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Abstract 

 

 

 

Road accidents and injuries are the 9th leading cause of death in the world. [1] Road safety is an important 

area where technology can profoundly help.  Using smartphones while driving has become a daily norm 

from the past few years. Smartphone applications provide us with abundant information on the road to 

help us reach from point A to point B, in the shortest time, avoiding traffic and speed cameras.  

 

What if the smartphones could help us detect rash driving maneuvers on roads and make our driving 

experience safer altogether? 

 

Smartphones are equipped with sensors that can be used to derive insights about the driver behind the 

wheel. This thesis focuses on detecting critical driving events that happen on the road using sensors 

available in our smartphones using machine learning algorithms. The critical driving event this thesis looks 

at in depth are sharp corners and harsh brakes leveraging the gyroscope and accelerometer smartphone 

sensor data technology.  

 

This research describes methods to handle noisy sensor data and extract insights from it to best serve our 

purpose. Due to time constraints of the thesis, the algorithm proposed in this research could not be tested 

real time on a smartphone, however, this research opens an effective platform in the field of intelligent 

transportation system as well as telematics.   

 

This research has been done in collaboration with TomTom B.V. in Amsterdam, with test driver 

participants from two countries, namely, Netherlands and India. 

The outcome of this thesis is a machine learning model that can detect a harsh brake and sharp corner 

from a normal driving event using smartphone sensor data.  

 

 

Keywords: Signal Processing, Sensor Data, Machine Learning, Random Forests, Time Series  
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1. Introduction 

 
Road safety is a shared responsibility. According to WHO’s statistics 2018 [1], on a traffic study, almost 

1.25 million people die in road crashes alone because of aggressive driving. Moreover, road accidents are 

ranked as the 9th leading cause of death worldwide, causing almost 2.2% of all death globally. [1]  

We can make driving experience safer for anyone behind the wheel, using current advancements in 

technology.  

A lot of previous research focusses on using sensors and hardware that is pre-deployed in vehicles. For 

instance, Onboard Diagnosis (OBD) adapters plugged into the vehicle’s controller area network (CAN), or 

VBOX with speed sensors. However, a drawback of deploying these systems is they incur heavy costs; 

hence people are reluctant to install these systems. To overcome this, recent research is broadly based 

on exploiting the sensor technology equipped in our smartphones. 

The use of smartphones while driving has become prevalent to apps like TomTom Speed Camera, Google 

Maps, Waze, etc. Our smartphones are equipped with rich sensor technology which is compact and 

efficient. The sensors in our smartphones are capable of measuring acceleration, rate of rotation, light, 

touch on screen, air pressure as well as our position in space.   

 

These sensors can provide us with information about driving behaviour of a driver and their reckless 

driving maneuvers. We can leverage these sensors to provide safety assistance to the user while driving. 

Although sensor data retrieved from smartphones is noisy, it contains vital information with context to 

driving.  

 

Using the power of sensors combined with machine learning algorithms, intelligent transportation 

systems can be transformed to make better safety predictions.  

Previous research has been done in this area, assisting the driver, leveraging the sensor technology in 

mobile phones. The sensors used to provide this assistance are accelerometer, gyroscope, GPS and 

magnetometer. Research within this niche focuses on various aspects, detecting road information, driver 

behaviour, driving maneuvers or vehicle detection using smartphone sensors.  Section 2 of this paper 

provides a literature review.  

1.1 Research Goal 
This thesis is conducted in collaboration with TomTom B.V. This research aims at detecting critical driving 

events that occur while driving solely using noisy (unformatted) smartphone sensor data. Critical events 

while driving can be detected in many ways, for instance by studying the lateral and longitudinal 

acceleration of the vehicle. [2] However, we are interested in two critical events that take place often 

while driving on the road namely harsh braking and sharp cornering. The focus of this thesis is to 

investigate the harsh brake and sharp corner critical events from representative driving data and classify 

it using machine learning algorithms.  

At the end of this thesis, we should have a machine learning model that is able to detect harsh brake and 

sharp corner from normal driving event.  
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1.2 Outline   
The outline of this thesis is as follows:  

 

Firstly, Section 2 of this document gives background to the research topic, literature review as well as 

introduction and evaluation of mobile sensors. The experimental setup, methodology, algorithms and 

evaluation metrics used for this project are mentioned in section 3. The following section 4, will give us 

details on the data aggregation and features created for our dataset. Section 5 of this project is a statistical 

study of the raw as well as aggregated data where we further explore our dataset. In section 6 we run our 

experiments and discuss the results we obtain. Finally, in section 7 we conclude with key results, put forth 

our suggestions and recommendations for future research.   
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2. Background 

 

2.1 Related Work  
Fazeen, M., Gozick, B et al. [3] have described an approach of using 3-axis accelerometer data, to classify 

abnormal driving events, namely hard brakes and acceleration, and road anomalies. They achieved an 

accuracy of 85% for road anomalies. These events are mainly detected by calculating the time duration, 

difference, and slope between successive accelerometer readings on certain axes and comparing them to 

dynamic thresholds. However, the data smoothing, and noise removal procedure are not mentioned, as 

typically sensor data from smartphones is very noise prone.  They also don’t use any machine learning 

algorithma for their detection.  

Castignani et al. used 2-axis accelerometer data to measure the g-force caused by longitudinal and lateral 

acceleration and used fuzzy logic to classify driving behaviour as normal, aggressive, and very aggressive. 

They claim that their classification is real-time and costs nothing. The average of the Euclidean norm of 

longitudinal acceleration and lateral acceleration along with speed is used to a fuzzy inference system. [3] 

However, the evaluation and accuracy of their approach are missing from their paper.  

Another research by Johnson and Trivedi [4], where they proposed the MIROAD platform – A mobile 

Sensor Platform for Intelligent Recognition of Aggressive Driving. This platform used Dynamic Time 

Wrapping (DTW) [5] and smartphone sensors like accelerometer, gyroscope, magnetometer, GPS and 

video to detect, recognize and record these actions without external processing. [4] They collected their 

data on a sampling rate of 25Hz and used a combination of gyroscope signals on the x-axis, acceleration 

on y-axis and pitch signals, which are fed into the DTW algorithm to classify turns, braking, and excessive 

speed driving events. Their analysis shows they achieved an accuracy of 97% for classifying these 

aggressive driving events.  

Eren et al. [31] propose a system like the MIROAD platform [4], however, they use Bayesian classifier to 

classify a drivers behaviour as safe or risky using smartphone sensors like accelerometer, gyroscope, GPS 

and magnetometer. Their study involved 10 drivers, of which 2 were manually labelled as “risky” according 

to their behaviour on the road. Their system correctly classified 14 drivers from a test set consisting of 15 

drivers. The effectiveness of the technique cannot be judged as binary classification is easier than driving 

event classification. However, their results look promising.  

Ma et al. [6], proposed a sensor noise distribution determination algorithm for a smartphone on a vehicle, 

namely DrivingSense. Driving Sense could detect three dangerous driving events, speeding irregular 

driving direction change and abnormal speed control. They make use of all 4 sensor signals, 

accelerometer, gyroscope, GPS as well as a microphone. 

Junior et al. [7] investigate different machine learning algorithms to assess which sensor/ method 

assembly allows classification with higher performance. They have tested four machine learning 

algorithms, Artificial Neural Networks (ANNs), Support Vector Machines (SVM), Random Forests (RFs), 

Bayesian Networks (BNs). They concluded that gyroscope and accelerometers, along with bigger sliding 

windows were the most suitable to detect driving events. Also, their best working model was Random 

Forest, with an AUC score of 0.98 for aggressive breaking event and 0.99 for aggressive right change event. 

[7] 
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2.2 Mobile Sensors  
Modern smartphones are equipped with micro-electromechanical systems (MEMS) such as 

accelerometers and gyroscopes to determine device orientation. Gyroscope, Accelerometer and 

Magnetometer built in smartphones form the Inertial Measurement Unit (IMU) available in smartphones. 

Apart from there, smartphones come with Proximity Sensor, Global Positioning System (GPS), 

Microphone, Touch Screen Sensors, Fingerprint Sensor, Barometer etc.  

