadvantages for each method will be discussed as well.
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1 Introduction

Skeletal muscles are of one origin and hence are considered as groups of tis-
sues with similar molecular properties. Numerous muscles work together to
achieve specific bio-mechanical functions[1]. This suggests that there is speci-
ficity among muscles. Indeed, different patterns of muscles involvement are
recognised between muscular dystrophy(MD) and aging, where some muscles
are initially affected, and others are only later involved or spared[2]. Those
differences between muscles may implicate the existence of muscle-specific gene
groups.
The molecular mechanism underlying this differential muscle involvement is
yet unclear. With the development of high-throughput sequencing technolo-
gies (Next Generation Sequencing, NGS), it is possible to obtain dense data
of gene expression levels, from which gene groups could be identified. Consid-
erable research efforts have been devoted to the analysis of genome-wide gene
expression datasets using NGS technologies. There are quite some studies on
skeletal muscles. Nonetheless, only a few studies have focused on understanding
the differences between muscle types. With this study, I would like to explore
methods to detect gene co-expression networks and to assess this methodology
to detect muscle-specific gene modules.

1.1 RNA Sequencing

RNA sequencing (RNA-Seq) is an approach taking advantage of deep sequencing
technologies. As shown in Figure 1, the first step in RNA-seq is the generation
of cDNA fragments from mRNA molecules. After the sequencing adaptors (blue
strings) are added to all cDNA fragments, and short sequence reads are gener-
ated by the NGS instrument. The resulting reads of nucleotide sequences are
aligned to the genome. The resulting sequence reads are then classified into
exonic reads (reads are wholly contained in exon(the part of genes are encoded
in the final mature RNA) defined by the library), junction reads (reads between
two exons joined together in the final RNA) and poly(A) end-reads (the tail
parts of the RNA sequences). With these three sorts of reads, one can generate
a base-resolution expression profile for each gene.
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Figure 1: RNA-seq workflow[3]

Compared with other methods quantifying the transcriptomics, RNA-seq shows
remarkable performance. It has a lower background noise than tiling microarray
and requires less amount of material than cDNA sequencing[3]. Besides that, it
is capable of distinguishing different transcript isoforms and allelic expression
and identify all possible transcripts.

1.2 Network

A network is a set of nodes and edges connecting the nodes[4]. For one network,
the nodes and edges may have various properties; for instance, the edges can be
either directed or undirected; they can be assigned with weights to illustrate the
emphasis of the connection. One needs to take all the features of the network
into account when analysing the network. The social network, the Internet or
traffic network are good examples of the form of network.
Since Euler figured out seven Bridges of Königsberg problem in 1735, for decades,
the study of networks or graph theory has been pursued in many fields. As com-
puter power improved, far more data can be obtained and analysed than pre-
vious. People now emphasise on the large-scale statistical properties of graphs
instead of the features of a single node. For a network with thousands of nodes,
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the primary aim becomes to reveal and understand the statistical properties as
well as the structure of the entire system.
The idea of the network has been widely applied in various domains. With these
studies, people concluded some common properties observed in different kinds
of networks. These properties are believed to be practical to understand the
network.
The degree of a node is the number of edges between the node and other nodes.
Thus, the portion of nodes in the network of which degree is k is defined as
pk; it is the probability that a randomly chosen node has degree k. The degree
distribution of a network can be constructed by the degrees of all nodes. Al-
ternatively, we can use the probability Pkthat the degree of one node is greater
than or equal to k to represent the degree data.

Pk =

∞
∑

k′=k

pk′ (1)

Ideally, for the simplest network model, the degree distribution of a random
graph is found binomial, or Poisson in the limit of large graph size. However,
in real life, most of the distributions of networks are highly right-skewed. Many
of them follow a power-law distribution in their tails.

Pk ∼
∞
∑

k′=k

k′−α ∼ k−(α−1) (2)

With the increase of the degree k, the form of Pk decays slowly. In this kind
of networks, most nodes only connect to a few nodes; at the same time, a little
number of nodes are highly connected. These key nodes are called hub nodes.
This topology shows remarkable tolerance against error, which attributed to the
robustness. Networks with power-law degree distributions, as known as scale-
free networks, are of great interest, are frequently found in biological systemsas
well.

1.3 Gene co-expression network

The notion of gene co-expression network is a widely used and meaningful ap-
plication of complex network. It is increasingly applied to study the function of
genes from a system level[5]. The nodes represent genes, and the edges mean
that the corresponding genes are (significantly) co-expressed according to the
given samples. It must also be mentioned that many works show that many
co-expression networks only approximately share the scale-free property. We
may need to modify the distribution so that it can fit scale-free topology better.
In the network, there are groups of nodes with high topological overlap, which
may be functionally related. These groups are defined as modules. Thus, one
can explore the gene data by detecting the modules from gene co-expression
network and studying the relationship between these modules and the trait
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of interest. Instead of using the raw count data from the RNA-seq experi-
ments, usually one would transform the count data properly, for instance, using
variance-stabilising transformation or a simple log transformation.

