
Computer Science

Utilizing unstructured information from

Electronic Medical Records for the prediction of stroke

Name: A. Louwe
Date: April 29, 2020

Supervisors:
Dr. S. Verberne (LIACS)
Dr. M. van Leeuwen (LIACS)
H.J.A. van Os (LUMC)

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Abstract

Stroke is one of the leading causes of disability and death in The Netherlands.
Currently general practitioners estimate stroke risk using a simplistic model
consisting of only five risk factors, namely age, gender, blood pressure, choles-
terol level and smoking status. A more accurate prediction model is needed
to recognize patients at risk of stroke, which is an essential step towards more
effective stroke prevention.

Through the development of a prediction model based on information extracted
from free text in electronical medical records (EMRs), this project aims to
achieve earlier and more accurate recognition of persons at risk. Previous stud-
ies in the field of disease prediction have mainly focused on using structured
data from EMRs, due to the ease of information extraction from this type of
data. However, we expect that the free text could contain additional informa-
tion valuable for stroke prediction.

We build a text mining pipeline specifically for Dutch medical texts, which
includes two techniques for the extraction of predictors from text namely bag-
of-words and topic modeling, and we build a logistic regression model for stroke
prediction. In each step of the pipeline we prefer methods that are easily ex-
plainable to medical experts and we provide visualisations when appropriate,
which are also used for the identification of possible novel risk factors for stroke.
Furthermore, we study the confounding effect of age on the prediction of stroke
risk.



Contents

1 Introduction 2
1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Main contributions and challenges . . . . . . . . . . . . . . . . . 4
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5
2.1 Tools for information extraction . . . . . . . . . . . . . . . . . . . 5
2.2 Disease prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Datasets 7
3.1 Patient privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Analysis and results 9
4.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.1 Cleaning and tokenization . . . . . . . . . . . . . . . . . . 10
4.1.2 Spelling correction . . . . . . . . . . . . . . . . . . . . . . 11
4.1.3 Word completion . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.4 Key-phrase detection . . . . . . . . . . . . . . . . . . . . . 14

4.2 Data selection & Analysis . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Patient and time period selection . . . . . . . . . . . . . . 15
4.2.2 Word frequency analysis . . . . . . . . . . . . . . . . . . . 16
4.2.3 Word embedding . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.1 Bag-of-words . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.2 Topic Modeling . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.3 Topic modeling results . . . . . . . . . . . . . . . . . . . . 22

4.4 Prediction models . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.1 Model development . . . . . . . . . . . . . . . . . . . . . . 22
4.4.2 Imbalanced groups . . . . . . . . . . . . . . . . . . . . . . 23
4.4.3 Classification results . . . . . . . . . . . . . . . . . . . . . 24
4.4.4 Bag-of-word predictors . . . . . . . . . . . . . . . . . . . . 24
4.4.5 Topic predictors . . . . . . . . . . . . . . . . . . . . . . . 27

5 Discussion 29



6 Conclusion 32

Appendices 39
A Negation trigger words . . . . . . . . . . . . . . . . . . . . . . . . 39
B Stopwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
C LDA Topic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
D NMF Topic model . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1



Chapter 1

Introduction

Stroke is one of the leading causes of disability and death in the Netherlands,
with an incidence of around 3 per 1000 person-years. The most frequent type of
stroke, ischemic stroke, is caused by a narrowed or blocked blood vessel, which
deprives an area in the brain from oxygen. The other type of stroke, hemor-
rhagic stroke, is caused by a ruptured or broken blood vessel that bleeds into
the brain, thereby compressing the surrounding brain tissue [2]. Both types of
stroke can result in irreversible brain damage or even death. In men, quality of
live after experiencing a stroke has improved over the years. In women however,
this is worse than in men and stroke results more often in institutionalization.
Only a small proportion of all patients can be treated. Therefore, preventing
stroke is key, and new strategies for early recognition of women at risk of stroke
are urgently needed.

In the Netherlands, general practitioners (GPs) currently stratify their patients
into risk groups using a simplistic algorithm that contains only five traditional
risk factors (i.e. age, gender, hypertension, cholesterol and smoking). However,
evidence on the importance of female-specific risk factors such as migraine [48],
coagulation disturbances, endothelial dysfunction and reproductive disorders is
mounting. These factors may interact with each other and with traditional risk
factors [49]. Furthermore, psychosocial distress has been associated with stroke
risk in older adults [26]. Currently, none of these other factors are taken into
account for stroke prevention, possibly withholding preventive measures from
thousands of persons at risk.

Machine learning methods and data mining techniques have grown to be in-
creasingly popular within the medical domain, and have been applied to a broad
range of tasks, including case detection [18] and disease prediction [23]. Cur-
rently, such data-driven prediction models do not yet exist for stroke. Whereas
infection diseases often have clear symptoms and are relatively easy to predict,
acute events such as stroke are much harder to predict. Furthermore, stroke risk
increases with age, the incidence doubling each decade after the age of 55 years.
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In The Netherlands 84% of all strokes in 2017 occurred above the age of 65 [1].
As a result, possibly predictive stroke symptoms are difficult to distinguish from
the symptoms of other age-related diseases.

Electronic medical records (EMRs) are an important data source for machine
learning methods. Medical institutes increasingly use EMRs to record a pa-
tient’s condition, including diagnostic information, procedures performed, and
treatment results. The majority of this information is structured; measurements
and laboratory results are stored using numerical values and diagnoses and med-
ication prescriptions are often stored using standardized coding systems. This
information allows for large-scale analysis and does not require extensive pre-
processing before it can be used as input for machine learning models.

A minority of the fields in EMRs is unstructured; typically these are the manu-
ally written consultation notes and diagnosis descriptions. This is a rich source
of information. Free text accommodates the reporting of relevant information
that is not suited for coding, including the expression of feelings, uncertainty,
the addition of supporting evidence and recording strange collections of symp-
toms. Furthermore, these notes can contain non-medical information that are
relevant indicators for the development of medical problems including (causes
of) psychosocial distress or factors related to socioeconomic status.