For this research, we exploit the accelerometer, gyroscope, GPS sensors from smartphones.  

(a)  Accelerometer:  

The three-axis accelerometer (Figure 1) of the phone is used to detect vibration, acceleration and tilt to 

determine movement and orientation along the three-axis. Accelerometer also detects how fast your 

phone is moving in any linear direction.  The values reported by accelerometers are measured in 

increments of the gravitational acceleration, with the value 1.0 second per second in the given direction. 

[8] Acceleration values may be positive or negative depending on the direction of the acceleration.  

(b)  Gyroscope: 

Gyroscope measures the rate at which a device rotates around a spatial axis. It also provides orientation 

information as well as directions like up/down and left/right but with a greater precision, for example, 

how much the device is tilted. [8] Rotational values are measured in radians/second (rad/s) around the 

given axis. Rotation values may be positive or negative depending upon the direction of rotation. (Figure 

2) 

  

 

 
Figure 1: 3-axes of an accelerometer in a smartphone [9] Figure 2: 3-axes of a gyroscope in a smartphone [9] 
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(c) GPS 

Global Positioning System (GPS) unit in our smartphone is used to communicate with 31 satellites in orbit 

to determine our precise location on the Earth. [9] As GPS is a satellite-based system it gives your location 

irrespective of the weather conditions, 24 hours a day. Modern day GPS receivers have an accuracy of up 

to 30-40 centimeters (cm).  

2.3 Sensor Evaluation on iOS vs Android phones  
iPhone 6s uses only one InvenSense inertial sensors for accelerometer and gyroscope (6-axis 

accelerometer and gyroscope) [10]. The sampling rate for accelerometer and gyroscope can be set from 

10 Hz up to 100Hz via the motion data manager. If there is a delay in receiving the data, interpolation may 

be necessary.  

For Samsung Galaxy S8 inertial sensor slot belongs to STMicroelectronics with LSM6DL 6-axis inertial 

sensor. The sensitivity for Accelerometer is 0.061 mg/LSB and that of the gyroscope is 125 mdps/LSB. [11] 

[12] 

 

3. Methodology  
In this section, we describe our experimental setup as well as the methods and techniques used for this 

study in details.  

3.1 Experimental Setup  
For performing this research, ground truth data was required to be able to validate results as no data was 

available to take this research further. Thus, experiment setup was designed to collect data and manually 

label it. For collecting data for harsh brakes and sharp corner events 6 drivers were involved. The cars 

used for the experiment along with the percentage (%) of data collected with each were: 

• Toyota Camry, automatic, 2019 model (15%) 

• Volkswagen polo 1.2 united edition 2008, and (55%) 

• Chevrolet Spark 1.0 (30%) 

The mobiles phones used for collecting data along with the percentage (%) of data collected with each 

were:  

• iPhone 6s (45%) 

• Samsung Galaxy s8 (15%) 

• ViVo Q10 (40%) 

Two different applications were used on iOS and Android platforms to collect sensor data, namely 

𝑆𝑒𝑛𝑠𝑜𝑟𝑃𝑙𝑎𝑦 ∗ and 𝑃ℎ𝑦𝑠𝑖𝑐𝑠 𝑇𝑜𝑜𝑙 𝐵𝑜𝑥** respectively. All phones were mounted on a CarKit holder during 

the data collection drive.  The position of the CarKit holder was either on the dashboard or the windshield. 

Figure 3 shows the position of the phone on the dashboard for collecting the data.  

 

 
*     https://apps.apple.com/us/app/sensor-play-data-recorder/id921385514 

**  https://play.google.com/store/apps/details?id=com.chrystianvieyra.physicstoolboxsuite&hl=en 

https://apps.apple.com/us/app/sensor-play-data-recorder/id921385514
https://play.google.com/store/apps/details?id=com.chrystianvieyra.physicstoolboxsuite&hl=en
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Figure 3: Position of Smartphone in the Car 

The drives for data collection took place in two countries, India and the Netherlands. Data collected in 

India was much more prone to noise than in the Netherlands, the reason being that roads in India are 

more uneven and bumpy than those in the Netherlands. However, we preprocessed data from both 

countries together, to have a more realistic preprocessing of data.  

Two individuals were in the car at a time of data collection, the passenger noted lap times whenever the 

driver performed a harsh brake or sharp corner event. When two individuals were not available, video 

recording of the drive was used to match the harsh brake or sharp corner event to the time it occurred 

according to the video recording of the drive, to build ground truth data.  

Some parameters were kept fixed for the experiment whereas some diverse on purpose for having variety 

in data and mimic realistic driving situations.  

 

The fixed parameters of the experiment are  

- The orientation of the phone during the drive, in-car kit holder and portrait orientation.  

The variable parameters of the experiment are 

- Test cars used for driving 

- Different phones used hence different sensor sensitivity for each  

- Different types of roads (bumpy/rocky to even roads/race tracks) 

- Different drivers with different driving styles 

- Familiar vs unfamiliar roads  

- The sampling rate for collecting data 

3.1.1 Data Collection  
Smartphone sensor data was collected as per the experiment described in section 3.1. For this project, 

data collected was for studying harsh brakes and sharp corners. These events were collected over a period 

of many drives (approximately 36 drives)  
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Accelerometer, gyroscope both on 3 axis (x,y,z) and GPS data were collected to build ground truth for 

harsh brake and sharp corners. The former two were collected at three samplings rates, 10Hz, 25 Hz, and 

80 Hz, whereas the latter, GPS data, was collected at (+/-) 1-second accuracy, using the apps mentioned 

in 3.1 for Android and iOS platforms. For the sake of clarity, we will represent data collected for harsh 

brakes as 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_ℎ𝑎𝑟𝑠ℎ_𝑏𝑟𝑎𝑘𝑒𝑠 and data collected for sharp corners as 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑠ℎ𝑎𝑟𝑝_𝑐𝑜𝑟𝑛𝑒𝑟𝑠 for 

the rest of this project. Additionally, throughout this thesis “raw” signal would refer to signal before 

smoothing, and “aggregated” signal would refer to signal after smoothing.  

 

3.2 Signal Preprocessing  
The raw data obtained from mobile phones is very noisy, and a single data point is not very informative. 

Hence, to make sense of it but also not lose any important information, smart techniques need to be 

applied to aggregate the data without losing vital information.   

 

3.2.1 Windowing with Overlapping 
Windowing time series data is a common technique done in signal processing. It refers to splitting the 

input signal into grouped segments to make much better sense of a continuous signal.  In this method, a 

time window for the signal is selected, and data points are grouped within that time window. This helps 

to reduce the noise from the signal without suppressing the outliers too much (since outliers are 

important for us to detect harsh brake and sharp corner events). The overlapping of windows helps to 

avoid causing discontinuities in the signal at the border. Windowing does thus change the signal, but the 

change is designed such that its effect on signal statistics is minimized. [13]  

3.2.2 Fast Fourier Transformation  
The Fast Fourier transform [14] is a faster version of the Discrete Fourier Transform. It commonly used to 

convert a signal in the time domain to the frequency domain. In the frequency domain, you look at the 

same signal in a different way, i.e. voltages present at various frequencies. [14] FFT has the mathematical 

property that allows us to represent any signal as a sum of a group of sine waves.  

The term “strength of a signal” is used to represent energy of a signal calculated using FFT. In the discrete-

time domain, energy of a signal is calculated as: 

 

                                                             𝐸(𝑎) = ∑ |𝑥(𝑡)|2n
𝑡=0                                                                       (1) 

We calculated the “strength of the signal”, also known as energy, using Equation 1 above, where 𝐸(𝑎) is 

the energy calculated on acceleration 𝑥, 𝑦, 𝑧 axis separately,  𝑥(𝑡) are the values of acceleration on the 

respective axis, in the time window (𝑡).  

3.3 Machine Learning Algorithms  
In this project, we use machine learning algorithms for classification. This section introduces the machine 

learning concepts and algorithms used in this project.  

