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Abstract

To enhance a home decoration application, we want to predict the next item a user
will add to their virtual room. As the application runs locally on a smartphone, we
need to balance several constraints where some of them are usually not considered for
sequence prediction algorithms: high prediction accuracy, prediction time, model load-
ing time and specific memory requirements. We compare several sequence prediction
methods on common benchmark problems with a 10-fold evaluation scheme. As a re-
sult, we present a model that can handle a very large number of sequences and unique
items, while providing the best accuracy, while satisfying our constraints.

1 Introduction

Nowadays a lot of sequential data is available, from companies or organizations. INDG com-
pany (http://indg.com/ ) is one of them and they would like to use their data for mining
interesting patterns in order to be able to predict the behaviour of a random user. Sequential
data consists of sequences which basically are ordered lists of elements. We know that given
a sequence of elements and some historical data of previous sequences, of the same context,
it is possible to predict or recommend the next element(s), at least to a certain degree of
success. There is a range of different approaches that can be followed for solving this prob-
lem, but what remains unknown is which method is more suitable for adding this predictive
functionality in an application without a server connection, considering some specific con-
straints. A smartphone device application has some limitations from which these constraints
are emerging. In such case we have some requirements imposed on memory consumption,
loading time (time required for the application to load the necessary files for prediction) and
prediction time of a model. It is also preferred for a model to use as little SSD (sold state
disk) space as possible. Additionally, when applying the model to fresh data the less amount
of time possible in order to build it is required, as long as we do not affect the performance
of the constraints and accuracy. The goal of this paper is to satisfy these constraints for
an application owned by the company INDG, while producing an accurate prediction. The
approach we followed for solving this problem was to try different implementations, suggest
possible extensions and analyze their results following the aforementioned constraints.
First we present our problem in detail in Section 2 and then analyze the requirements based
on the constraints in Section 3. The related work is discussed in Section 4 and the implemen-
tations that were applied to the problem are presented in Section 5. We suggest an extension
of the standard Markov Chain in Section 5.2.2, that achieves a high accuracy while satisfying
the constraints. Furthermore, as we know that sequential data can change or evolve over
time, we conclude that the model will have to be applied again to the new data. This resulted
in a desire to be able to see how each algorithm is going to be affected by such changes.
This is why we chose three more datasets which are shown in Section 6 and compared the
algorithms on them with respect to the accuracy and the constraints in Section 7. In order
to compare these algorithms, an evaluation scheme is required, the scheme that was followed
is analyzed in Section 7.2. Finally, we know that it is very common for a user based data
to have some noise. Therefore, we present an outliers detection solution for the company’s
dataset in Section 7.3. The outcome of the experimentations is analyzed for each algorithm
in Section 8 and we recommend some possibilities for future work in Section 9.
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2 Problem Statement

Amikasa (http://amikasa.com/) by INDG is a virtual room builder application that supports
Windows and IOS devices. The user is able to build a virtual room (see Figure 1), and
decorate it by choosing items from a catalogue of 3D graphic models of real items. We want
to build a system that helps the users to choose their next item(s) by suggesting items which
are more probable for them to choose. To do this, we formulate the problem as a sequence
prediction task:
Given a catalogue of items C = {item1, item2, ..., itemn}, a sequence of items (a room
configuration) is denoted as Seq = [c1, c2, ..., cm], where ci ∈ C and 1 ≤ i ≤ n. The company
has some historical data collected, in a form of sequences and the database is denoted as
D = {Seq1, Seq2, ..., Seqs} is the set of these historical sequences. We want to use these
sequences in order to create a model to predict the next item, which a user could possibly
place, based on what is already placed in the room at the moment (see Figure 4). We can
see two examples of the desired functionality in Figure 2 where the input sequence is given
and a sequence of ranked predictions is returned. In order to run this model in the mobile
application’s system, we need to have a model produced from the building procedure (see
Figure 3) and then load it from the device’s SSD to its RAM and use a prediction method in
order to get a result (see Figure 4). As Amikasa is an application running on mobile phones
and tablets, we have to consider several constraints: we want to minimize RAM consumption,
prediction time and model loading time. We also want to maximize the prediction accuracy
and minimize the building time and the SSD space usage. Even though the building time
is not a critical constraint, it is an important aspect in the scope of our project in order to
be able to re-build the model easily and quickly. The limited storage space of a smartphone
device indicates that an application should have some limits, considering that it is not the
only application installed. Moreover, the user can easily get discouraged by downloading a
mobile application which is too large. To find the most suitable method for predicting items
given those constraints, we have to compare several sequence prediction algorithms.

Figure 1: An example of a random virtual room configuration in Amikasa app
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Figure 2: Two examples of sequence prediction. In the first row we have a long input sequence
of items and we get 4 ranked predictions (we can choose the number of predictions). In the
second row we have a short input sequence and we get 4 predictions.

Figure 3: Building procedure of a sequence prediction model.

Figure 4: In this Figure the sequence prediction model is loaded to the Application’s System,
the system takes the input and uses the model to produces a prediction.
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3 Requirements

At the very beginning of this project the company set some specific requirements that
needed to be fulfilled in order to integrate the functionality of the sequence prediction into
the application. The requirements were set based on the constraints that we mentioned in
the previous section and the reason behind them is the overall smooth experience that the
company seeks to provide to the user.
RAM Limitations: The baseline devices (minimum hardware support) for Amikasa are the
iPhone 4S and iPad2. In IOS, depending on which device is running it, there is a limit on the
RAM which an application can use; which usually is roughly 50% of the available RAM. The
baseline devices have 512MB of RAM, that means that an application consuming more than
256 MB of RAM will crash. Assuming that a user is not going to use only one application at
a time and as the application uses a lot of RAM due to the graphical component assets (3D
graphics, textures etc.) the company has set the preferable limit in RAM consumption on
110 MB for the whole application system. The 90% of this limit is already fulfilled which
leaves a maximum of 11MB available for the predictive component of system.
Prediction Time: We call the time the system needs in order to calculate the prediction(s),
prediction time. The virtual room builder application is built on a game engine and it consists
of heavy a graphical component. Additionally, there is a desirable limit of 30 Frames Per
Second (FPS) set by the company, which ensures the smooth running the application. During
the moments where the graphical component is involved (drugging furniture, choosing items
from catalogue etc.) the CPU usage is 100%. However, while graphical component is not
involved the application basically uses roughly 25% of the CPU (on the baseline devices).
Overall this creates a time window of maximum 13ms per frame available for computation
of the prediction. Assuming that a user will take at least half a second (0.5 s) before moving
the object or selecting another one we have 15 FPS ∗ 13 ms = 190 ms available. Thus,
the maximum limit for the baseline processor Apple A5 dual-core ARM Cortex-A9 CPU is
set at 190 ms.
Loading Time: Loading time is the time that the application needs in order to move
the prediction model from the SSD of the smartphone to RAM. Loading of the graphic
components and the environment of the virtual room builder already can take some seconds.
The initial loading of the application (a fresh install) takes 7 seconds on the baseline devices.
Moreover, if the user starts the application again, the loading time may be even longer, in
case a configuration of a room is saved. For a user it matters a lot if they have to wait 6
seconds or 8 seconds for the application to become responsive, thus the prediction model
should be able to be loaded from the application within some time limits. The company has
set this loading time limit within 250-350 ms.

4 Related Work

The problem of finding the next element(s) in a sequence is not limited to a specific method-
ology. It is possible to see the problem as a sequence prediction based on the previous inputs
like Markov Chain [14], [15], [16] or as a recommender system like [6]. Another approach is
the use of Association Rules (AR) as a prediction model [9] or use a novel lossless technique
called Compact Prediction Tree [7]. In this section we provide an overview of the meth-
ods that were used in the experimentation and the implementation details are going to be
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discussed in Section 5.

4.1 Frequent Itemset Mining for Association Rules

The initial scope of this method was to find interesting associations between elements of
an itemset but it can also be interpreted as a prediction model. The methodology that is
proposed by [10] consists of two parts: Frequent Itemset Mining (FIM) and Association
Rules (AR) generation.