Information extraction from unstructured sources requires advanced preprocess-
ing pipelines, which are language and domain specific. Apart from the huge
amount of medical terms, text from the medical domain is also extremely concise
and contains a relatively large amount of misspellings [30]. Furthermore, notes
in EMRs are much more prone to contain personal information about the patient
compared to the coded parts of the EMR, while current de-identification and
anonymization techniques still lack the required precision expected by health
care institutes. Consequently, most studies only use the structured information
from EMRs at the cost of information loss, which in turn can lead to more
biased prediction models.

In this research, we develop a pipeline for the extraction of information from
Dutch medical text and investigate the confounding effect of age in stroke predic-
tion. We use EMR data obtained from general practitioners in The Netherlands,
which we describe in more detail in Chapter 3.

1.1 Research questions

We aim to improve the prediction of stroke by using information extracted from
free text in EMRs. More specifically, we aim to answer the following questions:
1) How can we develop an explainable text mining pipeline for the prediction
of stroke?
2) How can we discern the confounding effect of age from this information?
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1.2 Main contributions and challenges

In this work we contribute towards more accurate prediction of stroke by the
development of data-driven prediction model based on unstructured data. As
part of this contribution, we also develop a text mining pipeline for Dutch med-
ical text, which can also be applied in other disease prediction or case detection
studies. Furthermore we investigate methods to discern the confounding effect
of age in disease prediction results.

Challenges include working with unedited natural language, which typically
contains a variety of noise. Furthermore, due to intended use in diagnostication,
we are challenged to develop a model that is easily interpretable by medical
experts, while we also have to ensure high precision.

1.3 Thesis structure

In Chapter 2 Related Work, we introduce various existing methodologies and
tools for extracting information from medical texts. In Chapter 3 Datasets, we
describe the EMR dataset we analyse in this research, which we obtained from
general practitioners in The Netherlands. In Chapter 4 Analysis & Results, we
dive into the details of each step in the analysis; Pre-processing, Data Selection
& Analysis, Feature selection and Prediction models respectively. In Chapter 5
Discussion we describe the main results, we discuss the strengths and limita-
tions, and point to directions for future work. Finally, in Chapter 6 Conclusion
we summarize our research and draw conclusions.
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Chapter 2

Related Work

A number of studies have been performed to explore how information can be
extracted from medical texts and how valuable this information can be in pre-
dictive modeling. In our previous research we explored various preprocessing
methods and found text cleaning and spelling correction are essential steps for
reducing noise in clinical texts [30].

2.1 Tools for information extraction

Multiple tools have been developed that allow for the identification of medi-
cal terms from text by coupling it to a medical ontology, typically the Unified
Medical Language System (UMLS) ontology [7]. Good examples of such tools
are HITEx [52], cTAKES [42] and Sophia [15]. These algorithms perform pre-
processing followed by a number of complex matching algorithms, to match the
data to the right concepts in the ontology. Although a subset of the UMLS has
been translated to Dutch [34], there are no matching tools available for Dutch
medical concepts.

It is also important to take into account the contextual properties of the identi-
fied medical concepts. Examples of such tools are NegEx [9] and ConText [25],
which can be used for the identification of negations, when the symptom oc-
curred in (temporality) and who experienced the symptom (experiencer). The
trigger words and rules applied in ConText are also translated to Dutch in the
tool ContextD [3] for the identification of similar contextual properties in Dutch
notes.

2.2 Disease prediction

Studies that explore the benefit of distilling information from medical text for
the purpose of predictive modeling are also limited in number. Kop et al. [28]
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describe the development of a pipeline for the prediction of colorectal cancer us-
ing structured EMRs and Hoogendoorn et al. [27] show that adding predictors
derived from the texts improved the accuracy of the prediction model. Similar
results where found in [13], in the area of detecting acute respiratory infections.

There are also studies that only use text. In [5] a study is performed in the area
of life-expectancy prediction showing that extracting information from doctor’s
notes is a promising technique for this task. In [40] risk of suicide among veter-
ans is estimated, again using only information from clinical notes. Some recent
studies also investigate the extraction of information from patient forum data
[51, 14]. Disease prediction models based on this type of narrative data are still
under development.

Although there are no machine learning studies that aim at predicting stroke,
some aim at predicting cardiovascular diseases (CVD) which has some charac-
teristics similar to stroke. In [50] four machine learning algorithms (random
forest, logistic regression, gradient boosting machines, neural networks) were
compared, showing that the machine learning models have an accuracy that is
significantly higher that the currently established tools for CVD risks. Here,
only structured EMR data was used.

Interestingly, there is no single machine learning algorithm that performs best
on clinical data. Ford et al. [18] compare 67 studies that use clinical data –all
including clinical notes– for the purpose of detecting a specific (type of) disease.
They found no significant differences among the accuracy of different types of
algorithms. Although these case-detection studies slightly differ from disease
prediction studies in their aim, the methodology of these studies is often similar
to disease prediction studies.

Except for choosing the optimal machine learning model, it is also important
which features/variables are included in the model. This is highly influenced
by characteristics of the dataset, the amount of text preprocessing applied, the
maximum size of the feature set and the feature selection technique used. This
complicates the comparison of different studies.

Another important consideration in choosing a machine learning algorithm for
medical applications is the interpretability of the model. Interpretable models,
such as logistic regression models, are often preferred over black-box models
(e.g. neural networks) [47].
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Chapter 3

Datasets

We analyse an anonymized primary care dataset named the Extramural Lei-
den Academic Network (ELAN) primary care database. It contains GP data
of 105619 individuals from GPs centered around Leiden. The number of stroke
cases in this dataset was 1415 (1.3%). The dataset contains demographic pa-
tient data (e.g. age, gender), ICPC codes for diagnoses (often with a short
description), medication prescriptions, laboratory results and referrals.

Typically an EMR dataset also contains consultation notes written by the gen-
eral practitioner, but unfortunately these were removed from ELAN to protect
patient privacy. Instead we use the ‘diagnosis descriptions’ as our source of
unstructured information. Diagnosis descriptions are provided for various pur-
poses, for example to add information about the certainty of the given diagnosis,
to describe additional symptoms or to indicate the location of the problem more
precisely.