3.3.1 Decision Trees 
The basic idea of decision tree classifiers is to divide a complex decision into a union of simple decisions 

using a tree structure. [15] They are very powerful compared to other machine learning classifiers as they 

can be visualized and interpreted. The way a decision tree works for classification tasks is that it generates 
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a set of rules to classify the data. These rules can hence create a model that can classify even the complex 

of situations.  

Each node in the decision tree represents an input variable from the dataset which is usually represented 

as ‘X’ in machine learning problems, whereas, each branch coming represents the partition of the dataset, 

and each leaf node represents a class label which is a decision taken after computing all attributes, which 

is denoted in machine learning problems as variable ‘y’.  

A greedy approach is taken when dividing the input space recursively, where different splits are tested 

using a split criterion, for example, Gini index. The split with the minimum Gini index is selected, and all 

input variables and possible splits are evaluated and chosen in a greedy manner with respect to the Gini 

index. Figure 4 illustrates an example of a simple decision tree. 

 

 

 

 

 

 

 

  
Figure 4: Simple illustration of a decision tree 

 

3.3.2 Random Forests 
Random Forests are ensemble learning methods built on decision trees. Kwok and Carter (1990), are the 

earliest to mention an ensemble of decision trees when they empirically noticed averaging multiple 

decision trees with different structure consistently produces better results. [16] Random Forest use a very 

powerful technique called Bootstrap Aggregation or Bagging. In this technique, multiple random samples 

with replacement are taken from the dataset, termed as bootstrap samples, and used as training data for 

each tree in the forest.  

The predictions are done by combining the ensemble and taking the mean of models in case of regression, 

or majority vote in case of classification. Figure 5 depicts the concept of ensemble approach using majority 

voting and bootstrap samples.  

Patients Blood 

Pressure <80/60 

Patient Age >=65  

See a doctor! You’re okay! 

TRUE FALSE 
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Figure 5: Random Forest ensemble learning with bootstrap samples (adapted from [17]) 

 

 A disadvantage of bagging, however, is that it can result in decision trees that are highly correlated.  

Random forests overcome this disadvantage by randomly selecting features from each bootstrapped 

sample such that the predictions of the learned sub-trees have less correlation. The random forest 

algorithm is as follows: 

1. Create random bootstrap samples from the training data set  

2. Create a decision tree on bootstrap samples 

o Select random subsets of features  

o Split nodes on best features 

3.4 Model Tuning  
Once the model is trained, we need to tune the parameters of the model to give us the best results. This 

is achieved by hyperparameter optimization. Hyperparameters are important as they have a significant 

impact on the performance of the training model.   

Two hyperparameter optimization techniques in scikit-learn* are available namely, Grid Search and 

Random Search.  

 

Grid Search is a brute force technique where it trains the algorithm for all combination of parameters and 

measures the performance using cross-validation technique. The best performing combination is chosen 

as the best set of parameters. Although grid search is a simple algorithm, it can be computationally 

expensive with increasing number of parameters.  

 

Random Search samples the search space randomly and evaluates the performance using cross-

validation. It has an advantage of less computational time, as it does not search the search space 

exhaustively, but we are not always guaranteed best combination of hyperparameters. 

 

 
*https://scikit-learn.org/stable/ 

https://scikit-learn.org/stable/
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For this thesis, after discussion with the supervisors, we opted out to use hyperparameter optimization, 

as the model was performing well without any tuning of parameters.  

 

3.5 Model Evaluation   
We need some metrics to evaluate every machine learning model, to further understand how our model 

performs against unseen data, and to determine if our model is overfitting or underfitting data. Because 

we are dealing with an imbalanced dataset problem, we will use the metrics mentioned in this section for 

evaluating our model.  

3.5.1 ROC-AUC Curve 
Receiver Operating Characteristic and its Area Under Curve (ROC-AUC) is a state-of-the-art evaluation 

metric used to analyze the performance of your classifier. ROC was developed as a part of “Signal 

Detection Theory” during World War II, where they used it for the analysis of radar images. It was first 

found to be a useful evaluation measure in medical fields in the 1970s. [18]  

 

 

 
Abbreviation Meaning 

TP # of labels where we predict True and they are 

actually True. 

FP # of labels where we predict True but they are 

actually False. 

TN # of labels where we predict False and they are 

actually False.  

FN # of labels where we predict False and they are 

actually True.   

 

            Figure 6: Confusion Matrix      Table 1: Explanation of Abbreviations used in Confusion Matrix 

 

 

 
Figure 7: Example of a ROC Curve. Adapted from [32]  
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The ROC Curve is plotted using the False Positive Rate (FPR)on the x-axis against the True Positive Rate 

(TPR) on y-axis. These are calculated for different values of thresholds, as it allows you to regulate both 

rates and pick a threshold that best fits the problem at hand. 

Consider the confusion matrix (Figure 6) which shows the True Positives (TP), True Negatives (TN), False 

Positives (FP) and False Negatives (FN), resulting from comparing your classifiers predicted labels to true 

labels. 

We can calculate the TPR and FPR from the confusion matrix in Equations (2) and (3) respectively.  

                                                                               𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                               (2) 

                                                                               𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
                                                                               (3) 

The Area Under the Curve (AUC) of a ROC summarizes the skill of the model to differentiate between 

positive and negative class, on a scale between 0 to 1. ROC can be calculated only for classifiers that yield 

a probability of the classification.  An AUC of 1, is that of an ideal classifier (Figure 7), which can perfectly 

differentiate between positive and negative class.  

 

3.5.2 PR Curve  
Using a ROC alone presents an overly optimistic view of the models’ performance if there is a large 

imbalance in your dataset. [19] Hence, comes the Precision-Recall Curve (PR Curve), when there is a large 

class imbalance.  

A PR Curve shows the relationship between precision (Positive Predicted Value) and recall (Sensitivity), 

where recall is on the x-axis against precision on the y-axis, for different thresholds.  

The reason why the PR curve works well in case of imbalanced data is because of the avoidance of True 

Negatives (TNs) as the positive class is severely in minority. Because PR curve incorporates precision, 

which uses true positives, in contrast to true negatives, it is more sensitive to imbalance. [20] The area 

under the PR Curve is the Average Precision (AP), which just like the AUC, summarizes the skill of the 

model to differentiate between positive and negative class, between a scale of 0 to 1. An ideal classifier, 

towards the right-hand corner, is one which perfectly differentiates between positive and negative class 

and has an AP of 1.  

We use Equation (4), (5) and (6), referring to our confusion matrix (Figure 7), to plot our PR curve and 

calculate our AP.  

                                                                           𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                      (4) 

                                                                            𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                           (5) 

 𝐴𝑃 = ∑ (𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛𝑛 ,                                                                

                     where 𝑃𝑛  𝑎𝑛𝑑  𝑅𝑛 are the Precision and Recall at the 𝑛𝑡ℎ  threshold.                                   (6) 
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3.5.3 Learning Curve 
Learning curves are a good way to diagnose the performance of machine learning models. It gives you an 

insight to whether you model has a good bias and variance tradeoff, which helps us understand whether 

our model is overfitting or underfitting the data, as well as if our training and cross-validation sets are 

representative. Learning curves can also be used to optimize the parameters of your model.  

To evaluate learning curves, dual curves are created, i.e., the train learning curve and the validation 

learning curve. The train learning curve gives us an idea of how well our model is learning from the given 

training dataset, whereas, the validation learning curve, gives us an idea of how well our model can 

generalize using the cross-validation method. [21] 
 

3.5.4 Matthews Correlation Coefficient (MCC) 
Matthews correlation coefficient (MCC) is extensively used in bioinformatics as an evaluation metric. It is 

a measure of quality for binary classification problems. [22] 

MCC is a good metric to evaluate imbalanced datasets as it considers the proportion of the classes, so 

even if the dataset is highly imbalanced, it is considered as a balanced measure.   

The MCC score lies between -1 to +1, where a coefficient of -1 indicates a definitive disagreement between 

predicted and true labels, 0 means a random prediction and +1 indicates a perfect agreement between 

predicted and true labels.  