4.2 Terminology

Let a sequence of items be S = [item1, item2, item3], in order for the sequence to be an
itemset it should not contain repetitions as an itemset is just a set of individual items.
Then if S contain no repetitions then S is an itemset which have three itemsubsets, S1 =
{item1, item2}, S2 = {item1, item3}, S3 = {item2, item3} and an itemsuperset of S can
be Ssuper = {item1, item2, item3, item4}. An itemset’s or an item’s support denotes the
frequency of a particular itemset or item in a given dataset. Then a support threshold can
be set and used to prune itemsets below the threshold (which are considered infrequent)
and keep the ones that are considered frequent. Finally, the algorithm finds all the frequent
itemsupersets and generates candidates through their itemsubsets.

• itemset is a set of individual items.

• itemsubset is a subset of an itemset.

• itemsuperset is an itemset which includes another itemset or itemsets.

• support is the frequency of an item or itemset inside a database. A specific support
value can be set as a threshold.

• frequent itemset is a set of individual items which has support higher than the user
defined support threshold.

• candidate generation is the generation of subsets from frequent itemsupersets which
produce itemsets that are potentially frequent.

4.2.1 Frequent itemset Mining

Frequent Itemset Mining (FIM) is a technique which is widely studied in the Association
Rule research field. The main idea behind the FIM is based on the Apriori principle [1] which
states that every subset of a frequent itemset also frequent. There are several algorithms
for FIM and most of them are producing similar results in the sense of frequent itemsets
generated, while they usually have different run times and ways for candidate generation.
An example of a dataset containing itemsets is shown in Table 1 and the support value of
each item is shown in Figure 2. There are three different types of frequent itemsets that can
be produced by a FIM algorithm standard, closed and maximal (Fig 5):

• Standard type describes all the itemsets that are frequent.

• A frequent itemset is closed if there exists no itemsuperset that has the same support
count as this original itemset. [3]
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• A frequent itemset is a maximal if it is a frequent itemset and no super-itemset of
this is a frequent itemset. [2]

Table 1: This is an example database of itemsets

TID itemset
1 {b,a}
2 {c,b,d}
3 {a,d,c,e}
4 {e,a,d}
5 {b,c,a}
6 {b,c,a,d}
7 {a,d,b}
8 {a,b,c}
9 {a,b,d}
10 {b,c,e}

Table 2: Support of the items that are contained in the example DB of the Table 1

item support
a 8
b 8
c 6
d 6
e 3

It is very common for a FIM algorithm to produce a very high number of frequent itemsets.
Thus in some cases were the number of items is very big, it would make sense to use a
smaller number of FIs like closed or maximal. The final product of FIM procedure is a list
of frequent itemsets storing a support value for each itemset. Then we can be use these
frequent itemsets as an input for the Association Rule procedure. An example of the output
given the example database seen in Table 1 is shown in Table 3 where the itemsets having
support lower than 2 are pruned.
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Table 3: Result of FIM with support threshold = 2 on the example DB of the Table 1

frequent itemset support
{b,a} 6
{c,b} 5
{d,a} 5
{c,a} 4
{d,b} 4
{c,b,a} 3
{d,b,a} 3
{d,c} 3
{d,c,a} 2
{d,c,b} 2
{e,a} 2
{e,c} 2
{e,d,a} 2
{e,d} 2

Figure 5: In this figure we can see the connection between the different types of Frequent
Itemsets. It is apparent that maximal FIs are a subset of closed FIs which are also a subset
of the standard FIs

4.2.2 Association Rules

After the frequent itemsets coupled over a support threshold are produced from the FIM
procedure, the next step is the generation of Association Rules. The mining of Association
Rules is based on the affinity analysis which discovers associations between specific groups
of items (itemsets) or individual items from a catalogue. Thus we want to find interesting as-
sociations between our catalogue’s available items based on the historical data available. An
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association rule consists of three different parts: an antecedent, a consequent and confidence.
In order to calculate the confidence of a rule, we use the following formula:

confidence =
support(antecedent

⋃
consequent)

support(antecedent)
(1)

This formula captures the ratio between the number of occurrences of the antecedent and
each consequent and provides an insight into how confident we are to use this rule. The
closer the value is to 1 the higher confidence we have. Let an itemset X = {a, b, c} with
support sx = 56 be the antecedent and itemset Y = {c, d} be the consequent of a rule,
the union of the two itemsets has support su = 70, we then calculate the importance score
conf = sx/su = 1.25 which represents the significance of the rule. Thus the general form of
an association rule is X → Y : confidence.
Example: To follow our examples from Section 4.2.1, we show a sample of 10 association
rules that are produced among others from FIM procedure based on the frequent itemsets
of the Table 3. If we have an input containing only an item {b} and we want to predict
the next item we need to find all the rules containing the antecedent b and calculate the
confidence of each rule. Then we consider which of the values is closest to 1, thus the choice
for a prediction from the rules in Table 4, for item b as an input, would be the consequent
{a} as it has confidence 0.75 on the example dataset.

Table 4: In this table we can see the a sample of the rules produced based on the frequent
itemsets of Table 3. The support of the rule shows how frequent a rule is and the confidence
shows how accurate a rule is.

antecedent consequent support confidence
{c,b} {a} 3 0.60
{d,b} {a} 3 0.75
{d,a} {c} 2 0.40
{d,c} {b} 2 0.66
{e,d} {a} 2 1.00
{b} {a} 6 0.75
{b} {c} 5 0.62
{b} {d} 3 0.37
{a} {e} 2 0.25

4.2.3 Taxonomy

One variation/modification of the standard algorithms is to add a taxonomy or hierarchy
on the items, so, in case an item from the leaves of the taxonomy (see Figure 6) is not
frequent, it can be swapped with its parent. This technique can be proved helpful, because
it produces more general Association Rules [5]. By generality of ARs we mean that we can
have specific levels in the rules like chair(dinning(brand 1)) −→ table(dinning) and, as
we go higher in the tree levels, the rules produced have a more general sense for example:
chair(dining) −→ table. There are two directions of this modification: in the first case it
is proposed to add the parents of each item in each transaction (even if the items in the
transaction share the same father, the father should be added only once) and then apply
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any of the algorithms available for FIM and produce these general rules; in the second case
we can run any of the algorithms to each of the different levels of the taxonomy and produce
level specific rules. [5].

Figure 6: Example of a taxonomy from the company’s dataset.

The problem that is possible to be encountered in the case of using the taxonomy is that this
way the dimensionality and also the sparsity of the sequences is increased exponentially and
the candidate generation can get more computationally expensive and memory consuming.

4.3 Markov Chain Prediction Model

The key idea behind Markov Chain is the assumption that the probability p of the occur-
rence of the next element in a sequence depends only on the current element. If si is the
next element of a sequence S, then the probability of the occurrence of the next element si
is p(si|s1, ..., si−1) = p(si|si−1). By calculating the probabilities of each possible transition
between items we can create a transition matrix. The transition matrix contains the max-
imum likelihood estimates of the probabilities.If we have 5 available items in a catalogue
C = a, b, c, d, e and nij is the occurrence of the transition from item i to item j, in order to
estimate the probability of nij we use Formula 2.

p̂ij =
nij∑5
s=1 nis

(2)

The transition matrix then can be used as a model for sequence prediction by finding the
biggest probability of the next occurrence of an input item. A transition matrix can be of
different orders: in the first order Markov Chain we only get the combination of single items
and the transition probability between them, in Markov Chain of orders n > 1 we get the
transition probability between a sequence of length n any of the available items.

12



a b c d e

a 0 0.333 0 0.666 0
b 0.142 0 0.571 0.285 0
c 0.400 0.200 0 0 0.400
d 0 0.500 0.500 0 0
e 1.000 0 0 0 0

Table 5: Transition matrix based on the database from example in Table 1. We can see that
it is possible to have zero occurrences of a transition between some items. In such cases we
can use the Laplace Estimator which is explained in detail in Section 5.2.1.

4.3.1 Transition Matrix of higher order

The concept of a higher order Markov Chain is very appealing, especially when at least in
theory the combination of transition matrices of different orders can give a better accuracy.
Unfortunately, in order to calculate the occurrences of the transitions for order two we
need all possible combinations of items and in order to calculate the transitions between a
pair and an item. The procedure for higher order obviously brings even more combinatorial
complexity (all possible combinations of combinations and single items for order 3 etc.). One
possible solution is the way All Kth Order Markov model (AKOM) by [12] works which uses
selective Markov Chains of different orders.

