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Abstract

For the field of education, being able to gen-
erate semantically correct and educationally
relevant multiple choice questions (MCQs)
could have a large impact. While question
generation itself is an active research topic,
generating distractors (the incorrect multiple
choice options) receives much less attention.
A missed opportunity, since there is still a lot
of room for improvement in this area. In this
work, we train a GPT-2 language model to gen-
erate three distractors for each question, using
the RACE dataset. Our model outperforms ear-
lier work on distractor generation (DG) and
achieves state-of-the-art performance. Next,
we train a BERT language model to answer
MCQs, and use this model as a filter, to select
only questions that can be answered and there-
fore presumably make sense. This improves
not only our own results, but can also be used
to enhance other question generation models.

1 Introduction

Over the last two years, Transformer-based
language models have gone from development
to being adopted in all parts of natural language
processing (NLP). This started with ULMFiT
(Howard and Ruder, 2018) and BERT (Devlin
et al., 2019), which showed the potential of pre-
training a large neural network using unsupervised
learning. After pre-training, these neural networks
can be fine-tuned on specific tasks. During
fine-tuning, the weights of the model are tweaked
to perform well on a specific task, building upon
the knowledge learned during pre-training. This
has led to substantial improvements in the state of
the art for tasks such as sentiment classification,
question answering, and many others. When
GPT-2 (Radford et al., 2019) was released, a
huge improvement in text generation ability was
obtained. The performance has even been shown

to continue to improve with an increase in the
size of the language models, ranging from 117M
parameters for the smallest GPT-2 model, to 175B
parameters for the largest of the GPT-3 (Brown
et al., 2020) models.

Within natural language processing, question
answering (QA) is a heavily researched field,
while the inverse task receives much less attention:
question generation (QG) (Pan et al., 2019). For
education, being able to generate semantically
correct and educationally relevant questions is a
task with clear applications. Yet most of the work
in this field focuses on using QG for generating
synthetic datasets for question answering, rather
than seeing it as an end on its own. For this reason,
these papers tend to concentrate only on the task
of generating a question from a given context
and answer, while the other elements required
for multiple choice questions (MCQs) receive
much less attention. These elements include
selecting the answer and generating the incorrect
answers. It is this last part that we decided to work
on: generating incorrect answers, also known as
distractors.

For the distractor generation task, we use the
RACE dataset (Lai et al., 2017), which contains
almost 100, 000 questions. Each of these questions
is paired with a context of a single paragraph, the
correct answer, and three distractors. We use this
to create a distractor generation model, which
gives us the ability to generate complete multiple
choice questions. This opens up other capabilities,
including the ability to create a QA model which
chooses the correct answer from four options.
We will show that such a multiple choice QA
model can be used to filter only correctly answered
questions in order to improve the overall quality of
question generation models.
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Figure 1: Overview of the model architecture: we take a context and answer as input, generate a question, generate
three distractors, and use the QA model to filter only correctly answered questions. The distractor and question
generator models are based on GPT-2, which is ideal for text generation, while the QA filtering model is based on
BERT, which is better for classification problems.

The key contributions of this work include:

• We fine-tuned a GPT-2 language model for
distractor generation on the RACE dataset.

• We fine-tuned a BERT language model for
multiple choice question answering on the
RACE dataset.

• We proposed a new QA filtering technique
for improving QG results, by filtering using a
multiple choice QA model.

2 Related work

Question generation Early question generation
models were mainly rule-based: defining patterns
of word types and using these to extract phrases
from the text, which would be transformed into
questions (Mitkov and Ha, 2003; Chen et al.,
2006; Heilman, 2011). In the last decade, these
rule-based models were mostly replaced by
neural networks, primarily sequence-to-sequence
architectures (Du et al., 2017; Kim et al., 2019).
However, in the last year, these again are being
replaced, now with Transformer-based language
models.