Referring to our confusion matrix (Figure 7), the MCC is calculated as below (Equation 7) 

                                          𝑀𝐶𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)
                                                (7) 

                

4. Data Aggregation and Feature Engineering 

  
Creating features is an essential step for every machine learning problem, as feature generation makes 

our dataset more representative of the problem at hand. In this section, we discuss in detail how we 

smoothen of our noisy sensor data from smartphones as well as our manual feature generation 

techniques.  

 

4.1 Signal Smoothing 
Smoothing the noisy signal is vital when it comes to classifying harsh brakes and sharp corners. This is 

because dealing with raw sensor data, collected at different sampling rates, is not very interpretable. 

Sliding window with overlapping (section 3.2.1) is a common technique used in signal processing.  

For our use case, accelerometer and gyroscope data are aggregated on a window, where the size of each 

window is twice times the sampling rate (equivalent to two-second windows), with a 25% overlap. This is 

illustrated in Figure 8. The overlap window is so that if any abnormal event (harsh brakes and sharp 

corners) falls under two windows, is still considered as one event instead of two. This will help us reduce 

labelling and creating artificial abnormal events, as well as helps us keep the continuity of the signal. Since 

our intervals are not independent of each other, overlapping is a way to ensure that we don’t lose any 
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important information at the boundaries. From these created windows, four features are extracted, 

namely, mean, minimum, maximum and simple average. (Refer section 4.2.3) 

 

 

 

 

 

 

 

 

 

Given a time series, Y =  y1,  y2,  y3,   … . . , yL , where 𝐿 is the length of the given time series  

Let 𝑘 =  2 ∗ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒. The window (𝑤) of the time series is then obtained as:  

 

                                                           𝑤0 = 𝑦1, 𝑦2, 𝑦3, …… , 𝑦𝑘                                                                    (8) 

      .                                                                                           

      . 

       . 

                                                 𝑤𝑖 = 𝑦𝑖−𝑘/4, 𝑦𝑖+1−𝑘/4, … . , 𝑦𝑖+3𝑘/4                                                             (9)                               

where 𝑖 ∈ [1, 𝐿]. We assume here that k is a multiple of 4. 

4.2 Feature Extraction  
Feature extraction is a vital step for machine learning algorithms, as they learn about the dataset from 

the features generated. The features should be generated as such they are representative of the problem 

we are solving.  

4.2.1 Jerk  
Jerk is the derivative of acceleration, which is the rate of change of acceleration with time.  The intuition 

behind creating this feature is that when an abnormal event takes place at a steady motion, the car will 

slow down smoothly in contrast to if an abnormal event takes place in a short span of time, the car will 

stop in a jerky motion.  

The formula used to calculate jerk is illustrated in Equation (10): 

                                                                          𝐽𝑒𝑟𝑘(𝑡) =
𝑑(𝑎)⃗⃗ ⃗⃗⃗⃗  

𝑑𝑡
                                                                         (10) 

Figure 8: Sliding Window with Overlapping  
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Where (𝑎)⃗⃗⃗⃗⃗⃗   denotes acceleration at time (𝑡). 

 

4.2.2 Magnitude of Acceleration  
The magnitude of acceleration was also calculated, which is the vector sum of the acceleration vector on 

all three axes. The magnitude is calculated by squaring acceleration on each axis, adding them up and 

taking the square root of the sum, as shown in equation 4 below.  

                                                             |𝑎 | = √(𝑎𝑥)
2 + (𝑎𝑦)

2
+ (𝑎𝑧)

2                                                          (11) 

Where 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 is acceleration on x, y, z-axis respectively.  

 

4.2.3 Time Domain Features 
We split our original data into windows (section 4.1)and calculate features in 4.2.1 and 4.2.2 on each 

window, and extract time-domain features from these windows. The time-domain features we extracted 

for our signal are mean, minimum, maximum and standard deviation for each window.  

We used the 𝑛𝑢𝑚𝑝𝑦 library in Python to calculate the above four mentioned features. These four features 

were calculated for accelerometer, gyroscope and jerk on all three axes(x,y,z), as well as magnitude for 

each window. 

4.2.4 Frequency Domain Features 
Frequency domain feature was calculated using the Fast Fourier Transform (FFT) explained in section 

3.2.2. The energy of the signal, also referred to as strength of the signal is calculated for acceleration on 

all three axes (𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧) with Equation 1 mentioned earlier.  

                                      

In summary, our final set of manually created features are as follows:  

Acceleration (X,Y,Z)        *       (minimum, maximum, mean, standard deviation)          =           3*4 = 12 

Gyroscope (X,Y,Z)           *       (minimum, maximum, mean, standard deviation)          =           3*4 = 12 

Jerk (X,Y,Z)                       *       (minimum, maximum, mean, standard deviation)          =           3*4 = 12 

Speed                               *        (minimum, maximum, mean, standard deviation)          =          1 *4 =  4 

Magnitude                      *        (minimum, maximum, mean, standard deviation)           =          1*4 =   4 

Energy (X,Y,Z)                                                                                                                              =           3*1 =  3 

                                   Total number of manually generated features is 47.   

 The dataset for the above aggregated features will be termed as 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑_ℎ𝑎𝑟𝑠ℎ𝑏𝑟𝑎𝑘𝑒𝑠  and -

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑_𝑠ℎ𝑎𝑟𝑝𝑐𝑜𝑟𝑛𝑒𝑟𝑠 respectively for harsh brake events and sharp corner events. 

4.2.5 Automatic Feature Extraction with TSFRESH 
Extracting features for time series data that are descriptive of our problem at hand is quite often very 

challenging. Hence, come libraries dedicated to time-series data that generate features from a wide pool 

of mathematical concepts related to time series. TSFRESH [23] is a python package which is dedicated to 

time series data calculating large number of time series features automatically. TSFRESH allows you to 

select from 64 number of implemented features, which makes it more universal. It is compatible with 

𝑆𝑐𝑖𝑘𝑖𝑡 𝐿𝑒𝑎𝑟𝑛 and multivariate time series data. 
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𝑎𝑏𝑠_𝑒𝑛𝑒𝑟𝑔𝑦, 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒_𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓𝑟𝑖𝑒𝑑𝑟𝑖𝑐ℎ_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑖𝑛𝑡𝑠 etc. are examples of few of 64 features 

it calculates. More details can be read here. [23] 

For our study, we used the 𝐶𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑣𝑒𝐹𝐶𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑠() from 𝑇𝑆𝐹𝑟𝑒𝑠ℎ , which calculates all the 

features (794 features per time series) defined by default by TSFresh for time series data.  

 

4.3 Feature Selection 
Selecting a subset of features that are descriptive of the labels you are trying to classify is a crucial step 

for any machine learning problem. Feature selection algorithms are a family of greedy search algorithms 

that reduce your n-dimensional feature space to m-dimensional feature space, where 𝑚 < 𝑛. We explain 

two feature selection algorithms used in our use case.  

4.3.1 Boruta  
Boruta is an algorithm that is a wrapper build around Random Forest. It works well for small datasets 

which are higher dimensions. Boruta is also a God of forest in Slavic mythology, hence the name. [24] In 

other words, Boruta shares the foundation of random forest classifier, namely adding randomness to our 

system and inferring results from the ensemble of randomized samples, can reduce the impact random 

fluctuation and correlations that can lead to misleading results. Hence, randomness in Boruta will be vital 

in selecting those attributes which are important. [24] 

The algorithm works as follows:  

1. The first step is to create shadow features which are nothing but shuffled copies of original 

features as this add randomness to the given data. 

2. Then a random forest classifier is trained on the extended dataset and calculates the feature 

importance measure to evaluate the importance of each feature. The higher the value, the more 

important the feature.  

3. It checks at every iteration whether the real features have a higher Z-score than its shadow 

features and constantly removes features which seem highly unimportant. This step is continued 

until maximum iterations is reached or all features are confirmed or rejected.  