4.4 Collaborative Filtering and Recommender Systems

Collaborative Filtering (CF) is a well known method, which is applied in many commercial
services like NetFlix or Amazon, for proposing items or movies to a client, based on their
previous choices. Even if it is not a sequence prediction algorithm, the CF methodology
could be followed in order to produce ‘predictions’. We know that with CF techniques it is
possible to capture the similarity between the users/transactions or the items themselves,
as long as a distance or similarity measure between them exists. There are two basic types
of collaborative filtering techniques: the User-based and Item-based. User-based method can
either be used for predicting a specific value of rating or recommending individual items
based on user similarity. Item-based CF recommends items based on the precomputed simi-
larities between the items with the help of a similarity measure. The first variation of the CF
techniques is not considered as a viable solution for our problem, as the computation that
takes place for calculating the distances between the historical data and the input is online.
Thus the method was not created to separately save and load the model as it is required
by the company’s system specifications. Therefore the method is not optimized to store a
model containing the distances between data points in an efficient and easily accessible way.
Nevertheless, a similar to the User-based technique, in the aspect of finding similar users
or transactions, called Compact Prediction Tree (Section 4.5) is applied to the problem.
This is a specialized case because with the use of some specific data structures and binary
computations, it proves to be faster than a normal CF User-based recommender.

4.4.1 Distance/Similarity Measure

Usually a representation of the data points having the same length is needed. Then it is
possible to measure the distances between an input transaction and all the data points, by
using a similarity measure. There are numerous similarity measures that can be used, but
for the purpose of this paper the following measures were the ones that we tried:

Hamming Similarity:
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In order to calculate the Hamming Distance between two binary vectors, we need to cal-
culate the XOR between them and then count the number of ones. The number then gets
normalized by dividing by the length of the vectors n. Finally in order to get the similarity
we subtract the hamming distance from one.

HamSim = 1−
∑n

i=0 |V ector1i − V ector2i|
n

(3)

Cosine Similarity:
For the Cosine Similarity calculation includes the dot product of the two vectors divided
by the product of the magnitudes of the two vectors. Dot product between two vectors is
denoted by (V ec1 · V ec2).

CosSim =
(V ector1 · V ector2)

‖V ector1‖ ‖V ector2‖
(4)

Pearson Correlation Similarity:
In order to calculate Pearson Correlation Similarity we need the covariance of the two vectors
divided by the product of their standard deviations. Let n be the length of the vectors and
x̄, ȳ be the mean of the elements of the two different vectors ~X and ~Y , which we want to
calculate the similarity between them. Then Pearson Correlation then is calculated by:

PearsonSim =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(5)

4.4.2 Similarity Matrix

In order to store the similarity between items we need to create a similarity matrix. The
similarity matrix is a symmetric matrix stores and is created by calculating the distances
of each item with all the others. In order to create we usually preprocess the data into a
representation that is needed for the similarity calculation an example of this representation
is given in Table 6. Then we use this data representation to calculate the similarity between
items by comparing the columns (see Figure 7 )that represent each item with all the other
columns and store the similarities into the similarity matrix.
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TID a b c d e

1 1 0 0 0 0
2 0 1 1 1 0
3 1 0 1 1 1
4 1 0 0 1 1
5 1 1 1 0 0
6 1 1 1 1 0
7 1 1 0 1 0
8 1 1 1 0 0
9 1 1 0 1 0
10 0 1 1 0 1

Table 6: Preprocessed representation of the database from Table 1

Figure 7: In order to calculate the similarity between item b and item d in this example we
calculate the similarity between the two column vectors representing these items.

4.4.3 Item Based Recommendation

From the CF techniques the method that is possible to be applied to our problem, as it
contains an offline step, is the Item-based recommender. In this case rather than matching
similar users, we try to match the user’s already selected items with other similar items
to them [6] and try to produce a recommendation list. The process is very simple but
computationally expensive and the time complexity grows exponentially as the data set size
and number of individual items (catalogue) grows. The advantage of this technique is that if
m is the number of data points, then a similarity matrix of size m×m is created that stores
the distances between items and can be loaded as a prediction model. The disadvantage is
that, while the number of items is increasing the time needed to re apply the model to fresh
data is increasing exponentially.

4.5 Compact Prediction Tree

One slightly different technique was presented by Ted Gueniche , Philippe Fournier-Viger ,
and Vincent S. Tseng [7] as a lossless method for sequence prediction. Lossless prediction
means that the algorithm has the capability of considering the whole input sequence length
for calculating a prediction. The way this method works is very similar to the usual User-
based CF (k-NN), but instead of calculating distances between the input and the whole
dataset, we have 3 smart data structures that help to improve a lot the computation time
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and memory consumption. An extra step of work is needed in order to apply this technique
in our problem. We need to store these 3 data structures and use them as the model that is
loaded to the application’s system.

4.5.1 Data Structures

The first data structure the Prediction Tree (PT) is representing/compressing the dataset
by using a simple N-ary tree structure which is known as trie. In the trie data structure
each node can have an arbitrary number of children, one parent, the current node’s value
and a count variable. Each node’s value represents an element and each branch represents
a sequence. No ordering or preprocessing is needed, as the process is being included in the
creation of the data structures. An example of the PT is shown in Figure 8.

The second data structure is the Inverted Index (II). As we can see in Figure 8 II can
be seen as matrix, where each row represents all the sequences contained in the dataset and
the columns represent all possible items. Thus, if n is the number of all available unique
items and m is the number of sequences of items contained in the dataset, we have a matrix
of size n × m. For each row of the matrix, representing an item, each element of the row
contains the number 1 if the item is found inside a sequence and the number 0 if the item is
not contained in a sequence (binary). This representation, similarly to the CF techniques,
is helpful for fast computation of the similarity between historical sequences and the input
sequence.

The third data structure is the Lookup Table (LT). The Lookup Table provides fast and
easy access to each sequence in the dataset. It is basically an array with size equal to the
length of the dataset. Each element in this array is pointing to the last node/element of the
sequence in the tree, that is represented as the index in the LT. The connection between the
PT and the LT can be seen in Figure 8.
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Figure 8: Compact Prediction Tree: Data Structures
We can see that the trie contains only an element in each node, each branch represents a
sequence from the database. This tree representation compresses the dataset before making
any calculations: if two or more sequences contain identical subparts they will only be
included to the tree once. The Inverted Index stores the information of the sequences in a
representation that will help to compute a distance between them in the most efficient way.
Finally the Lookup Table stores a pointer of the last node of each branch in order to help
accessing every sequence without actually storing them.

5 Implementations

The implementations that we are going to describe in this section were used for making an
appropriate comparison between various algorithms, in order to satisfy the constraints to the
fullest. For all the methods there are two parts implemented; the building process and the
prediction model. The building process takes place as an offline computation outside of the
application and all the methods were implemented and run in Python 2.7.11. The reason
that Python was used is that the performance of the building procedure is not an issue of the
constraints of the baseline devices and it is easy to install it and use on any computer. We
only consider general building times in order to understand which method is the fastest. All
the prediction model methods were implemented in C# .NET 4.0, with only LINQ library
included, as the application itself is compiled in this language. For each model the parts
that were used from other libraries are specified and the parts implemented are described
by providing the related pseudocode. In order to gain some milliseconds on prediction time,
we set a constant number of predictions for all prediction methods on three. By using the
method shown in pseudocode 1, we find the 3 most probable items for prediction, efficiently.
Not all data structures that are using this function are lists but we want to show the general
idea behind the speed efficiency given from this method. Each different algorithm uses a
modified find three best function towards the data structure that it uses.
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Algorithm 1 find three best(list)

max1 = -1
max2 = -1
max3 = -1
for value in list do

if if value > max1 then
max3 = max2
max2 = max1
max1 = value

else
if if value > max2 then

max3 = max2
max2 = value

else
if if value > max3 then

max3 = value
end if

end if
end if

end for
return max1, max2, max3

5.1 Association Rule Mining

For the building of this implementation a custom library for Python was used which is
called PyFim and can be found in http://www.borgelt.net/pyfim. PyFIM contains all famous
algorithms for FIM. Most of the algorithms are able to produce all three types of FIs,
standard, closed, maximal, but for the final tests the FP-Growth algorithm was used, set to
generate closed FIs.