The first of such works used BERT to generate
questions (Alberti et al., 2019). By now, GPT-2
(Radford et al., 2019) has mostly replaced BERT
for QG tasks (Klein and Nabi, 2019; Liu et al.,
2020; Cho et al., 2019; Lopez et al., 2020). GPT-2
is a better text generator overall (Wang and Cho,
2019) due to it being trained solely in a left-to-right
fashion, predicting the next word in a sequence of
words. This is in contrast with bidirectional mod-
els such as BERT, which are trained primarily by
predicting masked words. Such masked language
modeling training leads to better performance on
many NLP tasks, due to the bidirectional nature,
but is worse at the specific task of text generation.

Distractor generation Several works for
distractor generation (DG) are actually ranking
models. These include Liang et al. (2018), which
ranks distractors from a given candidate set using
both feature-based and neural network-based
ranking models, and Ren and Zhu (2020), who
use a knowledge base to generate a distractor
candidate set and a learning-to-rank model for
selecting distractors.

In 2017, the RACE dataset (Lai et al., 2017) was
published. This was the first dataset to include a
large number of distractors along with the ques-
tions. Several papers since then have used this to
create distractor generation models, including Gao
et al. (2019), which used a hierarchical encoder-
decoder model with attention to generate distrac-
tors. Zhou et al. (2020) improved upon this model
by adding co-attention layers and using more tricks
to gain better performance.

Multiple choice QA The original RACE paper
used several models to establish baselines on the
multiple choice QA task. Their Gated AR model
achieved an accuracy of 44.1%, which showed the
limitations of the models available at that time of
publication (2017) for such a complex dataset. Re-
cently, language models have been able to greatly
surpass this accuracy, with BERT achieving an ac-
curacy of 73.9% (Lan et al., 2019), and the largest
variant of ALBERT (Lan et al., 2019) even achiev-
ing an accuracy of 82.3%.

QA filtering Alberti et al. (2019) introduced the
concept of QA filtering to the domain of question
generation. They generate a question, then answer
that question using an extractive text QA model.
Only when the QA model generates the correct an-
swer, do they keep it. This is to ensure roundtrip
consistency. Liu et al. (2020) also used a simi-
lar filtering method, but with the explicit goal of
generating human-like questions.



3 Method

Our system consists of three separate models: a
question generator, a distractor generator, and a QA
filter. We will outline how we created and trained
these models separately, and then we will explain
how we used these jointly to improve the overall
results. Figure 1 provides a high-level overview of
our complete architecture.

3.1 Question generation

While question generation is not the goal of
our research, we do use it as input for the
other two models. It is used to evaluate the
ability of the QA model to filter generated
question—answer—distractor tuples. Similar to
many recent works (Klein and Nabi, 2019; Liu
et al., 2020; Lopez et al., 2020), we decided to
fine-tune a GPT-2 model, in particular the “small”
variant with 117 million parameters. For this task,
we used the SQuAD dataset (Rajpurkar et al.,
2016), specifically the training dataset of SQuAD
v2. We remove questions which are highlighted
as being impossible to answer (as specified by
humans when the dataset was created), because we
want our model to generate answerable questions.
After removing these, 86, 821 questions remained.

We extract context—answer—question tuples
from the SQuAD dataset, and tokenize these using
the Byte-Pair-Encoding (BPE) tokenizer (Sennrich
et al., 2016) that GPT-2 uses. Since GPT-2 is a
model that learns to generate the next word after a
sequence of words, we use special tokens to iden-
tify the segments of the inputs. This forces the
model to learn to generate the correct elements.
The input format is shown in Figure 2.

[context] answer_start [answer] answer_end [question] endoftext

Figure 2: Format of the input to the QG model. The
black boxes denote special tokens supplied to the tok-
enizer.

This model was implemented in PyTorch
(Paszke et al., 2019) using the Transformers
library (Wolf et al., 2019). The model was already
pre-trained by OpenAI on a large text corpus, and
we fine-tuned it on our dataset. It was fine-tuned
for 3 epochs on the full dataset, using a batch
size of 4. The Adam optimizer (Kingma and Ba,

2015) was used with a learning rate of 5× 10−5

and an epsilon value of 1× 10−8. This optimizer
improves upon classical stochastic gradient descent
by using first and second moments of the gradients
to speed up convergence. Using the Adam opti-
mizer is standard practice for Transformer-based
models. The learning rate and epsilon values are
based on recommendations from Wolf et al. (2019).

