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Abstract

Community detection algorithms are used to make an abstraction of a large complex network in order to

make the structure of the network more comprehensible. These take more compute time for larger networks

and networks can get as large as millions of nodes and billions of edges. This is why there is a need for fast

community detection algorithms. CPU core count continues to increase and community detection algorithms

could benefit from this if they would be implemented using parallelization techniques. The sequential Leiden

community detection algorithm is an improvement over the widely adopted Louvain community detection

algorithm. In this thesis we will try to parallelize and speed up the Leiden algorithm while trying not to

reduce the quality of the solution. The result is a lock free parallel adaptation of the Leiden algorithm which

is faster than the original sequential implementation.
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Chapter 1

Introduction

This research is focused on parallelizing part of a community detection algorithm with the goal to improve

execution speed while maintaining the quality of the result. The subject of network science is introduced in

Section 1.1 and community detection is explained in Section 1.2. Section 1.3 explains why we parallelize an

existing community detection algorithm. Section 1.4 gives an overview of the content of this thesis.

1.1 Network Science

Figure 1.1: Example of a network (graph).

Network science is a field of science that focuses on ana-

lyzing and understanding networks. A network, also of-

ten referred to as a graph, is a collection of entities with

connections between each other. Examples are social net-

works, where the entities are human beings and the con-

nections are friendships. Other examples are financial

networks, biological networks or scientific collaboration

networks. Formally, such a network can be described by

G = (V, E) where the network G contains a set of nodes

V and a set of edges E ⊆ V × V. The number of nodes

in a network is n = |V| and the number of edges in a

network is m = |E|. The neighbourhood of a node i is

Ni = {j : (i, j) ∈ E} where j is another node in the net-

work and (i, j) is an undirected edge connecting node i to node j and vise-versa. The degree of a node i

is ki = |Ni| which is the number of edges connected to node i. Additional information about a node or

3



4 Chapter 1. Introduction

edge can be captured in metadata. This metadata can be quite diverse and very specific to a network, thus

it is not often considered in general purpose network analysis methods. One exception is the weight of an

edge which is very commonly used in network science. The weight of an edge indicates the intensity of the

connection represented by the edge. For example, in a financial network the amount of money that flows

between two entities can be represented by the weight of the edge between the two nodes. Figure 1.1 shows

a simple example network based on mock data. The size of a node in this example is based on the degree

of the node. This type of visualisation is a very common way of visualizing a network. However, for very

large networks this representation is no longer usable because the image would become cluttered. In network

science we try to extract knowledge from real world networks. Some examples are finding influential persons

in a social network such as Twitter, discovering the largest conduits in a financial network, discovering what

friends to recommend on Facebook, finding related products in a webshop or discovering crucial proteins in

a protein interaction network. A major challenge in network science is the scale of the network and the speed

of execution. Many algorithms used to analyze networks scale quadratically or worse when the network

increases in size making analysis of large networks very time consuming. This research focuses on the scale

and speed aspect of a particular network analysis algorithm.

1.2 Community Detection

Figure 1.2: Example of communities in Figure 1.1
merged into single nodes.

A community in a network is a group of entities that

has relatively more connections within the group than

with entities outside of the group. An example would

be a group of friends who all know each other, creating

a strongly connected community. Sometimes interesting

information about communities is captured in the meta-

data which can then serve as a ground truth. In other

cases such information is unavailable or even a true group

structure does not exist. Knowing the communities in a

network can be useful to understand the structure of large

networks. The community structure provides a higher

level overview of how the network is constructed. The

lower level structure of a network is too complex to un-

derstand when there are millions of entities and connections involved. The higher level community structure

provides a better overview and helps to summarize many entities into one larger entity (community). We

can apply community detection to the network in Figure 1.1 and merge all nodes that are in the same com-

munity into a single node. Figure 1.2 shows the network resulting from that operation. In both figures the
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community is also represented by the node color.

There are different methods to find these communities. One is optimizing modularity which is what the

widely adopted Louvain algorithm tries to do heuristically. The algorithm moves each node to the community

that gives the highest modularity gain until no further gain in modularity can be made. We will now explain

what modularity is.

Let C be a community partition for network G = (V, E) where C is a set of communities. A community c ∈ C

contains a set of nodes from V, for example c = {i, j, k, ...}, where i, j, k ∈ V. The actual number of edges

in a community c is given by ec = |{(i, j) ∈ E : i, j ∈ c}| where (i, j) is an edge between node i and node j

and both these nodes are in community c. Each node can only be in one community so cx ∩ cy = ∅ for all

cx, cy ∈ C. The sum of degrees of all nodes v in a community c is Kc = ∑v∈c kv where kv is the degree of node

v. The number of edges connected to any of the nodes in a community can be approximated by Kc
2 since

summing over the degrees causes edges that are completely within c to be counted twice. The fraction of

edges from the entire network connected to any of the nodes in the community would then be Kc
2m where m is

the total number of edges in the network. This also approximates the chance that an edge is involved in the

community if the edges were connected at random. The expected number of of edges in a community c is K2
c

2m

if the edges were connected at random. This is derived by first breaking all edges leaving only the endpoints

of the nodes. For a node i there are then ki endpoints. For each of those endpoints we chose a random

endpoint to connect to and the probability that an endpoint is chosen from the community c is Kc
2m . When this

is done for all Kc endpoints we obtain K2
c

2m . The modularity is calculated by comparing the expected number

of edges in a community with the actual number of edges in a community and summing the difference over

all the communities,

H =
1

2m ∑
c

(
ec − γ

K2
c

2m

)
. (1.1)

The resolution parameter is γ: a higher resolution will result in more communities since it expects more edges

to be inside the community by increasing the effect of K2
c

2m . To optimize modularity many possible community

partition have to be considered and the number of possible partition grows exponentially with the size of

the network. Heuristic algorithms like the Louvain algorithm do not test every possible partition since this

takes exponential time, instead the algorithm searches for a maximum modularity by moving nodes to the

community with the highest modularity gain until no further gains can be found.