Boruta is different from other feature selection algorithms in the sense that it finds all features either 

strongly or weakly relevant to the decision variable. [24] 

4.3.2 Recursive Feature Elimination Cross-Validation (RFECV) 
This is a function available in 𝑆𝑐𝑖𝑘𝑖𝑡 − 𝐿𝑒𝑎𝑟𝑛  package in class 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛. The goal of Recursive 

Feature Elimination (RFE) is to select a subset of features recursively from the given pool of features. The 

classifier is first trained on the initial set of features, and the importance of each feature is obtained. Then 

recursively, the least important features are removed from the current set of features, until the desired 

number of features is selected. [25] 

An intersection of features generated by both these algorithms is chosen as our final set of features for 

training our classifiers.  
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5. Dataset  
This section shows a statistical study on 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_ℎ𝑎𝑟𝑠ℎ_𝑏𝑟𝑎𝑘𝑒𝑠 followed by 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑠ℎ𝑎𝑟𝑝_𝑐𝑜𝑟𝑛𝑒𝑟𝑠 

and explores the raw as well as smoothened signals and infer some insights from it. 

 

5.1 Exploratory Data Analysis  
(a) Harsh Brakes  

Before proceeding with applying machine learning algorithms to our dataset, we do a statistical study on 

our dataset.  

Figure 9 shows what a harsh brake looks like from a raw acceleration signal (raw i.e., signal before 

smoothing) on the z-axis collected at a sampling rate of 10Hz. (Refer to axes from Figure 1).  

The blocks highlighted in black both Figure 9 and Figure 10, indicate how harsh brakes exert a higher g-

force than a normal brake. The g-force reaches up to a value of approximately -1g (i.e., -9.8 m/s2) for harsh 

brake events. 

Figure 11 illustrates the minimum value of aggregated acceleration on the z-axis, after signal smoothing.   

However, other features also indicate that a harsh brake event has taken place while driving. Figure 12(a), 

Figure 12(b) illustrates how the calculated energy of a signal differs when looking into a harsh brake event 

versus a normal barking event. For a harsh brake, the energy is much higher in comparison to normal 

braking event. These statistics show how a harsh brake differs from normal brake.  

 

 
Figure 9: Harsh brakes on the raw acceleration z-axis 
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Figure 10: Normal brakes on the raw acceleration z-axis 

 
Figure 11: Harsh brakes on the aggregated minimum value of acceleration z-axis 

 
Figure 12(a): Energy  on acceleration z axis during a harsh brake  
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Figure 12(b): Energy on acceleration z axis during a normal brake  

                      

(b) Sharp Corners  

For looking at sharp corner events and comparing them to normal turning events, we looked closely at 

the acceleration on the x-axis. As illustrated in Figure 13, which shows the raw acceleration on the x-axis 

at a sampling rate of 25 Hz, the normal turn has a lesser g-force and take more time to complete.  

Whereas, in Figure 14, exerts a higher g-force but also take lesser time to complete indicated by the width 

of the curve. A left turn is associated with a negative g-force, whereas a right turn is associated with 

positive g-force.  

 

To further understand how a sharp corner looks like we look at the gyroscope data on the y-axis. Fig 15 

(a) and (b) show the differences in the gyroscope data on the y-axis of normal turns versus the sharp 

corners. For normal turns, the width of the signal is wider with a lesser g-force exerted, whereas that of a 

sharp corner has a narrower width with a higher g-force exerted.  A left turn is associated with a positive 

angular velocity whereas the right turn is associated with negative angular velocity.  

 
Figure 13: Normal turns on the raw acceleration x-axis 
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Figure 14: Sharp turn on the raw acceleration x-axis 

  
Figure 15 (a): Normal turns gyroscope y-axis Figure 15 (b): Sharp turns gyroscope y-axis 

 

 
Figure 16:  Energy on acceleration x-axis during a normal turn  



24 
 

 
Figure 17: Energy on acceleration x-axis during a sharp turn 

The energy calculated for acceleration on x-axis for both normal turns as well as sharp corner, using 

methods explained in section 3.2.2, we observe in Figure 16 and 17, the energy exerted by a sharp corner 

event is much more than a normal turn as expected. The red arrows in Figure 17 indicate the energies of 

sharp corner events.  

This proves the normal turns have different statistical properties than sharp corner and hence they can 

be classified. The next section further reinstates this conclusion.  

5.2 Density Plot of Features  

(a) Harsh Brakes  

We had around 12% of harsh brakes in our dataset, which was approximately 220 harsh brakes to learn 

from. This accounts for a highly imbalanced dataset.  

We further studied density plots of our aggregated data to have a clearer idea of the distribution of values 

of harsh brakes from normal driving events. Figure 18(a)(b)(c)(d) is density plots of normal driving event 

which is denoted by 𝑙𝑎𝑏𝑒𝑙 ‘0’ and harsh brake event which is denoted by 𝑙𝑎𝑏𝑒𝑙 ‘1’.  

We have plotted minimum (min), standard deviation (std) values from each window on acceleration z-

axis, as well as the mean magnitude of each window and calculated energy on acceleration z-axis.  

Figure 18 (a) and (c) depict a right-skewed distribution with very little overlap between values of harsh 

brakes and normal driving samples.  Most values for minimum on acceleration z-axis, lie on the negative 

scale, which is expected. Harsh brake events take a value of minimum −2.0𝑔, whereas this isn’t observed 

with normal driving. The mean of magnitude of acceleration has higher values for harsh brake samples 

than for normal driving samples, as rate of change of velocity is expected to be faster when a harsh brake 

event is performed.  

Also, the distribution of energy on acceleration z-axis in Figure 18 (d) indicates a very high variance for 

harsh brake samples than normal driving. Also, harsh brakes have much higher energy than normal driving 

which is expected.  

All four graphs show more variance for harsh brake samples than for normal driving samples.  
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   (a) Density plot of std on acceleration z-axis                              

 

 
(b) Density plot of min on acceleration z-axis 

 
(c) Density plot of mean for magnitude of acceleration 

 
(d) Density plot of energy exerted on acceleration z-axis 

 

                Figure 18: Density plot of different features for harsh brakes (Label 1) versus normal driving (Label 0) 

 

(b) Sharp Corners  

Like harsh brakes, we had 10% of our dataset as 𝑠ℎ𝑎𝑟𝑝_𝑐𝑜𝑟𝑛𝑒𝑟𝑠. This again indicates the presence of a 

highly imbalanced dataset. The 10% of 𝑠ℎ𝑎𝑟𝑝_𝑐𝑜𝑟𝑛𝑒𝑟𝑠  account for around approximately 180 

𝑠ℎ𝑎𝑟𝑝_𝑐𝑜𝑟𝑛𝑒𝑟 events.  

The density plots of sharp corners were studied to further understand the distribution of data for both 

sharp corners and normal driving. Figure 19 (a)(b)(c)(d) is density plots of normal driving events denoted 

by 𝑙𝑎𝑏𝑒𝑙 ‘0’ and sharp corners denoted by 𝑙𝑎𝑏𝑒𝑙 ‘1’. The acceleration on x-axis (Figure 19(a)) has a g-force 

of ≻ 0.6𝑔  and +0.6𝑔  for left and right turns respectively, whereas for normal driving the values lie 

between −0.2𝑔 𝑎𝑛𝑑 + 0.2𝑔. Figure 19 (b) illustrates the mean of the gyroscope on the y-axis, with values 

or sharp corners higher than the normal driving which is expected. Figure 19(c), standard deviation of 

gyroscope on y-axis, depicts a right-skewed distribution for normal driving, whereas the sharp corners 

show more variance in the standard deviation. Figure 19 (d) is a clear indication of the sharp corners being 

denser toward higher energy values whereas normal driving not so much. Also, here as well the sharp 

corners have more variance than normal driving.  
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   (a) Density plot of mean on acceleration x-axis                              

 

 
(b) Density plot of mean on gyroscope y-axis 

 
(c) Density plot of std on gyroscope y-axis 

 
(d) Density plot of energy exerted on acceleration x-axis 

 
Figure 19: Density plot of different features for sharp corners (Label 1) versus normal driving (Label 0) 

 
 

5.3 Low Dimensional Plot of Highly Dimensional Data 

(a) Harsh Brakes 

Below (Figure 20 (a) (b)) is a representation of our higher dimensional harsh brakes dataset in a low 

dimensional space.  This is just a simple visualization to see how difficult it is to classify our harsh brakes 

from normal driving events. We used TSNE [26][27] from 𝑠𝑐𝑖𝑘𝑖𝑡 − 𝑙𝑒𝑎𝑟𝑛 to visualize it (Figure 20(a)). TSNE 

(T-distributed Stochastic Neighbor Embedding) captures the non-linear relationship between your data 

points, and clusters similar points together in low dimensional space. We have also plotted the 2 principal 

components obtained via PCA [28] to help us understand how harsh brakes and normal driving differ in 

low dimensional space. (Figure 22 (b)). 