3.2 Distractor generation
Similar to the question generation model, we again
fine-tune GPT-2, but this time to generate distrac-
tors. Since the SQuAD dataset does not contain
distractors, we used the RACE dataset (Lai et al.,
2017) for this model. We do not do any filtering, so
we use the full training dataset of 87, 866 questions.
We provide the context, question, and answer as
input. The context is where the model can draw
stylistic influence from and which can be used for
finding similar words and phrases to the correct
answer. The question is what the distractors should
be written in relation to. And finally, the answer
should be used to make sure that the distractors
are different from the answer. The input format is
shown in Figure 3.

[context] question_start [question] answer_start [answer] distractor_start

[distractor1] endoftextdistractor_start [distractor2] distractor_start [distractor3]

...

Figure 3: Format of the input to the DG model.

This is again tokenized using the BPE tokenizer,
and we train the model with the same settings.
However, besides training the small GPT-2 model,
we also train another model based on the medium
GPT-2 variant, with 355 million parameters. We
keep the settings the same, except for the batch
size which we reduce to 1, since we are limited by
the memory usage. Ideally, we would have also
trained the large or extra large GPT-2 variant, but
this was not possible1 on the RTX 2080 TI GPUs
that we used.

During generation, we also apply a repetition
penalty, as proposed by the authors of the CTRL
language model (Keskar et al., 2019). This penal-
izes the model for generating similar texts, which
helps to generate syntactically dissimilar distrac-
tors. Moreover, we noticed that the model could

1Although it is technically possible with the use of gradient
checkpointing, we did not get this to work.



sometimes generate less than three distractors, gen-
erate non-unique distractors, or generate empty
strings as distractors. To alleviate this, we decided
to filter non-unique and empty distractors, and to
repeat the generation step until three unique and
non-empty distractors were found.

3.3 QA filtering
In order to be able to filter multiple choice ques-
tions, we need to have a model which can answer
them. To create this, we decided to fine-tune the
DistilBERT model (Sanh et al., 2019), with 66 mil-
lion parameters. This is a distilled version of BERT,
retaining 97% of the performance of the small
BERT model, with 40% less parameters. Most QA
research focuses on extractive QA: models where
the output is a string, which is extracted from the
source document. In our case, we want a QA model
which chooses one of the multiple choice options
as the correct answer. To accomplish this, we feed
context—question—answer tuples into BERT. We
then combine the four outputs and feed it through
a dropout layer (Srivastava et al., 2014) for regu-
larization, a fully connected layer for classification,
and finally a softmax layer in order to model it a
multi-class classification problem. The input for-
mat and the model architecture is shown in Figure
4.

[context] [question] [answer]CLS SEP SEP SEP

[context] [question] [answer]CLS SEP SEP SEP

[context] [question] [answer]CLS SEP SEP SEP

[context] [question] [answer]CLS SEP SEP SEP
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Figure 4: Overview of the input and architecture of the
QA filtering model. We feed each distractor separately
into the DistilBERT model, then use the four outputs to
determine the answer.

This model was trained for 3 epochs, with
a fully connected layer dimension of 768, a
dropout ratio of 10%, a batch size of 2, and 8
gradient accumulation steps per batch 2. Again,
the Adam optimizer was used, with a learning rate
of 3× 10−5 and an epsilon value of 1× 10−8.

Once we have the multiple choice QA model,
we can use it to filter question—answer—distractor
tuples. The intuition behind this QA filter is that
when a multiple choice QA model is given perfect

2This simulates a larger batch size, which is required for
good performance with a QA model on the RACE dataset (Liu
et al., 2019).

information, it should almost always be able to an-
swer a generated question correctly. If not, there
could be two type of errors: (I) either the QA model
does not have the capability to answer it, (II) or the
question or distractors are somehow incorrect (i.e.
this is a bad question). As for the type I errors,
this should be unlikely because the model receives
the exact context which is needed to answer the
question. Imagine if you had a test and the students
would be provided the paragraph which contained
the answer for the question right next to every ques-
tion: students would surely receive high grades.
Moreover, QA models have already surpassed hu-
man performance on the SQuAD dataset (Zhang
et al., 2020) and are nearing human performance
on the RACE dataset (Lan et al., 2019), further
decreasing the chance of type I errors. Type II er-
rors are exactly what the QA model aims to filter.
Therefore, whether the QA model can answer the
question should be a good filter for high-quality
questions.