5.1.1 Frequent Itemsets and Association Rules Generation

The procedure that was followed in order to build this prediction model includes first the
generation of Frequent Itemsets and then the generation of Association Rules. In order to
generate the Frequent Itemsets we apply the FP-Growth algorithm proposed by [18] on our
sequential dataset. FP-Growth uses a N-ary tree data structure called trie in order to store
all frequent itemsupersets from the database and then generates all possible frequent item-
sets from their subsets.

We know that on the standard Association Rule methodology we extract associations be-
tween frequent itemsets of arbitrary length. In our case, during the Association Rules gener-
ation, we consider only associations from one or more items to one item because, this way we
can use the rules for sequence prediction. In order to do that, we iterate through the Frequent
Itemsets and choose each of the elements of the itemset as a consequent and the remaining
itemset as antecedent. Then we calculate the importance measure, confidence, and store it
along with each rule. A minimum confidence value can be given and used as a threshold in
order to prune rules that empirically are considered not confident. The procedure can be
seen in pseudocode 2.
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Algorithm 2 Rule Generation

Require: Frequent Itemsets, minConf
Association Rules = Empty Pair List
for each FI in Frequent Itemsets do

for each item in FI do
consequent = item
antecedent = FI.Except(item)
rule = Pair of List and Double
ruleList = [antecedent, consequent]
sa = Support of antecedent
sfi = Support of FI
confidence = sfi/sa
rule.Key = ruleList
rule.Value = confidence
if confidence > minConf then

Association Rules.Add(rule)
end if

end for
end for
return Association Rules

5.1.2 Prediction with Association Rules

Even if this method was not made for sequence prediction, it is possible to use it for sequence
prediction. The prediction algorithm based on Association Rules is very simple: After the
generation of the Association Rules is over and the rules are stored, the rules are loaded to
the application system. The prediction algorithm takes as an input the user’s current room
configuration and finds all the antecedents of the association rules that matches this input.
Then, it stores each consequent and its score to a list of pairs and returns as a prediction
the consequent of the association rule with the highest importance score.
The list of pairs (Association Rules in the pseudocode 3) can be implemented as a list of
tuples or a list of lists in Python. Both implementations support indexing such as if rule is a
list/tuple storing an association rule and its corresponding importance score from the list of
pairs, then rule[0] is the antecedent, rule[1] is the antecedent and rule[2] is the confidence
of the rule.

Algorithm 3 Prediction for AR

Require: inputSeq, Association Rules
possiblePredictions = Empty Pair List
for rule in Association Rules do

//if the input sequence is equal to any of the rule antecedents
if inputSeq == rule[0] then

pair = Empty Tuple
pair[0] = rule[1] //Add consequent
pair[1] = rule[2] //Add score
possiblePredictions.Add(pair)

end if
end for
predictions = find three best(possiblePredictions)
return predictions
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5.2 Markov Chain

For the Markov Chain method implementation the simplest model possible, based on the
constraints, was created by using a matrix data structure (list of lists in Python) for the
transition matrix. In order to store the probabilities of all transitions from all possible states,
we need to calculate the normalized occurrence between each of the states. After the building
process in Python is finished the transition matrix is saved to a text file and it is loaded
from the C# library, containing the prediction method.

5.2.1 Markov Chain Model building Procedure

The algorithm takes as an input the sequential dataset and iterate through each sequence
in order to calculate the occurrence of each possible transition. For the normalization’s
sake we also need to store the occurrences of all individual items in the dataset (support
value). This is why a dictionary data structure is used to store each individual item as a
key and each support of the item as a value. Then the support of each item is used in
order to normalize the occurrences of each row and produce each transition probability. The
transition probability is produced by dividing the total count of each next item transition
by the total number of the occurrences of each current item. The output of the building
procedure is a transition matrix that can be used as a model for sequence prediction. A
transition matrix as we explained in Section 4.3.1 can have different orders, for our dataset
and our systems available it was possible to implement the process with order as high as
two.
You can see the First Order Markov model building process in 4
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Algorithm 4 Markov first Order Building Process

Require: dataset, catalogue
size = (length(catalogue), length(catalogue))
initialize t matrix[size] of float zeros
index = 0
for index < length(catalogue) do

item = catalogue[index]
for sequence in dataset do

if item in sequence then
if item != last item then

next item = find next item(sequence, item)
indexNext = find index(catalogue, next item)
t matrix[index][indexNext] = t matrix[index][indexNext] + 1

end if
end if

end for
index = index + 1

end for
for row in t matrix do

temp val = sum(row)
rowIndex = 0
for rowIndex < length(row) do

row[index] =row[index] / temp val
rowIndex = rowIndex + 1

end for
end for
return t matrix

For the Second Order Markov Chain the implementation is similar, but instead of iterating
through the catalogue, we need to iterate through the indexed pairs of all combinations of
the catalogue called couples in pseudocode 5. We can ignore all the combinations of the
same items in our case as the repetitions are not included in the dataset. The reason behind
that decision is that the way the application works; after an item is selected, by a user, it
remains there available to be selected again (until the user makes another choice). Thus it
would be redundant to predict the same item.
The Second Order Markov model building procedure goes as follows:
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Algorithm 5 Markov second Order Building Process

Require: dataset, catalogue
couples = all possible permutations of catalogue
mat size = (length(catalogue), length(couples))
initialize t matrix = matrix of float zeros with size mat size
pairIndex = 0
for pairIndex < length(couples) do

for sequence in dataset do
if couples[pairIndex] exists in sequence then

pairItem = couples[pairIndex][1] //second item in pair
if pairItem != last item in sequence then

next item = find next item(sequence, pairItem)
indexNext = find index(catalogue, next item)
t matrix[pairIndex][indexNext] = t matrix[pairIndex][indexNext] + 1

end if
end if

end for
pairIndex = pairIndex + 1

end for
for row in t matrix do

temp val = sum(row)
for index of item in row do

row[index] =row[index] / temp val
end for

end for
return t matrix

The same logic can be applied for order o > 2, but the combinatorial complexity of the
permutations is increasing exponentially.
Laplace Estimator
In case of transition matrices and especially for orders o > 1, we have a higher chance to have
many zero occurrences. A smart tweak proposed by an acclaimed French mathematician of
the 18th century, Pierre Laplace, is to add into these zero occurrences a small constant
divided by the number of the available items [8] (Section 4.2 p. 91). Let a probability p be
pi = xi/yi, and in total we have n states thus n different probabilities for each state such

as,

n∑
i=0

pi = 1, then in order to replace zero probabilities we apply Formula 6:

pi =
xi + µ/n

yi + µ
(6)

In Formula 6 µ is a small value constant that is usually 1, but there is no restriction to a
specific value and it is possible to experiment with it. In our final experiments we use the
value µ = 1.

Example: In order to understand how such process will affect the transition probabili-
ties we can use the example from Section 4.3. In order to see the differences with Table 5
we show both transition matrices in Figure 9.
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Figure 9: Here we can see the differences between the First Order Transition Matrix from
Table 5 and the one build using the Laplace Estimator.

5.2.2 Markov Chain Extension

The limitation of the first order Markov chain is that it uses only the current item to predict
the next one. The second order Markov chain uses both the current and the previous items
to predict the next item, which usually leads to higher accuracy. However, the cost of this
higher accuracy is the incrementation of the size of the model, from O(n2) to O(n3), where
n denotes the number of items in a catalogue. In our project, where the model size must be
highly limited, it makes the deployment of second order Markov models impossible. However,
we found a simple extension of the first order Markov model which increases the accuracy,
while preserving low RAM consumption. This extension is based on an observation that
when a user decides which item should be put next to the room, he/she usually has several
items in mind, and the order of selecting them is not relevant. For example, when a user
wants to add a table followed by a chair, it doesn’t matter if the system first suggests a
table and then a chair, or first a chair and then a table. In this situation, both ‘a table’ and
‘a chair’ are correct suggestions that could be produced by the system. This observation
leads to the following procedure for calculating an extended first order Markov model of
depth k. Let D be a set of sequences over a catalog C = item1, ..., itemn. We define the
probability of transition from itemi to itemj , pij, as the ratio mij/ni, where mij denotes
the number of sequences in D, which contain itemi that is followed by itemj at one of
the next k positions in the sequence (after itemj), and ni denotes the number of sequences
that contain itemi. Clearly, given this definition, one should modify the definition of model
accuracy: when comparing predictions of a model to an actual sequence, we count a predicted
item as correctly predicted if it occurs within the next k = 5 positions from the current state
(correlationStep). In Figure 10 we can see the difference between the standard first order
transition matrix (left) and the first order transition matrix after the extension, based on
the example database from Table 1.