Figure 22, label 1 signifies a harsh brake and label 0 signifies a normal driving event. It is evident from the 

figure that harsh brakes form a cluster, thus making it further clear that our problem is highly classifiable. 
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(a): 2-D plot of highly dimensional harsh brakes (Label 1) and 
normal driving (Label 0) 

 

(b) Principal Components obtained with PCA for harsh 
brakes (Label 1) and normal driving (Label 0) 

Figure 20: 2-D plot of high dimensional driving data (harsh brakes vs normal driving) 
 

 (b) Sharp Corners  

Using TSNE, the low dimensional visualization of sharp corners can be seen in Figure 21(a). The plot 

suggests that sharp corners don’t form a certain cluster, hence they are harder to classify than the former, 

harsh brakes. Similarly, we have also added the plot for principal components obtained with PCA (Figure 

21(b)) to understand how sharp corners differ from normal driving in low dimensional plane.  

Here label 0 denotes normal driving and label 1 denotes sharp corner event. 

 

 
 

(a): 2-D plot of highly dimensional sharp corners (Label 1) 
and normal driving (Label 0) 

(b) Principal Components obtained with PCA for sharp corners 
(Label 1) and normal driving (Label 0) 

Figure 21: 2-D plot of highly dimensional driving data (sharp corners vs normal driving)) 
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6. Experiments 
 

We experiment with different types of classifiers mentioned in section 3.3. For both our classifiers we 

have designed two experiments, Experiment #1 where we use under sampling techniques along with PCA 

and Experiment #2 where we use automatic feature generation techniques. (section 4.2.5) 

 

We split our data into training and test set in the ratio 80:20 and use stratified 10-fold cross-validation on 

the training set to ensure our model is not overfitting. We use stratified fold to make sure that one class 

is not over-represented in a fold, as this can happen with imbalanced dataset.  

To evaluate the performance of our model, we have used ROC AUC, AP as well as MCC. (section 3.5)  

All experiments were done on an HP laptop with minimal specs, as the size of the data was not a lot. Later, 

we justify our choice of methods and techniques, as well as our model evaluation that works best with 

our dataset. 

                                  

6.1 Experiment #1 – Under Sampling Dataset and PCA 
Since our dataset is very imbalanced and has high dimensionality, we decided to use under-sampling of 

the majority class from the training set as well as use Principle Component Analysis (Principal Component 

Analysis) to reduce the dimensionality of our data. 

Under-sampling is basically taking the majority class and dropping data from the majority class until 

dataset is balanced. One disadvantage of under-sampling is that we lose important information from the 

data points that are dropped. We used the 𝑠𝑐𝑖𝑘𝑖𝑡 − 𝑙𝑒𝑎𝑟𝑛 𝑅𝑎𝑛𝑑𝑜𝑚𝑈𝑛𝑑𝑒𝑟𝑆𝑎𝑚𝑝𝑙𝑒𝑟 [28] function from 

the package 𝑖𝑚𝑏𝑙𝑒𝑎𝑟𝑛. 𝑟𝑎𝑛𝑑𝑜𝑚_𝑢𝑛𝑑𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 setting a random state to reproduce results.  

After under-sampling, we still have high dimensional data, i.e., number of features of our dataset is very 

large in comparison to the number of observations in our dataset. In such a scenario, machine learning 

algorithms struggle to learn and become effective models. Thus, we opt for PCA. Simply put, PCA combines 

our highly dimensional input space in such a way that the most important parts of our data are retained, 

which each new variable being independent of one another. The number of components chosen for our 

dataset that captured the maximum variance is 3.  

After under-sampling our dataset looks like depicted in Figure 22 ((a), (b)): 

We use the under-sampled dataset with both classifiers mentioned in section 3.3. The results will be 

discussed in section 7. 
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                  (a) Before under sampling dataset                                 (b) after under sampling dataset 

                                           Figure 22: Illustration of under-sampling dataset(before versus after) 

 

6.2 Experiment #2 Using TS Fresh and Boruta with RFECV 
One major disadvantage of under-sampling our dataset is that we often lose a lot of important 

information. Also, since we have a highly imbalanced dataset, under-sampling the majority class reduces 

the size of the data drastically, leaving very little room for training our classifier.  To avoid this, we used 

our imbalanced dataset and instead creates features for our dataset that are more representative of the 

problem we are trying to classify. For this purpose, we used an automatic time series feature generation 

package called 𝑇𝑆𝐹𝑟𝑒𝑠ℎ (section 4.2.5). Keep a note that prior to using 𝑇𝑆𝐹𝑟𝑒𝑠ℎ, our aggregated dataset 

consists of 47 features generated by manual feature engineering. (section 4.3.2) 

Passing raw data is not very indicative of the problem we are trying to solve, in addition to different 

sampling rates we have used to add diversity in our dataset, we pass our aggregated datasets, namely,  

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑_ℎ𝑎𝑟𝑠ℎ𝑏𝑟𝑎𝑘𝑒𝑠  and 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑_𝑠ℎ𝑎𝑟𝑝𝑐𝑜𝑟𝑛𝑒𝑟𝑠 (both separately) in the form of (𝑋, 𝑦) to 

𝑇𝑆𝐹𝑟𝑒𝑠ℎ.  𝑋  represents the features of our data and 𝑦  represents the labels of our data. The total 

aggregated features passed to 𝑇𝑆𝐹𝑟𝑒𝑠ℎ for both our events are given in Table 2. 

We use the 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠() function in 𝑇𝑆𝐹𝑟𝑒𝑠ℎ, with input to the function our time series (Table 

2), and 𝐶𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑣𝑒𝐹𝐶𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(), 𝑐𝑜𝑙𝑢𝑚𝑛_𝑘𝑖𝑛𝑑 (where you input the different sensor values 

your data contains), and 𝑖𝑚𝑝𝑢𝑡𝑒_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (which handles missing values)  The EfficientFCParameters() 

calculates all features per time series which are not computationally expensive. This reduces the 

computational costs for calculating features for our data. The total number of features calculated were 

22,064. (788 features per time series) 

Features given to 𝑻𝑺𝑭𝒓𝒆𝒔𝒉 
acceleration_x_std acceleration_x_mean acceleration_x_min acceleration_x_max 

acceleration_y_std acceleration_y_mean acceleration_y_min acceleration_y_max 

acceleration_z_std acceleration_z_mean acceleration_z_min acceleration_z_max 

gyroscope_x_std gyroscope_x_mean gyroscope_x_min gyroscope_x_max 

gyroscope_y_std gyroscope_y_mean gyroscope_y_min gyroscope_y_max 

gyroscope_z_std gyroscope_z_mean gyroscope_z_min gyroscope_z_max 

speed_std speed_mean speed_min speed_max 
Table 2: Input features for TSFresh 

 

However, all these features are not relevant in our case. Hence, the next step is to use appropriate feature 

selection methods to obtain the most important features that are representative of our problem. For 
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classifying harsh brakes and sharp corners, we use 𝐵𝑜𝑟𝑢𝑡𝑎 and  𝑅𝐹𝐸𝐶𝑉 from 𝑠𝑐𝑖𝑘𝑖𝑡 − 𝑙𝑒𝑎𝑟𝑛 and use the 

common features (intersection of features) generated by both as our final set of features for training. [30] 

(Section 4.3.1 and 4.3.2, respectively) 

Parameters we used for Boruta are 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 10 , 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 200 , 𝑎𝑙𝑝ℎ𝑎 =  0.5 , 

𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 88, where 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 describes the number of trees in the forest, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 the 

maximum iterations to perform and 𝑎𝑙𝑝ℎ𝑎 is the level at which p-values are rejected. The execution time 

of Boruta was 59 seconds for 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑠ℎ𝑎𝑟𝑝_𝑐𝑜𝑟𝑛𝑒𝑟𝑠 and 45.3 seconds for 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_ℎ𝑎𝑟𝑠ℎ_𝑏𝑟𝑎𝑘𝑒𝑠. 