1.3 Parallelization

Community detection is more important for larger networks but also computationally harder. In fact some

networks are so large that it would take many minutes to finish one analysis, which is a problem in real-



6 Chapter 1. Introduction

time analysis contexts. The larger a network the more valuable community detection becomes, as mentioned

before. Therefore, this research is focused on speeding up an existing community detection algorithm.

The Leiden algorithm as described in [TWvE19] by Traag et al provides a speed and quality improvement

compared to the existing Louvain algorithm. We will not try to change the algorithm itself but rather how it

is executed. The Leiden algorithm is a sequential algorithm, meaning it does all operations step by step, in

order. Many modern computers have multiple cores allowing for operations to be distributed over multiple

threads which are then executed in parallel. However, implementing a parallel version of an algorithm is

not always trivial. The different threads might share some data, in which case locking is needed. Locking

data in parallel computing means that the data will be used for reading and/or writing by only one thread

at one time in order to preserve the correctness of this data. This locking of data might result in a bottleneck

in the computation because threads will wait for other threads when the data is needed simultaneously.

Not using any locking might result in incorrect results, while locking data too often might result in a large

overhead and slow execution speed. When parallelizing a community detection algorithm this might prove

to be a challenge since all the threads will be working on the same community partition data. This raises

the question: Could the Leiden algorithm be executed with greater speed using a parallel implementation

without sacrificing the quality of the community detection?

1.4 Thesis Outline

This thesis will cover other work related to community detection and parallelization in Chapter 2. Chapter

3 is about our approach of parallelizing community detection and covers the Louvain and Leiden algorithm

it also discusses different approaches and challenges in parallelizing the Leiden algorithm, including our

proposed approach. Chapter 4 explains the experimental setup and shows the results of experiments and

evaluates these results. Finally, conclusions are drawn in chapter 5 and future work is discussed.



Chapter 2

Related Work

Section 2.1 will explain several community detection algorithms. Section 2.2 will discuss related works on

parallel community detection algorithms, concluding in Section 2.3 with what we learned from that.

2.1 Community Detection Algorithms

A community detection algorithms takes as input a network and produces a community partition of the

nodes from the input. The community partition is an assignment of each node to a specific community.

2.1.1 Louvain

The Louvain algorithm is a widely adopted heuristic community detection algorithm. It was introduced in

the work of D Blondel et al. [BGLL08]. The Louvain algorithm will be explained in more detail in Chapter 3.

2.1.2 Leiden

In the work of Traag et al. an adaptation of the Louvain algorithm is presented [TWvE19] called the Leiden

algorithm. This adaptation shows improved execution speed and solution quality over the Louvain algorithm.

This will be discussed in more detail in Chapter 3.

7



8 Chapter 2. Related Work

2.1.3 Infomap

In [RB08] by Rosvall et al. the Infomap algorithm is introduced. The Infomap algorithm is comparable to

the Louvain method in how it tries to optimize the communities assigned to the nodes. However it does

not optimize modularity but it optimizes the map equation. The algorithm considers the limits of encoding

random walks over the network as a series of bit codes assigned to all the nodes. The prefixes of the bit

codes describe the community a node is in. The map equation will give a higher score when these walks

can be expressed in a more compact way. This happens when bit codes can be reused by nodes in different

communities because they have a different prefix.

2.2 Parallelized Community Detection

One way of making community detection algorithms faster is to execute the computational work in parallel

over multiple compute units. We will now discuss different approaches of parallelization applied to different

community detection algorithms.

2.2.1 Message Passing Interface

The Message Passing Interface (MPI) is an interface designed to allow the writing of code that can be ex-

ecuted by distributed systems containing many machines that work together in a highly scalable parallel

fashion. In [ZY18] by Jianping Zeng et al. an MPI implementation of the Infomap community detection

algorithm is presented. They managed to scale the Infomap algorithm to massively distributed systems al-

lowing thousands of CPU threads to work on the same community optimization in parallel. This is useful

for doing community detection for large networks on clusters of computers. Using the MPI implementation

of Infomap they show a small speed-up for small data-sets and a larger speed-up for larger data-sets. This is

typical since the parallelization overhead created by the communication between compute-units becomes less

significant when each compute-unit has to do more work. On their largest data-set of 105.9 million nodes

and 3.78 billion edges they achieve a 6 times speed-up.

2.2.2 GPU Acceleration

Graphical Processing Units (GPU’s) contain many (thousands) of compute units on a single processor chip

to do simple tasks in a massive parallel fashion. GPU’s are commonly applied to speed-up 3D rendering

in games and animation. However, nowadays GPU’s are also very popular in scientific computations such

as neural networks and physics simulations. Naim et al. have worked on speeding up the existing Louvain
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algorithm [NMHT17]. In their work they show a GPU implementation of the Louvain algorithm that is also

adaptive. The algorithm is adaptive in the quality threshold, meaning that the algorithm will stop early

once the quality does not seem to improve much anymore. These two improvements showed a speedup

of 2.7 up to 312 compared to the sequential algorithm. When adding the adaptive part to the sequential

algorithm they showed that the GPU algorithm gives a speedup of 1 to 27 compared to the sequential adaptive

algorithm. The modularity decrease was less than 0.13%. A challenge they overcame was the large difference

in degree between nodes. A node with a high degree requires more computation time and this results in

an unbalanced run time for each node visited. This was solved by making the number of threads assigned

to each computation depend on the degree of a node. This means that nodes with a high degree get more

threads assigned to them, making the computation time for all nodes more balanced. This is specific for GPU

computations since the idea behind GPU computation is to have many simple compute units doing the same

simple task on different parts of the data in a synchronized streaming way.