Figure 10: Here we can see the differences between the First Order Transition Matrix from
Table 5 and the one build using the the extension proposed in Section 5.2.2.

We follow this procedure for sequence ‘windows’ of length correlationStep which value
should be found empirically for every sequence. The result of such procedure will change the
transition probabilities in a way that its possible for the model to produce a better accuracy
while still containing the simplicity and effectiveness on the constraints, of the first order
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Markov Chain prediction model. Of course it is possible to apply this extension in a Markov
Chain model of any order.

Algorithm 6 Markov First Order Extension with correlationStep = 2

. . .
itemIndex = 0
for itemIndex < length(catalogue) do

item = catalogue[itemIndex]
for sequence in dataset do

if item in sequence then
if item != last item then

// here the modification takes place
if item != one before last item then

second next item = find second next item(sequence, item)
indexSecond = find index(catalogue, second next item)
t matrix[itemIndex][indexSecond] = t matrix[itemIndex][indexSecond] + 1

end if
next item = find next item(sequence, item)
indexNext = find index(catalogue, next item)
t matrix[itemIndex][indexNext] = t matrix[itemIndex][indexNext] + 1

end if
end if

end foritemIndex = itemIndex + 1
end for
. . .

5.2.3 Prediction With Markov Chain

The prediction procedure which is implemented in C# contains a lookup of the row, repre-
senting the last item of the input sequence, and the search for the max value/s (it depends
on how many prediction we want to produce) inside the row vector. The prediction is made
by choosing the element of the row that has the maximum transition probability. For max-
imum prediction time performance a constant prediction length l can be set that will avoid
the sorting of the whole row of probabilities by finding the l biggest probabilities, that their
indexes are not contained in the input, and take their indexes in order to make a prediction
list.
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Algorithm 7 Markov Model Prediction

Require: t matrix, catalogue, inputSeq
index = find index(catalogue, inputSeq[-1]) // find index of last item of input in catalogue
t matrix row = t matrix[index]
for item in t matrix row do

if item in inputSeq then
t matrix row[item index] = 0

end if
end for
predictions = find best three(t matrix row)
return predictions

5.3 Item Based Recommender

Item Based Recommender takes as an input the database of transactions (sequences) from
users and produce a matrix where each element represents the similarity between two items.
After the building process is done, the similarity matrix is saved in a text file, from the
Python script. Then the similarity matrix is loaded from the application’s system and can
be used in order to make a prediction. For this implementation numpy and scipy libraries
were used. The reason numpy was used was for storing the dataset in the representation
that is required for the scipy spatial methods used for calculation of the distances.

5.3.1 Preprocessing

For the implementation we need to have a data representation in a form where the length of
each data point (sequence from the dataset) should be equal to the length of all the others.
For example in our virtual room builder problem we have lists of unequal length, which are
representing the rooms shared by a user. So, we represent these rooms by creating binary
vectors of equal length, which is the length of the items in the catalogue. The vectors are
then populated with one if an item was selected in a room and zero otherwise.
You can see how we apply the preprocess in the implementation, described by pseudocode
8.

Algorithm 8 ItemBasedPreProcess

Require: dataset, catalogue
catalogueSize = length(catalogue)
dataSize = length(dataset)
trainList = Empty List
seqIndex = 0
for seqIndex < dataSize do

sequence = dataset[seqIndex]
itemIndex = 0
binaryList = list of zeros of length catalogueSize
for item in sequence do

itemIndex = find index(catalogue, item)
binaryList[itemIndex] = 1

end for
trainList.Add(binaryList)
seqIndex = seqIndex + 1

end for
return trainList
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5.3.2 Building Item Based Recommender

During the building of this model we need to calculate the similarity between the items based
on the historical transactions available. The output of the building procedure is the similarity
matrix (list of lists in Python) which contains these similarity values, that the model will use
in order to make a recommendation. The calculation of the similarity between two items is
being done by measuring the similarity of the two column binary vectors, who represent in
which transactions each of the items were chosen (1 for being chosen 0 for not being chosen)
(see Table 6).

Algorithm 9 Item Based Building

Require: dataSet, catalogue
trainList = ItemBasedPreProcess(dataset, catalogue)
trainSize = length(trainList)
catSize = length(catalogue)
simMatrix = matrix of length (catSize, catSize/2)
catIndex = 0
for catIndex < catSize do

chosenItems = Empty List
for binaryList in trainList do

if binaryList[catIndex] == 1 then
seqIndex = 0
for seqIndex < catSize do

if seqIndex != catIndex then
if binaryList[seqIndex] == 1 then

chosenItems.Add(seqIndex)
end if

end if
seqIndex = seqIndex + 1

end for
end if

end for
for itemIndex in chosenItems do

simMatrix[catIndex][itemIndex]=calcSimilarity(catIndex column, itemIndex column)
end for
catIndex = catIndex + 1

end for
return simMatrix

5.3.3 Prediction Choice

The building process creates an m×m/2 matrix. In this matrix a raw represents each item
and it contains the scores of similarity of the specific item with every other item. Then,
by aggregating these scores we can find the most similar items to the ones which the input
sequence contains. An important data structure is a list of pairs which will contain the item
and its aggregated score in order to make a decision for more than one predictions.

26



Algorithm 10 Item Based Prediction

Require: inputSeq, catalogue, simMatrix
scoreList = Empty Pair List
catalogueSize = length(catalogue)
index = 0
for index < catalogueSize do

score = 0
for item in inputSeq do

inputIndex = find index(item)
score = score + simMatrix[inputIndex][index]

end for
scoreList.Add((index, score))
index = index + 1

end for
predictions = find three best(scoreList)
return predictions

5.4 Compact Prediction Tree

The choice of Compact Prediction Tree was made because it was proved to have the best
performance comparing with other popular methods in the comparison that was presented in
their paper [7]. The comparison considered several state of the art sequence prediction algo-
rithms like Prediction By Partial Matching, Dependency Graph and All-k-th-Order Markov
Chain (Selective Markov Model). The CPT algorithm, as it was presented by the authors,
was not created to have an step to store the prediction model. Thus some modifications were
employed in order for the methodology to work in the two steps of building and predicting.
In the first step we create all the three data structures and we store them in some files. The
model then loads these data structures and uses them for the prediction.

5.4.1 Building of CPT

During the building procedure we need three data structures to be created and stored
efficiently. We have the Prediction Tree which is a trie, the Lookup Table which can be
seen as a list of trie nodes and the Inverted Index which can be implemented as a dictionary
that has items of the catalogue as keys and bitvectors of size equal to the number of sequences
as values. Finally, we need two custom functions in order to serialize and deserialize the PT
in an efficient way.