 

For RFECV we used 𝑐𝑣 = 10, 𝑠𝑡𝑒𝑝 = 1, 𝑠𝑐𝑜𝑟𝑖𝑛𝑔 = ′𝑓1′ as parameters again with 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 88 

for reproducible results, where 𝑐𝑣 specifies the number of folds for cross-validation, 𝑠𝑐𝑜𝑟𝑖𝑛𝑔 describes 

the score to maximize at each fold. We have chosen scoring as ‘𝑓1’. The execution time for RFECV was 45 

minutes 34 seconds for 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑠ℎ𝑎𝑟𝑝_𝑐𝑜𝑟𝑛𝑒𝑟𝑠  and 34 minutes 12 seconds for 

𝑑𝑎𝑡𝑎𝑠𝑒𝑡_ℎ𝑎𝑟𝑠ℎ_𝑏𝑟𝑎𝑘𝑒𝑠. 

The final features selected for harsh brake events and sharp corner events with respect to their 

importance is given below. Figure 23 (a) and (b) illustrates the selected features sorted in descending 

order of the importance. 

(a) Harsh brakes  

     For harsh brakes, the common features selected by  𝐵𝑜𝑟𝑢𝑡𝑎 and  𝑅𝐹𝐸𝐶𝑉 are 8, namely:  

1-  𝑎𝑐𝑐𝑒𝑙𝑍(𝑔)_𝑠𝑡𝑑 : Standard deviated of windowed signal on acceleration Z-axis. 

2- 𝑎𝑐𝑐𝑒𝑙𝑍(𝑔)_𝑚𝑖𝑛 : Minimum value of windowed signal on acceleration Z-axis. 

3- 𝑎𝑐𝑐𝑒𝑙𝑌(𝑔)_𝑚𝑒𝑎𝑛 : Mean of windowed signal on acceleration on Y-axis. 

4- 𝑒𝑛𝑒𝑟𝑔𝑦_𝑧 : Energy of windowed signal calculated using FFT on acceleration Z-axis. 

5- 𝑔𝑦𝑟𝑜𝑍(𝑟𝑎𝑑/𝑠)_𝑠𝑡𝑑 : Standard deviation of windowed signal on gyroscope Z-axis. 

6- 𝑔𝑦𝑟𝑜𝑌(𝑟𝑎𝑑/𝑠)_𝑠𝑡𝑑 : Standard deviation of windowed signal on gyroscope Y-axis. 

7- 𝑗𝑒𝑟𝑘𝑍_𝑚𝑖𝑛 : Minimum value of the windowed signal for calculated jerk on Z-axis.  

8- 𝑆𝑝𝑒𝑒𝑑(𝑚/𝑠)_𝑚𝑎𝑥 : Maximum speed of the windowed signal. 

 

Figure 23 (a): Feature importance of selected features for harsh brakes 

As we notice, the features selected by 𝐵𝑜𝑟𝑢𝑡𝑎 and 𝑅𝐹𝐸𝐶𝑉were those created manually for classifying 

harsh brakes, none of the automatically generated features were selected.  
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(b) Sharp Corners 

For sharp corners, the common features selected by 𝐵𝑜𝑟𝑢𝑡𝑎 and 𝑅𝐹𝐸𝐶𝑉 are 5, namely: 

1- 5_𝑎𝑏𝑠_𝑒𝑛𝑒𝑟𝑔𝑦: Calculates the absolute energy of the time series which is the sum over the 

squared values. This is calculated from acceleration on x-axis by TSFresh. [23] 

2- 21_𝑓𝑓𝑡_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡_𝑐𝑜𝑒𝑓𝑓_0_𝑎𝑡𝑡𝑟_abs: Calculates the fourier coefficients of the one-

dimensional discrete Fourier Transform for real input by FFT algorithm. [14] This is calculated 

from gyroscope on y-axis by TSFresh. [23] 

3- 𝑎𝑐𝑐𝑒𝑙𝑋(𝑔)_𝑚𝑖𝑛: Minimum values of the windowed signal on acceleration X-axis. 

4- 𝑎𝑐𝑐𝑒𝑙𝑋(𝑔)_𝑠𝑡𝑑: Standard deviation values of the windowed signal on acceleration X-axis. 

5- 𝑔𝑦𝑟𝑜𝑌(𝑟𝑎𝑑/𝑠)_𝑚𝑒𝑎𝑛: Mean of the windowed signal on gyroscope Y-axis. 

 

  
Figure 23 (b): Feature importance of selected features for sharp corners 

 

Figure 23(b) suggests the features chosen by our feature selection algorithms are a mix of both, manually 

extracted features as well as automatically created features. A sharp corner event is a bit more of a 

challenging problem to learn than a harsh brake event. However, the feature that is most important to 

describe the event is simple to calculate, and does not require a lot of computational time (Equation 

12)[23] 

                                                                            𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑥𝑖
2𝑛

𝑖=1                                                                      (12) 
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7. Results and Discussion 

 
In this section, we will first explore the results obtained with the classifiers in section 3.3 with our chosen 

evaluation metrics mentioned in section 3.5, according to our experimental setup described in section 6. 

 

7.1 Model Performance 

(a) Harsh Brakes  

For our chosen classifiers, Decision Trees and Random Forests, the best performing classifier was Random 

Forests based on all three-evaluation metrics, ROC AUC, AP and MCC.  

We also observed that the classifier performs much better with our Experiment 2 using automatic features 

with manually generated features than Experiment 1 using manually generated features with under-

sampling majority class. Figure 24 shows the ROC AUC using Random Forests for both experiments over 

stratified 10-fold cross-validation. We can see the mean AUC under ROC for Experiment 1 is 0.79 whereas 

for Experiment 2 is 0.97. Although no automatically generated features were selected in Experiment 2 for 

our harsh brakes, the two feature selection methods, help increase the AUC by selecting only those 

features representative of the problem.  

The learning curves (Figure 25) converge for both experiments; however, it converges faster for 

experiment 2, with a good bias and variance tradeoff (which indicates our model is not overfitting) when 

compared to the learning curve of experiment 1 (Figure 25(a)), where there is high variance indicated by 

the large gap between training and cross-validation score.  

 

  
(a) : ROC-AUC with Experiment #1 (b) : ROC-AUC with Experiment #2 

Figure 24: ROC AUC on stratified 10 fold cross-validation for harsh brakes using random forests 
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(a): Learning Curves Experiment #1 (b): Learning Curves Experiment #2 

Figure 25: Learning Curves on stratified 10 fold cross-validation for harsh brakes using random forests 

 

 
(a) Precision Recall Curve Experiment #1  

(b) Precision Recall Curve Experiment #2 
Figure 26: Precision-Recall Curves on stratified 10-Fold cross-validation for harsh brakes using random forests 

When comparing the Average Precision (AP) for both experiments (Figure 26), it also suggests that our 

Experiment#2 is a better setup to classify harsh brakes with a value of 0.86, averaged over stratified 10-

fold cross-validation.  

 

The Matthews Correlation Coefficient (MCC) calculated for our model for both experiments can be seen 

in Table 3. 

The results for harsh brakes with random forest classifier are also displayed below in Table 3. 
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Metric Experiment #1 Experiment #2 

Average Precision (AP) 0.79 0.86 

ROC-AUC 0.79 0.97 

MCC 0.76 0.83 

Table 3: Averaged results over stratified 10-fold cross-validation using Random Forests for both experiments 

 

 

(b) Sharp Corners 

For our chosen classifiers, we chose Random Forest as our classifier of choice as it performed better than 

Decision Trees based on our evaluation metrics, ROC AUC, AP and MCC. 