2.2.3 Heterogeneous Computing

In [HVPPLP15], Heldens et al. presents a heterogeneous approach to community detection called Het-SCD.

Their basis is the Scalable Community Detection (SCD) which is introduced in [PPDSLP14] by Prat-Pérez et

al. SCD uses the Weighted Community Clustering (WCC) which was introduced in [PPDSBLP12] also by

Prat-Pérez et al. WCC scores a community partition based on the relative amount of closed triangles in a

community. They show that GPUs give a performance increase to the SCD algorithm. They also acknowledge

that the size of a GPU’s memory is not sufficient for very large graphs. They present a heterogeneous method

where the computation is split over the larger CPU memory and the smaller GPU memory. This resulted in

a speedup over a parallel CPU-only implementation for a network that was too large for GPU memory. They

did not implement the entire algorithm with the hybrid approach but only what they call the refinement

phase which was 41.5 times faster compared to the sequential version for the Live Journal data-set. For end-

to-end execution this resulted in a reduction in execution time between 25% and 50% depending on which

GPU was used.

2.2.4 Locking

As discussed in Section 1.3, parallel programming often comes with the challenge of managing the shared

data between threads. A non-trivial problem are read/write collisions which happens when one thread is

altering data while another thread is reading that data. When this happens and one wants to make sure each

thread gets the correct data there is need for locking of the data. This means that only one of the multiple

threads can access the data at any given time. This could potentially result in threads being idle while they
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wait on data becoming available which reduces efficiency. RelaxMap is a method proposed by Seung-Hee

Bae et al., in [BHW+
17]. It is a variation of the Infomap algorithm with parallelization and prioritization. The

parallelization achieves high efficiency thanks to their relaxed lock-free approach. The lock-free approach is

needed because the Infomap algorithm is sequential by nature and would remain sequential if locking would

be applied since threads would be waiting on each other resulting in threads taking turns. Among other

results they show a 17.6x speed-up without loss of quality using 60-way parallelism. They empirically find

that the lock-free approach does not cause loss of output quality due to the sparse nature of the networks.

Their expectation is that this concept is general enough so that it could also apply to other community

detection algorithms. Another observation they make is a correlation between the average degree of a network

and the effectiveness of the parallelization ‘where denser (higher average degree) graphs tend to achieve better

performance than sparser (lower average degree) graphs’ [BHW+
17]. The meaning of the word graph in this

quote is the same as the meaning of the word network in this thesis. The reason for this difference could be

that for denser networks each threads spends relatively more time on optimizing the community assignment

for each node end less time on communicating the results to other threads.

2.3 Inspiration from Related Works

These related works show that parallel implementations of community detection algorithms can be very effec-

tive in providing faster execution without significant loss of quality in the results. Many of these approaches

depend on specific hardware, such as clusters of multiple computers or GPU’s. In this work we focus on a

solution that is meant for CPU’s on a single machine. We hope this makes the solution more applicable for

community detection on consumer level desktops. This makes the algorithm more suitable as a plugin for

graph analysis tools such as Gephi [BHJ09]. However, to explore the full capability we will test our imple-

mentation of the Leiden algorithm on many core machines with high RAM capacity. We will also put the

lock-free approach from [BHW+
17] to the test and try to see how this impacts the quality of the algorithm’s

results.



Chapter 3

Approach

In this chapter we will explain our approach for improving the execution speed of community detection

without loss of quality. Section 3.1 will explain in more detail how the Louvain and Leiden community

detection algorithms work. In Section 3.2 we will discuss approaches for parallelizing the Leiden algorithm

that have been considered while developing our proposed parallelization approach. Section 3.3 will explain

our parallel implementation of the Leiden community detection algorithm that was further analysed in our

experiments in Chapter 4.

3.1 Existing Sequential Approaches

3.1.1 Louvain

The Louvain algorithm, introduced in [BGLL08] by Blondel et al., is a widely adopted heuristic community

detection algorithm that uses modularity. In Section 1.2 we defined modularity with the help of Equation 1.1.

The Louvain algorithm starts with a community partition where each node is in its own community. Mod-

ularity is then optimized by moving nodes to communities that give the highest modularity gain. This is

done by calculating the potential modularity gain for each potential community when the node would be

moved to that community. Once no more moves are found that increase modularity, all nodes that are in the

same community are aggregated into new nodes. Modularity is optimized again for this aggregated network

resulting in a new community partition. This moving and aggregating is repeated until each community

in the aggregated network contains one node. The aggregated network is then de-aggregated or flattened

back into the original network. The resulting community partition can be the input for a new iteration of

the algorithm to improve the quality of the partition or the community partition can be returned and the

11
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algorithm terminates. The number of iterations of the algorithm is configurable.

Algorithm 1 shows the outer loop of the Louvain algorithm and the MoveNodes function. Other parts

of the algorithm are left out of this pseudo code because the remainder of this research focuses on the

MoveNodes function. This pseudo code comes from [TWvE19]. Community partition P, which is a of the set

of communities just like C mentioned in Section 1.2, starts initially as a singleton partition where each node

is assigned to a community containing just itself. The algorithm terminates when the condition on line 4

is met where there are as many communities as nodes. This happens after all nodes in a community are

aggregated into a single node and then put into a singleton partition on line 6, 7 and when subsequently no

nodes are moved during the MoveNodes function on line 3. On line 10 the Flat function is called which

unfolds the node aggregation creating as many nodes as there were at the start but each node is assigned to

the community that was found while the nodes were aggregated. This is further explained in [TWvE19]. The

MoveNodes function is a loop over all nodes and for each node all neighboring communities are considered,

as well as a new empty community. The community that provides the highest modularity gain is chosen on

line 16. Only if there is a strictly positive gain in modularity the node is actually moved, which happens

on line 18. Line 21 describes the condition for termination of the MoveNodes function: if there was no

modularity gain in one loop over all nodes, the MoveNodes function terminates. This means that if even one

node is moved, the loop will in line 13 will repeat over all nodes. We will see later that this is a big difference

compared to the Leiden algorithm.