4 Results

To evaluate our work, we chose several approaches:
evaluating the text generation quality using
standardized metrics, evaluating the ability for the
QA model to answer the generated questions, and
using a human evaluation to complement these two
automatic metrics with a human perspective.

4.1 Quantitative evaluation
We compare our models against three baselines:
the basic sequence-to-sequence distractor generator
model from Gao et al. (2019), the improved hierar-
chical encoder-decoder model with static attention
(HSA) from Gao et al. (2019), and the hierarchi-
cal model enhanced with co-attention (CHN) from
Zhou et al. (2020).

Text generation quality As a high-level
overview, we use several metrics to calculate the
quality of the generated distractors. Specifically,
we use the BLEU metric, which uses modified
precision of n-grams to determine the correspon-
dence to human-written text; and we use the
ROUGE-L metric, which looks at the longest
common subsequence and focuses on sentence
level structure. The results of this evaluation can
be found in Table 1. By default, we use questions
from the dataset as input to the distractor generator.
As a comparison, we also show the case where



BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

Dataset questions
SEQ2SEQ (Gao et al., 2019) 25.25 11.99 6.54 3.92 13.34
HSA (Gao et al., 2019) 26.93 13.57 8.00 5.21 14.45
CHN (Zhou et al., 2020) 27.53 13.80 8.46 5.80 15.11
GPT-2 SMALL 59.48 26.30 13.68 9.28 12.57
GPT-2 MEDIUM 60.35 26.44 13.37 8.92 12.33
GPT-2 MEDIUM (after QA filtering) 59.67 26.21 13.39 9.02 12.27

Generated questions
GPT-2 SMALL 56.80 24.00 11.75 7.65 10.60
GPT-2 MEDIUM 57.20 23.80 11.37 7.30 10.10
GPT-2 MEDIUM (after QA filtering) 56.21 23.23 11.04 7.11 9.85

Table 1: Text generation quality of the distractor generation model. The DG scores are calculated separately for
each distractor, and then averaged over all three distractors.

we are generating the questions as well, to show
what the impact is on the results of the distractor
generator.

The distractors in the RACE dataset are on av-
erage 5.4 words long, with a standard deviation of
3.3. This means that for evaluating distractors, the
BLEU-1 and BLEU-2 scores are more relevant than
BLEU-3 and BLEU-4, since 3-grams and 4-grams
occur much less.

Question answering ability As a second
quantitative evaluation, we decided to measure the
number of questions answered correctly by the QA
model, when the distractors are generated by our
model. The better the distractors, the higher this
percentage should be, as good distractors should
be clearly incorrect answers to the QA model,
given the fact that the model has full access to the
context. However, as previously noted, the error
rate of the QA model is a summation of two errors:
errors due to bad distractors or questions, as well
as errors made by the QA model itself due to other
reasons. Therefore, the accuracy on its own is
not meaningful to evaluate the distractors, but it
is meaningful as a relative number to compare
models.

For the results, see Table 2. We compare the
GPT-2 SMALL and MEDIUM models. Again, we
also compare the case for which we generate the
questions with our question generator, with the case
where we use the questions provided by the dataset
and only generate the distractors.

4.2 Human evaluation

Metrics such as BLEU and ROUGE are based
merely on comparing text similarity to reference
sentences and are therefore limited in its ability to
measure the quality of generated text as a human
would (Callison-Burch et al., 2006). So, we de-
cided to run a human evaluation to supplement the
quantitative evaluation. Specifically, we wanted to
test the ability of the QA filtering model to filter
high quality questions which are answerable by a
human. We set up a human evaluation with 4 asses-
sors, each rating 100 generated questions with the
following questions:

1. Is the question well-formed and can you
understand the meaning? Possible an-
swers include “Both understandable and well-
formed”, “Understandable, but not well-
formed.”, and “Neither”.