Using the diagnosis descriptions also has some disadvantages. Many GPs use a
system that partly automates the input of diagnosis descriptions. Consequently,
the diagnosis descriptions are often (almost) equal to the official ‘name’ of the
ICPC code to which they have been assigned. A quick examination of the
descriptions in the ELAN dataset showed that 20% of these descriptions are
exactly equal to the ICPC code. Furthermore, diagnosis descriptions have a
strict length limit of 40 characters.

The ELAN dataset is a subset of the STIZON dataset [44], which is a nationwide
dataset containing data of approximately 3 million patients and also contains
the consultation notes. The pipeline we develop in this work will be applied to
the STIZON dataset in future work to make a more accurate stroke prediction
model and to find more reliable risk factors for stroke in women.
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3.1 Patient privacy

Due to legal and institutional concerns about patient privacy it is difficult to
gain access to medical data for text mining and this has been a major obstacle
to progress in this field [45]. Clinical notes can potentially contain highly sensi-
tive information and is therefore even harder to obtain than regular (structured)
health data.

We also faced many obstacles in the process of obtaining the STIZON dataset,
which was initially the dataset we planned to use for this research. As an alter-
native approach, we obtained the NEO dataset containing the complete EMRs
from 6671 individuals, who gave their informed consent by participating in an
obesity study. Unfortunately, the number of stroke cases in this small dataset
was too small for stroke prediction. Therefore, we used the ELAN dataset that
we described above.

We are also unable to share the medical data used in this research.
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Chapter 4

Analysis and results

Our analysis consists of four main phases. In this first phase, Preprocessing,
we convert the raw data to a format that the computer can more easily work
with and includes text cleaning, tokenization, spelling correction and key-phrase
detection. The second phase, Data Selection & Analysis, is where we select
relevant data for use in the prediction phase and we split the patient group in
target and non-target patients. Furthermore, to obtain insight into the basic
distributional properties of the data, we analyse token frequencies in both groups
and build a word embedding model. In the third phase, Feature Selection,
we select features that will represent the data in the prediction models. In
this phase we apply two techniques for the extraction of predictors from the
data, namely bag-of-words and topic modeling. Finally, in the fourth phase,
Prediction models, we use logistic regression to build a prediction model and
find potential risk factors for stroke.

4.1 Preprocessing

Natural language typically requires a large amount of preprocessing and this is
even more the case for medical notes as we discovered in our previous research
project [30]. The data contain many spelling errors, for which we developed a
spelling correction algorithm (See Section 4.1.2).

Further analysis of the data shows that many words are incomplete (e.g. probl
instead of probleem) and that many medical terms are multi-word phrases (e.g.
diabetes mellitus), which could lose their meaning when split into separate to-
kens. We extend our existing preprocessing pipeline with techniques that deal
with these issues.

Other preprocessing steps used in the medical domain are synonym detection
and negation identification [3, 52]. A single disease or symptom often has many
synonyms, ranging from complex medical jargon to terms used in day-to-day
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language. Unfortunately, resources for Dutch medical synonyms are limited. Ini-
tial experiments with synonym detection using SNOMED-CT [34], the Dutch
version of UMLS [7], led to retrieval of overly specific medical concepts given
the limited information present in each diagnosis description. For example ‘vi-
tamine deficientie’ (vitamin deficiency) was matched to ‘Neuropathy associated
with hypervitaminosis B6 (disorder)’ and ‘hoofdpijn’ (headache) was matched
to ‘Medication overuse headache (finding)’. In some cases the matches were not
only too specific, but also unrelated to the original text (e.g ‘immunisatie pre-
ventieve medicatie’ (immunisation) was matched to ‘Transfusion reaction due to
leukagglutinins’). Further experiments using bi-word search queries, reduced re-
call to an insufficient amount of synonym coverage (e.g. concept 95655001 ‘Oph-
thalmic migraine’ was not retrieved for search query “migraine ophthalmic”).

Negation words indicate that something does not apply to the patient. Ignor-
ing or removing negation words results in an interpretation of the phrase that is
opposite to the intended interpretation (e.g. ‘no headache’ could be interpreted
as ‘the patient has headache’). Negation detection algorithms often use pattern
matching (e.g. NegEx) or part-of-speech (PoS) tagging (e.g. NegExpander) to
obtain the (sentence) structure [24], which is needed to identify to which words
in the sentence the negation applies.

Data analysis shows that negation words or phrases –as listed in Appendix A–
occur in only 1.5% of the records and that the data typically does not contain
any (sentence) structure. Consequently, we decided not to include negation de-
tection in the preprocessing pipeline.

To summarize, the preprocessing pipeline consists of text cleaning, tokenization,
spelling correction, word completion and key-phrase detection.

4.1.1 Cleaning and tokenization

We lowercase the diagnosis descriptions and replace all punctuation symbols
–except hyphens– by white space. In Dutch hyphens are sometimes used to cre-
ate compound words. Therefore, we keep all hyphens that appear within a word
and remove only the hyphens occurring at word boundaries. Furthermore, we
remove the stop words (commonly used words) listed in Appendix B [17]. We
also remove words without any alphabetical characters (e.g. dates and telephone
numbers). Finally, we remove words that contain fewer than three characters.
We tokenize the strings of text into a list of words by splitting on white space.

The top 5 most frequent remaining words are klachten, pijn, symptomen, eczeem
and acute. The frequency distribution is highly skewed (Fig. 4.1). At this point
of preprocessing we have a total count of 4200400 tokens of which 94334 are
unique tokens.
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Figure 4.1: Zipfs plot showing the relation between the absolute frequency and
frequency of the tokens. Both axes have a logarithmic scale.

4.1.2 Spelling correction

Texts in EMRs are generally written under high time pressure and often in-
tended for personal use only, resulting in a larger amount of uncorrected mis-
spellings or even intentional misspellings, since typing less characters is more
efficient and even more beneficial when notes are limited to a certain maximum
length.