Algorithm 11 CPT Building Procedure

Require: dataset, catalogue
lookUpTable = Empty List
PredictionTree = Empty Trie Node
for sequence in dataset do

insert node(PredictionTree, sequence)
last node = find last node(PredictionTree, sequence)
lookUpTable.Add(last node)

end for
inverseIndex = createInverseIndex(dataset, catalogue)
return root, lookUpTable, inverseIndex

The procedure for creating the inverseIndex is shown in pseudocode 12
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Algorithm 12 Inverse Index creation

Require: dataset, catalogue
initialize dictionary inverseIndex with keys each item of the calatogue and values zero
bitvectors of length the size of the dataset.
for catIndex < length(catalogue) do

item = catalogue[catIndex]
for sequence in dataset do

if item in sequence then
inverseIndex[catIndex].Add(1)

end if
end for

end for
return inverseIndex

5.4.2 Data Structures Storage

After the building of the model, the next step is to store the data structures in files and
to be able to load them to the model. The Lookup Table can get easily stored in a text
file by finding each path of each branch of the tree and writing it in a list. The bit arrays
of each key from the Inverse Index dictionary can be stored in a binary file. The ‘tricky’
part is the serialization of our N-ary Prediction Tree. The procedure of the serialization
that was used is described in DWARF v3 in Section 2.3 p. 13 [13] where it states: ”The
tree itself is represented by flattening it in prefix order. Each entry is defined either to have
child entries or not to have child entries. If an entry is defined not to have children, the
next physically succeeding entry is a sibling. If an entry is defined to have children, the next
physically succeeding entry is its first child. Additional children are represented as siblings of
the first child. A chain of sibling entries is terminated by a null entry.”. What this statement
basically says, is that, given a tree root node, we serialize it to a list, in which each element
is either a pair (node.data, has children boolean value) or null (which represents the end of
children for a node). The procedure of this serialization method is shown in pseudocode 13.

Algorithm 13 Prediction Tree Serialization

Require: PredictionTree
initialize empty list of pairs nodesList
Function recursiveSerialize(node)

if node has children then
pair = (node.node, True)
nodesList.Add(pair)
for child in node.children do

recursiveSerialize(child)
end for
pair = Null
nodesList.Add(pair)

else
pair = (node.node, False)

end if
end Function recursiveSerialize(PredictionTree)

return nodesList

Now we have a representation of the tree that can be stored in a text file. What follows is the
deserialization of the tree in order to be loaded to the model. We can see the deserialization
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process in pseudocode 14

Algorithm 14 Prediction Tree Deserialization

Require: nodesList
initialize empty node PredictionTree
PredictionTree.node = nodesList[0][0]
initialize empty stack parentStack
parentStack.Add(PredictionTree)
for pair in nodesList[1:] do
{iterate through the nodesList except the first pair}
if pair != Null then

initialize empty node treeNode
treeNode.node = pair[0]
treeNode.parent = parentStack[-1] //last element of parentStack list
if pair[1] == True then

parentStack.Add(treeNode)
end if

else
parentStack.Pop()

end if
end for
return PredictionTree

5.4.3 Prediction

After the building is finished and the data structures are stored to their files, it is possible to
apply the following methodology in order to retrieve one or more predictions. The prediction
procedure contains some online (on device) computation but as the computation takes place
on binary values it is very fast. We use the Inverted Index data structure in order to find
similar sequences by applying logical AND to all the sequences binary vectors plus the
input sequence. This way we get all sequences that contain the items of the input sequence
in arbitrary order. The next step is to iterate through the similar sequences and find the
consequent of the input sequence. In order to find the best possible prediction, we create a
Count Table (CT) as a dictionary which stores each element that is contained in a similar
sequence and it is not contained in the input sequence plus the count of it. Then, the ordering
of the CT with respect to the count value is taking place and the element/s that corresponds
to the maximum count are chosen for a prediction. This measure of count is called frequency
support and while there are other measures that can be calculated like confidence. As it was
mentioned by the authors of [7], that support is the one measure which produces the best
results. Additionally the authors have introduced a variable (stepLength) for controlling
the length of the number of steps that contribute for a prediction. The introduction of
this variable is making the model no longer lossless but it helps in order to cover some
cases where the longest steps possible will not produce any predictions. Another addition
proposed by the authors of [7], is a recursive method called recursive divider. Recursive
divider is partitioning the long sequences in to shorter ones and calculates the scores of
each key from the CT through them. This choice provides a better coverage and a boost
in the accuracy but obviously increases the prediction time, especially for longer sequences.
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The implementation presented does not contain this recursive method as it would affect the
prediction time limitations the were set. The stepLength for our implementations is set in
4.
You can see the prediction procedure in pseudocode 15

Algorithm 15 Prediction Method of CPT

Require: PredictionTree, inverseIndex, lookUpTable, inputSequence, stepLength
if length(inputSequence) > stepLength then

inputSequence = the last stepLength elements of the sequence
end if
initialize empty dictionary CountTable
itemIndex = find index(catalogue, inputSequence[0])
similar = inverseIndex[itemIndex]
//iterate through inputSequence except the first element
for item in inputSequence[1:] do

itemIndex = find index(catalogue, item)
similar = similar & inverseIndex[itemIndex] //Apply logical AND

end for
simIndex = 0
for simIndex < length(similar) do

if similar[simIndex] == True then
tempSequence = get sequence(lookUpTable[simIndex])
consequent = get consequent(tempSequence, inputSequence)
if consequent Not Empty then

for cosItem in consequent do
if cosItem in CountTable keys then

CountTable[cosItem] = CountTable[cosItem] + 1
else

CountTable[cosItem] = 1
end if

end for
end if

end if
simIndex = simIndex + 1

end for
if length of CountTable keys > 0 then

predictions = find three best(CountTable)
end if
return predictions

6 Datasets

The experiments that are presented in Section 7, were run in order to find to what degree
any method is fulfilling the requirements while having a satisfying accuracy. However, the
desired conclusion of the experiments would also give an insight on performance of each
method in different possible transformations of the current company’s dataset. Thus we
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chose three additional real life sequential datasets to compare with the INDG dataset re-
sults. These datasets were used for benchmarks in some older competitions for Association
Rule mining. There are two main different insights that these datasets can provide; first how
well the methods can perform in case we have a large number of items like the FIFA dataset
(see Table 7 ) and the performance when a dataset containing a large number of sequences
like the Accidents dataset. In four datasets all sequences having length lower than 3 are re-
moved, as a sequence of that length is possibly not a valid room configuration for our dataset.

1. INDG is the INDG company’s dataset which contains sequences of items (rooms
configurations). It is used for the building of the final product of this research. INDG’s
dataset is not publicly available, as it contains confidential information. The items
repeated in the dataset are removed, as once an item is chosen it can be picked again
instantly in the application, so there is no need to recommend it again.

2. BMS1 contains click-streams in the form of integer sequences representing webpages
and it is available for download at KDD-Cup-2000 archive, [19].

3. FIFA is also a dataset of click stream data from the website of FIFA World Cup 98
and was created by processing a part of the web logs from the world cup. It is available
through SPMF Open Source Data Mining Library, [20].

4. Accidents contains anonymized traffic accident data available at SPMF Open Source
Data Mining Library, [20].

In this table we can see the number of sequences, the number of unique items and the average
length of each sequence contained in each database.

DataSets #Sequences Unique Items Avg. Sequence Length
INDG 27,006 103 8.07
BMS 15,806 495 6.01
FIFA 28,979 3,301 33.94
Accidents 340,183 468 33.80

Table 7: The datasets used for the experiments. Unique Items and average sequence length
is shown in order to see the differences between these datasets.

7 Experiments

For the scope of our project the results of INDG dataset are the most important and will play
the main role in the final choice of the prediction model that will be used by the company.
However, it is obvious that the dataset will surely change overtime, thus we need a stable
method that will have a good trade off between the accuracy of the predictions and the
degree to which the constraints are satisfied. The experiments are categorized in 6 different
cases for all the aforementioned datasets: Prediction Accuracy, Prediction Time, Building
Time, Model Loading Time, Model RAM Consumption and SSD space consumption.
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7.1 10-fold Cross Validation

It is understandable that there is no training set and test set in a sequential dataset. The
universal solution for evaluating the performance of a prediction model on an independent
dataset is to use the N-fold cross validation technique. The validation method initially divides
the given dataset into N different parts, then each prediction model is build on the N-1 parts
of the dataset and gets tested on the remaining part. This process is iterated N times in
such way that every different part will serve as a test set. Finally the mean accuracy over
the N folds is calculated. For our experiments we chose N = 10.