1.4 Weighted gene co-expression network analysis

In general, (Pearson) correlation coefficient is used to calculate the similarity of
the pairs of observations. It is usually also applied in gene expression cluster
analysis. Thus, the co-expression network is usually undirected, and the edges
do not carry weights so that the pairs of nodes are either connected or not.
A common strategy is to pick a number as a ’hard’ threshold so that a gene
co-expression network is constructed based on whether the correlation is larger
than the threshold. However, we cannot ignore the disadvantage of a hard
threshold. Using a number as a threshold may lead to loss of information. For
instance, when taking 0.8 as the threshold, the nodes pair with correlation value
0.79 will be regarded as unconnected, which may miss an essential edge in the
graph[5]. This poses another issue that the result is very sensitive to the choice
of the threshold: when reducing the threshold to 0.75, the nodes pairs with
correlation value 0.79 will be ’connected’, this will introduce a number of edges
compared with the graph with threshold 0.8. In addition, the gene co-expression
is a binary property because of the hard threshold. Whether it has biological
meaning remains a problem.
Thus, ’soft’ thresholding was proposed: it assigns a weight to each edge with a
number in [0,1] instead of using 1 and 0 to represent connected and unconnected.
Weighted gene co-expression network analysis (WGCNA) was then introduced
in 2005 by Steve Horvath[5], and it is now widely applied in various biological
contexts.
Sometimes there are a few genes that far away from all the other genes. Unlike
some network systems in real life that all the nodes should belong to a cluster
to make sure each node can be reached, these ”outlying” nodes tend to be not
functionally related to the closest clusters in biological networks. In this case, it
is not wise to merge these nodes and the clusters. Thus a grey module is defined
for those outlying genes that do not belong to any modules. A grey module is
a group for unassigned genes which do not share functional relation.

1.5 Research question

As we know, gene co-expression network is a very helpful tool to identify clusters
of functionally related genes. It is essential to study and understand the function
of genes. The remarkable performance of Weighted Gene Correlation Network
Analysis (WGNCA) appeals to us, and WGCNA became the preferred method.
However, from the result of pilot RNA-seq data, we noticed that the differences
between related skeletal muscles are smaller than the inter-individual differences
between humans using WGCNA while all the samples are taken into account
regardless of individuals. This shows the differences between individuals have a
leading effect instead of muscle types.
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Therefore, we are interested in answering the following question: how can we
avoid the effect of non-relevant factors in clustering?
If the network is generated by the samples from the same individual, it is sup-
posed to be homogeneous in the individual aspect. A consensus network strategy
is then proposed to apply to avoid the variance among individuals. The idea is
to create co-expression networks per individual followed by the generation of a
consensus network across individuals.
By simulating RNA-seq data with different degrees of inter-individual differ-
ences, we could create the gene co-expression network per individuals or among
all the samples. Therefore we would be able to compare this method with the
original WGCNA method and check if this method enables us to detect more
modules that can tell the difference between muscles.
This thesis is structured as follows: in Section 2, we first introduce several
clustering algorithms for gene expression data set. The used materials and
applied methods in this project are described and illustrated in Section 3. The
experiment results in the Section 4 shows the potential of our proposed method.
At the end We discuss the performance of proposed method and the further steps
in the future work.
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2 Related work

Different from other network analysis, the result of biological networks should
be biologically meaningful as well. The clusters of the networks are not only
based on statistics, but also have some biological meaning. In order to analysis
the gene co-expression network generated by the gene expression data set, a
number of module detecting methods have been proposed.

2.1 K-means

The k-means algorithm is one of the oldest clustering algorithms, but still very
popular. It was proposed in 1979 by Hartigan et al. [6]. This method is not
specifically aimed at gene co-expression networks; it is widely applied in various
fields.
The main idea of the k-means clustering method is to divide M points into K

clusters so that the value of the within-cluster sum of squares (WCSS) reaches
its minimal[6]. To achieve this goal, first K cluster centres are generated. By
assigning the data points to their closest clusters, the centres of cluster keep
moving. When the difference between original centres and new centres is smaller
than a certain threshold, the position of the centres tends to be stable. One can
then take these clusters as the final clustering result.
To use the k-means algorithm, one must set the number of clusters K in advance,
which is time-consuming to figure out what is the best parameter. In addition,
the performance heavily depends on the initial centres (some initial centres may
lead to local optimal instead of global optimal).

