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Abstract

After the breakthroughs of quantum computers and quantum algorithms,

quantum neural network and quantum-assisted optimization are expected to

be general-purpose methods and applications. Recently, significant break-

throughs in the field of quantum computing are specialized quantum com-

puters such as D-Wave, and quantum optimization algorithms such as quan-

tum approximate optimization algorithm(QAOA). In this master thesis,

three hypotheses are proposed, and the corresponding experiments are fin-

ished, which show the results for the hypotheses. First, a regression model is

organized for microstructure battery dataset, and it is driven by the classical

neural network. Then I turn to quantum approaches. Hypothesis supposes

there should be quantum computing approaches which can accelerate the

training process and get a high accuracy value, either using a quantum

neural network or quantum assisted algorithms. The results show that for

machine learning tasks, specific quantum computing approaches outperform

some conventional approaches, such as the classical neural network. How-

ever, due to the current quantum hardware limitations, large-scale quantum

neural networks and large-scale quantum circuits are not available in con-

temporary technology.

Keywords Quantum Computing, Quantum Assisted Optimization, Quan-

tum Approximate Optimization Algorithm(QAOA), Quantum Neural Net-

work.
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1

Introduction

Recently, researchers and industry have identified that classical computing chips may

hit an inflection point[10, 72], where computational power is limited by the laws of ther-

modynamics and quantum effects on transistors on microprocessors which are hitting

limits in regards to miniaturization and enumeration on computing chips[16, 69].

In the meantime, since the 1980s, physicists, computer scientists, and other research

communities have identified quantum computing[12, 34], which uses the quantum effects

of entanglement and superposition as a way to perform computation, as a possible way

to mitigate these limits on computational power[34, 36]. These have resulted in a boom

in new fields of research into quantum algorithms and hardware which leverage these

approaches and effects[20, 27, 66, 84, 86]. The current state of the art has seen emerging

applications and algorithms on Noisy Intermediate-Scale Quantum devices (NISQ) for

combinatorial optimization problems[23, 35, 85], and machine learning[14, 32, 74, 75,

99, 103], as well as benchmarking and testing current hardware and algorithms[14, 28].

At the same time, over the past 10-15 years, the field of Artificial Intelligence and

Machine Learning has undergone a renaissance with the advent of increased access to

data and computational resources, namely graphics processing units (GPUs) for parallel

computation[90]. These advances have resulted in state of the art performance in

computer vision, planning, reinforcement learning, and natural language understanding

amongst other domains[50].
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1. INTRODUCTION

1.1 History of Quantum Computing

The history of quantum computing began in the early 20th century, when physicists

began to realize that they had lost control of reality. In the 20th century, there were

two major crises in physics. One of them was the ’Ultraviolet Disaster’[100]. Physicists

discussed a quarter of a century and created the modern physics theory of quantum

mechanics[15, 29, 33]. What is quantum mechanics? Quantum mechanics is a discipline

in physics that studies the laws governing the motion of microscopic materials. Whether

quantum computing can be realized depends on the degree of control over microscopic

particles. Therefore, more in-depth research on quantum computing is needed. The

concept of quantum computing and quantum computers was first proposed by the

famous physicist Feynman in 1981[34]. By representing information in superposition

[18], where bits could take on a value of 0 and 1, 0 or 1, a quantum computer could

simulate systems that would not be possible for a classical machine. The fundamental

theories and blueprints of quantum computers formed in the 1980s and 1990s still guide

Google and others who are engaged in this technology.

The principle of quantum computing should actually be divided into two parts. Part

of it is the physical principle and physical realization of quantum computers, the other

part is quantum algorithms. In the early 1990s, a suite of algorithms was proposed for

these quantum machines, which theoretically showed speedups for procedures such as

searching databases and factoring integers[28, 34].

Quantum mechanics studies the field of physic and the behavior of most essential

and smallest parts of our universe at the subatomic level[39]. Quantum Computers is a

straightforward physical system, which locates in a discrete domain, not in the contin-

uous domain[19]. Quantum computers are made up of a finite number of units, each of

which is a two-state-system, which also can be considered as the most straightforward

Quantum Mechanic System. Getting a feeling for how formalism can be applied to

actual phenomena is the main difficulty in Quantum Mechanics. Solving oversimpli-

fied abstract models of real physical systems, to which the quantum formalism can be

applied[61].

In 1936, there were only a few people thought of a programmable computer, after

Turing came up with the idea with an application to the Entscheiidungs problem[91],

machines executing billions of operations per second, which is so crazy. Even after

2



1.2 State of Research

transistor, no one thought digital computers would be as ubiquitous and useful as they

are today. According to Moore’s law, the feature size on silicon chips is cut in half

every two years[71], the force behind this prophecy is that, if we blindly extrapolate

it, around 2, 050 feature size of computers would need to be the size of an atom[8].

Even today, molecular-size transistors exist, which is not very reliable and far from

being used. This is an indication towards, computers with components of atomic size.

However, energies considerably higher than in atomic systems required. If the computer

becomes diminutive size, we need to learn to engineer such systems, such as molecular

transistors[102], and these systems function precisely under the laws of Quantum

Theory[19]. And we can use quantum computers to achieve better efficiency at specific

tasks, as is shown in figure 1.1, with the input size increases, the quantum system

performs a linear increase while the classical system performs an exponential increase,

and there are two kinds of constraints for the linear growth, one of them is the size of

the input set, another is the limitation of classical system hardware or quantum system

hardware.

Figure 1.1: Comparison between Classical System and Quantum System. -

Running time

1.2 State of Research

This thesis will focus on two kinds of research: a construction of quantum neural

network and a trial of solving the quantum assisted optimization problem, comparing

the performance of the classical neural network and the quantum neural network with

3



1. INTRODUCTION

the same dataset, and presenting the results of the quantum assisted optimization

problem.

1.3 Thesis Structure

The thesis structure is organized as follows: Section 2 will introduce some related work

on quantum computing, quantum algorithms, and the evolution of quantum hardware.

This Section will introduce what was done in other papers, the relationship between the

previous work and current topics. Section 3 will give some definitions, explanations,

and examples of the quantum mechanics which are used in this thesis. Section 4

will present a microstructure battery dataset and Section 5 will discuss the problem

statements and some hypotheses about this research. Section 6 includes four kinds

of different experiments which can provide experiment results. Conclusion and future

work will be discussed in Section 7.
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2

Related Work

In this chapter, some related work about quantum computing will be presented, such

as quantum mechanics, adiabatic quantum computing, the universal gate quantum

computing and the evolution of quantum hardware.

2.1 Quantum Mechanics

In contrast to the classical computer, in which the smallest unit, the bit, can only take

the values 0 or 1, the quantum computer uses co-called qubits(quantum bits). Qubits

can simultaneously assume these values 0 and 1. This is called superposition[63]. In

the case of several Qubits, there is the possibility of interlocked states. A classical

computer with N bits has a state space with 2N elements, a quantum computer with N

qubits, but a state space with 2N dimensions, which corresponds to any combination

of all possible states of the classical computer[95]. The dynamics of isolated quantum

systems are linear, and roughly a quantum computer can simultaneously compute all

the function values of a function(this is the ’parallelism’). At the end of a calculation,

however, measurement has to be carried out which delivers only one result from all

possible results. The challenge of algorithms for quantum computers is to carry out

transformations such that the quantum computer provides the answer to a question[51].

There are different technologies to build quantum computers. The qubit can be pre-

pared by the two-dimensional subspace of the state space as of superconducting islands

with a Josephson Function[59, 97](SQUID - superconducting quantum interference de-

vice), or of atoms/irons are shown(in a case), or of quantum wells or the polarization

5



2. RELATED WORK

fo a photon. On the one hand, qubits must be actively shielded from the environment.

Otherwise, decoherence destroys the quantum state directly. On the other hand, they

must be checked with other qubits and interact in the preparation and the measure-

ment with the surroundings during the bill[83]. Without quantum error correction,

no realistic calculation is carried out. In the quantum error correction, raw physical

qubits are grouped into error-corrected logical qubits[44, 89]. With the latter then, the

calculations are performed.

For the construction of a quantum computer, there are various paradigms. Both

are the subject of research and development:

• Quantum Gate Model. Accounting on quantum circuits.

• Adiabatic theorem. Statement about the change of energy potential i.e. by

quantum annealing.

Significantly, the Adiabatic Quantum Computing is basically equivalent to polynomial

quantum gate model. In certain applications, a quantum computer ahs an exponential

advantage compared to classical computers. Known quantum algorithms include Shor

for the prime factorization or Grover for the database search. The necessary hardware

on which to run these algorithms but not yet exist or is only at the research stage.

The development of quantum algorithms is operated in the coming years with more

emphasis to identify new applications with the goal.

Possible applications include[14, 32, 74, 75, 99, 103]:

• Pattern recognition, machine learning, optimization problems.

• Development of materials and catalysts by quantum simulation or calculation of

the properties of materials by means of a quantum computer.

• Support for research and development of artificial intelligence

A first objective could be the proof of ’quantum supremacy,’ i.e., a quantum com-

puter solving specific problems faster than the fastest available classical computers[17].

In a universal quantum computer about 50 logical qubits are necessary for achiev-

ing this target without auxiliary bits. This goal could be achieved already in 5–10

years. Looking ahead, the current technology is advanced already massive, and it is

6



2.1 Quantum Mechanics

expected that further increases in speed over a hybrid quantum-classical approach to

gain importance[77].

Regarding industrial optimization problems, adiabatic quantum computing or quan-

tum annealing systems are already up-and-coming today[67, 74, 75]. When adiabatic

quantum calculation by the adiabatic evolution of a qubit-system, is implemented. The

system is simply initialized in the ground state1 of a Hamiltonian. Thereafter, the sys-

tem is adiabatically developed towards the ’problem’ -Hamiltonian whose place slowly

enough maps the solution of the optimization problems. After the adiabatic theorem,

the system(described by one over time changing Hamiltonian) remains in the ground

state, as long as the development takes place slowly enough. Optimization problems,

and thus most of the problems in machine learning (including pattern recognition, nat-

ural language understanding, forecasting model, clustering, computer version) can thus

be expressed as energy value problems[41, 70]. This means that the quantity to be min-

imized (about the difference from the current to the required output of algorithm) is

represented as an energy surface. The minimum energy state (which is also the optimal

solution), the system can always find adequate representation problem is, therefore, the

output of the calculation. Currently, classical optimization allows us now in a position

to find a solution. However, the quantum annealer hardware and algorithm are in, and

through the use of tunneling play local minima not matter - the optimum is always

found[82]. This is not the case with classical algorithms. In addition, the time required

of a classical algorithm of the FLOP/s2 the used hardware and the possible paralleliza-

tion of the algorithms depends. A quantum annealer allows you to find the solution

instantaneously[73].