2. If the question is at least understandable,
does the answer make sense in relation to
the question? This is a yes, no, or I don’t
know question.

These questions are based on work done by
Liu et al. (2020), but we removed the relevancy
question since it did not provide for a good indica-
tor of quality in their results, and we rewrote the
questions and answers to improve clarity. Of the
100 generated questions rated by each assessor, 30
questions were the same for each assessor, while
the other 70 were unique questions. This enabled
us to estimate inter-rater reliability, while still
rating a large number of questions overall. Of these



Dataset questions Generated questions

GPT-2 SMALL 51.08% 54.55%
GPT-2 MEDIUM 53.60% 56.49%

Table 2: Accuracy of the QA model for generated distractors by both DG models.

Accepted questions
-  What did the Wahhabism mean for the Muslims?
-  What does the climate change report do?
-  What do Wankel engines use?
-  What river divides the city?
-  What was the aim of the new law that the EU created?

Rejected questions
-  Who was the composer for Destiny's Child?
-  What was Zia-ul-Haq's primary ideology?
-  Who was the Duke Yansheng Kong Duanyou's brother?
-  What is the effect of inequality on human capital formation?
-  What is a very short period with short epochs?

Figure 5: Randomly chosen examples of generated questions used for the human evaluation.

310 unique questions, 155 are questions that the
QA filtering model accepted, while the other 155
are questions that the QA filtering model rejected.
This should highlight the effect of the QA filtering
model and show whether it is a good measure of
the quality of questions. 10 example questions
used as part of the evaluation are shown in Figure 5.

5 Discussion

Text generation quality Looking at the quan-
titative results in Table 1, the BLEU scores are
substantially higher than previous works. This
is in line with what other works have shown
with the use of Transformer-based language
models for text generation: these are much
better at generating coherent text than previous
sequence-to-sequence model based approaches
were. However, interestingly, the ROUGE-L score
is actually slightly lower than the ROUGE-L
scores of previous works. While BLEU score is
a measure of precision, ROUGE-L is a measure
of recall. ROUGE measures how many words
in the human references appear in the generated
distractors. A potential explanation for this
difference in scores is that the GPT-2 based models
are more creative and therefore diverge further
from the word distribution of the references than
previous models do. This can lead to lower relative
recall.

When looking at the differences between our
own models, these seem to be relatively minor.
The larger GPT-2 MEDIUM model, which has
twice the number of parameters as the GPT-2

SMALL model, only gains less than a percentage
point (when looking at BLEU-1 and BLEU-2).
This minor change is likely due to the dataset
size: the small model is already able to model
the distribution well and can already learn to
generate distractors like the outputs from the
dataset. Furthermore, it appears that only rating
distractors after the QA filtering step does not
lead to better results. Lastly, the scores for when
we generate questions are on average several
percentage points lower than we use questions
from the dataset. This makes sense: the question
generator will occasionally generate incoherent
questions, which will complicate the work of the
distractor generator, and lead to outputs which
differ more from the reference dataset.

Question answering ability As for the results
shown in Table 2, we can clearly see that using
GPT-2 MEDIUM for distractor generation, which
has twice the number of parameters as GPT-2
SMALL, results in more accurate question answer-
ing than the smaller model. Moreover, as is to be
expected, the scores for when the questions are
also generated, are worse than when the questions
are taken from the dataset.

Human evaluation The output of the human
evaluation can be found in Table 3. The questions
which the QA filtering model accepted are overall
slightly better than those it rejected. 88% of
accepted questions are either only understandable
(18%) or are both well-formed and understandable
(70%). This is 5% higher than 83% for rejected



Accepted Rejected

Question
Well-formed and understandable 70% 69%
Only understandable 18% 14%
Neither 12% 18%

Answer
Yes 50% 56%
No 41% 37%
I don’t know 8% 7%

Table 3: Results from the human evaluation. We compare the quality of the questions which were accepted by the
QA filtering model with those which were rejected.

questions. However, this is still a pretty small
difference. To evaluate this, we applied Pearson’s
chi-squared test. This test showed that the
likelihood of the observed data being drawn from
the expected distribution is 21.40% for question
1 from the human evaluation and 40.18% for
question 2. This means that the difference between
the accepted and rejected questions was not shown
to be statistically significant (for p ≤ 0.05).