2.2 Co-clustering method

In 2002, Daniel et al. [7] proposed a distance function using additional infor-
mation from the available biological networks. In this case, metabolic networks
with a set of chemical reactions are used. With the help of Kyoto Encyclope-
dia of Genes and Genomes (KEGG) database, they first obtain a subnetwork
based on the given gene expression data, in which the nodes are molecules, and
the edges are weighted. They took correlation measure as distance function and
combined biological network nodes and genes. The clustering methodology they
applied is hierarchical average linkage clustering.
The results showed that this method managed to detect the relationship on the
gene expression data and biological network (like metabolic networks). People
can also choose various clustering methods to improve performance. However,
the disadvantage of co-clustering is very obvious. This method is limited to the
available biological network data.

2.3 Independent Component Analysis

There are two main steps in decomposition methods: decompose the expression
matrix (RNA reads file) into multiple matrices and then extract module from
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every component. Independent Component Analysis (ICA) was developed to
find a linear representation of data to capture the features of the data[8]. The
observation is defined as a linear mixture of n independent components (signals)
for the observation is generated by a series of latent variables, which can not
be observed directly. By using an iterative process, n independent signals are
detected with randomly initialised weights. After that, the post-processing step
is carried on to obtain modules. One can choose from a false-discovery rate
(FDR) and z-scores. Whether a gene will be assigned to a module depends on
the cutoff which denotes the compactness of the module.
Overall, this method performs well not only when there is overlap between
modules but also when there is no overlap. However, it requires the number
of modules before the analysis and it is sensitive to the number of samples in
the data set [9]. The decrease of samples affect the performance of ICA a lot.
In addition, Moreover, this method has several parameters, which need to be
tuned on every single data set. This will affect the biological interpretation.
The lack of external information would affect the performance as well.
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3 Materials and method

3.1 Pilot data

The original RNA-seq gene expression data set was generated from seventeen
human skeletal muscle samples. These samples came from six different leg
muscles from three young, healthy, male individuals. Their ages range from 18
to 30. In total, there are 58,051 genes in the data set. The muscles are gracilis
(G), semitendinosus (ST), vastus medialis (VM), gastrocnemius lateralis (GCL),
rectus femoris (RF) and vastus lateralis (VL). For muscle semitendinosus, distal
(relatively away from heart) and middle samples were obtained and sequenced
separately. These two samples are annotated as ST D and ST M.

(a) Gracilis (G) (b) Semitendinosus (ST)
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(c) Vastus medialis (VM) (d) Gastrocnemius lateralis (GCL)

(e) Rectus femoris (RF) (f) Vastus lateralis (VL)

Figure 2: The positions of muscles involved in this project[10]

There is only one sample of vastus lateralis (VL). If we apply the sample VL
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as input, we would not know the source of difference is the muscle effect or the
individual effect. To avoid bias, we removed this sample from the whole data
set and did not take it into account. In addition, genes that are low expressed
among all the samples are filtered, which did not affect the analysis.

3.2 Data simulation

In order to explore the inter-individual differences and to correct for the in-
dividual effect, we would like to have more RNA-seq data from more people.
Due to the limited existing data, we propose to simulate a data set of twenty
individuals based on the original data set.
A linear model is a commonly-used tool for regression. By fitting the model,
one could generate new data with the model. Linear mixed-effect model(LME)
is an extension of simple linear models[11]. Compared with the linear model,
LME allows fixed and random effect factors. Since our interest is the effect
of various muscles instead of the difference between individuals, we apply the
linear mixed-effect model to fit the pilot data and further simulate new data.
In general, the linear mixed-effect model can be represented as the following
formula.

y = Xβ + Zu + ε (3)

where
y is a N × 1 vector of observations;
X is a N × p matrix of p fixed effect factors;
β is a p× 1 column vector of the fixed effect regression coefficients;
Z is a N × q matrix for the q random effect factors ;
u is a q × 1 column vector of the random effect regression coefficients;
and ε is a N × 1 vector of the residuals.
When fitting the linear mixed-effect model to the data points and estimating the
coefficients, instead of estimating u, we usually assume that u follows normal
distribution[11], with mean µ = 0 and standard deviation σ = G the variance-
covariance matrix of the random effects.

u ∼ N (0,G) (4)

Although it is not always the case that the random effects are normally dis-
tributed, stratified analysis and the confidence intervals plot can be used to
improve the assumption if a good deal of data is available. In our study, there
are only 16 data points, around 5 per group; we need to assume a normal dis-
tribution to have sufficient power.