Humans automatically relate misspelled words to correct words they already
know or –when they know multiple correct words similar to the misspelled word–
they understand it based on the context of the word. However, for computers
each unique string of characters represents a unique token. Consequently a com-
puter model that ‘knows’ the meaning of the word migraine might have no clue
about the meaning of migrain.

In some cases a misspelling is also a correct word (e.g. mispelling cold as old),
which we can not identify without using a context sensitive spelling correction
algorithm [22]. Since these algorithms generally need more context than is
available in the short EMR notes, we focus only on non-word misspellings.

Domain specific dictionary

A dictionary of Dutch words that includes a sufficient amount of medical terms
is needed in order to use a dictionary-based spelling correction algorithm. We
construct this dictionary by combining all unique words from the official ICPC
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descriptions [35] with the Clinspell lexicon [17] and the CoNLL collection [16].
The Clinspell lexicon contains 474206 words from both general and medical
sources and the CoNLL 2017 Shared Task Dutch is a large word embedding
corpus containing 2.6 million words retrieved from Wikipedia and Common
Crawl. The combined dictionary contains almost 2.8 million words.

Spelling correction algorithm

We identify non-word misspellings by comparing words from the dataset with
words from the dictionary. When a word is an out-of-vocabulary (OOV) term
(i.e. not found in the dictionary), it is either an actual misspelled word or a
correct word that is not in the dictionary, which can occur when words are very
domain-specific or when the dictionary is too small. By using a large dictionary
and including additional medical terms we reduce the chance of these false pos-
itives. Before spelling correction 6% of the words in dataset were OOV words
and the set of all unique words consisted for as much as 55.6% of OOV words.

For replacing the OOV terms by dictionary words, we use the Damerau- Lev-
enshtein distance (DLD) [4], which is defined as the minimum number of inser-
tions, deletions, replacements or transpositions of adjacent characters needed
to change one word into another word. We set the maximum DLD distance
to 1 character and the minimum word length to 6 characters to find words in
the dictionary that are highly similar to the OOV terms. When the algorithm
finds multiple correction candidates, we choose the candidate with the highest
frequency in the dataset. Short words are more likely to have multiple cor-
rection candidates and are more difficult to correct. Interestingly, despite the
strict spelling correction parameters many (severely) misspelled words obtained
incorrect correction candidates. (e.g. neurit → neuriet instead of neurit →
neuritis, angstkl → angstel instead of angstkl → angstklachten)

Improving precision

Precision of spelling correction in the medical domain is essential. Small in-
correct word edits can drastically change meaning of not only the word itself
(e.g. changing oog- (eye-) to oor- (ear-)), but also the meaning of the whole
note and possibly even the behaviour of the prediction models when trained on
this data. We reduce the amount of incorrect corrections by considering only
correct words that were already present in the dataset as correction candidates
instead of using all words from the dictionary as correction candidates. Manual
evaluation of 250 randomly selected corrections showed that 93% of these were
correct.

Algorithm efficiency

Computation of the DLD of a single word pair has a time complexity of O(n∗m)
where n and m are the word lengths. A naive approach to find all correction
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candidates for all OOV terms requires millions of DLD computations. While
this is still possible within reasonable time for our dataset it is not scalable to
larger datasets and/or larger dictionaries.

Given that the maximum DLD threshold is low, a more efficient approach is
spelling correction using Symmetric Delete [19]. This algorithm deletes one or
more characters (up to the maximum DLD) from both the dictionary words and
the OOV terms. These words-with-deletions are stored in a hash table or sim-
ilar data structure. After this preprocessing step, simple equality comparisons
are sufficient to find correction candidates in the dictionary without any DLD
computation while the results are identical.

The spelling correction algorithm was able to correct 20339 words, which re-
duced the percentage of OOV words in the dataset to 4%. Table 4.1 lists some
misspellings and their corrections. Manual evaluation, by a medical expert
and the author, of a random sample of 250 spelling corrections showed that
only 2% of these were regarded as incorrect replacements. (e.g. jindy→cindy,
paralu→paraplu)

OOV term Correction
maagklacgten maagklachten
schurtje scheurtje
mammacarcinooml mammacarcinoom
epydidymitis epididymitis
oxazepma oxazepam
ingegreoide ingegroeide
apigastrio epigastrio

Table 4.1: Examples of spelling corrections provided by the spelling correction
algorithm

4.1.3 Word completion

Due to the strict limit imposed on the length of the diagnoses descriptions,
many words are incomplete. The spelling correction procedure described in the
previous section is not suited for the correction of incomplete words. Therefore,
we look for each of the remaining OOV terms with a length of at least 3 char-
acters, whether it occurs as prefix in the vocabulary. (e.g. for transplantat we
look if any of the correct words in the dataset start with transplantat-). When
we find multiple candidates we choose the candidate that is most frequent in the
dataset. Figure 4.2 shows some examples of incomplete words in dataset and
the complete word found by the algorithm. We found completions for 11124
words, which is 21.6% of all OOV terms.
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Figure 4.2: Word completion examples

4.1.4 Key-phrase detection

In the first step of the pipeline we split all notes into single-word tokens. How-
ever, many medical terms are multi-word phrases (e.g. diabetes mellitus). When
each word in a phrase is analysed as an individual concept, these phrases often
lose their meaning. Phrases can be identified by computing the phraseness; the
degree to which a given word sequence is considered to be a phrase [46]. We de-
fine the phraseness for phrase P with unigrams u and their relative frequencies in
the dataset RF (P ) and RF (u) as shown in Eq 4.1 (Pointwise Kullback-Leibler
divergence).

Phraseness = RF (P ) log

(
RF (P )∏
u∈P RF (u)

)
(4.1)

We computed the phraseness of 7.5M phrases consisting of two, three, four or
five words. Figure 4.3 shows the phrases with the highest phraseness. Based on
manual inspection of the top phrases, we selected the top 0.01% of phrases (94
phrases) with the highest phraseness as key-phrases and replaced the individual
tokens of these phrases in the dataset with the key-phrase in which we replaced
spaces with underscores.