In quantum annealers, therefore, problems that can be very interesting for diverse

industries can be represented[14, 32, 74, 75, 99, 103]: optimization problems, learning,

and stochastic simulations. Even the prime-problem can be solved with the quantum

annealer but using a different algorithm than the Shor’s[80].

Literally, the quantum computer is expected to be more powerful than the classical

ones in some cases. The strengths of quantum computers are the generation of random

numbers[49], the search for the minimum of unordered series[7], and the problem of

1The lowest energy state.
2In computing, floating-point operations per second (FLOPS, flops or flop/s) is a measure of com-

puter performance, from Wikipedia.
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2. RELATED WORK

node connection in graph theory[58], etc.. Scientists have designed a variety of quantum

algorithms to solve problems which are difficult for classical computers. These quantum

algorithms are practically applied in the transportation[73], medical[1], and financial

markets[42] in the past decades. Also, quantum computers can be used to help design

the catalyst for clean energy, understand enzymes in living organisms, and discover new

solar cell materials or high-temperature superconductor materials. Its strength lies in

the powerful computing power of existing traditional computers.

As we all know, classical computers are currently using binary-based system[13].

Through the binary counting method, the two terms of a bit 0 and bit 1 are represented

in a classical computer. However, quantum computers are entirely different. Basic unit

of a quantum computer is called qubit, and the information stored in the qubit can be

both 0 and 1. Therefore, a qubit can represent two numbers of 0 and 1 at the same

time. Two qubits can represent 0, 1, 2, 3 simultaneously, so N qubits can represent 2N

numbers, as N increases, the ability to represent information will increase exponentially,

it means the quantum runs at a speed that is N times the traditional computer.

2.2 Gate Model Quantum Computing

Gate model quantum computing is also called the universal quantum computing model,

and the workflow of gate model quantum computing[38] can be illustrated in Fig 2.1.

Suppose we have a problem definition, for example, the traveling salesman problem,

which aims at finding the shortest way of visiting n cities. After the problem defini-

tion, we need to find a quantum algorithm which can solve the problem. In this thesis,

Quantum Approximate Optimization Algorithm(QAOA)[30] was used. Such quantum

algorithms are assigned into a quantum circuit, which consists of the quantum gates

and unitary operations, and the details of quantum gates and unitary operations will

be introduced in Section 3. After completing the quantum circuit, the quantum com-

piler allocates sets of quantum gates into quantum hardware and connects two qubits.

The connection is the interaction between two qubits, and it is not the actual connec-

tion between two qubits. Once the quantum compilation is done, we can execute the

program on the quantum processing unit(QPU) or on the quantum simulator[37].

As the field worked towards theoretical developments, technical developments gained

momentum in the early 2000s. Many companies around the world are putting their

8



2.2 Gate Model Quantum Computing

Figure 2.1: Workflow - Gate Model Quantum Computing

efforts in building a gate model quantum computer, such as Alibaba[5], Baidu[9],

Google[43], IBM Q[53], Intel[55], Microsoft[68], etc.. D-Wave, a Canadian quantum

computing company, formed partnerships with leading academic institutions, and in

2011 made commercially available a quantum annealing system, the D-wave One, after

making some demonstrations using the Orion prototype in 2007 and 2009[54]. The

annealing system was based on an earlier paper by Farhi[31], where they described an

algorithm for solving instances of satisfiability problems by following a time evolution

from an initial Hamiltonian to a final Hamiltonian which represented the solution to

the encoded satisfiability problem[64].

As for universal gate quantum computing, the problem is being able to RandD

chips and test them in an efficient way to improve coherence[21] (length of the infor-

mation is stored and can be manipulated) and qubit reliability[70]. The all silicon chip

breakthroughs1 indicate that standard micro-facilities can be used to create quantum

processor units, which leads towards cheaper and less specialized facilities for qubit

manufacturing[21]. The companies that put their efforts in quantum mechanics can

design a universal gate quantum computing chips which are specialized for their pur-

poses.

1https://www.smh.com.au/technology/australian-researchers-make-quantum-computing-

breakthrough-paving-way-for-worldfirst-chip-20151005-gk1bov.html
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2.3 Quantum Annealing

When people talk about quantum computing, we literally talk about several different

patterns. The most common paradigm is the gate model quantum computing, which is

discussed in Section 2.2. Another most common paradigm is quantum annealing. There

is the difference between quantum annealing and adiabatic quantum computing: the

adiabatic quantum computing is a universal quantum computing paradigm. However,

quantum annealing solves a more specific problem rather than a universal problem,

which is much more easier[3]. The technology of quantum annealing computers is up to

2, 000 qubits in 2018. However, the gate model quantum computers can only handle less

than 100 qubits. D-Wave has built superconducting quantum annealers in 2016[24], and

this company has the record for the number of 2, 048 qubits on D-Wave 2000Q quantum

computer. Recently, IARPA1 launched a project to build a superconducting quantum

annealers, and QNNcloud2 also implemented a quantum optics which can deal with a

coherent Ising model[11].

Over the past few years, quantum annealing inspired some gate-model algorithms

which work on current near-term quantum computers[13, 103]. The workflow of quan-

tum annealing is slightly different from the gate model quantum computing. Instead

of using a quantum circuit in gate model quantum computers, quantum annealing uses

the classical Ising model, which is a necessary form if researchers intend to use quantum

annealing as an approach. However, quantum annealers also suffer from the limitation

of connectivity[2, 4], in this case, a minor graph embedding is required, which com-

bines some physical qubits together to form a logical qubit. The workflow of quantum

annealers[37, 38] is shown in Fig 2.2:

1The Intelligence Advanced Research Project Activity, website:https://www.iarpa.gov/index.

php/about-iarpa
2QNNcloud is a cloud service that enables using a Quantum Neural Network(QNN), website:https:

//qnncloud.com/
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2.4 Quantum Hardware Evolution

Figure 2.2: Workflow - Quantum Annealing

2.4 Quantum Hardware Evolution

As for the hardware of a quantum simulator, the existing implementation is really

endless[57]. Mainstream schemes of the implementing quantum simulators are light

quantum[6, 78], NMR[56], optical cavity[45], ion trap[88], superconductivity[65], etc..

But in fact, there is not a general-purpose quantum computer like a classical computer.

There are two kinds of existing practical hardware:

• Quantum annealing machine.

• Quantum simulator.

The technical details of the quantum annealing machine are more complicated,

except for the D-Wave[103] and a few collaborators, no one is familiar with this field of

research. Currently, quantum annealing machine is the only quantum computer with

commercial value. The restriction of D-Wave’s quantum annealing machine is that

it can only solve the Quadratic Unconstrained Binary Optimization(QUBO) problem,

but there are quite a few classical problems that can be reduced to the QUBO problem,

so it still meaningful for quantum computing researches. The bottleneck of the current

11
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calculation is mainly how to quickly convert to a QUBO problem with a classical

computer, rather than the calculation speed of D-Wave.

We usually say that quantum computers mainly refers to quantum simulators. The

so-called simulation is to control a quantum system which use classical methods to sim-

ulate quantum processes. CIRQ[43] is one of the quantum simulators which invented

in this way by Google. And recently, Google starts a project called TFQuantum[43],

which is also a quantum simulator and will be used in my researches. There is not

any hope for general quantum computer in a short time, but if the simulation machine

is big enough, quantum simulation systems can help a lot in some research field such

as chemistry and biology, the quantum simulator can simulate some macromolecules,

such as proteins, which cannot be simulated on a classical computer. Google’s quan-

tum supremacy is mainly aimed at this problem, the simulation system of a 49-qubits

quantum system is as large as the simulation on Taihu Lake1[81]. Thus, Google calls 50

qubits quantum computer as quantum supremacy, which is more than all the existing

classic computers.

1This is a super classical computer whose actual performance is 93.0146PFLOP/S.
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3

Preliminaries

In this chapter, some basic quantum mechanics will be recommended, which can build

up the theory of quantum computing, and also some of them will be used in the later

sections.

3.1 Quantum States

Consider a simple assumption, a coin is a 2-side-level system, and it is either head or

tail without the situation of the coin standing on the ground. A quantum state is a

probability distribution, whose simplest case has two states, which is called as qubit.

In quantum computing, people always write a quantum state in the form of a column

vector, and the label of a quantum state is called a ket in the Dirac notation1. Suppose

there is a qubit ψ〉 and it can be written in the form of column vector in formula 3.1:

|ψ〉 =

[
a0
a1

]
(3.1)

In other words, a ket is just a column vector, which can be understood as the

stochastic vector in the classical case. In quantum computing theory, the ket is used

for representing a quantum state, and the difference to classical probability distributions

and stochastic vectors is the normalization constraint, the square sum of their absolute

values adds up to 1: √
|a0|2 + |a1|2 = 1 (3.2)

1Dirac notation can describe quantum states in quantum mechanics, each quantum state is de-

scribed as a state vector in Hilbert Space, namely the ket |ψ〉 and its conjugate transpose, bra 〈ψ|[96].

13
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In the equantion, a0, a1 ∈ C. In the formula 3.2, the normalizing factor is in the l2 norm

rather than l1 norm. The components of quantum state vector are called as probability

amplitudes, which are complex values, thus the diagram of the probability amplitudes

are no longer restricted to the positive orthant[72].

Here comes to 2-qubits quantum system, 0〉 and 1〉 are the canonical basis vectors

in two dimensions:

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
(3.3)

Formula 3.3 is also called the computational basis in quantum computing. Accord-

ing to the formula 3.1 and formula 3.3, an arbitrary qubit state in this computational

basis is:

|ψ〉 =

[
a0
a1

]
= a0

[
1
0

]
+ a1

[
0
1

]
= a0|0〉+ a1|1〉 (3.4)

Formula 3.4 is the expansion of an arbitrary qubit in a computational basis, and it

is called superposition. Superposition is a combinational quantum state, we can obtain

the outcome 0 with a probability of |a0|2, and he outcome 1 with a probability of |a1|2,
this can be explained in detail as the Born rule[60].