3.3 Network generation

Before starting to generate the gene-coexpression network, the gene expression
data frame is first transformed. Then the output is used to calculate the absolute
value of the correlation between each pair of genes, construct the similarity
matrix. The n × n similarity matrix S = [sij ] will then be transformed into
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an n × n adjacency matrix A = [aij ], of which the component aij shows the
strength of connection between gene i and j. Instead of implementing ’hard’
threshold, two ’soft’ adjacency functions were applied in WGCNA to avoid losing
information. According to Horvath [5], the results of these two functions are
very similar when using the scale-free topology criterion. The default function
is the power function in WGCNA.
After that, the adjacency matrix is used to calculate the distance (dissimi-
larity) between nodes. Here, the topological overlap dissimilarity measure is
implemented to reduce the noise[12]. It was proved to come to modules with
biological meaning[5]. The topological overlap between two nodes can measure
the similarity between each other in the topological level.
With this, one could carry on clustering and find the modules. The default
method applied in WGCNA is hierarchical clustering[13]. It is a ”bottom-up”
approach. The results of hierarchical clustering are usually illustrated in the
form of the dendrogram. The discrete branches of the clustering dendrogram
correspond to modules. With dynamic branch cut function, similar modules
can be merged.

3.3.1 Correlation measure

Correlation measures are used to illustrate how similar each pair of genes is
among all the samples. In general, the Pearson correlation is a commonly used
similarity measure.

corX,Y =

∑n

i=1(Xi − X̄)(Yi − Ȳ )
√

∑n

i=1(Xi − X̄)2
∑n

i=1(Yi − Ȳ )2
(5)

where X and Y are the variables; X̄ and Ȳ are the mean of X and Y respectively.
Nevertheless, it is very sensitive to outliers. Besides the Pearson correlation, the
biweight midcorrelation (bicor) is proposed by Wilcox[14]. Compared with the
Pearson correlation, biweight midcorrelation is proved to be more robust[15].
To calculate the biweight midcorrelation of vector x,y, the quantities ua, va is
first defined

ua =
xa −med(x)

9 ·mad(x)
(6)

va =
ya −med(y)

9 ·mad(y)
(7)

where med(x) and mad(x) are the median of x and the median absolute devi-

ation of x respectively. The weights w
(X)
a can be obtained by

w(X)
a = (1 − u2

a)2I(1 − |ua|) (8)

If 1 − |ua| > 0, I(1 − |ua|) equals to 1, otherwise it equals to 0. The value of
weights indicated the difference between xa and med(x) and between xa and
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9 · mad(x). The biweight midcorrelation of x and y can be calculated by the
following formula:

bicor(x,y) =

∑m

a=1(xa −med(x))w
(a)
a (ya −med(y))w

(y)
a

√

∑m

b=1

[

(xb −med(x))w
(x)
b

]2
√

∑m

c=1

[

(yc −med(y))w
(y)
c

]2

(9)
After calculating the correlation between each pair of vector, the n×n similarity
matrix S = [sij ] will be transformed into an n×n adjacency matrix A = [aij ] by
using adjacency function. Instead of picking a number as a ’hard’ threshold, two
’soft’ adjacency functions were applied in WGCNA: the sigmoid function[13]

aij = sigmoid(sij , α, τ0) ≡
1

1 + e−α(sij−τ0)
(10)

and the power adjacency function

aij = power(sij , β) = |sij |
β

(11)

where the parameters α, τ0 and β can be adjusted.
According to Horvath [5], the results of these two functions are very similar when
using the scale-free topology criterion. We choose the power function in this
study so that we have fewer parameters to tune. The idea of selecting a suitable
power is to make the correlation more similar to the scale-free topology. So we
would calculate for a series of powers and see with which power the network
resembles a scale-free graph better. Here scale-free topology fit index is applied
to evaluate if power is reasonable. If the value is larger than 0.8, then the power
can be used.

3.3.2 Distance measure

It is believed that genes with high topological overlaps tend to share the same
neighbourhood, which means they tend to be in the same modules in the
network[12]. To obtain the topological overlap value of a pair of genes, one
needs to compare all the genes directly connected to these two and check how
much is shared. The topological overlap of two genes can be defined as

ωij =
lij + aij

min {ki, kj} + 1 − aij
if i 6= j (12)

where lij =
∑

u aiuauj and ki =
∑

u 6=i aiu is the node connectivity, equals the
number of nodes directly connected to node i. The dissimilarity matrix can be
obtained by dij = 1 − ωij .

3.3.3 Consensus network

As discussed previously, we plan to generate a gene co-expression network per in-
dividual and then construct a consensus network among all the networks. There
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are several methods proposed to obtain consensus network. There are different
methods to create the consensus network[16][17][18][19]. These methods take
different measures as the input, as shown in Figure 3. Here, we introduce these
methods in the order of appearance in the modified workflow.