The list of key-phrases in Fig 4.3 contains some key-phrases which are not
multi-word phrases in common natural language, for example immunisatie pre-
ventieve medicatie (Preventive Immunisations/Medications), which is exactly
the description of ICPC code -44 after our preprocessing steps and is therefore
a frequent ‘phrase’ in the cleaned diagnosis descriptions. This is a consequence
of the semi-structured nature of the diagnosis descriptions and will occur less
frequently in fully unstructured text.
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Figure 4.3: Multi-word phrases with highest phraseness

4.2 Data selection & Analysis

In this phase the divide the data into two groups; a target group (i.e. pa-
tients who have experienced one or more strokes) and a non-target group. Fur-
thermore, we compare token frequencies among the groups and build a word
embedding model, which we will use for data visualisation and word similarity
computation, and we consulted a medical expert for interpretation of the output
of these analyses.

4.2.1 Patient and time period selection

Earlier recognition of patients at risk of stroke increases the probability that
preventive measures, such as medication and lifestyle changes, are effective.
Therefore, a successful disease prediction model has to be able to predict the
disease based on a limited set of records that were collected some time before
the disease occurs. In this section we describe how we selected relevant data for
training and testing the model.

Similar to survival analysis studies we define a study period (the roll-in period)
and a follow-up period for each patient. [37] The roll-in period is a period with
a fixed length from which we select data to use for the model and the follow-
up period is a fixed length period directly after the roll-in period in which the
event occurs at some moment if the patient is a target patient. For non-target
patients we chose a random roll-in period.

Most data was collected between 2007 and 2017, which is a relatively short pe-
riod and not long enough to predict a stroke 10 years before the actual stroke
event. When a patient had a stroke in 2015 we would need to train the model
with health information from before 2005, which is not available in the dataset.
Therefore, we train our model to predict strokes 5 years or less before the first
stroke (i.e. the follow-up period is 5 years). The roll-in period is 2 years. Sur-
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vival analysis of the ELAN dataset shows that a 1-year roll-in period is already
sufficient for accurate prediction [39].

The resulting dataset contains 48190 patients of which 517 are stroke patients.
Each patient has on average 5 records, with a standard deviation of 3.85 records.

4.2.2 Word frequency analysis

Next, we compared target patients (stroke patients) with non-target patients
by comparing token frequencies using the Kullback-Leibler divergence (Eq. 4.2),
which is a measure of how one probability distribution is different from a second
probability distribution. In Equation 4.2, P (x) is the relative frequency of token
x in the target-patient subset and Q(x) is the relative frequency of token x in
the non-target subset. Due to the asymmetry of this measure the tokens that
are relatively more frequent in the target subset will obtain an higher score and
thus we will obtain a list of potential risk factors for stroke using this measure.

DKL(P ‖ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(4.2)

A list of tokens with the highest KL divergence (Table 4.2) shows that a wide
range of medical conditions and symptoms occur more frequently in the target
group. Noteworthy, many of these terms appear to be age-related (e.g. pres-
byacusis: age-related hearing loss). Since stroke incidence is highest among
elderly, the mean age of the target group is twice as high as the mean age of
the non-target group. Consequentially, age-related symptoms and diseases are
more frequent in this group.

To obtain some more insight into the confounding effect of age on the KL diver-
gence we also plotted the KL divergence against the ‘mean age’ of each token
in Fig. 4.4. The mean token age is computed by listing all occurrences of the
token (in the full dataset) together with the patients’ age at the time of di-
agnosis followed by calculating the mean of these ages. Using this method we
obtained –for example– a mean age of 57 for erysipelas and a mean age of 47 for
neusbloeding (nosebleed), which implies that erysipelas occurs on average more
in elderly persons than nosebleeds.
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Figure 4.4: KL divergence and mean token age. We annotated all tokens with
a mean token age smaller than 60 and a KL divergence bigger than 0.0020.

4.2.3 Word embedding

A word embedding model is another method for representing text data. In a
word embedding model each word is represented as a vector in a vector space.
These vectors are obtained using a neural network that is trained on word con-
texts in the input data. Similar words will have similar word vectors and there-
fore a word embedding model can be used to compute similarities between words.
We use the Word2Vec (W2V) [33] implementation, which is frequently used for
modeling semantic word relationships [12]. We build the word embedding model
based on the preprocessed ELAN dataset, which we grouped by ICPC code to
obtain a ‘document’ for each ICPC code. We used the common bag-of-words
(CBOW) method and each word vector in the model is 300-dimensional.

For visualisation purposes the we selected the 2000 most frequent tokens and
reduced the number of dimensions of their word vectors to 2 dimensions using
t-Distributed Stochastic Neighbor Embedding (t-SNE) [32]. Figure 4.5 shows
a scatter plot of these reduced word vectors in which we annotated the 150
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Token KL divergence
immunisatie preventieve medicatie (immunization) 0.005351
cerumen overmatig (excessive earwax) 0.005084
duizeligheid (dizziness) 0.004352
copd 0.004261
obstipatie (constipation) 0.004231
presbyacusis 0.004032
neusbloeding (nosebleed) 0.003778
arteriitis 0.003762
erysipelas 0.003635
prostaathypertrofie (prostatitis) 0.003504

Table 4.2: Tokens with highest KL divergence. A high KL divergence indicates
a relatively high frequency in the target group (stroke patients) in comparison
to the frequency in the non-target group.

most frequent tokens. Furthermore a medical expert annotated several medical
systems using colored ellipses. This shows that the word embedding model ad-
equately represents and clusters medical information.

In a later phase of the pipeline we will also use the word embedding model to
determine the optimal number of topics in the topic models by measuring the
word similarities of the words in the generated topics.

4.3 Feature selection

In this section we describe two feature selection techniques: bag-of-words and
topic modeling. Bag-of-words is a basic technique that transforms token counts
to features, while topic modeling is a more complex technique that creates inter-
pretable ‘topics’ based on token co-occurrence, which has been used in various
studies in the medical domain [11, 20, 29]. We use both techniques to create
two separate feature sets, which will be used as input for the prediction model
in the next phase.