Algorithm 1 parts of the Louvain algorithm.

1: function Louvain(Graph G, Partition P)
2: do
3: P← MoveNodes(G, P)
4: done← |P| = |V(G)|
5: if not done then
6: G ← AggregateGraph(G, P)
7: P← SingletonPartition(G)
8: end if
9: while not done

10: return Flat*(P)
11: end function

12: function MoveNodes(Graph G, Partition P)
13: do
14: Hold = H(P)
15: for v ∈ V(G) do
16: C′ ← argmaxC∈P∪∅∆HP(v 7→ C)
17: if ∆HP(v 7→ C′) > 0 then
18: v 7→ C′

19: end if
20: end for
21: while H(P) > Hold
22: return P
23: end function
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3.1.2 Leiden

In [TWvE19] by Traag et al., an adaptation of the aforementioned Louvain algorithm is presented. The pre-

sented adaptation of the Louvain algorithm, called the Leiden algorithm, has two improvements over the

Louvain algorithm. First, it is faster because it uses a fast local moving algorithm that only reconsiders opti-

mizing modularity for nodes that are in the neighbourhood of a previously moved node but are no longer in

the same community. This is different from the Louvain algorithm, which continues to optimize modularity

for each node until no further modularity gain is found. Second, the Leiden algorithm solves the issue that

Louvain has where it creates badly connected (or even disconnected) communities. A badly connected com-

munity is one that would give a higher modularity if the community was split up in its well-connected parts.

The Louvain algorithm only moves one node at a time so these badly connected communities can remain

intact, leaving the community partition in a bad local optimum. These badly connected communities arise

when a node is moved out of a community and the community left behind becomes badly connected due to

that move during the MoveNodes function. The Leiden algorithm solves this by refining each community

after one iteration of the MoveNodesFast function. This might split a community into multiple communities

when they have become badly connected after a node move which increases the connectedness of the remain-

ing communities. The Leiden algorithm guarantees well connected communities and does so with a higher

speed and a higher quality of the result than the Louvain algorithm. This is why the work in this research is

focused on further improving the Leiden algorithm.

Algorithm 2 shows parts of the Leiden algorithm as written in [TWvE19]. The outer loop at line 2 contains

the MoveNodesFast function on line 3, the stopping condition on line 4, the community partition refinement

on line 6 and aggregation of nodes based on this refinement on line 7. However, the community partition

that was not refined is kept as the resulting partition which is done on line 8. On this line C is a community

present in the non-refined partition P which was the result of the MoveNodesFast function. Each node v that

is in both the aggregated graph G and in a community C is included in the new version of partition P that is

used for the remainder of the algorithm. This approach maintains a high modularity while also maintaining

well-connected communities. This is described in more detail in [TWvE19]. Our research focuses on the fast

local moving algorithm. The fast local moving algorithm fills a queue Q with nodes from the graph on line

14, which is done randomly. The fast local moving algorithm then loops over the queue which means that for

the first n (number of nodes) iterations the fast local moving algorithm from the Leiden algorithm is similar

to the local moving algorithm from the Louvain algorithm. On line 16 a node is removed from the queue and

selected for modularity optimization. If a node is selected, the algorithm assigns the node to the community

that gives the highest modularity gain just like the Louvain algorithm on line 17, 18 and 19. However, it also

adds all neighbouring nodes that are not in the new community to the queue on line 20 and 21. This is where

the fast local moving algorithm is different from the Louvain algorithm. The loop continues over the queue
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Algorithm 2 parts of the Leiden algorithm.

1: function Leiden(Graph G, Partition P)
2: do
3: P← MoveNodesFast(G, P)
4: done← |P| = |V(G)|
5: if not done then
6: Pre f ined ← RefinePartition(G, P)
7: G ← AggregateGraph(G, Pre f ined)
8: P← {{v|v ⊆ C, v ∈ V(G)}|C ∈ P}
9: end if

10: while not done
11: return Flat*(P)
12: end function

13: function MoveNodesFast(Graph G, Partition P)
14: Q← Queue(V(G))
15: do
16: v← Q.remove()
17: C′ ← argmaxC∈P∪∅∆HP(v 7→ C)
18: if ∆HP(v 7→ C′) > 0 then
19: v 7→ C′

20: N ← {u|(u, v) ∈ E(G), u /∈ C′}
21: Q.add(N −Q)
22: end if
23: while Q 6= ∅
24: return P
25: end function

until it is empty which is shown on line 23. This can save a lot of extra work since only the necessary nodes

are considered after a node is moved, instead of the complete set of nodes.

Our focus is on parallelizing the Leiden community detection algorithm, in particular the fast local moving

step. The first reason to do so is to limit the scope since this can be seen as an isolated step in the Leiden

algorithm. The second reason is because this part of the Leiden algorithm seems to take up about half of

the processing time after testing it with some preliminary benchmarks using the Live Journal dataset (see

Chapter 4). For this research a JAVA implementation of the Leiden algorithm was adjusted to partially run

in parallel.