Figure 3: Various methods modifying the WGCNA pipeline

Method One Stefano et al. [16] implemented this pipeline to construct the
consensus network. Their raw data from microarrays and RNA-Seq is anal-
ysed by various methods, respectively. Different from the topological overlap
measure used in WGCNA, they calculated weighted topological overlap, which
shows both significantly positive and negative correlations[16]. The weighted
connectivity of a node i is

Ki =
∑

j

aij (13)

and the weighted topological overlap (wTO) is calculated as

ωij =
cij + aij

min(Ki,Kj) + 1 − |aij |
(14)

where C = A ∗ AT . To begin with, the Wilcoxon rank-sum test is applied
to check if there is a statistical difference between datasets and to ensure one
is able to construct the consensus network with all the datasets. In addition,
another Wilcoxon rank-sum test with alternative hypothesis H1 that the mean
|wTO| for a given GRF-GRF (gene regulatory factor) pair is larger than 0.3 is
performed to avoid the potential false positive. Then the median of wTO values
among all datasets for each pair of genes is obtained as the consensus wTO.

Method Two The method was proposed by Peter Langfelder and Steve
Horvath[17] in 2007. The idea is very intuitive: only if the nodes(genes) have
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connections among all the input networks, they should be connected in a con-
sensus network. With this notion, we can have

Consensusq,ij((A
(1)), (A(2)), ..., (A(n))) = Quantileq,ij((A

(1)), (A(2)), ..., (A(n)))
(15)

where i and j are two genes, A is the adjacency matrix for every data set.
It is more robust than using the minimal of the input adjacency matrices. For
this method compares networks directly, it would not work properly when the
data sets vary in sample sizes, array platforms or gene expression normalisation
methods[17], which will lead to the bias on the result of quantile transformation.

Method Three Similar to the previous method(Eq.15), Peter Langfelder
and Steve Horvath defined consensus modules as modules in the consensus
network[17]. A consensus gene dissimilarity matrix is obtained by

Dissim(Consensus(TOM(A(1)), TOM(A(2)), ..., TOM(A(n)))) (16)

where TOM is calculated in Eq 12. The result can be used as the input of
subsequent hierarchical clustering.
This method shares the same disadvantage in common with Method three for
its direct comparison of network.

Method Four The intention of this method is to construct one consensus
network from subsampled datasets to obtain higher reliability than the standard
WGCNA method[19].
This method was first proposed by Monti et al. [18] in 2003. The consensus
matrix is introduced to indicate how frequent each pair of genes is clustered
together.

Ai,j =
number of times gene i is clustered with gene j

number of times gene i is subsampled with gene j
(17)

This provides a similarity measure which can be used to obtain a distance matrix
as the input of clustering.

Method Five A robust approach was proposed to avoid the limitation of data
sets in various aspect[17]. Instead of using TOM (topological overlap matrix),
’compressed’ adjacency matrix was applied.
First of all, the pipeline of module detection is applied to every single data
set. The corresponding module eigengenes (the first principal component of the
expression matrix, TOM matrix in this case of the module) are obtained. Thus,
in data set s, the module that gene i belongs to is the module with the highest

module eigengene according to gene i denoted as Module
(s)
(i) .

Module
(s)
(i) = argmaxJ(|cor(xi, EJ)|) (18)
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where cor(xi, EJ) is the correlation between the expression of gene i and the
eigengene EJ .
The compressed adjacency is then defined as

a
(s)
compressed,ij =

1

2

[

1 + cor(E
(s)

Module
(s)

(i)

, E
(s)

Module
(s)

(j)

)

]

(19)

Thus one can calculate the gene dissimilarity for clustering.

dij = Dissim(Consensus(a
(1)
compressed, a

(2)
compressed, ...)) (20)

Among these five methods, the first method introduced the weighted topological
overlap; then it took the median as the consensus value. Except for the fourth
approach, the idea behind the other approaches is very similar. In general, it
takes the median of the input as the consensus value, which is robust against the
outlier to some extent. But they start the consensus measure from various steps.
For the first three methods, they generate one final dissimilarity matrix for
clustering while the fifth performs the module detection on data set separately
and then generate the consensus network. This is particularly helpful for the
analysis of datasets with different properties. However, this will introduce more
parameters which may lead to over-fitting. The fourth approach should be
adjusted when implemented. For it initially aimed at consensus network for
multiple subsampled data sets. It is notable that the function can only tell how
frequent two genes are clustered together, not how close they are in the module.
In our case, we are going to use simulated data sets based on the linear mixed
model, which will be consistent. There will be no difference in sample sizes,
array platforms or normalisation method. Thus, the concern about different
properties of data sets does not exist. To avoid over-fitting, we would try the
approach that modify the WGCNA pipeline before clustering. Thus we can
either calculate consensus adjacency matrix or consensus TOM matrix. Since
taking the minimal value is too strict, we plan to use first quartile and the
second quartile as known as median as a lower bound threshold.