4.3.1 Bag-of-words

The bag-of-words model is a way of representing text and is traditionally com-
monly used in the natural language processing (NLP) domain. In this model a
sentence or document is represented as a multiset of words. A multiset is a set
that can contain a multiple instances of the same word. Due to this representa-
tion, grammar and word order are disregarded while multiplicity is kept. The
number of features created by this model is consequently equal to the number of
unique words in the whole dataset. Applying this model to our relatively large
dataset will yield a immense feature set containing 19, 000+ features. Therefore,
we restrict the feature set to words that occur at least 10 times in the dataset.
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This reduces the feature set to 3409 features while simultaneously filtering rare
words from the data.

4.3.2 Topic Modeling

A topic model is a type of statistical model for discovering abstract ‘topics’
–sets of related words– that occur in a collection of documents based on word
co-occurrence. We use this technique both to obtain topical information about
the data and to obtain a feature set (the topic probabilities) for later prediction
models. Multiple approaches for obtaining topics exist, including the probabilis-
tic Latent Dirichlet Allocation (LDA) [6] and the deterministic Non-Negative
Matrix Factorization (NMF) [43].

Figure 4.5: Word embedding model after dimensionality reduction. The 150
most frequent words are annotated and some medical domains are indicated
using ellipses based on expert knowledge. Red: psychosocial problems, yellow:
ear-related problems, blue: upper respiratory tract problems, black: muscu-
loskeletal problems, pink: dermatological problems, green: eye-related problems
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Tokens Topic 0 Topic 1 Topic 2
[epistaxis, neusbloeding, 0.0 0.000000 0.000000
frequente mictie aandrang, ome]
[presbyacusis, eczeem] 0.0 0.022143 0.000000
[veronderstelde gastro-intestinale infect, 0.0 0.000000 0.005414
uitslag, uitslag, obstipatie, down,
depressief, gevoel, cystitis, herpes zoster,
griepvaccinatie, aortastenose]

Table 4.3: Three random patients with multiple medical problems, and their
average topic probabilities of the first three topics obtained using the topic
model described in Section 4.3.3. These topics are listed in Appendix D.

Topic modeling approaches are parameterized. One of the most important pa-
rameters is the number of topics. Specifying the desired number of topics is
required since topic models are unable to automatically determine this based
on the data. Other parameters include the number tokens to consider. Includ-
ing all tokens would highly increase the time-complexity, while extremely rare
tokens also do not provide any additional value to the topic model. We set the
number of tokens to 1500. For LDA we choose the tokens with the highest term
frequency (tf) and for NMF we choose those tokens with the highest tf-idf (term
frequency-inverse document frequency) [41]. Furthermore, we only consider the
first ten (highest-scoring) tokens in each topic.

The topic models are based on the dataset we obtained after the preprocessing
phase. Single records typically describe one single problem and therefore co-
occurrence of words in these records will yield more coherent topics opposed to
using the data that was grouped per patient. Moreover, the full preprocessed
dataset contains significantly more data and more patients than the filtered and
grouped dataset. After obtaining the topic probabilities for each record we com-
pute the average topic probability for each patient, which are the probabilities
that we will use as features in the logistic regression model.

Finally, to obtain a single set of topic features for each patient, we compute the
average of the topic probabilities of all his records. Table 4.3 lists three random
patients with their topic features for the first three topics to demonstrate these
topic features.

Topic coherence

The exact number of topics present in textual data is typically unknown. Even
the ICPC diagnosis coding system changes regularly; an exact number of dis-
eases or symptoms does not exist. Therefore, we create multiple topic models
with topic sets ranging from 18 to 40 topics after which we compute which of
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these topic models contains the most ‘coherent’ topics. Topic coherence is a
measure of the degree of semantic similarity between the high scoring words
in a topic, which we define as the euclidean distance between the word vectors
of these words (TC-W2V) [38] in the word embedding model that we created
in the previous phase. Similarly, we define the ‘topic model coherence’ as the
average of the topic coherences of all topics in the topic model.

Fig. 4.6 shows the coherence of all NMF topics models. According to TC-W2V
the topic model with 26 topics is the optimal topic model. However, inspection
of the topics in this model reveals that the 26 topics lacked some common med-
ical problems (e.g. hypertensie (hypertension) and diabetes mellitus), which
might also be important for stroke prediction. Since the 32-topic model has
only a slightly worse TC-W2V and its topics contain a broader range of medical
problems, we use this model instead. Interestingly, the topic model coherence
for the 32-topic LDA topic model is 0.300, which is substantially lower than the
topic model coherence of the NMF topic model.

Figure 4.6: Topic model coherences
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4.3.3 Topic modeling results

The topic model obtained using NMF1 with 32 topics is listed in Appendix D.
Most topics describe a clear set of symptoms and it would be relatively easy for
a medical professional to assign a name to each topic that describes (almost)
all top tokens in the topic. The topics are mainly about fairly common medical
issues, including respiratory problems, eczema and common injuries, which cor-
responds with the general statistics about care provided by general practitioners
in the Netherlands [36]. The results of the LDA2 topic model with 32 topics are
listed in Appendix C. The topics in this model are clearly less interpretable than
the topics from the NMF model, which corresponds with the topic coherences
observed earlier, and thus we choose NMF as our method for topic modeling.

Interestingly, even with this relatively small amount of topics there seem to be
multiple topics for a single type of problem (e.g. ear infections) in the NMF
topic model. We further investigated this observation using a correlation matrix
to discover inter-topic correlations (see Fig. 4.7). For each topic pair we used
the ranked Spearman coefficient to determine whether the topic probabilities are
correlated (either positively or negatively). The correlation plot shows mainly
weakly positively correlated topics and only one pair of topics (topic 13 and
topic 29) which is strongly positively correlated with a correlation coefficient
of 0.69. Both topics in this pair are about ear infection. Two other pairs,
with correlation coefficients 0.60 and 0.59 respectively, also show some positive
correlation. The first pair, topic 3 and topic 11, are both broad topics about
pain and other complaints in specific joints and/or other parts of the body. The
other pair, topic 13 and topic 26, share some tokens (e.g. links (left) and rechts
(right)) which explains the positive correlation observed.