3.2 Entanglement

In the previous section, we have already known that quantum states are probability

distributions, which are normed in the l2 norm. If involving more qubits, we can see an

important quantum effect, which is called entanglement [52]. Given two qubits which

are written in formula 3.5:

|ψ〉 =

[
a0
a1

]
, |ψ′〉 =

[
b0
b1

]
(3.5)

and the product of |ψ〉 and |ψ′〉 is in the form of formula 3.6:

|ψ〉 ⊗
∣∣ψ′〉 =


a0b0
a0b1
a1b0
a1b1

 (3.6)

|ψ〉 and |ψ′〉 are the column vectors which describe two qubits, and ⊗ is the tensor

product, in the field of quantum computing, it is the same as the Kronecker product.

14



3.3 Measurement

Suppose there are two registers q0 and q1, each register can be assigned one qubit,

and both of the qubits are in the |0〉 state, then the entanglement of these two qubits

is |0〉 ⊗ |0〉, whose abbreviation is |00〉. By using the similar definition, we can get

the states |01〉, |10〉 and |11〉. These four states form the computational basis of a

four-dimensional complex space C2 ⊗ C2.

But for some |ψ〉 and |ψ′〉 ∈ C2, the quantum state cannot be written as |ψ〉 ⊗ |ψ′〉.
Given a state in formula 3.7:

∣∣φ+〉 =
1√
2

(|00〉+ |11〉) (3.7)

the vector space is in C2 ⊗ C2, suppose |φ+〉 can be written as formula 3.8:

∣∣φ+〉 =
1√
2

(|00〉+ |11〉) =


a0b0
a0b1
a1b0
a1b1

 = a0b0|00〉+ a0b1|01〉+ a1b0|10〉+ a1b1|11〉 (3.8)

|01〉 and |10〉 are not in the left side of the formula 3.8, thus the coefficients must be

zero:

a1b0 = 0, a0b1 = 0 (3.9)

To satisfy the equation 3.9, one of the coefficients(a0, a1, b0, b1) should be 0, but

this will lead to conflicts. Because a1b1 = 1, a1 cannot be 0. So b0 must be 0, but

a0b0 = 1, thus the state |φ+〉 cannot be written as product. Those states that cannot

be written as a product are called entangled states. It is a mathematical form of

describing a phenomenon of strong correlations between random variables that exceed

what is possible classically. Entanglement plays a central role in countless quantum

algorithms.

3.3 Measurement

Measurement is a vital concept in quantum mechanics, suppose it is a sample from a

probability distribution, and the outcome can be produced with a certain probability.

Measurement is the connection between the quantum world and the classical world, we

cannot directly observe quantum states, but we can get statistics about the quantum

states by using measurement[72].
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Before introducing measurement in detail, we need to know a notation of ket, that

is bra. It is the conjugate transpose of a ket, which means the bra is a row vector.

Contrast with formula 3.1, the bra form of |ψ〉 is shown in formula 3.10:

〈ψ| =
[
a0 a1

]
(3.10)

When a bra is written followed by a ket, that is the dot product, which can be

written in the form of formula 3.11. Since quantum states are normalized, the inner

product of any quantum state with itself is always 1:

〈ψ|ψ〉 = a20 + a21 = 1 (3.11)

If one wants to calculate the outer product of two vectors, for example, |ψ〉〈ψ|, then

it should be a matrix in formula 3.12:

|ψ〉〈ψ| =
[
a0a0 a0a1
a1a0 a1a1

]
(3.12)

A measurement is the canonical basis in a quantum mechanics, it is an operator-

valued variable. The measurement contains two projections, |0〉〈0| and |1〉〈1|, where

|0〉 =

[
1
0

]
, 〈0| =

[
1 0

]
, |1〉 =

[
0
1

]
, 〈1| =

[
0 1

]
. If one needs a scalar value of

applying a projection on a vector, we need to add bra to the left. For example, given

a quantum state |γ〉, the scalar for the quantum state is 〈γ|0〉〈0|γ〉, which is called the

expectation value of the operator |0〉〈0|.

3.4 Unitary Matrix

The evolution of stochastic vectors can be represented by a stochastic matrix, the evolu-

tion of quantum states can also be represented by unitary matrix[62]. Unitary evolution

is a closed system, it is a quantum system that is isolated from the environment. But

nowadays quantum computers are open quantum systems that have uncontrolled and

unpredictable interactions with the environment.

A unitary matrix’s conjugate transpose is its inverse, this is the unique property of

a unitary matrix. It means a matrix U is unitary if formula 3.13 is satisfied:

UU † = U †U = I (3.13)

where † means the conjugate transpose, and I is the identity matrix.
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A more general expression of a 2× 2 unitary matrix is[62, 98]:

U =

[
a b

−eiϕb∗ eiϕa∗

]
, |a|2 + |b|2 = 1 (3.14)

The formula 3.14 depends on 4 kinds of real parameters[40]:

• The phase of a.

• The phase of b.

• The relative magnitude between a and b.

• The angle ϕ.

3.5 Gate Model

So far, we have understood the notation of quantum mechanics and quantum comput-

ing. In this section, we will meet some basics of gate-model quantum computing, which

is also regarded as universal quantum computing.

Circuits are composed of qubit registers, on which the quantum gates are applied.

In quantum simulators, such as Cirq and TFQuantum[43], the index of qubit registers

starts from 0, but we often say qubit 0, qubit 1, etc., that refers to the registers which

contain a qubit state, for example, qubit 1 on the register can be in a qubit state of

|1〉. In quantum computing, any unitary operation can be represented by quantum

elementary gates, for the current research, three types of quantum gates are enough.

Table 3.1 shows some common quantum gates, and all of them are unitary matrices[25].

In fact, in Table 3.1, most of the quantum gates are single-qubit operations, and

the NOT gate is the only non-trivial single-bit gate. The CNOT gate and SWAP gate

are two-qubit gates in the table, and it requires two qubits interactions to create the

entanglement. Fig 3.1 shows a simple example of applying quantum gates on a quantum

circuit:

The Hadamard gate creates a superposition 1√
2
(|0〉+ |1〉) in qubit 0, which controls

an X gate on qubit 1. Because qubit 0 is in the equal superposition after Hadamard

gate, it will not apply the X gate for |0〉 but it will apply the X gate for |1〉. By using

this approach, we can create the final state 1√
2
(|00〉+ |11〉), which entangles two qubit

registers.
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Table 3.1: Quantum logic gates.

Gate Name Matrix

X Pauli-X or Not gate

[
0 1

1 0

]

Y Pauli-Y gate

[
0 −i
i 0

]

Z Pauli-Z gate

[
1 0

0 −1

]

H Hadamard gate 1√
2

[
1 1

1 −1

]

Rx(θ) Rotation around X

[
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

]

Ry(θ) Rotation around Y

[
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

]

CNOT, CX Controlled-NOT gate


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



SWAP Swap gate


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


3.6 Hamiltonian

Hamiltonian gives a description of a system evolving with time[94], the form of this

equation is expressed by the Schrödinger equation[26]:

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉 (3.15)

where ~ is the reduced Planck constant. In the previous section, unitary operators are

introduced for evolving quantum states, and if we solve Schrödinger equation for a time

t, the unitary operation can be:

U = e
−iHt

~ (3.16)

where the Hamiltonian operator does not depend on time. Formula 3.16 indicates that

every unitary in Table 3.1 has some underlying Hamiltonian. The Schrödinger equation
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3.6 Hamiltonian

Figure 3.1: Quantum gates on quantum circuit - Simple example

is the time-dependent variant, and the state depends on time. Thus, we can describe

the energy of the system in the form[37]:

H|ψ〉 = E|ψ〉 (3.17)

where E is the total energy of the system. In a thermal state, the energy of the samples

follows a Boltzmann distribution[50], and the distribution is defined as:

P (Ei) =
e−Ei/T∑M
j=1 e

−Ej/T
(3.18)

where Ei is energy, and M is the total number of possible energy levels. When a

quantum system is at zero temperature, the entire probability mass concentrates on

the lowest energy level, which is the ground state energy of a quantum system[8].

When the quantum system is at high temperature, all the energy levels have equal

probabilities.
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4

Cathode Microstructure Dataset

In this chapter, a new microstructure dataset will be introduced, the collinearity and

correlation matrix of the dataset will be analyzed. The purpose of collinearity analysis

and correlation analysis is to drop irrelevant data, which makes the research more

accurate.

4.1 Representative Volume Element

Currently, some simulated data for 120 cathode microstructures are generated as input

parameters, which are obtained from [87]. Microstructures in the form of 3D volumes

sliced into a series of images as well as the respective discharge curves, which can be

seen in Fig 4.1:

The input parameters for each microstructure consist of microstructure statistics

as well as the electrochemical model. Batteries’ microstructures are stored as a series

of 25µm× 25µm× 25µm cubes with a voxel size of 0.1µm. The output parameters for

each microstructure are the specific energy and specific power, and the results of each

P2D simulation is stored as a time series of voltages.

Representative Volume Element(RVE) is shown in Fig 4.2. The RVE consists of

three important parts which are called Electrolyte, Active Material(e.g., NMC) and

Binder, which are shown in Fig 4.3.

The properties[87] of a volume element are shown in table 4.1.

where ε is the active material(AM) volume percentage, µ is active material particle

diameter, εb is the binder volume percentage, constant 6% of active material, volume
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Figure 4.1: Respective Dischard Curves -

Figure 4.2: Representative Volume Element -
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4.2 P2Dmodel Dataset

Table 4.1: Microtructure properties.

Property mean std min max

ε / % 59.6 6.3 41.0 69.6

µ / µm 9.4 3.9 3.7 15.0

AM distrubution random

εb / % 11.2 1.2 7.7 13.1

Binder distribution between AM particles

D1,eff/10−11m2s−1 3.005 1.41 1.10 7.97

k1,eff/10−2Sm−1 12.2 5.6 4.4 31.8

A/105m−1 1.7 0.9 0.6 4.4

percentage changes slightly. D1,eff is the effective diffusion of the electrolyte, k1,eff is

the effective conductivity of the electrolyte, A is the specific surface between eletrolyte

and active material.