3.3.4 Module detection

In general, modules are assumed to be groups of genes which are highly related
among all the samples. The definition applied to detect modules is modules are
groups of nodes with high topological overlap[5]. With the dissimilarity(TOM)
matrix, one could carry on clustering and find the modules. The default method
applied in WGCNA is hierarchical clustering[13].
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Algorithm 1 Hierarchical clustering

Require: Distance Matrix DissTOM

Each gene starts in its own cluster
while there is more than one cluster do

Calculate the distance between each pair of genes
Cluster the pair with the lowest distance
Add cluster to cumulative cluster list

end while

return cumulative cluster list

The branches of the clustering dendrogram correspond to modules. After the
clustering, according to the expected minimum distance between modules, a
further dynamic branch cut function can be applied. The similar modules will
then be merged.

3.4 Differential expression analysis

To analysis the RNA-seq expression, one common way is to carry on the dif-
ferential expression analysis based on the factor information of gene samples.
The aim is to abstract the most significant differentially expressed genes. It is
noteworthy that the variance between genes is both from biological (biological
difference) and technical (mistake during the experiments etc.) nature. Mc-
Carthy et al. found that the expression data shows a strong mean-variance
relationship, which does not work with normal-based analysis[20]. Thus, nega-
tive binomial (NB) distribution was proposed to model the expression data[21].

Ygi ∼ NB(Mipgj , φg) (21)

where Mi is the total number of reads of sample i, pgj is the relative abundance
of gene g in group j that sample i belongs to. Mipgj is then the mean. φg is
the dispersion[21] and variance is µgi(1 + µgiφg).
The relative abundance is vital to differential expression analysis. Generally, φg

means the coefficient of biological variation. This enables to divide the biological
variation from the technical one. By using conditional maximum likelihood, the
gene-wise dispersion could be estimated[22]. Then these dispersion values are
shrunk to a consensus value by empirical Bayes procedure[23]. At last, an exact
test similar to Fisher’s exact test, which works for overdispersed data is applied
to assess the differential expression[24]. The statistical results are essential to
detect the most significant differentially expressed genes.

3.5 False discovery rate

In general, the p-value is applied to determine the significance of the results.
When the p-value is small enough (usually 0.05), we can reject the null hy-
pothesis H0. However, multiple comparisons would lead to a highly increased
false positive (type I error, which is to reject a true null hypothesis). To avoid
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this side effect, a false discovery rate (FDR) was proposed to use in 1995 by
Benjamini and Hochberg [25]. Compared with other multiple testing correction
methods, FDR tries to restrict the ratio between positive and false positive.

FDR = p
m

k
(22)

where p is original p-value, m is the number of hypotheses and k is the rank of
this p-value among all the tests. It has been proved to be a desirable control in
many applications and now is widely used in many fields.
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4 Results

4.1 Original pipeline

With the pilot data set, we first apply the original WGCNA pipeline. Before
the analysis, the MDS (Multidimensional Scaling Plot) and PCA (Principal
Component Analysis) plots are obtained respectively to have a general idea
about the data set. Although a few samples that come from the same muscle
are very close to each other, all these plots show that the samples tend to cluster
based on the individual instead of muscle, the individual factor is the leading
factor of the clusters.

(a) MDS plot with top 500 genes (b) MDS plot with top 5000 genes

(c) MDS plot with top 10000 genes (d) MDS plot with top 20000 genes

Figure 4: MDS plots based on pilot RNA-Seq data set with different numbers
of top genes used to calculate pairwise distances.
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Here we took the various amount of the genes into account when calculating the
pairwise distances. Although the distances between a few pairs of muscles are
close (GCL from MD04 and MD05), the samples roughly gather based on the
individual factor. This agrees with what we observed in the PCA plot (Figure
5). It is notable that although two samples (MD06 GCL and MD04 RF) seems
far away from other samples, the distance between them to the rest is not that
big in PC1 (first principal component which has the largest possible variance).

Figure 5: PCA plot for pilot data set

From the sample dendrogram and trait heat map (Figure 06), we can see that the
branches are samples from the same individual, which means that the samples
cluster largely by individual and not by muscle, as a consequence of the bigger
inter-individual variation compared to the inter-muscle variation.
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Figure 6: Dendrogram of samples and trait heat map for pilot data set

In order to make the pilot data set fit the scale-free topology better, we tried a
list of powers and took 0.8 as the threshold. In this case, 8 is the lowest power
for which the scale-free topology fit index curve reaches a high value (over 0.8).
In this case, 8 is picked to raise the correlation matrix and continue with further
steps.