3.2 Parallel Approaches

In this section we discuss different approaches for parallelizing the fast local moving step from the Leiden

community detection algorithm. First we discuss the requirements needed for implementing any of these

approaches.
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3.2.1 Requirements

To parallelize the fast local moving step the so-called worker tasks and datamanagement tasks need to be

separated. The worker tasks contain the modularity optimization operations and the datamanagement tasks

are bookkeeping operations that maintain information about the community partition. The idea is that mul-

tiple threads exist that execute the worker tasks and optimize the community assignment for different nodes

in parallel and that only one instance of a datamanagement class exists which does all the bookkeeping of

which nodes belong to which community which separates the writing operations done in the datamanage-

ment tasks from the reading operations done in the worker tasks. The possible approaches we present do

not use any locking on the community partition data. This was because this data is shared over all threads

and putting locking on it would likely result in an effectively sequential algorithm. Since this is a heuristic

algorithm a loss in solution quality might be worth the speedup. Besides that, the number of threads typically

found in a computer is much lower than the number of nodes in a network. If the network is sparse enough

there should not be many conflicts in the data. This is also mention in [BHW+
17].

3.2.2 Control Mechanisms

To determine which thread works on optimizing modularity for which node, a control mechanism is needed

that distributes the nodes in the queue over the threads. Section 3.2.2, Section 3.2.2 and Section 3.2.2 discuss

three different approaches to implement such a control mechanism and we will compare their benefits and

downsides in Section 3.2.2. These approaches were created during the development of our parallel imple-

mentation of the Leiden algorithm and we used preliminary benchmarking and software profiling to analyze

their effectiveness.

Threadpool Executor Approach

The JAVA threadpool executor approach uses the existing threadpool executor class from the JAVA concurrent

utilities library which gets a set of task objects as input and then executes them over multiple threads. Since a

created task object cannot be altered a task object needs to be created for each node on the queue in order for

a task to work on optimizing that node’s contribution to the modularity value. This approach required a way

to deal with constantly creating new tasks for each new node on the queue. Since each task object requires

large arrays to store all the required network and community data this method can create a lot of overhead

due to array initialization. An object called the ’array shop’ can solve this issue by initializing enough arrays

for all the threads at the start of the fast local moving algorithm and then giving arrays to each new task

initialized by the threadpool executor. Once a task is done the array is free to be used by a new task. The
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array shop object keeps track on which arrays are in use and which are free. We did preliminary experiments

with this approach and it does execute correctly. However, it is slightly slower than the sequential Leiden

algorithm and gives worse modularity results.

Chopped Queue Approach

Interaction with the queue requires locking of the queue since threads should not be optimizing the modu-

larity contribution of the same node. Considering the frequency of queue interaction this results in a large

overhead. This approach therefore intends to minimize queue interaction by dividing (or chopping) the main

queue, as seen in Algorithm 2 line 14, into a number of smaller queues equal to the set number of threads.

Each worker thread processes only one of those smaller queues. This approach of delivering work in bulk

reduces interaction between a worker thread and the main queue. Each thread then finds the community

with the highest modularity for each node in their assigned queue. Once all threads are done, a new main

queue is created based on which nodes were moved. Only nodes whose neighbour moved to a different

community are added back to the queue. This queue is then chopped into pieces again and new threads are

initialized to repeat the process again. This approach shows a very small speedup over the original algorithm

but only for a specific dataset. However collecting a new queue, chopping it up and re-initializing the threads

repeatedly for each iteration of the fast local moving algorithm has a big overhead.

Self Fetching Approach

In this approach is very similar to Algorithm 2 except that the loop starting on line 15 is executed by multiple

threads. The queue interaction on line 16 and 21 are locking operations so threads will wait for each other

to finish removing or adding nodes. This causes a large overhead because of threads idly waiting on the

queue to be unlocked. This approach is slightly slower than the sequential Leiden algorithm but has the

same modularity results.

Overview of Potential Approaches

Table 3.1 shows an overview of the intended benefits and the downsides of the aforementioned approaches.

3.3 Proposed Parallel Approach

The concept of using the queue in bulk from the chopped queue approach is combined with the simplicity of

the self fetching approach in our proposed parallel approach. The original queue from the Leiden algorithm is
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Approach Intended benefit Downsides
Threadpool Executor Out of the box thread management op-

timization
Large overhead in initializing many
tasks and managing their resources

Chopped Queue Reducing locking on the queue by de-
livering work in bulk

Large overhead in collecting new work
and re-initializing threads

Self Fetching Simple and straight forward approach
without repeated re-initialization of
threads

Overhead from very frequent queue in-
teraction

Table 3.1: Overview of attempted control mechanisms.

implemented as a linked integer list instead of as an array. This allows for different lists to be added together

by only adjusting the pointers at the head and the tail and adjusting the meta-data such as list-length, list-

start and list-end. This linked list approach makes it possible to quickly split a list without initializing new

arrays or having to copy data to new arrays. Using this linked list implementation worker threads can fetch

a certain amount of nodes from the queue to work on with only one locking operation. This saves many

locking operations compared to fetching one-by-one. The same advantage applies to adding nodes to the

queue. The community data manager collects all nodes that need to be added to the queue in a linked list

and returns it to the worker thread. The worker thread collects all lists for each of the nodes it processes and

then adds that entire list to the queue at once in one locking operation.

Figure 3.1: Interaction between worker threads, the queue and the community data manager.

Figure 3.1 shows the interaction between the worker thread(s), the linked list queue and the community data

manager. The worker thread(s) start by fetching a sublist of nodes that still need to be moved to a modularity

optimal community. For each element on the sublist this is done in the inner loop in the middle of the image.

During this inner loop the moving of the nodes and determining the new queue elements is through the
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Algorithm 3 Parallel Fast Local Moving Algorithm.