Figure 4.3: 3 Elements of RVE -

where ε is the active material(AM) volume percentage, µ is active material particle

diameter, εb is the binder volume percentage, constant 6% of active material, volume

percentage changes slightly. D1,eff is the effective diffusion of the electrolyte, k1,eff

is the effective conductivity of the electrolyte, A is the specific surface between the

electrolyte and active material.

4.2 P2Dmodel Dataset

P2Dmodel[87] contains all microstructure statistics data of 120 kinds of Representative

Volume Elements, which is described in table 4.2.
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Figure 4.4: Artificially Generate Data - 250 slices of a RVE

Table 4.2: Microstructure statistics data of RVE.

Column Name Description

1 Index ID

2 Microstructure Name Name of the corresponding GeoDict microstructure

3-9 a pos – epsl pos microstructure statistics (input)

10-12 L - C Rate electrochemical model (input)

13 gamma
classification, is parameter set

feasible (calculated)

14 termination
flag - simulation successful (1),

simulation error termination (0)

15 mincl Simulation result

16 Specific Energy Simulation result: specific energy (output)

17 Specific Power Simulation result: specific power (output)

4.3 F Test

F-test is the most commonly used alias called joint hypotheses test. It is a test of the

statistical value obeying the F-distribution under the null hypothesis (H0). It is usually

used to analyze statistical models. It uses more than one parameter to determine

whether all or part of the parameters in the model are suitable for estimating. The

name F test was named after American mathematician and statistician George W.

Snedecor[93], which aims to commemorate British statistician and biologist Ronald

Aylmer Fisher. Fisher invented this test and F allocation in the 1920s[92], originally

called the Variance Ratio[48].
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4.4 P Test

4.3.1 Calculation Formula

Let X = x1, x2, ..., xn and Y = y1, y2, ..., yn be two independent parameter sequences

that follow a normal distribution, then the mean of the two sequences is expressed as

formula 4.1 and 4.2.

X =
1

n

n∑
i=1

xi (4.1)

Y =
1

m

m∑
i=1

xi (4.2)

So we can find the variance of the two sequences as formula 4.3 and formula 4.4.

S2
X =

1

n− 1

n∑
i=1

(xi −X)2 (4.3)

S2
Y =

1

m− 1

m∑
i=1

(yi − Y )2 (4.4)

So the formula 4.5 is for calculating F distribution:

F =
S2
X

S2
Y

(4.5)

4.4 P Test

The calculation of the p-value is inseparable from the hypothesis test. The p-value is a

degressive indicator of the credible level of the result. The larger the p-value, the less

we can assume that the association of the variables in the sample is a reliable indicator

of the correlation of the variables in the population. The p-value is the probability of

making an error that is effective as a result of the observation. For example, p=0.05

reminds 5% of the variable association in the sample may be due to chance. That

is to say, there is no correlation between any variables in the population. We repeat

a similar experiment and find that there is one experiment in about 20 trials. The

variable correlation we have studied will be equal to or stronger than our experimental

results. This is not to say that if there is an association between the variables, we can

get the same result of 5% or 95% of the number. When the variables in the population

are related, the possibility of repeated research and invention association can be related

to the statistical efficiency of the design. In many research areas, a p-value of 0.05 is

generally considered to be the boundary level at which a fault can be accepted.
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4.5 P Test and F Test in P2Dmodel Parameters

The P-value and F-value of the microstructure statistics data in P2Dmodel can be seen

in table 4.3.

Table 4.3: P value and F value of the microstructure statistics data.

specificPower[W/kg] specificEnergy[Wh/kg]

Feature F-Score P-Value F-Score P-Value

a pos[1/m] 78.108136 1.105269e-14 159.514374 1.174570e-23

rp pos[meter] 161.939201 7.008335e-24 668.944158 1.905756e-50

Dl pos[m2/s] 266.840967 4.492096e-32 234.992748 7.490189e-30

Kl pos[S/m] 266.840570 4.492370e-32 234.987753 7.496472e-30

epss pos[−] 97963.857274 4.005366e-174 967.824599 1.049151e-58

epsb pos[−] 98016.156575 3.881350e-174 967.793863 1.050906e-58

epsl pos[−] 98006.611166 3.903690e-174 967.850132 1.047695e-58

gamma 166.166155 2.879584e-24 148.779077 1.222202e-22

mincl[mol/mˆ3] 269.961117 2.784768e-32 231.449600 1.361654e-29

The p-value is a decreasing indicator of the credibility of the result. The larger the

p-value, the less we can think about the association of the variables in the sample, which

is a reliable indicator of the correlation of the variables in the population. The p-value is

the probability of making an overall representation of the observations as valid. As we

can see in table 4.3, the F value indicates the significance of the whole fitting equation.

Thus, we can get the relationship among the features and specific power/energy. In the

table, we get big F-Value and small P-Value, it means the input parameters(features)

can fit the outputs(specific energy and specific power) well[46]. The larger the F,

the more significant the equation is, and the better the degree of the fitting among

the statistical values and specific energy/power. The p-value measures the difference

between the statistical values(input parameters) and specific energy/power. And the p-

value is less than 0.01, indicating that the difference between the two groups is extremely

significant. At first glance, we can build a model which uses linear regression analysis

among the statistical values.
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4.6 Correlation Matrix

P related variables, find the correlation coefficient between the two variables, a total

of C2
P = P (P−1)

2 correlation coefficients. If they are arranged in sequence according to

the order of the variables, they are arranged into a matrix of numbers, which is called

the correlation matrix. The commonly used letter R is indicated.

Correlation coefficient matrix mainly depends on the coefficient. Generally, ±0.5

or more is considered to have a weak correlation, and ±0.8 or more is considered to be

relatively high, and greater than ±0.9 indicates a high correlation. All correlations here

refer to linear correlations. Each variable has three values for each other, correlation

coefficient, statistic value, and p-value. Mainly to see the correlation coefficient, the

p-value can be used to determine whether the correlation coefficient is significantly

zero.

Figure 4.5: Correlation Matrix - Statistical values and Specific Energy/Power

According the the correlation matrix in Fig 4.5, almost all the statistic values in

P2Dmodel(a pos[1/m], rp pos[meter], Dl pos[m2/s], Kl pos[S/m], epss pos[-], epsb pos[-

], epsl pos[-], gamma, mincl[mol/mˆ3]) have a strong correlation with the specific en-

ergy and specific power.
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5

Problem Statement

In this chapter, a statement of the research background will be presented, and three

hypotheses for this research are proposed.

5.1 Research Background

In the development of emerging technology products such as drones and electric vehi-

cles, the importance of battery technology is becoming increasingly prominent. Given

that driverless technology is being integrated into almost the entire transportation sec-

tor, battery technology will also be the key to success in the future. In recent years,

with the development of cutting-edge technology such as artificial intelligence, the un-

manned technology has been fully popularized in the three-dimensional land, sea and

air. Unmanned vehicles, unmanned aerial vehicles, unmanned ships and flying cars

have mushroomed. The growth is gratifying. At the same time, since the develop-

ment of energy-saving concepts and battery technology, pure electric vehicles have also

become the mainstream trend. As a result, unmanned technology and pure electric

concepts are accelerating integration, and pure electric unmanned vehicles will ”rule”

future traffic. Under this trend, the importance of battery technology will undoubt-

edly increase. For purely electric vehicles, the current battery technology is sufficient

to ensure commercial demand due to battery life requirements. However, unmanned

aircraft, especially large unmanned flying vehicles, unmanned passenger aircraft, etc.,

have high requirements for endurance, and battery technology constraints will be fatal.
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A negative electrode, a positive electrode, and some electrolytes make up the most

straightforward battery. Negatively charged electrons flow from the negative electrode

to the positive electrode through the electrolyte, forming a current. The negative elec-

trode is usually made of a lithium metal oxide, and the negative electrode is called a

lithium-ion battery. Lithium-ion batteries are most commonly used because they have

the highest energy capacity and can fit into a small space like your phone. Lithium-ion

batteries have three times the energy density of conventional rechargeable batteries dur-

ing charging and discharging. Most lithium-ion batteries consist of a positive graphite

electrode and a liquid organic electrolyte. In order to avoid a short circuit between

the positive and negative electrodes in the battery, a small piece of thin permeable

polypropylene (a plastic) is blocked between the two poles. If the barrier is cracked or

eroded, the positive and negative electrodes will contact, and the battery will heat up

extremely quickly. The battery is also filled with a flammable electrolyte that will ignite

when it is hot and can be quickly excited by a short circuit. If the plug is uncovered,

the liquid electrolyte will leak. Aims at solving the above problems, researchers in the

Volkswagen Group are looking for solid electrolytes as an alternative.

Specific goals and objectives will be to find better materials for the cathodes and

anodes of batteries and to improve the state-of-art in quantum-assisted machine learn-

ing. This project is part of the effort to predict properties of materials from their

structure, and ultimately, to generate new structures that exhibit the desired proper-

ties. Currently, we have some simulated data for 120 cathode microstructures generated

from input parameters, microstructures in the form of 3D volumes slice into a series of

images as well as the respective discharge curves.

5.2 Hypotheses

Melanie’s team1 did a research on using a 3D neural network, whose inputs are mi-

crostructure images, and predict specific energy and specific power, which can be illus-

trated in Fig 5.1.

As Melanie’s team are using classical neural network as a training approach and

they achieved some results which are not bad, I prefer trying some other approaches in

1Dr. Melanie Senn, Nasim Souly, Prateek Agrawal, Nikhil George, Alex Alekseyenko. Website:

http://vwiecc.com/
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Figure 5.1: IECC’s approach - Melanie’s team

my thesis project:

• Hypothesis 1. I recommend using statistic features such as a pos[1/m], rp pos,

etc., which are introduced in Dataset Section, it shows there are relations between

statistic features and specific energy/power. So it will be a regression model,

whose inputs are the statistic features and outputs are the specific energy/power.

The purpose is to find if there is a model that can fit the dataset, and if the model

can predict accurately on the test set.

• Hypothesis 2. As Melanie’s team are using a classical neural network as a training

approach to predict the specific energy and specific power, I recommend using

a quantum neural network as a training approach to predict specific energy and

specific power. The aim of this hypothesis is to figure out if we can use a quantum

neural network to find a better combination of cathode, electrolyte and anode,

which can produce high specific power and specific energy. The experiments are in

Section 6.2 and Section 6.3, which started with a small quantum neural network

which was applied on XOR problem, and organised on a larger dataset, such as

Minist dataset and microstructure dataset.