We also estimated the inter-rater reliability using
the Fleiss’ kappa measure (Fleiss, 1971). This led
to a κ value of 0.413 for question 1 and a κ value
of -0.147 for question 2. Using the interpretation
table3 from Landis and Koch (1977), the assessors
would appear to be in moderate agreement for
question 1, but in poor agreement for question
2. Since there is some subjectivity in how the
generated questions are rated by the assessors, we
would say that moderate agreement for question 1
is a positive result. The low score for question 2
can be explained by a combination of the question
being even more subjective, as well as the fact
that question 2 was likely not explained well in
the evaluation setup. Therefore, we should rely
primarily on the results of question 1.

Limitations & summary In order to make
sense of the results, we need to be aware of the
limitations of the different evaluation methods. As
for the text generation quality measures such as
BLEU and ROUGE, the main issue is that they
do not consider the meaning of the text. There is
some recent work in using language models for
evaluating the text quality (Sellam et al., 2020),
which should better incorporate meaning into

3It should be noted that there is extensive debate about the
validity of these ranges of interpretation, but it seems no better
alternative exists.

the score, but we were not yet able to use this.
Moreover, these metrics do not evaluate sentence
structure as part of their calculation. As for the
question answering ability, the main issue is that
the model can accept bad questions or reject good
questions. These types of errors are included in the
total score. Ideally, we would need a QA model
which always answers a good question correctly
and always answers a bad question incorrectly.
Although we think this is technically possible,
our model is far from this level of performance.
This means that the absolute values from Table 2
are irrelevant, but we can still look at the relative
differences. As for the human evaluation, the main
issue is the low number of total assessed questions,
leading to statistically insignificant results.

These limitations have led us to use three differ-
ent evaluation methods. Using the combined re-
sults to draw our conclusions, it looks like whether
the question is answerable by the multiple choice
QA model, is only a minor indicator of question
quality. There was only a small difference in the
quantitative results and no statistically significant
difference in the qualitative results. One possible
reason for this result is that the QA model will
guess one of the four options if it does not know
the answer for certain, leading to a high false pos-
itive rate. This could potentially be resolved by
using bayesian neural networks to determine the
QA uncertainy and set a threshold, ensuring that
the model is sure about its prediction. Or a fifth
”I don’t know” option could be added to the QA
output and we could teach the model to choose this
option when it is not certain.

6 Conclusion

Overall, we can conclude that distractor generation
using GPT-2 works well, but filtering using a



multiple choice QA model does not help much to
improve the results. However, we have multiple
options to fix this and we still believe that it
could be a worthwhile addition to the field of
question generation. Besides being applied to
our own question generator, we could apply our
QA filtering model to improve the results of other
question generation models. This will be explored
in future work. Moreover, we could also attempt to
use larger pretrained Transformer-based language
models. It would be interesting to see how much
of an improvement such larger pretrained models
could bring.

As part of our research, we attempted to improve
the distractor generation model by setting up an
end-to-end training pipeline with the question
answering model. Inspired by Klein and Nabi
(2019), we wanted to generate distractors for a
question, then feed this to the QA model, and
backpropagate the loss of the QA model with
regards to the weights of the DG model. This way,
we wanted to teach the DG model to generate
distractors such that the QA model could still
correctly identify the correct answer, as the current
DG model does not have enough inductive bias to
generate distractors which are actually incorrect
answers. Unfortunately, due to issues with
catastrophic forgetting, this never materialized.

In summary, we have shown that generating mul-
tiple choice questions with distractors is technically
possible using Transformer-based language models.
This opens up many new possibilities and interest-
ing applications. For example, it could be used
to assist teachers in creating multiple choice ex-
ams. Or it could be used to automatically quiz
students when they are learning. These develop-
ments are getting closer to reality and we aimed
for this work to provide a valuable contribution
towards this hopeful future.
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