Figure 7: Analysis of network topology for various soft-thresholding powers.
The y-axis shows the scale-free fit index and the x-axis refers to the power.
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After generating the full gene co-expression network, the modules are detected
using a hierarchical clustering algorithm. Among 74 modules clustered based
on the pilot data, there are 26 modules found that the module eigengenes have
a relationship with at least one trait, by taking False Discovery Rate (FDR)
0.05 as a cut-off. By observing the heat map of the module trait relationship,
it is clear that there are many more modules related to the individual effect.
This also concurs with what we found in the MDS plot that samples tend to be
clustered by individuals. Only 4 modules are related to muscle effect while half
of them are relevant to individual effect at the same time.

4.2 Data preparation

As discussed previously, we are limited by the number of samples we have. It
would be powerless if we generate a consensus network based on three individ-
uals. In order to study and compare the performance of the consensus method
and the original WGCNA method, we would like to simulate more samples from
various individuals. In this project, we simulated samples from 20 individuals.
During the simulation, we found that the linear mixed effect model emphasised
the muscle effect, which does not agree with the real situation. To generate data
sets that are more similar to the real data, we added two multiplier weights to
both muscle effect factor and individual effect factor. By decreasing the muscle
effect and increasing the individual effect, we obtain simulated data sets in which
the individual effect is the major factor.
As we can see in Figure 8, the data set without weights (Figure 8(a))and the
one with weight of muscle factor: 0.2 and weight of individual factor:7 (8(c))are
two extreme data sets. In Figure 8(a), all the samples from the same muscles
clearly gather together. Meanwhile in Figure 8(c), although there are overlaps
between samples, the leading factor of clusters is individual. In these two plots,
we can see that muscle effect factor and individual effect factor take the lead
in the clusters respectively, while the one with weight of muscle factor: 0.2
and weight of individual factor:3 (Figure 8(b)) is a data set in between, that
is more similar to the real situation. We keep these two extreme data sets for
comparison to evaluate how the methods perform in these different scenarios.
For the sake of discussion, we annotated these three data sets with the weights
of muscle and individual factor. For instance, the notation of the data set with
weight of muscle factor: 0.2 and weight of individual factor:7 is Mus 0.2 Ind 3.
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(a) Simulated data set without weights

(b) Simulated data set weight of muscle: 0.2 and weight of indi-
vidual: 3
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(c) Simulated data set weight of muscle: 0.2 and weight of indi-
vidual: 7

Figure 8: PCA plots for simulated data sets with 3 various weights, for simulated
data sets, where various colors represent different individuals.

4.3 Parameter Selection

For the simulated data sets, we would first like to calculate the correlation and
TOM matrix separately using data from every single individual, for the follow-
ing consensus calculation. There are two steps to intercept and two quantiles
strategies. Thus, we have a total of 4 combinations. We applied these 4 ways
and original WGCNA pipeline to the simulated data set with the weight of
muscle factor: 0.2, the weight of individual factor:3.
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(a) The number of modules detected by various methods.The number in the
brackets is the number of genes in grey module which are in fact unassigned.

(b) Statistics summary of the size of modules detected by various methods

Figure 9: The comparison between 4 consensus methods and original method
in two different point of view. ”Adjacency” and ”TOM” refer to consensus
adjacency matrix method and consensus TOM matrix method respectively.The
number after the consensus strategy (0.25 and 0.5) is the percentage of the
numbers, which are first quartile and median.

Based on the results of these consensus methods, we can observe that consensus
adjacency method using first quantile is most similar to the original. Their
number of genes in grey module is comparable and the features of the sizes
of modules are also very much alike. Thus we picked the consensus adjacency
method using first quantile for the further study.
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4.4 Methods comparison

From the following two plots, we can see there are vast differences between
the results using two methods when there is a stronger individual effect. For
the simulated data sets with the stronger individual effects(Mus 0.2 Ind 3 and
Mus0.2 Ind 7), the number of modules detected by the consensus method is
lower than in the original pipeline. However, most of the top differential ex-
pressed genes are found in the modules using consensus method, while over 180
differential expressed genes are in the grey module according to the original
WGCNA pipeline and are, therefore ”unassigned” and not forming a module
with potential biological interpretation. In the simulated datasets with the most
significant muscle effect (Mus 1 Ind 1), the consensus method and the WGCNA
on the full matrix perform comparably. In both cases, all differential expressed
genes are found in modules, and the total numbers of modules and ”unassigned”
genes are comparable.