• Hypothesis 3. As neural networks always take a long time to find an optimum,

a wonder is that whether a quantum assisted method can accelerate the pro-

cess of an optimization problem. QAOA has excellent potential in optimizing

problem[30], the recommendation is using QAOA as an optimizer in updating

the weights, and nobody did this before. This experiment will be shown in Sec-

tion 6.4, which started with a simple neural network and applied QAOA as an

update rule, then try QAOA optimizer on a larger dataset.
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6

Experiments

In this chapter, four kinds of different experiments will be explained in detail, and the

results can be used as the evidence for the hypotheses in Section 5.

6.1 Regression Analysis

This is the first experiment which implemented a small, simple neural network which

can be used for regression analysis on the microstructure battery dataset.

6.1.1 Problem Statement

In the first research, regression analysis was to find a model or equations which can

fit the dataset, if a regression model can be found over the statistical values, as we

introduced in table 4.2, column 3 to 13 can be used as inputs of my model, then we

can make predictions such as specific energy and specific power, which are the outputs.

The aim is to find whether there is a model which can fit on the test set.

So far, there were only 120 examples of the dataset, so 90 of the dataset were used

as training data, the rest 30 of the dataset were test set.

6.1.2 Approaches

I analyzed the relationship among the statistical values in P2Dmodel and the specific

energy/power, which can be seen in Fig 6.1. As can be seen in Fig 6.1, almost all the

statistic values have linear relationships with specific energy and specific power, which

can be the persuasive evidence for using linear regression.
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Figure 6.1: Co-linearity - Statistical values and Specific Energy/Power

As the aim is to find a linear regression which can model the relationship between

input variables and output variables. The linear regression is defined as formula 6.1:

Y = a+ bx (6.1)

where Y is the output variables(specific energy and specific power) in my approach,

which are dependent variables. X is the input variables(statistical values in P2Dmodel),

which are the independent variables. The slope of a linear regression line is represented

by b, and a is the intercept of Y .The definitions of a and b can be shown in formula 6.2

and formula 6.3.

a =

∑
y
∑
x2 −

∑
x
∑
xy

n
∑
x2 − (

∑
x)2

(6.2)

b =
n
∑
xy −

∑
x
∑
y

n
∑
x2 − (

∑
x)2

(6.3)

According to the the formula 6.1 to formula 6.3, I built a 5-layers neural network

in TensorFlow, it will be explained in the next section.

6.1.3 Network Structure

A 5-layers neural network was build to find the linear regression between input variables

and output variables, which has 7 input nodes and 2 output nodes, the structure of the

neural network can be seen in Fig 6.2.
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Figure 6.2: Neural Network - Structure

As can be seen in Fig 6.2, multiple hidden layers are actually multi-level abstractions

of input features. The ultimate goal is to partition different types of data better linearly.

6.1.4 Result and Analysis

The loss of the regression model can be seen in Fig 6.3. Although the loss on the test

set was terrible, but with the epoch increasing, the loss on the test set decreased and

reached a stable loss value.

Figure 6.3: Regression Model - Loss

In the beginning, the result seems to be good enough, but think more about it, I
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have an idea that the model might be overfitting. As the size of the dataset is very

small, which only has 90 training dataset, and after 20 epochs, the regression loss values

are the same on the training set and test set, which is ridiculous. I suppose there are

two reasons which make this phenomenon. One reason is that the size of the data

set is too small for training a good model. Another reason could be overfitting, as I

have a small size of the dataset and there were too much training parameters in the

neural network. And it can also be explained in another way, a decision boundary or a

neuron is a linear division. Multiple neurons are multiple linear divisions, and multiple

linear divisions are continually approaching the decision boundary. This process can

be imagined as an integration process. A decision boundary is composed of multiple

linear partitions. If the number of neurons is much larger, this will result in a lot of

linear divisions, which will distort the decision boundary, basically the over-fitting.

6.2 Quantum Neural Network

In this second experiment, a quantum neural network was built on the quantum simu-

lator, which can solve some simple problems.

6.2.1 Problem Statement

In this experiment, I start with a small and straightforward problem–XOR problem,

a hybrid quantum-classical approach was applied on this problem, and the aim is to

figure out whether the quantum assisted approach can accelerate the training process

if setting a threshold for the loss value, or within a fixed iteration. After trying the

XOR problem, I want to figure out if this approach can be used for a larger dataset,

which means a much more general situation in real life.

6.2.2 Dataset

There are two kinds of the dataset used in this experiment: the XOR dataset, down-

sampled dataset.

The XOR dataset is straightforward, and it consists of binary values which can be

illustrated in table 6.1. This is a straightforward dataset, and XOR problem can be

solved by using a classical neural network, but in this experiment, a quantum method

was used for solving XOR problem.
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Table 6.1: XOR Dataset.

Input Data Output Label

0 0 0

0 1 1

1 0 1

1 1 0

6.2.3 Approaches

The parametrized quantum logic is prepared by quantum fourier transform, and prepar-

ing the data in data points in a TensorFlow compute graph use it to generate the data

prep circuit in sampler to prepend a quantum representation of the data on to the

circuit logic outlined in l3 and then using backpropagation (without CV), optimize the

parameters of the classical-quantum hybrid net.

6.2.3.1 Reason of Using QFT

In 1994, Shor created a quantum form of the Fourier Transform[79]. Based on Shor’s

work, a quantum version of the Fast Fourier Transform was developed by Coppersmith[22],

which enabled the implementation of QFT on a quantum machine. Without any doubt,

QFT is the landmark of quantum algorithms, and it is also a crucial part of Shor’s algo-

rithm and many other quantum algorithms[76]. QFT can improve the complexity of a

classical algorithm from O(NlogN) to O(log2N), because of its speed-up performance,

QFT was chosen as an approach in this experiment.

6.2.3.2 Quantum Fourier Transform

In quantum mechanics, the state vectors for qubits are just a vector of complex numbers,

and the classical Discrete Fourier Transform can not be applied to any state vectors.

Given a state vector ψ〉 which defined as:

|ψ〉 =
N−1∑
j=0

aj |j〉 =

 a0
...

aN−1

 (6.4)
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So the Discrete Fourier Transform(DFT) of this state can be computed as:

F |ψ〉 =

N−1∑
k=0

bk|k〉 (6.5)

where

bk =
1√
N

N−1∑
j=0

aje
2πijk
N (6.6)

It has been proved that the operation is unitary[104], so it can be implemented in

quantum mechanics. Consider the 2-qubit state:

|ψ〉 = a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉 (6.7)

which has N = 4, according to formula 6.6, the b0, b1, b2 and b3 can be defined by:

b0 =
1

2

3∑
j=0

aj =
1

2
(a00 + a01 + a10 + a11) (6.8)

b1 =
1

2

3∑
j=0

aje
2πij
4 =

1

2

(
a00 + a01e

iπ
2 + a10e

iπ + a11e
3iπ
2

)
(6.9)

b2 =
1

2

3∑
j=0

aje
4πij
4 =

1

2

(
a00 + a01e

iπ + a10e
2iπ + a11e

3iπ
)

(6.10)

b3 =
1

2

3∑
j=0

aje
6πij
4 =

1

2

(
a00 + a01e

3iπ
2 + a10e

3iπ + a11e
9iπ
2

)
(6.11)

Writing ω = e
πi
2 , noting that ω0 = 1, ω1 = i, ω2 = −1, ω3 = −i, ω4 = e2πi = 1 and

e
9iπ
2 = e

πi
2 = i, so the 2-qubit QFT can be re-write in matrix form which is shown in

formula 6.12:

F =
1

2


1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω

 =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 (6.12)

and this matrix form can be easily shown to be a unitary operator. A fairly simple

circuit that performs this transformation can be built on a quantum circuit simulator,

which is explained in detail in Section 6.2.3.3.
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6.2.3.3 Quantum Circuit

The implement of the Quantum Fourier Transform on a quantum circuit simulator

is quite simple, basic quantum gates and elements were introduced in Section 3, but

it is necessary to introduce some new gates which are used in the quantum circuit.

Moreover, this quantum circuit is a quantum simulator on Cirq[43].

• The controlled-Rk gate: controlled-Rk gate can apply a relative phase change to

1〉, the matrix form of this operator is:

Rk =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e
2πi
2

 (6.13)

The diagram of a controlled-Rk gate on a quantum circuit is shown in Fig 6.4:

Figure 6.4: The controlled-Rk gate - on a quantum circuit

• The controlled-X gate: in the basis {|00〉, |01〉, |10〉, |11〉}, the matrix form of this

operator is:

Controlled−X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (6.14)

The diagram of a controlled-X gate on a quantum circuit is shown in Fig 6.5:

Figure 6.5: The controlled-X gate - on a quantum circuit
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Figure 6.6: QFT on Quantum Circuit - General Situation

The circuit performing the QFT is drawn generally in Fig 6.6:

In this experiment, the quantum circuit for a QFT process should be customized.

The quantum circuit consists of four layers and one readout layer, acting on four qubits

with some quantum gates. The first layer of the quantum circuit is shown in Fig 6.7:

In this first layer, an H gate was applied on qubit 2. One CPhase gate was applied

Figure 6.7: QFT Circuit - First Layer

between qubit 1 and 2 with the rotation angle is π
2 , another CPhase gate was applied

between qubit 0 and 2 with the rotation angle is π
4 . In the second layer, an H gate

was applied on qubit 1, and a CPhase gate was applied between qubit 0 and 1 with the

rotation angle is π
2 . In the third layer, only an H gate was applied on qubit 0. The

last layer is active layer, which used QAOA algorithm for optimization, so the complete

QFT circuit is shown in Fig 6.8.
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Figure 6.8: QFT Circuit - Complete Circuit

6.2.4 Result and Analysis

As a comparison, the XOR problem was executed on a quantum circuit simulator and

a classical neural network, which is implemented in TensorFlow. The result can be seen

in Table 6.10:

Table 6.2: MSE comparasion - Quantum approach and classical approach.

Iteration MSE-Quantum XOR MSE-Classical XOR

0 0.25441742 0.9210175

10 0.2435121 0.8736283

20 0.19666877 0.8526401

30 0.13149635 0.8117458

40 0.038574576 0.7800300

50 0.0075638234 0.7565701

60 0.0029614838 0.7393677

70 0.0018134008 0.7267133

80 0.001371848 0.7173568

90 0.0011428597 0.7104138

As can be seen in Table 6.10, after the same value of iteration which was 100,

the Mean Square Error(MSE) of classical approach was 0.71041, the MSE of quantum

approach was 0.00114, which was almost 617 times faster of the classical approach. If

the classic approach with TensorFlow converges to the same MSE of quantum approach,

it will need more than 5, 000 iterations.