1: function ParallelMoveNodesFast(Graph G, Partition P, Integer numberO f Threads)
2: Q← LinkedQueue(V(G)) . Create linked list of nodes as the main queue
3: threads = NodeMoverThread[numberO f Threads] . Create threads array
4: for nodeMoverThread ∈ threads do
5: nodeMoverThread.start() . Start each thread
6: end for
7: WaitFor(threads) . Wait until all threads are done
8: return P
9: end function

10: function NodeMoverThread(Integer numberO f Threads)
11: do
12: f etchSize = Q.length+numberO f Threads−1

numberO f Threads
13: Qsub ← Q.fetchSubQueue( f etchSize) . Locking call that fetches a sub-queue
14: do
15: v← Qsub.remove() . Remove item from sub-queue
16: C′ ← argmaxC∈P∪∅∆HP(v 7→ C) . Find community with optimal modularity gain
17: if ∆HP(v 7→ C′) > 0 then
18: v 7→ C′ . Move node with a non-locking call on the partition
19: N ← {u|(u, v) ∈ E(G), u /∈ C′}
20: Qnew.add(N) . Collect new queue elements
21: end if
22: while Qsub 6= ∅ . Continue while queue part is not empty
23: Q.add(Qnew −Q) . Locking call that adds all the new queue elements
24: while Q 6= ∅ . Continue while the main queue is not empty
25: end function

datamanager. These new queue elements are not yet directly added to the main queue. Once a worker thread

is done with processing it’s sublist all the new queue elements are added in bulk to the main queue. After

this the worker thread requests a new sublist from the main queue. Only the interaction between the worker

thread(s) and the queue is a locking interaction which means that a worker thread can work uninterruptedly

for each whole sub-list it processes.

Algorithm 3 is the pseudo-code that replaces the fast local moving algorithm of the Leiden algorithm in our

parallel implementation of the Leiden algorithm. On line 2 all the nodes in the network G are added to

the linked list queue Q in random order. A set of threads is created on line 3 where numberO f Threads is

a value given to the algorithm by the user through a commandline parameter. This is done so that users

can configure the thread count based on the hardware that they are using. All the threads are started on

line 5 and the main thread then waits for all worker threads to be done on line 7. Each of the threads that

were initialized by the main thread execute as described in the NodeMoverThread function. The f etchSize

is calculated on line 12 based on the numberO f Threads. This way the nodes are evenly distributed among

threads but at the same time there is always a piece of queue left for the next fetch so threads are not starved

for work. In the actual implementation in code a thread will fetch the entire queue once the f etchSize is

lower than 10 in order to prevent threads from doing a full loop over only a hand full of nodes. On line 13

a part of the main queue Q is fetched and put in the thread’s local queue called Qsub based on f etchSize.
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On line 14 a loop starts that goes over all the elements in Qsub by removing them one by one on line 15 and

continuing until Qsub is empty on line 22. The optimization of the modularity is the same as the original

Leiden algorithm on the lines 16-19. The new queue elements are appended to a temporary local queue

called Qnew on line 20 which is later added to the main queue on line 23. The difference with the self fetching

approach from Section 3.2.2 is that multiple threads access the same queue by fetching multiple elements

at once and queue elements are added back to the queue by bulk as well. Qsub, Qnew, v and N are local

variables within each node mover thread. Graph G, main queue Q and community partition P are global

variables and that data is shared among threads. G consists of the edges E and all the nodes V. P contains all

communities such as C and C′. All parts of graph G do not need locking since that data is not manipulated

but only read. The parts of partition P could use locking to preserve data correctness but we chose not to as

discussed earlier. Only the interaction with the main queue Q is done in a locking fashion to avoid errors

in execution and node 7→ community assignment. This is because by locking the main queue Q every node

is present in only one Qsub of a thread at most. Therefore the node 7→ community assignment is done by

only one thread at a time for a specific node ensuring singular assignments of nodes to communities. The

node 7→ community assignment itself therefore does not need locking to ensure that. The only likely error

that this causes is that the community assignment of a node is read incorrectly by a thread that is reading the

community of a neighbouring node of the node that thread is currently working on. However, this is only

an error in the heuristic calculation of the modularity gain and we chose to ignore that possible error and

discover empirically what the impact on the quality becomes.
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Experiments

In this chapter we will cover what datasets were used for these experiments in Section 4.1. In Section 4.2 the

hardware used for these experiments is described. Section 4.3 explains how the experiments were setup. The

results of these experiments are presented in Section 4.4 and these results are evaluated in Section 4.5. Finally

an extra experiment on the density of a network in relation to the speedup of parallelization is covered in

Section 4.6.

4.1 Datasets

Six empirical real-world networks were used to analyse the performance of the parallelization of the Leiden

algorithm. These are the same data-sets that were used in [TWvE19].

Table 4.1 shows the number over nodes, number of edges and the average degree of the nodes in the net-

works used in our experiments. The average degree can be calculated by m
2n because these networks are all

undirected networks.

Nodes (n) Edges (m) Average Degree
DBLP 317080 1049866 6.62

Amazon 334863 925872 5.53

IMDB 374511 15014839 80.18

Live Journal 3997962 34681189 17.35

Web of Science 9811130 104436131 21.29

Web UK 39252879 781439892 39.82

Table 4.1: Empirical real-world data-sets that were used in the experiments.

20
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4.2 Hardware

The experiments were done on a machine containing two AMD EPYC 7601 32-Core processors totalling

64 cores and 128 threads with 1TB of RAM. The experiments themselves were not run simultaneously, so

only one algorithm was running at any one time on this machine. Due to technical difficulties the Web UK

experiments were run on a different machine which has two Intel Xeon E5-2697 v2 processors totalling 24

cores. For that reason the maximum number of threads configured was 32.

4.3 Experimental Setup

Eight versions of the algorithm were tested: the original Leiden algorithm and seven versions with the

parallelized fast local moving algorithm. These seven version are identical except for the configured number

of worker threads. Experiments were done using 1, 2, 4, 8, 16, 32 and 64 threads. Testing all six datasets with

all eight algorithm results in 48 experiments. These were all repeated 10 times giving a total of 480 runs.