Figure 27 (a), we can infer from the AUC of 0.55, that our classifier is random, i.e., it does not have the 

ability to differentiate between normal and sharp corner events, whereas features obtained from our 

experiment 2, suggest that our classifier has a higher chance of classifying normal and sharp corner events. 

(Figure 27 (b)). However, since a ROC is not sensitive to class imbalance, we will look at our other 

evaluation metrics to evaluate our classifier.  

 

Figure 28 (a) illustrates our random forest model with experiment 1 has high variance, which indeed 

means our model is overfitting, and cannot generalize new data well. A solution to this will be providing 

it with more training data. Figure 28 (b) with our experiment 2, our training and cross-validation learning 

scores converge together, with a higher ‘𝑓1 − 𝑠𝑐𝑜𝑟𝑒’, which shows our model can generalize new data 

and has a good trade-off between bias and variance.  

Figure 29 (a), illustrates a very bad average precision (which is in line with our other evaluation metrics). 

However, with experiment 2, Figure 29 (b), our average precision increases up to 83%, which shows our 

classifier performs better with experiment 2 setup. This shows how only 4 relevant features helped to 

model our classification problem better and improve our f1 scores.  

 

  
(a) : ROC-AUC with Experiment #1 (b) : ROC-AUC with Experiment #2 

Figure 27: ROC AUC on stratified 10 fold cross validation for sharp corners using random forests 
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(a) : Learning Curve with Experiment #1 (b) : Learning curve with Experiment #2 

Figure 28: Learning Curves on stratified 10 fold cross validation for sharp corners using random forests 
 
 

 
(a) Precision Recall Curve Experiment #1 

 
(b) Precision Recall Curve Experiment #2 

Figure 29: Precision Recall Curves on stratified 10-Fold cross validation for sharp corners using random forests 

Matthews Correlation Coefficient (MCC) is shown in Table 4, for both experiments using random forest 

classifiers.  

The results for sharp corners with random forest classifier are also displayed below in Table 4. 

Metric Experiment #1 Experiment #2 
Average Precision (AP) 0.12 0.84 

ROC-AUC 0.55 0.98 

MCC 0.13 0.79 

Table 4: Averaged results over stratified 10-fold cross-validation using random forests for both experiments 

 

Table 4 shows a drastic improvement in all three scores for experiment 2 setup. This just further proves 

that a sharp corner is a harder problem to learn and hence needs a more complex model, thus more 

descriptive features that reflect the problem we are trying to classify.  
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7.2 Test on Unseen Data  
To test both our models, we subjected them to realistic driving scenarios and evaluated their 

performance.  

The test driver in the Netherlands collected realistic driving data, which was handed to us to further 

analyze. They used iPhone X as the phone and Volkswagen Polo car for collecting data.   

For verifying the results of these drives, the driver was asked to record himself while driving and mention 

exactly when a sharp corner event took place. This ground truth data was then matched to the sharp turns 

data and further analyzed. 

The intensity shown on the map (Figure 30(a) (b)) is the energy on the acceleration x-axis calculated with 

each event classified as a “sharp corner” by the classifier. 

Figure 30 (a) shows 8 correctly classified sharp corners that were performed during the drive. However, 

one was misclassified as a sharp corner. Exactly why our model misclassifies it as a sharp corner is hard to 

pinpoint at this stage.  

 

Figure 30 (b) shows normal driving, with one correctly classified harsh brake event. This drive was 15 

minutes long and only one harsh brake event was performed. The classifier does not misclassify any 

events. This shows our model works well on identifying non-critical events or normal driving events and 

harsh brake events. This could be because of imbalance in our dataset, the model learnt the characteristics 

of normal driving better, and that harsh brake is easier to learn for the model than sharp corner events.  

 

 
(a) Testing model on unseen data indicating correctly classified and misclassified sharp corner events 
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(b) Testing model on unseen data with no misclassifications 

Figure 30: Visualization and classification of driving events on unseen data 

 

 

7.3 Conclusion and Future Work  

 
In this research, our goal was to train a machine learning model that can classify harsh brakes and sharp 

corners, using smartphone sensor data. One major limitation and challenge that came with this research 

was to collect ground truth data. Driving recklessly on busy roads to mimic realistic situations to collect 

harsh brake and sharp corner events, is dangerous as well as comes with potentials risks to the car, as 

well as the driver and others driving on the road.  

 

However, in our study, we used six drivers, three different mobile platforms having different sensor 

calibrations as well as driving with three different cars on different types of roads to introduce as much 

variety in the dataset as possible.  

 

Dealing with highly imbalanced sensor dataset comes with few challenges. On top of that, we were also 

dealing with noisy sensor data retrieved from smartphones.  

 

However, we were able to mitigate these challenges by using signal smoothing techniques, state of the 

art signal processing algorithms, as well as using proven feature generation and selection techniques to 
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create and select features that are the most prominent in classifying a harsh brake and sharp corner event 

from a normal driving event.  

We chose a random forest classifier, as our classifier of choice, since it could classify harsh brakes and 

sharp corners with a higher average precision (0.86 and 0.83 for harsh brake and sharp corner events 

respectively) than a decision tree, considering there were approximately 200 harsh brake and 180 sharp 

corner events to learn from. We also performed various tests to evaluate the model that further gives us 

insight that our classifier is not overfitting or underfitting.  

 

One important question that arises from this research is more from a psychological aspect of what is 

considered a harsh brake or a sharp corner. Defining a sharp corner or a harsh brake, choosing a universal 

threshold is naïve and cannot be applied in all scenarios and cases.  During our manual data exploration, 

we realized that these events are different when a driver is driving in the Netherlands versus when the 

driver is in India. These driving events indeed depend on various factors including the type of roads the 

car is driven on, the amount of traffic on roads, as well as the type of driver behind the wheel.  

Although we experimented with many variables, some seem to have more effect on the data than the 

others, like type of road and type of driver. For some drivers we observed the harsh brakes were very 

prominent, and indeed dangerous.  

 

One interesting aspect that could take this research further, could be to learn country-based thresholds 

for these driving events, that could help define a harsh brake or sharp corner event with respect to the 

country the driver is driving in. This indeed could be a starting point to get a baseline for thresholds of 

what is considered a harsh brake or sharp corner event.  

 

The model presented in this thesis can be improved with more realistic driving data, as well as tested with 

more driving data. More research and experimentation can be done with the position of the phone in the 

car, and the orientation of the phone, i.e., in landscape mode.  

 

Since getting labelled ground truth data is expensive and time-consuming, unsupervised learning can be 

considered on the dataset, and these abnormal driving events can be treated as anomalies. Unsupervised 

learning is cheaper than supervised learning in terms of getting ground truth data. However, unsupervised 

learning comes with its own challenges, and since the data generated from smartphone sensors are noisy, 

it could be that we detect anomalies that are not necessarily just harsh brakes and sharp corners. Other 

critical events also take place on the roads. Due to time constraints of this thesis, unsupervised learning 

could not be experimented with.  

 

Reproducibility 
The scripts used for the experiments of this thesis are owned and controlled by TomTom 

B.V.(Amsterdam). The data used for this thesis is under the ownership of TomTom B.V.( PU Driver Apps 

Unit), for accessing the data they may be contacted. 
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APPENDIX  
(a) Harsh Brakes - Results from Decision Tree Classification (Experiment 1 and 2) 

  
(a) : ROC-AUC with Experiment #1 (b) : ROC-AUC with Experiment #2 

 

  
(c): Learning Curve with Experiment #1 (d): Learning Curve with Experiment #2 

 

  
(e): AP with Experiment #1 (f): AP with Experiment #2 
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Figure 21: Model Evaluation with Decision Trees on stratified 10-fold cross validation 

 

(b) Results from Decision Tree Classification (Experiment 1 and 2) 

  
(a) : ROC-AUC with Experiment #1 (b) : ROC-AUC with Experiment #2 

 

 
 

(c): Learning Curve with Experiment #1 (d): Learning Curve with Experiment #2 
 

  
(e): AP with Experiment #1 (f): AP with Experiment #2 
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