Fig 6.9 shows that MSE changes on each iteration by using quantum approach.

As can be seen in Fig 6.9, the MSE decreased sharply between iteration 20 and 40,

and converged to a small stable value which is 0.00114. As for a comparison, Fig 6.10

illustrated the dynamic changes in each iteration. The initial error of classical approach

was higher than the quantum approach, and the convergence speed of the classical
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Figure 6.9: MSE - Quantum Approach

approach was slower than the quantum approach. In 100 iterations, the convergence

of quantum approach was much quicker than the classical approach, and at the same

time, the quantum approach achieved a much smaller MSE value, which was a great

result. Fig 6.11 shows the dynamic changes by using classical approach, as can be seen

in the figure, even if the model is executed for 20, 000 iterations, it cannot reach the

MSE of quantum approach.
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Figure 6.10: Comparision - MSE of quantum approach and classical approach

Figure 6.11: MSE - Classical Approach

43



6. EXPERIMENTS

6.2.5 Conclusion

Using the quantum method to solve XOR problem is a trial, the aim was to figure out

whether the quantum approach can accelerate the training speed and get a small error

at the same time(on a quantum simulator in this experiment). The research results

show that the quantum approach can accelerate the training speed, and compared to

the classical approach, the quantum approach can achieve a small MSE with the same

iteration, which is only 100 iterations. This is definitely an exciting and inspiring result,

which shows the potential of using quantum computing in an optimization problem.

XOR is a small and simple problem. This trial shows using quantum approach is

feasible. In the next step, the quantum approach will be used in a larger dataset,

which is Mnist dataset.
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6.3 Quantum Binary Classification

In the previous experiment, the simple XOR problem was solved by using quantum

computing approach, which got an accelerate on the training process and resulted in a

minimal MSE value. Further research was done on this research pathway, which built

a classifier by using quantum computing approach.

6.3.1 Problem Statement

In this experiment, Mnist dataset was used, which is a bigger and more complex dataset

than the XOR dataset. And a quantum computing approach was used on this dataset,

trying to find out whether the quantum computing approach is workable for a more

significant problem.

6.3.2 Dataset

The original Mnist handwritten digit dataset consists of 60, 000 training examples and

10, 000 testing examples, it is a subset of a more extensive set from NIST, and the digits

have been resized in a fixed-size by size-normalizing, and the size is 28× 28. However,

due to the limitation of the quantum circuit in Cirq, the limitation means the quantum

simulator on Cirq can handle 17 qubit quantum computer, in other words, it should be

16-bit data with one readout bit. So it is necessary to downsample the digit image to a

size of 10 bits, which will be in total 10 data points on the circuit and one readout bit.

If using one readout, labeling ten digits is impossible, instead of predicting ten labels,

two digits were picked up, say 6 and 9, and reduce the dataset which only consists of

digit 6 and digit 9, and testing if the quantum neural network can distinguish these

two different digits.

6.3.3 Approaches

Farhi did a research on representing subset parity and subset majority[31], which can

be used for quantum classification. In his paper, they represented subset majority with

the unitary operator with β set to 0.9π/n, where β was the rotate angle of a quantum

operator, and n was the number of commuting two-qubit operators in a quantum circuit.

This method can also be used for classification, but only the binary classification. If a

quantum approach is proposed, all the classical data should be represented in a quantum
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definition, such as the superposition and quantum gates. In the following sections, I will

introduce the details of the superposition and quantum gates in a binary classification

problem.

6.3.3.1 Superposition Representation

The aim is to build a quantum neural network with TFQuantum, the input data and

output data are supposed to be binary values, which is the limitation of the quantum

neural network. The aim of the quantum binary classifier is distinguishing digit 6 and 9,

and the samples are divided into some sample labeled as +1 and −1, then the quantum

states can be written in formula 6.15:

|+ 1〉 = N+

∑
z:l(z)=1

eiϕz |z, 1〉 | − 1〉 = N−
∑

z:l(z)=−1

eiϕz |z, 1〉 (6.15)

where N+ and N− represent the normalization factors, N+ and N− are set to 0 in

Farhi’s research[30], so they are all set to 0. The way of preparing classical data for

quantum computation is bitstring encoding, z is the string of input variables, |z, 1〉
is the representation of a classical dataset of N -length bitstrings, where z ∈ 0, 1n. A

quantum unitary(introduced in next part) that encodes these bitstrings into binary

labeled eigenstates according to U(z) = |z〉. After converting the classical data into

quantum states, each of the quantum states has a label, either is +1 or −1. +1

represents the digit 6, and −1 represents the digit 9.

In this experiment, different input samples are combined, which forms a superposi-

tion state. Then, picking a loss function and calculate the gradient on each epoch, the

loss function will be used to compare the readout qubit’s expectation value 〈Yn+1〉 to

the class of a data point, where y ∈ {0, 1}. The loss function is defined in formula 6.16:

loss(~θ, z) =
1

n

n∑
i=1

(
〈
zi, 1

∣∣∣U †(~θ)Yn+1U(~θ)
∣∣∣ zi, 1〉− l(zi))2 (6.16)

where n is the number of labels.
〈
zi, 1

∣∣∣U †(~θ)Yn+1U(~θ)
∣∣∣ zi, 1〉 is the ground truth in

quantum computation basis, it is a list of arrays and consist of information from dataset

object about the desired output from the same quantum circuit, in other words, it is the

true label in a classical neural network. l(zi) is a list of readout expectations from the

quantum circuit, which can be considered as the predicted labels in a classical neural

network.

46



6.3 Quantum Binary Classification

6.3.3.2 Quantum Unitaries

Besides the loss function in a superposition representation, some unitary operations

should be associated with labels, based on quantum computational basis states, and

the label unitary can be written in formula 6.17:

Ul |z, zn+1〉 = exp
(
i
π

4
l(z)Xn+1

)
|z, zn+1〉 (6.17)

where the l(z) can only be +1(represents digit 6) or −1(represents digit 9), and it can

be regarded as a diagonal operator in the quantum computational basis. This is an

abstract way of representing the classical labels in a quantum circuit.

Reed-Muller[101] can represent any Boolean function and re-write the label unitary

6.17 as a product of 2 qubit unitaries. For convenient expression, the boolean variables

bi can be defined as formula 6.18:

bi =
1

2
(1− zi) (6.18)

Starting from bits b1 to bn, the product of two qubit unitaries can be written in

formula 6.19:

b = a0 ⊕ (a1b1 ⊕ a2b2 ⊕ . . . anbn)⊕ (a12b1b2 ⊕ a13b1b3 + . . .)⊕ . . .⊕ a123 . . . b1b2 . . . bn
(6.19)

If one intends to use B to represent b, which is the diagonal operator in the quantum

computation basis, the label unitary can be written in the form of formula 6.20, the

terms in B can commute with each other by multiplying Xn+1:

Ul = exp
(
i
π

4
Xn+1

)
exp

(
−iπ

2
BXn+1

)
(6.20)

6.3.3.3 Quantum Circuit

For the purpose of constructing the quantum circuit model, the circuit ansatz for binary

classification can be written as :

U(~θ) = exp

iβ
2

∑
j

θjZjXn+1

 (6.21)

A simple quantum neural network with linear activations is used for determining

the classification results. For supervised learning, this quantum circuit is supposed to
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be trained on a series of labeled inputs, which are prepared in the dataset process. In

TFQuantum, the PlaceholderLayer should be inserted before U(θ), which will be

resolved for each sample that is taken during optimization.

In the beginning, β is set to a fixed value, and 10 qubits was chosen as operators

in the quantum circuit, each operator are the product of three values: β, Pauli-Z gate

and Pauli-X gate, the details can be seen in Algorithm 1:

Algorithm 1 Construct quantum operators

1: procedure Quantum operators(i) . i is the subscript index of quantum

operators

2: β ← −1.0∗(0.9∗π/6.0)
2.0

3: i← 0

4: for i ≤ 9 do

5: operator = β× PauliZ(i) × PauliX(10)

6: end for

7: return operators . operators consist of a list of operator(i)

8: end procedure

When the quantum operators are prepared, an exponential layer can be constructed

according to the formula 6.21 so that the quantum circuit can be constructed according

to Algorithm 2:

Algorithm 2 Construct quantum circuit

1: procedure Quantum circuit(i)

2: prev layers ←PlaceholderLayer

3: parameters ← 0 . This is a list

4: operators ← Quantum operators(i)

5: active layer ← ExponentialLayer(prev layers, parameters, active layer)

6: return active layer . This is the complete layer on a quantum circuit

7: end procedure

The PlaceholderLayer is a layer in TFQuantum[43] allowing for dynamic data

input to a quantum circuit, and it is a special layer that can be used to insert layers

into the circuit just before compilation. The PlaceholderLayer is useful for allowing

layers representing training data to be inserted anywhere in the circuit. Quantum

operators(i) can be processed in Algorithm 1. The ExponentialLayer constructs
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a parametric layer from a sequence of operator exponentials, which obeys the rule of

formula 6.21. The role of using ExponentialLayer is to append a layer exp(−i∗x∗term)

for each term in operators. Procedure quantum operators in Algorithm 1 are the

initial operators, which are specified in the list operators, by qubit paulis or standard

paulis. Parameter variables representing initial operator coefficients are given in the

list parameters, which is processed in line 3 of Algorithm 2.

The quantum circuit can be constructed according to the above steps, which is il-

lustrated in Fig 6.12. As can be seen in Fig 6.12, each quantum operator from 0 to 9 is

connected to the operator 10, and for the purpose of binary classification, the quantum

neural network architecture returns specify qubit n + 1 as the binary classifier read-

out, which is in the expectation value 〈Yn+1〉. After completing the quantum circuit,

TFQuantum can compile this logic down to a Cirq circuit, but the PlaceholderLayer

is not visible in Fig 6.12, since it is empty until a specific layer of circuit logic is drawn

from the dataset during training. Moreover, the way of preparing a classical dataset

into a quantum dataset has been introduced in Section 6.3.3.1.