The results were averaged back into 48 results. Each of the 480 runs consists of 10 iterations of the Leiden

algorithm just as the experiments in [TWvE19]. Measurements were done separately for the run-time of the

fast local moving part of the the algorithm and complete the algorithm to see how well the parallelization

works by itself and what the consequences are for the Leiden algorithm as a whole. The first iteration of

the complete algorithm was also measured separately to give insight in how effective parallelization is since

that first iteration gives the largest modularity gain according to [TWvE19]. The final modularity is also

recorded to see if there are any significant losses or gains in the quality of the solution. The code for the used

implementation can be found on github 1.

4.4 Results

Figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 summarize the results of the experiments for each dataset in a graph.

Each graph shows the used algorithm on the horizontal axis and the total runtime on the verical axis. The

runtime is split up into the runtime of the fast local moving part and the runtime of the algorithm that is

not the fast local moving part. The top error bars show the standard deviation of the total runtime of the

algorithm. The error bars in the middle show the standard deviation of the runtime of the fast local moving

part of the algorithm.

1https://github.com/Geertex/networkanalysis/tree/LeidenParallelV1.0
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Figure 4.1: DBLP runtimes of 10 iterations with the fast local moving algorithm run-time highlighted.

Figure 4.2: Amazon runtimes of 10 iterations with the fast local moving algorithm run-time highlighted.
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Figure 4.3: IMDB runtimes of 10 iterations with the fast local moving algorithm run-time highlighted.

Figure 4.4: Live Journal runtimes of 10 iterations with the fast local moving algorithm run-time highlighted.
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Figure 4.5: Web of Science runtimes of 10 iterations with the fast local moving algorithm run-time highlighted.

Figure 4.6: Web UK runtimes of 10 iterations with the fast local moving algorithm run-time highlighted.
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In Table 4.2 an overview of the results is presented as the relative speed of each of the parallel versions

compared to the original Leiden algorithm. This is shown separately for the fast local moving step, the

complete algorithm and the first iteration of the complete algorithm. Table 4.2 also shows the increase in

modularity value of the solution as a percentage gained over the original Leiden algorithm or percentage lost

in the case of negative values.

no. of threads→ 1 2 4 8 16 32 64

DBLP local move 0.83 1.12 1.52 1.66 1.74 1.53 1.09

full alg 0.92 1.04 1.11 1.16 1.15 1.13 1.00

1st iteration 1.01 1.05 1.26 1.33 1.28 1.26 1.14

modularity diff 0.05% 0.07% 0.07% 0.04% 0.11% 0.10% 0.08%

Amazon local move 0.80 0.99 1.34 1.64 1.57 1.28 0.97

full alg 0.92 0.97 1.03 1.09 1.08 1.05 0.93

1st iteration 0.93 0.92 1.08 1.13 1.14 1.07 0.93

modularity diff 0.00% -0.02% -0.01% -0.01% -0.01% -0.01% -0.01%

IMDB local move 0.94 1.62 2.50 3.79 4.74 4.45 3.51

full alg 1.01 1.17 1.27 1.36 1.35 1.33 1.28

1st iteration 0.97 1.33 1.61 1.90 2.06 2.16 1.81

modularity diff -0.07% 0.00% 0.04% 0.00% -0.06% -0.11% 0.01%

Live Journal local move 0.92 1.51 2.24 3.60 4.77 4.28 3.95

full alg 0.96 1.19 1.29 1.44 1.54 1.48 1.49

1st iteration 1.01 1.36 1.62 1.75 2.23 2.27 2.48

modularity diff 0.01% -0.10% 0.00% -0.13% -0.03% -0.11% -0.16%

Web of Science local move 0.95 1.40 2.25 3.99 5.84 6.50 4.28

full alg 0.98 1.18 1.43 1.65 1.79 1.77 1.55

1st iteration 0.98 1.30 1.72 2.40 3.15 3.51 3.53

modularity diff 0.17% 0.12% 0.04% 0.02% 0.01% 0.12% 0.02%

Web UK local move 0.77 1.38 2.01 2.85 2.83 2.25

full alg 0.87 1.06 1.15 1.30 1.25 1.22

1st iteration 0.85 1.01 1.31 1.53 1.48 1.38

modularity diff 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 4.2: Average speedups for 10 iterations of the local moving algorithm, 10 iterations of the full algorithm, the first
iteration of the full algorithm and the modularity increase compared to the original Leiden algorithm for the different
number of threads used in the experiments.
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4.5 Evaluation

4.5.1 Speed

Figures 4.1 and 4.2 show that there is some speedup in the fast local moving part when using parallelization

for these two smallest datasets in our experiment, DBLP and Amazon. However, using more that 8 threads on

these datasets does not seem to be very effective since there is hardly an increase in speed and even decreases

in speed when using 16 threads or more. This is different compared to the results shown in Figures 4.3 and 4.4

where using 16 threads for the larger datasets, IMDB and Live Journal, is the fastest and using 32 and 64

threads is not significantly slower. Figure 4.5, with the results for the even larger Web of Science dataset,

shows the largest speedup for the fast local moving part of the algorithm when using 32 threads. The results

for the Web UK dataset, as shown in Figure 4.6, are less successful and show a smaller speedup than the

Web of Science experiment and also larger error bars. Table 4.2 shows that the speedup of the algorithm as

a whole is the smallest for the Amazon dataset with a maximum of 1.09 when using 8 threads. The DBLP

speedup is higher with a maximum of 1.16 when using 8 threads. the IMDB and the Live Journal datasets

show higher maximum speedups of 1.36 and 1.54 for 8 and 16 threads respectively. The highest speedup is

achieved with the Web of Science dataset which is 1.79 when using 16 threads. The Web UK dataset saw a

maximum speedup of 1.30 when using 8 threads which is lower than the speedup of the IDMB dataset which

is about 50 times smaller in the number of edges. It would seem that parallelization is more effective on larger

datasets but this trend does not hold for the largest Web UK dataset. Considering the technical difficulties

in running the algorithm on that dataset and the large error margin this might be a misrepresentation of the

effectiveness of parallelization.