7.2 Evaluation Method

The evaluation scheme that we used in the experiments creates a prefix and a suffix from
each test set sequence. The test set is determined by the cross validation technique described
in 7.1. Each test set sequence is divided in prefix and suffix by choosing a random index.
The minimum prefix length is set to 2 and the maximum suffix length is set to 5. The prefix
becomes the input sequence and the testing takes place on the suffix of the testing sequence.
A prediction is considered as correct if it appears on the suffix of the test set vector. Usually,
when evaluating sequence prediction algorithms the suffix length is set to 1. However in our
case there is not only one right choice, after an item selection, as the correlation between
items can make the user chose the same items in different orders. This evaluation method
is similar to the one proposed by the authors of [7] but we do not construct a context part
of the sequence which is discarded in their case.
The accuracy is calculated by:

Accuracy =
#correctPredictions

length(testSet)
(7)

7.2.1 First Order Markov Chain Extension and its effect

For the first experiment we evaluate the performance of the extension proposed in Section
5.2.2 with different correlationStep values. In order to have a better estimate of the mean
accuracy we run the 10-fold validation, 10 times for each different correlationStep value.
This procedure is useful for finding the value representing the correlation ‘window’ discussed
in Section 5.2.2 that will give the best performance in a given dataset. In Figure 11 below
we can see the differences in the mean accuracy with different correlationStep and the boost
that it provides for the 4 first values. The average length of a room is 8 and there are only
1638 rooms which have length over 16. The final choice of the range of correlationStep is
(1,13). Moreover, it seems that for values over 4 the mean accuracy is not boosting anymore.
Apparently, the mean std over 100 runs of each correlationStep value over 4 is std = 0.0099,
thus we could say that the accuracy over that value has a steady small range.
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Figure 11: Here we can see the mean accuracy for different values of correlationStep used
by Markov Chain Extension proposed in Section 5.2.2.

7.3 Outliers Removal and its effect

Identifying outliers is a wide research field and usually the methodology that is followed
consists of either some assumption of the data distribution or the use of a non-contaminated
training set and one class classifier. It is still questionable if, even while identified, the outliers
should be removed or not. Usually the answer to this decision depends on the degree of
knowledge that we have considering a specific dataset quality. The reason behind the focus
on noise reduction for the company’s dataset, is that a lot of the data points contained
are known to be shared as tests by the developers, and the number of those tests remains
unknown. Due to this fact the dataset can include very short sequences (of length 4-5) that
contain items that are not correlated.

7.3.1 Validation of Outliers

For any direction that can be followed we need a validation technique that will show in
someway the effect of the outliers reduction. In order to achieve that we will follow a similar
procedure to the Robust Regression technique for automatic outliers reduction. In the case
of Robust Regression [8] (Section 7.4, p. 313) we have a classifier and we train the classifier
with every data point contained in the dataset, then we test in the same dataset and remove
a portion of the data points which produce the biggest error and check if the error is reduced
overall. In our case of sequence prediction we have no error value as the prediction is either
right or wrong. Thus for our dataset we use a common sense strategy (Section 7.3.2) for
finding outliers and then we iteratively remove 10% portions of them and see if the average
accuracy over 10 runs is improved or not. For the validation we use our best model the
extended version of first order Markov Chain and correlationStep value set to 4.

7.3.2 Common Sense Strategy

When it comes to outliers detection it is not unusual to use common sense combined with
an understanding over the data. One common feature, for sequence prediction models, that
can be used is the length of each room. The reason that this feature can be used is because
we have an understanding of the average length of a sequence contained in the database.
We know that the average length of the rooms contained in the dataset is 8, thus we can
choose different filtering techniques over the dataset depending on some predicate related to
the length. One assumption based on common sense and knowledge over the dataset is that
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the developers were testing the functionality of storing room configurations by creating their
own test rooms. These test rooms should be not longer than 4-5 items and the items should
be random, as they did not have the time to create longer ones containing a big variety
of items. Based on that logic we can say that we could consider only sequences (rooms) of
length longer than averagelength/2. In order to show the effect of such procedure we show
the accuracy boost after the outliers reduction by 10% increments in Figure 12

Figure 12: In this figure we can see the small gain in accuracy over the same dataset while
removing portions of possibly contaminated data points from the training set.

7.3.3 Mean Accuracy over Different Methods Experiment

In Table 8 the mean accuracy over the 10 folds is shown for each dataset. In the experiments
Markov1 is the first order Markov Chain, Markov12 is the combined model of first and second
order Markov Chain and finally MarkovM represents the extension suggested in Section
5.2.2, of the standard Markov Chain of any of two orders. Experiments for association rules
are not included as they produced results lower than 15% accuracy and also the memory
consumption of the building procedure (FIM and Rule Generation) is too much to be a
viable solution and easily re-buildable, especially in the case of large sequences. It has to be
noted that for the FIFA and Accidents datasets the combination of first and second order
Markov Chain model did not run. The reason is that the number of the combinations of
the items in catalogue is too high to be computed between logical amounts of memory for
the first case and also it takes too long to calculate the second order transition matrix for
both datasets. Finally, as the accuracy in the experiment is the average accuracy over the
10 folds, the standard deviation is also shown in order to give a stability measure over the
results of each method.
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DataSets ItemBased Markov1 MarkovM1 Markov12 MarkovM12 CPT

INDG
Accuracy 0.2024 0.2090 0.2374 0.2182 0.2302 0.2922
std 0.0076 0.0063 0.0061 0.0108 0.0117 0.0192

BMS
Accuracy 0.1758 0.2935 0.3262 0.3177 0.3401 0.2788
std 0.0334 0.0254 0.0190 0.0287 0.0258 0.0283

FIFA
Accuracy - 0.6241 0.6367 - - 0.5410
std - 0.0133 0.0167 - - 0.0128

Accidents
Accuracy - 0.2546 0.3144 - 0.3250
std - 0.0281 0.0840 - - 0.0275

Table 8: Mean Accuracy over 10-folds

7.4 Prediction Times Experiment

7.4.1 CPU comparison for computation times analogy

As an integration of the functionality of sequence prediction to the application system’s was
not possible at the time that this thesis was written, we had to run the experiments on
an Intel i7-4790k CPU. Due to this fact we need to compare this CPU with the baseline
devices CPU (Apple A5 800-1000 MHz, 2 cores). We can compare these processors in some
degree by using some standard benchmark tests: Integer Performance (million operations
per second), Floating Point Performance (million operations per second), Finding Prime
Numbers (million primes per second) and String Sorting (thousands strings per second).
The tests were run using Performance Test 8.0 Evaluation Version (PassMark Software),
by us on the two specific devices Desktop PC containing Intel i7-4790k and iPad2 containing
the Apple A5 CPU. If we average the results of the 4 tests in table we can see that the i7-
4790k is roughly 33 times faster than A5 in all tests. In the worst case scenario on integer
calculations i7-4790k is 59 times faster than A5, this extreme case we will use in order to
understand if the prediction times are within the limits of the requirements.

i7-4790k Apple A5
Integer Calculations (mops) 19825 333
Floating Point Calculations (mops) 8718 282
Finding Prime Numbers (mpps) 25.6 0.7
String Sorting (tsps) 9081 1271

Table 9: CPU Benchmark Comparison between i7-4790k that was used for experiments and
Apple A5 that is the application’s baseline device’s CPU.

7.4.2 Prediction Times

For the prediction time calculation we run the methods for a prediction list of length 3 and
the times are presented in milliseconds (ms). The times between the two variations of first
order Markov chain will be the same, while also the times between the variations (exten-
sions) of the combinations of first and second order Markov Chain will be the same, thus
only the times for the standard Markov models will be presented. For the time calculation
we used Stopwatch from System.Diagnostics in C# which returns the time calculation in
milliseconds. Each of the model prediction times in the table are the prediction times tested
on the i7-4790k CPU and their times are multiplied by the 59 which proved to be the biggest
difference possible between the two processors (i7 and A5) in Section 7.4.1.
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DataSets ItemBased (ms) Markov1 (ms) Markov12 (ms) CPT (ms)
INDG 118 177 177 413
BMS 118 177 177 531
FIFA - 263 - 354
Accidents - 177 - 18585

Table 10: Mean prediction time over 10-folds

7.5 Model Loading Times Experiment

All the models that were used for experimentation were saving in some a prediction model to
the hard drive of an external system (other than the application’s system). This prediction
model needs to be loaded to the application’s system, in order to start using the predictive
functionality in the application. In Table 11 the loading times are shown in milliseconds
where these ms are added to the loading time of the application. The loading times were
calculated also with the help of Stopwatch and the final milliseconds are the aggregated
milliseconds of each loading part of the model. As it was not possible to test the loading
times in the baseline devices, the experiments run on Western Digital WD7500BPVX Hard
Disk. The iPad 2 device and the WD hard disk were tested on their performance considering
read speed and proved to have similar performance, 72MB/s for WD hard disk and 75 MB/s
for iPad2 SSD.
Note: o.a.m. = over a minute

DataSets ItemBased Markov1 Markov12 CPT
INDG 33 ms 32 ms 975 ms 462 ms
BMS 425 ms 237 ms o.a.m. 674 ms
FIFA - 8850 ms - 6344 ms
ACCIDENTS - 228 ms - 18601 ms

Table 11: Loading Time

7.6 Model RAM Consumption Experiment

This experiment is done for the scope of finding the most suitable method considering the
memory requirements set by the company. The same logic considering the times of Markov
Chain different models applies to this experiment too, as the modifications have the same
RAM consumption with the standard models. In order to get the ram consumption value
we loaded each model and run the C# command GC.GetTotalMemory.