4.4 Prediction models

The final step in the stroke prediction pipeline is the development of the pre-
diction models. Logistic regression models are a commonly used approach in
the medical domain, due to their high interpretability. Unlike complex machine
learning models (e.g. neural networks) these models return exactly how each
input feature contributed to the prediction by means of regression coefficients.

4.4.1 Model development

We develop two logistic regression models, one with the bag-of-words features
as predictors (BOW-LR) and one with the topics as predictors (NMF-LR). The
effectiveness of the logistic regression models is measured using the precision
(the fraction of relevant instances among the retrieved instances), recall (the
fraction of all relevant instances that were retrieved) and the area under the

1Implementation details are listed in Appendix D
2Implementation details are listed in Appendix C
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Figure 4.7: Topic correlation (Spearman)

precision-recall curve (AUCPR).

Additionally, we develop two similar models that predict the age group of the
patient. We define two age groups similar to the grouping used in related
research to distinguish ‘young’ stroke patients from ‘old’ stroke patients, with
ages 18 − 50 and 50+ respectively. These models are used to investigate the
confounding effect of age on the predictors of the stroke prediction model. A
reduction of the confounding effect of age can also be obtained by including the
patient’s age as a predictor in the stroke classification model, but consequently
the prediction model is no longer strictly based on features from text, which
will also influence the evaluation results (e.g. AUCPR score).

4.4.2 Imbalanced groups

A naive prediction model that predicts all patients as non-target patient will
already be 98.7% correct when applied to the ELAN dataset, since only 1.3% of
the patients are stroke patients. We avoid this behaviour using Synthetic Mi-
nority Oversampling Technique (SMOTE) [10], which synthesises new minority
instances between existing minority instances up to the desired ratio.

Unfortunately, when SMOTE is applied to high-dimensional data such as bag-
of-words features, it only slightly attenuates the bias towards the majority
class [31]. Although the accuracy on the minority (stroke) class might re-
main low despite using SMOTE, the model will be more sensible than a non-
oversampled model that predicts each instance as a majority (non-stroke) in-
stance. We set the oversampling ratio to 0.75.
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4.4.3 Classification results

Each logistic regression model was ran with a maximum of 200 iterations. The
classification report of both logistic regression models is shown in Table 4.4.
As expected both the BOW-LR model and the NMF-LR model mainly predict
instances as non-stroke cases, with recall values 0.29 and 0.15 for the stroke cases
respectively. Interestingly, the recall of stroke cases in the BOW-LR model is
twice as high as the recall in the NMF-LR model. Due to the class imbalance
problem, both models have extremely low AUCPR scores.

BOW-LR NMF-LR
Stroke # Precision Recall AUCPR Precision Recall AUCPR
False 9377 0.99 0.89 0.99 0.93
True 142 0.04 0.29 0.03 0.15
Overall: 0.027 0.023

Table 4.4: Logistic regression classification report for BOW-LR and NMF-LR
for stroke classification

Naturally the groups in the age prediction model are almost equally balanced
and thus did not require oversampling. The AUCPR scores for age prediction
using the BOW-LR and NMF-LR models, are 0.805 and 0.572 respectively.
Interestingly, for age prediction the BOW-LR model performed substantially
better than the NMF-LR model. This might indicate that BOW-LR is a better
choice when the data is balanced, while NMF-LR is more suited when the data
is (strongly) imbalanced.

In the next two sections we will investigate the BOW and NMF features that
were the most important according to these models. Furthermore, we will vi-
sualise how the predictive value of the features in the stroke prediction models
correspond to the predictive value of the same features in the age prediction
models.

4.4.4 Bag-of-word predictors

Table 4.5 shows the top 7 predictors with the highest logistic regression coef-
ficients, both for stroke classification (left) and age classification (right). The
first predictor for stroke classification is immunisatie preventieve medicatie (im-
munization/preventive medication). This is in most cases the description for
griepprik (flu vaccine). In the Netherlands everyone aged 60+ is called for a
yearly flu vaccine by their general practitioner. Other predictors in the top 7
are also highly age-related (e.g. cataract (staar)). Some of the top predictors
for age classification are similar to the predictors in the stroke prediction model,
again indicating that these predictors might be influenced by the average age of
the stroke-patients rather than being actual risk factors for stroke.
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BOW-LR for stroke BOW-LR for age
Top predictors Coeff. Top predictors Coeff.
immunisatie prevent... 17.455890 immunisatie prevent... 7.440464
aortastenose 5.179181 cataract 5.182603
goede 4.127771 dementie 3.616307
cataractoperatie 3.939823 presbyacusis 3.358967
statine 3.833086 gonartrose 3.147137
inguinalis 3.746110 nierfunctiestoornis 2.929755
erisypelas 3.733573 euthanasie 2.904145

Table 4.5: Bag-of-words predictors for stroke (left) and for age (right)

We further investigate the relation between age predictors and stroke predictors
by visualising the relationship between the regression coefficients in both models
in Figure 4.8. We normalized all regression coefficients to values ranging from
−1 to 1 (See Equation 4.3). We also annotated all tokens with at least one
positive regression coefficient and an euclidean distance of at least 0.45 from
the mean. This threshold reduces the number of overlapping annotations and
prevents the annotation of (less-informative) neutral predictors. The tokens in
the upper left quadrant are annotated in red (because these are the tokens that
are more positively correlated with stroke and negatively correlated with age),
while all other annotations are blue. The point size and annotation size is rela-
tive to the frequency of the tokens to direct the focus to the more frequent and
consequently more reliable tokens.

xN =
x−min(X)

max(X)−min(X)
∗ 2− 1 (4.3)

As observed before, positive predictors for age include a wide range of age-
related diseases, while negative predictors include pregnancy, STD and men-
struation related problems. The annotations also contain some stroke-related
diseases, but surprisingly not all of these are positive predictors for stroke in
this model. Diabetes mellitus (diabetes mellitus type) is a positive predictor,
but heart disease (hvz ) and transient ischemic attack (tia) are not. Hyper-
tension and high cholesterol, two known stroke-related comorbidities, are not
among the annotated tokens.