When looking at the speedups of the first iteration of the algorithm in Table 4.2 it can be seen that the speedup

of the first iteration is generally greater than the speedup of the full algorithm. This could be attributed to the

fact the during the first iteration there is more work to be done. By this we mean that the community partition

is still completely atomic with each community containing one node and therefore the algorithm still needs

to move many nodes around to create a better community partition. This is in line with the hypothesis that

the more work there needs to be done the more effective the parallelization is which we also see when we

increase the size of the network.

Overall the 8 thread implementation was most often the fastest when considering the runtime of the com-

plete algorithm. Table 4.3 summarizes these speedups and based on this the user can expect a 9% to 65%

speedup compared to the original sequential Leiden algorithm when using the parallel Leiden algorithm

with 8 threads.
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Data-set speedup
DBLP 1.16

Amazon 1.09

IMDB 1.36

Live Journal 1.44

Web of Science 1.65

Web UK 1.30

Table 4.3: Speed-up when using 8 threads for each data-set.

4.5.2 Modularity

Table 4.2 also shows us that the maximum modularity loss is 0.16% and the maximum modularity gain

is 0.17%. Moreover, all the average modularities fell within one standard deviations of each other. There-

fore we think that there is no significant impact on the modularity of the solution when using this parallel

implementation of the Leiden algorithm.

4.6 Density Experiment

To test if the effectiveness of the parallelization is dependent on the density of a network, meaning the

number of edges relative to the number of nodes, an extra experiment was conducted. In this experiment

the Live Journal dataset was subsampled and the previous experiment was repeated on those subsampled

datasets. Table 4.4 shows the properties of these new subsampled networks. The subsampling was done by

deleting a percentage of the edges randomly. The remaining percentage of edges is shown in Table 4.4. After

the edges were removed the largest connected component was selected and the network was saved to be

repeatedly used in the experiments. Some nodes are lost in this process since they can become disconnected

from the largest connected component when edges are removed. The hardware, experimental setup and

measurements were identical to the previous experiment.

Figure 4.7 shows the speedup of the fast local moving step when using different numbers of threads compared

to the original sequential algorithm for the different sub sampled Live Journal networks. For the sample sizes

of 100%, 90%, 80% and 70% there are some differences but they are not significant nor show a clear trend.

The trend that would be expected is that a smaller sample size, which in turn means a smaller density,

Sample percentage Nodes Edges Average Degree
100 3997962 34681189 17.35

90 3904679 31203751 15.98

80 3798859 27719966 14.59

70 3676989 24240270 13.19

60 3533664 20761008 11.75

50 3364273 17284657 10.28

Table 4.4: Properties of the largest component of the reduced datasets.
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would result in smaller speedup from the parallelization. This was discussed in Section 2.2.4 based on the

hypothesis from [BHW+
17]. One clear trend that we can see is the greatly reduced effectiveness of using 32

and 64 threads for the 50% and 60% sub sampled networks.

Figure 4.7: Live Journal speedups of the parallel fast local moving algorithm for different sub sampled version of the Live
Journal dataset.
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Conclusion and Future Work

5.1 Conclusion

In this thesis we study the effectiveness of parallelizing the Leiden community detection algorithm. Our

question is whether or not we can speedup the Leiden algorithm with a lock free parallel approach while

having no loss in the quality of the solution as measured through modularity. We present an implementation

of the Leiden algorithm with a parallel fast local moving step. We have shown that this adaptation makes the

Leiden algorithm faster without significant loss in modularity. We found that our implementation does not

scale well beyond 8 or 16 threads in most cases. A general trend we see is that the more work each thread

needs to do the more effective the parallelization is. This is based on the observation that larger datasets

benefit more from parallelization and that the early stages of the algorithm, when there is more work to be

done, also benefit more from paralellization. The experiment on the Web UK dataset are the exception to

this trend. Overall the 8 thread configuration was most often the best performing. Table 4.3 summarizes

the speedup of the 8 thread configuration of the parallel fast local moving algorithm when measuring the

runtime of the complete Leiden algorithm with 10 iterations. This tells us the actual speedup a user would

experience. Based on these experiments a user can expect a 10%-65% speedup over the sequential Leiden

algorithm without quality loss when using an 8-core machine. This means that our parallel implementation

can benefit users who need faster community detection and have a multi core machine without reducing

the quality of the community detection. Because we used a lock free approach our findings on the lack of

impact on the quality of the solution is in line with the hypothesis in the work of Seung-Hee Bae where

it is suggested that due to the sparseness of most networks parallelization should not effect the quality of

heuristic community detection algorithms significantly [BHW+
17].

29
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5.2 Future Work

It is not uncommon for algorithms not to scale well beyond 4 or 8 threads. However in this research we have

not analyzed our algorithm thoroughly enough to know why the parallelization does not scale well beyond

8 threads. This would be especially interesting for the very large datasets such as Web UK. For these large

datasets performance improvement is also the most impact full due to their long runtimes. In the density

experiment we have seen that the density of a network does impact the effectiveness of parallelization but we

have not been able to show a clear trend through all our measurements.

The main performance gain with this research came when the queue was implemented as a linked list and

the worker threads were made to interact with it in bulk. However reading from and writing to the queue

was implemented at once. This means we do not know whether the queue reading or writing optimization

had the largest impact. An experiment where bulk reading and bulk writing are implemented separately

could give an answer to this.

An obvious future step is to parallelize the remaining refinement and aggregation steps of the Leiden algo-

rithm as well to give future users more benefit of running the Leiden algorithm on multi core CPUs.
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