Figure 6.12: Quantum Circuit - Partial Quantum Neural Network

After finishing the preparation, model training should be taken on the agenda. The

BasicModel in TFQuantum provides an architecture for constructing a basic quantum

neural network, and this is a development tool similar to Tensorflow. In order to build

a quantum neural network in TFQuantum, three requirements should be fulfilled:

• Define a quantum circuit logic. The quantum circuit logic has been defined in

detail in Section 6.3.3.3.
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• One readout per circuit to be used in optimization. Readout scheme is the expec-

tation value 〈Yn+1〉, standard in literature, 〈ψYn+1ψ〉 should be estimated. The

aim is to get basis measurement information and statistics for a hamiltonian.

The optimizer is ADAM Optimizer, it is a common optimizer that has efficient

calculation and low memory requirements.

• A loss function. The loss function is defined in formula 6.16, which is in a super-

position representation.

6.3.4 Result and Analysis

Table 6.3 shows the statistics data of the quantum neural network:

Table 6.3: Statistics data of QNN model.

Optimizer ADAM

Learning Rate 0.1

Batch Size 1

Iterations 400

Number of learnable params 10

Circuit depth 50

Loss Function loss(~θ, z) = 1
n

∑n
i=1(

〈
zi, 1

∣∣∣U †(~θ)Yn+1U(~θ)
∣∣∣ zi, 1〉− l(zi))2

Also, the MSE value on each iteration is shown in Fig 6.13:

In general, the MSE value decreased on each iteration, but between iteration 200

and 250, it increased sharply, one guess is that it was a normal situation in a training

process, after iteration 300, the MSE values converged to a small value around 0.1.

Also, the model was tested on a test set, the accuracy was 0.54, which is not as good as

a conventional approach, such as training with TensorFlow, the reason should be the

downsampled input dataset, which cannot be compared to training with an original

Mnist dataset. In my perspective, this result is good enough for convincing that a

quantum neural network can achieve a binary classification.

6.3.5 Conclusion

In this experiment, a quantum classification was achieved on the downsamples Mnist

dataset. The quantum circuit was only 50, and the number of learnable parameters

50



6.3 Quantum Binary Classification

Figure 6.13: MSE - Quantum Binary Classification

was only 10, which was much smaller than the number of parameters on a conventional

neural network. Also, this quantum classifier only took a few seconds on a quantum

simulator, as we all know, the speed on a simulator is much slower than the speed

on a physical computer. A belief is that if we can process this problem on a physical

quantum computer, the training process will need less time. If there are enough qubits

on a physical quantum computer, higher accuracy can be achieved with the original

Mnist dataset, which will be exciting progress on quantum computing.

Another trial was to downsample the microstructure battery material dataset, but

the results were basically none of use. As is mentioned in the dataset, the quantum

simulator only has 17 qubits accessible, but the size of microstructure battery material

dataset is 250∗250, which far exceeds the size of a quantum circuit simulator. Moreover,

even if the microstructure battery material dataset was downsampled to 4∗4, which lost

a large number of details, such as the connections among the cathode, the electrolyte,

and the anode. Although the model can classify digit 6 and 9 on a downsampled

Mnist dataset, however, it cannot train a model on the microstructure battery material

dataset, neither the original dataset or the downsampled dataset.
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6.4 Quantum Assisted Optimization

This experiment is a little different from the previous three experiments. This ex-

periment focused on a shallow-circuit variational algorithm for gate model quantum

computers–the quantum approximate optimization algorithm(QAOA), which was in-

spired by quantum annealing.

6.4.1 Problem Statement

In this experiment, the purpose is to deal with optimizing weights in a classical neural

network by using a quantum algorithm. It can be understood as a quantum assisted

optimization problem. In Section 3, Farhi’s quantum approximate optimization algo-

rithm was introduced, but the limitation of Farhi’s QAOA is that it can only process

bit instance, either the input and output. As we all know, the weight values are always

float values, and they are barely integers. Thus, the aim of this experiment is to come

up with an approach, which can apply QAOA on float values, and figure out if QAOA

helps the optimization process in a classical neural network.

6.4.2 Dataset

Based on the experiments in the previous section, the quantum circuit simulator on

TFQuantum is limited to 17 qubits, and if researchers want to use the microstructure

battery material dataset, the number of the classical neural network which processes

such dataset is 5, 316, 002, this is a large number of learnable parameters which cannot

be allocated on a quantum circuit simulator.

So, at this point, I also start with a straightforward dataset. The intention to know

if QAOA can help with the optimization process. The dataset is shown in Table 6.4.

Table 6.4: Simple Dataset.

Input Output

0 0 1 0

0 1 1 1

1 0 1 1

1 1 1 0
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The input dataset only consists of 3 bits of binary values, and the output value

is either 0 or 1, this is a quite simple dataset, the purpose of using this dataset is to

simplify the influence of a complex dataset and focus on using QAOA in updating the

weights.

The second dataset was Iris Dataset1, it first appeared in the famous British statisti-

cian and biologist Ronald Fisher’s 1936 paper, it is used to introduce linear discriminant

analysis. In this data set, three different species of Iris are included: Iris Setosa, Iris

Versicolour and Iris Virginica. Each class collected 50 samples, so this data set contains

a total of 150 samples. The data set measures four characteristics of all 150 samples:

• Sepal length.

• Sepal width.

• Petal length.

• Petal width.

The units of the above four features are all centimeters (cm). In the experiment,

these four features were used as inputs, and the outputs are three species of Iris: Iris

Setosa, Iris Versicolour and Iris Virginica. Part of the original Iris dataset can be seen

in Table 6.5:

Table 6.5: Example of Iris dataset.

Sepal Length Sepal Width Petal Length Petal Width Species

5.1 3.5 1.4 0.2 Setosa

4.9 3.0 1.4 0.2 Setosa

7.0 3.2 4.7 1.4 Versicolor

4.9 2.4 3.3 1.0 Versicolor

6.3 3.3 6.0 2.5 Virginica

7.6 3.0 6.6 2.1 Virginica

However, the neurons on the neural network cannot accept ’Setosa’ or ’Versicolor’

or ’Virginica’ as input datatype. Moreover, these species are converted to 3-bits strings

1Iris flower dataset, from wiki https://en.wikipedia.org/wiki/Iris flower data set.
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with binary values, which is an intuitive way for processing in neural networks. The

bit encoding of Iris species can be seen in Table 6.6:

Table 6.6: Bit string of species.

Species Bit String

Setosa 1, 0, 0

Versicolor 0, 1, 0

Virginica 0, 0, 1

6.4.3 Approaches

In this section, three approaches will be introduced, and they can help complete this

experiment. A neural network was built without TensorFlow, only using numpy build

the neural networks for the simple dataset and Iris dataset. In the neural network

structure, QAOA was used as an optimizer, which can update the weight in the neural

networks.

6.4.3.1 Neural Network on Simple Dataset

The simple neural network was built manually, which consists of three layers. There

are three steps in this simple neural network:

• Forward Propagation. Calculate the loss value by using input matrix and weight

matrix.

• Back Propagation. According to the chain rule (derivation), calculate the contri-

bution value of each weight to the loss function.

• Update weights. Adjust weight matrix according to the contribution value, in

order to minimize loss function.

Fig 6.14 illustrates the network structure of this simple neural network:

In this neural network, the input data X is in the shape of (3 ∗ 4), and output data

y is in the shape of (4 ∗ 1). W0 and W1 are the weight matrix of the neural network,

and they are initialized randomly with the shape of (3∗4) and (4∗1). In the process of
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Figure 6.14: Network Structure - Simple Neural Network

forwarding propagation, the sigmoid function is used as an activation function, which

is defined as formula 6.22:

f(x) =
1

1 + e−x
(6.22)

So the derivative function of sigmoid function can be written as formula 6.23:

f ′(x) = f(x)(1− f(x)) (6.23)

Formula 6.24 shows a way of calculating the loss function in this simple neural

network, where y is the true label and l2 is the predicted lable. In this way, the weight

matrix can be updated according to the loss values in each layer.

loss = y − l2 (6.24)

6.4.3.2 Neural Network on Iris Dataset

After encoding species into 3-bits bitstrings, a three-layers neural network was built,

which has 4 nodes a bias node in the input layer, 7 nodes and a bias node in the hidden

layer, 3 nodes in the output layer, the structure of the neural network can be seen in

Fig 6.15:

The activation function is also sigmoid function, which is defined in formula 6.22.

And the loss function is the same function which is defined in formula 6.24, which can

be used for the backpropagation process.

6.4.3.3 Background of QAOA

Farhi came up with a Quantum Approximate Optimization Algorithm[30]. As is shown

in Fig 6.16, QAOA creates an iterative loop between the quantum and the classical
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Figure 6.15: Network Structure - Iris Neural Network

processing hardware units, it is a classical-quantum hybrid algorithm. The basic idea

is straightforward: run a short sequence of gates where some gates are parametrized,

then readout the results, make an adjustment to the parameters on a classical computer,

such as ADAM optimizer, and repeat the calculation with the new parameters on the

quantum hardware.

Figure 6.16: QAOA - Iterative Loop

QAOA approximates the adiabatic pathway on a gate model computer, the adia-

batic pathway is discretized into p steps, where p ≥ 1[30]. Step p influences the precision

of the algorithm, each discrete time step i has two parameters: βi and γi. The clas-

sical optimization algorithm does an optimization on these parameters based on the

observed energy at the end of a run on the quantum hardware. The circuit depth grows

linearly with step p, at the worst situation, it is p times, in general, step p is a fixed

value during a process of running. Suppose we want to discretize the time-dependent
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formula 6.25 under an adiabatic condition:

H(t) = (1− t)H0 + tH1 (6.25)

For time t0, the unitary can be splitted as formula 6.26:

U (t0) = U (H0, β0)U (H1, γ0) (6.26)

Thus, for each time t, we can split the unitary operators as formula 6.26. Eventually,

the adiabatic pathway can be discretized into p chunks, as can be illustrated in formula

6.27:

U = U (H0, β0)U (H1, γ0) . . . U (H0, βp)U (H1, γp) (6.27)

By the end of the time evolution tp, QAOA can approximate the adiabatic pathway as

shown in Fig 6.17:

Figure 6.17: Discretized Adiabatic Pathway - p steps

A cost Hamiltonian function(objective function) and a mixing Hamiltonian function

are required if using QAOA, the cost Hamiltonian function can be encoded into a set

of unitary operators, and the unitary operators can be located on a quantum circuit,

either on a quantum simulator or a quantum computer. In Farhi’s paper, an objective

function is defined on n bit string, which can be seen in formula 6.28:

HC =

m∑
α=1

Cα(z) (6.28)

where z is the a bit string. If z satisfies α, H1 = 0 and 0 otherwise. Then a unitary

operator U(H1, γ) is defined as formula 6.29:

U(HC , γ) = e−iγHC =

m∏
α=1

e−iγHCα (6.29)
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where γ is restricted to 0 and 2π.