(a) The number of modules detected by original method and consensus method
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(b) The number of modules relating to top 200 DEG detected by original method and consensus
method

Figure 10: The comparison between consensus method and original method.
”Mus” and ”Ind” leads the weight of muscle effect factor and individual effect
factor respectively. The numbers in the brackets are the genes assigned to grey
module.

Based on these modules, we carried on module trait correlation analysis. The
table below is used to define and classify the modules based on their correlation
with two traits.

Table 1: Definition of the classes of modules

FDR of Individual
<0.05 >0.05

FDR of Muscle
<0.05 Both traits Only muscle
>0.05 Only individual None
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(a) The number of modules correlated to various traits detected by original method and con-
sensus method

(b) The number of genes correlated to various traits detected by original method and consensus
method
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(c) The number of modules contains top 200 DEG correlated to various traits detected by
original method and consensus method

Figure 11: The stacked bar charts for the modules/genes correlated to different
traits using two methods

These three plots show that the consensus method detects more modules that are
only correlated to muscle effect. It manages to avoid the influence of individual
and detect more modules related to muscle effect, especially when there is a
strong effect from the individual.
In a further step, we compared the genes in modules related to the same fac-
tors using two different methods. As we can see in Figure 12(c), almost 80%
(21081/26248 and 21081/26691) of the genes are found in modules related to
both muscle and individual factors using two methods for the simulated data
set without weights, while around 1/3 of genes are shared in the modules only
related to muscle factor (Figure 12(d)).
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(a) Genes in modules related to both mus-
cle and individual factors in simulated data
set(muscle: 1 individual:1)

(b) Genes in modules only related to muscle
factor simulated data set(muscle: 1 individ-
ual:1)

(c) Genes in modules related to both mus-
cle and individual factors in simulated data
set(muscle: 0.2 individual:3)

(d) Genes in modules related to both mus-
cle and individual factors in simulated data
set(muscle: 0.2 individual:7)

Figure 12: The Venn diagram of genes in different modules that two methods
detect using various simulated data sets, where the pink circle is the genes found
by consensus method and the purple one is using original WGCNA pipeline.
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5 Discussion

According to the previous study in the group, we already knew that the dier-
ences between skeletal muscles are smaller than the inter-individual dierences.
Since we are interested in finding the differences between the muscles instead of
individuals. It is important to avoid the effect of individual. Thus, we proposed
to apply a consensus method to help detect muscle-specific modules.
By calculating the adjacency matrix within individual, there should be few vari-
ance caused by individual for all the samples used in the calculation come from
the same individual. If a pair of genes are highly co-expressed, the adjacency
value of this pair of gene will be high. This pattern should be extendable to bio-
logically similar individuals, for instance, people with similar gender, ethnicity,
age, etc. It is safe to take a relative low adjacency value among all the scores of
the pair of the genes to represent the correlation between this pair. With the
adjacency matrices, we take the first quartile among all the adjacency values of
each pair of genes to generate the consensus adjacency matrix for the further
steps.
From the results of experiments using various simulated data sets, we can see
that there are much more modules detected in the simulated data set with-
out weight than in the ones with higher individual effect either using original
WGCNA method or the consensus method. Besides, over 90% genes are clus-
tered in the module in the non-weight simulated data set while more than a half
of the genes are marked as unassigned when the effect of individual increased.
The number of top differentially expressed genes are clustered in non-grey mod-
ules agrees with this as well: there are quite a few DEG found in grey modules
when there is a stronger individual effect.
Overall, the performance of the consensus method is better than the original
pipeline when the influence of the individual is stronger. When the muscle effect
is the primary factor, the consensus method does not outperform the clustering
on the full expression matrix.
As we saw in the pilot data set that the individual effect was stronger than the
muscle effect, we should be more confident in the results from the consensus
method. However, due to the limitation of the size of data, we can not use
the real data alone. Thus, we simulated some data sets for this project. There
may be no strong biological meaning behind the data set. The method we
proposed here is still a statistical validation without a possibility for biological
interpretation which requires real data.
To validate the performance of the consensus method, one needs more real data
from more individuals from the wet lab to carry on the experiment. Based on
the result, a further gene enrichment analysis (like the Database for Annotation,
Visualisation and Integrated Discovery (DAVID)) could be performed using the
detected modules so that one can check if the result does have some biological
meaning, and the consensus method is helpful.
We hope that this work can inspire people to develop a new algorithm that man-
ages to conduct the gene coexpression network analysis and avoid the influence
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of those unwanted traits, which would help people have a further understanding
of the functions of genes.
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