DataSets ItemBased Markov1 Markov12 CPT
INDG 4.23 MB 4.23 MB 22.82 MB 31.14 MB
BMS 19.56 MB 10.47 MB 1142 MB 19.31 MB
FIFA - 134.94 MB - 19.43 MB
ACCIDENTS - 11,67 MB - 1120 MB

Table 12: RAM consumption for each method

7.7 Model SSD Size Consumption Experiment

The model that is loaded to the application system has to be stored in the internal storage
SSD space of a device running the application. Thus, the size that is added from the model
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files will be added to the application size. Although we do not have a restriction, it is
preferable to use the smaller model in size.

DataSets ItemBased Markov1 Markov12 CPT
INDG 228 KB 220 KB 5.2 MB 5.1 MB
BMS 3.1 MB 990 KB 369 MB 8.9 MB
FIFA - 34 MB - 110.7 MB
ACCIDENTS - 951 KB - 262 MB

Table 13: Functionality Size

7.8 Building Times Experiment

We have 4 different approaches to consider as we want to see the deviation between their
building times. The building times experiment run in Python as we only wanted to get a
general performance insight. The whole part of each dataset was used for the building.

DataSets ItemBased Markov1 Markov12 CPT
INDG 59.17 min 0.11 min 22.75 min 0.21 min
BMS 8.18 min 0.15 min 60.22 min 0.09 min
FIFA - 2.44 min - 1.31 min
Accidents - 4.08 min - 2.67 min

Table 14: Building times over the whole datasets

8 Results

8.1 Markov Chain First Order (MarkovM)

The Markov Chain of First Order was considered as a possible solution as it is a very simple
model that can be easily stored and loaded into a matrix. It is easy to implement it in
any language as it does not contain any complex data structures, and in general it has
been proven to produce good results in sequence prediction problems. The constraints are
successfully fulfilled from this model as it generates predictions fast and has low memory
consumption within the minimum limits and also fast model loading. It is also easy to rebuild
the model with building times of less than 4 minutes even in datasets containing hundreds
of thousands of sequences and thousands of items. We could say that this method is the
second best on solving our specific problem and therefore fulfilling the constraints.

8.2 Markov Chain Extension First Order(MarkovM1)

While the trade off between accuracy in most cases is not big, it is apparent from the
experiments that the extended version of first Order Markov Chain is the best choice con-
sidering the constraints, accuracy and building times. It remains as simple as the standard
Markov Chain of first order in all aspects while it gets an accuracy boost (especially for the
company’s dataset) with the introduction of the extension in Section 5.2.2. The extension
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suggested proved to provide a little higher accuracy in all cases but the performance depends
on how correlated are the elements between a range (which range needs to be determined by
experimentation). The only problem that we could encounter considering the winning model
and the requirements is that in case of too many individual items of a catalogue like FIFA
dataset the model both loading time and memory consumption exceed the limits that the
company set. However this is an extreme case where we have over than 3 thousands items.

8.3 Item Based

Item Based recommender approach was chosen for the scope of this paper, as an alternative
of the standard sequence prediction approaches and it proved to be satisfactory in most cases.
The Item Based issue is the building time, as it takes long enough to calculate the distances
when a large number of sequences or unique items are contained in the dataset set. However
Item Based is very close to the winner in all aspects of the constraints except loading time.
It is possible to tackle the building time problem to a degree with some parallelization of
the process. However, distance calculation times will still be high enough, while there are
methods that can build a model faster with similar or better constraints fulfillments and
better accuracy.

8.4 Markov Combined (Markov12)

The combined model of the first and second order Markov Chain proved to be the worse
in most cases considering all the constraints while it remains on a steady good accuracy
in different datasets. The problems that emerge with the combined model, are both long
building times and memory consumption, required by the second Order transition matrix.
The standard combined model proves to have a worse accuracy than the extended version
of the first Order Markov Chain with correlationStep set to 4. The building time can be
easily get reduced with simple parallelization but we cannot overcome the bad performance
on constraints.

8.5 Markov Combined Extension (MarkovM12)

The combined first and second Order Markov chain when run with the extension, while
it shares the same problems with the standard combined method, proved to have slightly
better accuracy even from the winner model as it combines the both the extension proposed
and the first and second order Markov Chain models.

8.6 CPT

CPT is a novel technique and from the aspect of accuracy it has satisfying results. Nev-
ertheless it can have a low coverage as it is also mentioned in CPT paper [7]. In order to
overcome this issue a method named recursive divider is introduced to by the authors which
can slightly increase the prediction times without eliminating in total the coverage issue.
The recursive divider also slightly boosts the accuracy, this is why our CPT performs worse
in the BMS dataset than the implementation of the authors. We tested CPT without the
recursive divider method in order to gain in prediction time. The resulted to a faster imple-
mentation but not within the limits of the requirements. The main issue with CPT is that,
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as it was not designed to be efficient for our constraints, the data structures that need to
be stored are proved to have the worst performance considering the constraints of memory
consumption (especially in case of high number of items in catalogue), SSD storage size and
loading time.

9 Future Work/Recommendations

The extended Markov Chain of First Order with correlationStep value 4 proved to be the
model fulfilling the constraints to the higher degree. However, when the number of items
in the catalogue is high, the limits of memory consumption and loading time are exceeded.
More research is needed for finding better ways to store the matrix in both memory and
space. For transition matrices of orders higher than 1 a sparse matrix representation could
be used in order to reduce the size of the matrix in both RAM and SSD.
The Compact Prediction Tree methodology was interesting to apply to the problem. The
data structures were not optimized to our problem which led to high loading times and and
model size. Further research is need for applying the whole sequence similarity computation
offline and store the similar sequences for each similar sequence in a matrix like we did for
items in item-based.
Though cross validation can give us an indication of the performance of the model in an
independent dataset, analyzing feedback from users can prove more effective. Additionally,
it should be investigated which is the optimum period to rebuild the model considering the
changes that can happen in the dataset (additions of items, many new sequences to consider
for building). This is an important decision because, if a model is trained just after a new
item is introduced a very small percentage, if any, of the sequences would contain the new
item. On the other hand if we do not take into account a new item soon it will not get
promoted as much as the others as it can not get predicted yet. If the method proves to be
used by the users a lot ( high percentage of users that clicked on the prediction), it could
make sense to create a framework which would automatically rebuilds the model when it is
supposed to be rebuild and reapply it to the application’s system.

10 Conclusion

The task of this thesis was to deliver a sequence prediction algorithm that works with an
offline mobile application named Amikasa developed by INDG company. The smartphone
application system limits the way we treat such problem considering prediction time, RAM
consumption and model loading time as important constraints that need to be fulfilled. In
order to find the best method among others we followed some variety different directions of
solving the problem and compared them on four different dataset (including the company’s
dataset). The comparison was based on accuracy and the performance of each algorithm on
the system requirements. For the evaluation of the accuracy we used 10-Fold Cross Valida-
tion technique written in Python 2.7 and the constraints performance tests were written in
C# as it is the language that is used from the application’s system. An extension of the
standard first order Markov Chain was introduced that proved to have a higher accuracy
while satisfying the requirements to the fullest. Additionally, we briefly presented a way to
remove noise from a contaminated dataset based on common sense and understanding over
the data and proved the effectiveness of such method on the company’s dataset.
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