Following is the definition of a mixing Hamiltonian function, the simplest mixing

Hamiltonian function is shown in formula 6.30:

HM = −
n∑
j=1

σxj (6.30)

which is the sum of σxj operators. Then the unitary operator U(H0, β) is defined as

formula 6.31:

U(HM , β) = e−iβHM =
n∏
j=1

e−iβσ
x
j (6.31)

where β is restricted to 0 and π.

For time step t0, the unitary operators can be written as formula 6.32:

U (t0) = U (HM , β0)U (HC , γ0) (6.32)

if continuing the time split operation from t0 to tp, the evolution over step p creates

such p chunks of this unitary operation, which can be written in formula 6.33:

γ, β〉 = U (HM , β0)U (HC , γ0) . . . U (HM , βp)U (HC , γp) (6.33)

One important thing is that the cost Hamiltonian and mixing Hamiltonian are

non-commuting operators, the mixing Hamiltonian drives the state towards an equal

superposition, whereas the cost Hamiltonian seeks the ground state.

6.4.3.4 QAOA Update Rule

Because the input of QAOA is an n bit string with a cost Hamiltonian function H1,

it cannot be used for updating the weight values in a classical neural network. If

one intends to use QAOA in an experiment, some modifications are needed. First

modification is the cost Hamiltonian function, which is also called objective function.

Consider a continuous optimization problem, the aim is to find a minimum x∗ which

satisfies the equation 6.34:

f (x∗) ≈ min
x∈R

f(x) (6.34)

f(x) can be regarded as an objective function, so the problem is finding a state which

minimizes the value of a cost Hamiltonian:

ĤC = f(x̂) (6.35)
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In the experiment, MSE loss function was used as the cost Hamiltonian function,

as defined in formula 6.36:

f(ŷ) =
1

n

n∑
i=1

(yi − ỹi)2 (6.36)

where yi is actual label and ỹi is the predicted label, n is the number of training dataset.

The mixing Hamiltonian function is the kinetic energy in formula 6.37. This mixing

Hamiltonian function is widely used in [47], other choices are also possible to use.

ĤM =
1

2

N∑
j=1

p̂2j :=
1

2
p̂2 (6.37)

According to the Heisenberg representation[26], if Ht/~ is replaced with mixing

Hamiltonian function 6.37, the position operator can be written in formula 6.38:

eiβp̂
2/2x̂e−iβp̂

2/2 = x̂+ βp̂ (6.38)

By using the same idea, the cost operator can be written in the form of momentum:

eiγf(α̂)p̂e−iγf(x̂) = p̂− γ∇f(x̂) (6.39)

So the momentum is the negative gradient of the cost function. Then, a combination of

the cost Hamiltonian(formula 6.39) and mixing Hamiltonian(6.38) is shown in formula

6.40:

x̂→ x̂+ βp̂− γβ∇f(x̂) (6.40)

Formula 6.40 is the gradient descent rule with momentum, each part of the wavefunction

is updated by descending in the direction of its local gradient, with an additional

momentum-dependent displacement. x̂ is the value that needs to be updated, in the

experiment, the weights on the neural network should be updated according to this

quantum method. Thus, formula 6.40 can also be written in the form of formula 6.41:

ŵ → ŵ + βp̂− γβ∇f(ŵ) (6.41)

Then the QAOA unitaries can be written as 6.42:

Û(~γ, ~β) =

P∏
j=1

e−iβjĤM e−iγjĤC (6.42)

where γ = {γj}pj=1 and β = {βj}pj=1. In this equation, β is the rotate angle which

determine the strengths of the shifts in momentum, and γ is the learning rate on
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the quantum circuit, this learning rate is different from the learning rate in ADAM

optimizer. Suppose the initial state is |Ψ0〉 over the weights, and the output state

|Ψγ,β〉 can be produced by applying QAOA unitaries on the initial state, which is

shown in formula 6.43:

|Ψγ,β〉 = Û(γ, β) |Ψ0〉 (6.43)

6.4.4 Results and Analysis

This experiment was run on a quantum simulator(Cirq[43]), QAOA step p was set to

6. ADAM optimizer was used on a classical computer, the learning rate of ADAM

optimizer was 0.005, and the loop was executed 100 times. QAOA update rule was

used in specific iterations, which is 20 and 21, both in the simple neural network and

Iris neural network. Except for iteration 20 and 21, the weights were updated in

backpropagation.

Fig 6.18 illustrates the trend of MSE value of simple neural network during the whole

process. As can be seen in Fig 6.18, MSE value decreases during the 100 iterations,

which confirms that the simple neural network works well. The zoomed figure shows the

MSE value on 20th and 21th iteration. Because the QAOA update rule was used on 20th

and 21th iteration, the MSE value decreased sharply on both of these iterations. This

experiment was executed many times and resulted in similar results, which convinced

that QAOA update rule helped the simple neural network find an optimum faster and

more accurate.

The trend of MSE value of Iris neural network is shown in Fig 6.19. MSE value

decreases during the 100 iterations, and this result confirms that the three layers neural

network works well on Iris dataset. The zoomed figure on the right side shows the MSE

value on 20th and 21th iteration, although the QAOA update rule was applied during

both iterations, MSE value did not change on either of these two iterations. This result

shows that the QAOA update rule in Section 6.4.3.4 does not work on Iris dataset.

One possible reason might be the inappropriate cost function, a proper cost function is

needed, and it should be converted to a superposition representation. Another possible

reason of this phenomenon may be the update rule is not generally correct, the QAOA

update rule works on a small and simple neural network with a small size of weight

matrix, but when the size of the neural network and the weight matrix grow more
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Figure 6.18: MSE - Simple Neural Network

significant, this QAOA update rule is invalid for other kinds of neural network and

problems.

6.4.5 Conclusion

Due to the limitation on a quantum virtual simulator, it is slow and cannot be executed

many times, and the quantum approach was only used on 20th and 21th iteration. The

ideal setup should be a threshold of the MSE value, once the MSE value increases,

the quantum approach can be executed to avoid traps during the training process.

In the beginning, I wanted to use a customized optimizer in TensorFlow, and it is

not easy putting the data point on the tensors and quantum circuits back and forth,

probably I did not find the correct way dealing with the tensors and quantum circuits

in TFQuantum. Thus only in specific iterations, the quantum approach was executed.

In this experiment, the quantum approach was effective during the training of sim-

ple neural network, which accelerated the process of optimization, but it didn’t show

the ability to avoid traps during training, the aim of using Iris dataset was to inves-

tigate a more complex and circuit-handleable dataset, which may cause traps during

the training process, and I could figure out whether the quantum approach helps or

not. Unfortunately, the QAOA update rule did not work on such problem, the reason
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Figure 6.19: MSE - Iris Neural Network

could be the inappropriate weight-update rule, although the QAOA update rule was

applicable on the simple dataset, it was not applicable to other situations, which is

kind of failure in some aspect.
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Conclusion and Future Work

In this chapter, conclusions will be presented based on the experimental results and

some future works that can be done.

7.1 Conclusion

Here the research hypotheses presented in Section 5 can be answered, and draw con-

clusions on the following subjects: whether the quantum neural network can help

accelerate the training process and achieve a higher accuracy compared to classical

approaches, whether the quantum approximating optimization algorithm can speed up

during specific training process and converge to an optima.

Based on the experiment in Section 6.2 and 6.3, I can conclude that a parametrized

Quantum Fourier Transform can speed up the training process with fewer iterations, as

is shown in Table 6.10, under the same iteration value which is 100, quantum assisted

XOR neural network achieved the MSE value as 0.00114 at the end of the training

process, but the classical XOR neural network only got an MSE value of 0.7104. It

will cost more than 20, 000 iterations when the classical XOR neural network converges

to an MSE value lower than 0.001. This experiment showed that a quantum neural

network has a powerful ability to speeding up the convergence process. However, due

to the limitation of current quantum hardware and the number of qubits, we can not

use a quantum neural network as a complete solution for a large dataset. At present,

all that can be achieved is a binary classification with the downsampled dataset.
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A new trial was discussed in Section 6.4. It was an experiment about quantum

assisted optimization problem, a quantum approximate optimization algorithm(QAOA)

was used as an update rule, which was used in specific iterations. The idea was at

first applied to a simple neural network which received binary values as input dataset,

and then it was applied to a neural network which received Iris dataset as inputs. The

results in Section 6.4.4 indicated that QAOA showed its potential ability in accelerating

optimization problem during specific iterations, but if the size of the neural network

became larger, which means the size of weight matrix exceeded the size of a quantum

circuit, this tentative QAOA update rule failed in optimization.

Overall, the hypotheses in Section 5 were answered during the research, although a

regression model was found for the microstructure battery dataset, the regression model

should be overfitting because of the lack of training sets and redundant parameters. A

parametrized quantum neural network was organized, which can successfully accelerate

the training process of a problem and get higher accuracy. However, for a more complex

problem, the ability of a quantum neural network not equal to its ambition, so far, it

can only deal with binary classification problems. A QAOA update rule was proposed

in Section 6.4.3.4 and applied it on a small problem, even if the showed improvements

during specific iterations, this approach could not be a generalized method for solving

such problems.

7.2 Future Work

As future directions, an interested is in checking whether these approaches can be run

on a real quantum computer or a quantum simulator which has enough qubits for use.

Google will announce a 72-qubit superconducting quantum chip in this year or next

year[43], which is an encouraging and exciting event for many researchers.

Secondly, I still have doubt about the QAOA update rule, I suppose something

wrong with the definition in my research, such as the choice of the cost function, and

the representation of superposition in a quantum circuit, etc.. It is a severe problem to

answer clearly within several months only, my research was a trial which showed that

this kind of approach might not be feasible. This kind of research can be a stepping

stone for further studies in using QAOA as an optimizer, and I will also keep adjusting

this approach for more extensive uses.
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