Interestingly, the set of tokens with (strong) positive coefficients for stroke and
neutral coefficients for age (upper middle) contain many possibly neurological
symptoms, including tension headache (spanningshoofdpijn), vertigo (dizziness)
and syncope (fainting). Similar symptoms including headache, migraine and
tiredness are also situated in the upper left quadrant. The upper-central area
also contains several symptoms that are currently not associated with stroke
risk, including excessive earwax (cerumen overmatig), urinary problems (mic-
tieklachten) and edema (oedeem). Although there might be no direct relation to
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Figure 4.8: Normalized BOW-LR coefficients for both regression models.

stroke, these symptoms might be indicators for other (stroke-related) diseases
or side effects of medications for these diseases.
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4.4.5 Topic predictors

Similarly, we create a scatterplot for the stroke and age predictors of the NMF-
LR model (Fig. 4.9). Again we normalized the regression coefficients to the
range [−1, 1] and we annotated all topics with the topic number and the highest
scoring word in the topic. The top 10 words in each topic are listed in Ap-
pendix D.

The plot shows that the majority of topics is a positive predictor for age, which
is sensible. More surprisingly, the majority of topics is also a positive predic-
tor of stroke and none of the topics is both a positive predictor for age and a
negative predictor for stroke. Some relatively similar topics pairs (e.g. 2-14 and
16-21) appear also close together in the plot.

Further inspection of the plot reveals that topic 28, which includes hypertension
(hypertensie), cardiovascular riskmanagement (cvrm), hypercholesterolemia (hy-
percholesterolemie) and diabetes mellitus, is a good predictor for both age and
stroke, whereas the BOW scatterplot was more ambiguous about these stroke
comorbidities. Even more noticeable than in the BOW scatterplot, we observed
that predictive value of topics 16 and 21, which together include headache
(hoofdpijn), migraine, tension headache (spanningshoofpijn), tiredness (moe,
moeheid), dizziness (duizeligheid) and burnout (surmenage) , is relatively high
for stroke while being negative predictors for age. These observations are con-
sistent with what is known about these risk factors from scientific literature.
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Figure 4.9: Normalized topic regression coefficients: stroke regression coeffi-
cients are on the y-axis and age regression coefficients are on the x-axis
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Chapter 5

Discussion

The results of this research show that all techniques described in the previous
chapter –logistic regression with bag-of-words and topic features, feature extrac-
tion and word frequency analysis– are able to extract sensible information from
Dutch diagnosis descriptions in EMRs from general practitioners. Further anal-
ysis also revealed information that is potentially relevant for stroke prediction.
When we compare the results of KL divergence and BOW-LR we see similar to-
kens being associated with stroke patients. Topic modeling using non-negative
matrix factorization combined with topic coherence optimization led a set of 32
interpretable topics about common medical problems.

Stroke prediction using bag-of-words (BOW-LR) outperformed stroke predic-
tion using the these topics features (NMF-LR) in terms of recall of the stroke
cases (Table 4.4), which is consistent with the results of a similar study on col-
orectal cancer prediction [27]. However, the results of NMF-LR are particularity
valuable for discovering the relationship between common medical problems and
stroke. Furthermore, we build an word embedding model that showed a clear
clustering of medical problems (Fig. 4.5).

Additionally, we observed an strong confounding effect of age consistent with
the incidence pattern of stroke [1] and other diseases. We build a similar predic-
tion model for age prediction and by comparing the results of this model with
the results of stroke prediction we obtained clear visualisations of this effect (
Fig. 4.8, Fig. 4.9).

Limitations

All techniques were applied to the diagnosis descriptions from the ELAN dataset.
With a mean length of only 19 characters and a significant amount of descrip-
tions being equal to the ICPC names, there is a limited amount of relevant
information that can be potentially extracted. Factors that we hypothesised
to play a role in stroke development (e.g. psychosocial problems) were simply
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almost not present in this type of data. Furthermore, these short notes lack sen-
tence structure, rendering part-of-speech tagging (PoS) for concept extraction,
negation detection and the extraction of other contextual information infeasible.
The relatively small amount of stroke patients in this dataset (517 individuals)
limited our possibilities for balancing the patient groups. For similar reasons,
techniques for reducing the confounding effect of age (e.g. age sampling) were
also not feasible with this data. Furthermore, due to the imbalanced nature we
were forced to use an oversampling, which can potentially introduce bias in the
prediction model.

In spite of these limitations we were able to obtain sensible results from each
technique. Furthermore, this was a great opportunity to show the value of diag-
nosis descriptions in disease prediction, which might also be a good alternative
for others who face obstacles in the process of obtaining consultation notes. In
addition to being regarded as less privacy sensitive, diagnosis descriptions are
also less noisy, require less computational effort and less preprocessing.

Another important limitation to note is the current lack of tools for processing
Dutch medical texts (e.g. for UMLS concept extraction) in comparison to the
number of tools available for medical texts written in English. Lastly, we were
only able to test a limited set of techniques and parameter settings, due to the
narrow scope and the finite amount of time available for this research.

Strengths

Most disease prediction studies only use the structured data in EMRs and
mainly use complex machine learning models. The approach we used in this
research to create an explainable model while also obtaining possible risk fac-
tors from textual EMR data has a number of advantages. We not only extracted
information that is possibly not present in the structured fields but also com-
bined the information extraction with text cleaning methods, spelling correction,
word completion and key-phrase detection such that the noise typically associ-
ated with natural language is reduced.

Additionally, we improved the interpretability even further by grouping the data
into topics. By using a simple logistic regression model we also ensured that
not only the features were explainable but also the final predictions. For medi-
cal applications, understanding and being able to interpret models is key, since
unintended and undetected biases in the model could have disastrous conse-
quences [8, 21].

We also demonstrated a possibly novel approach for filtering confounding effects,
which does not require any form of statistical knowledge but is still a reliable
way to obtain insights into these effects. Furthermore, we contributed to the
field of medical NLP by developing a natural language preprocessing pipeline
for Dutch medical notes.
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At several stages of this research we consulted a medical expert (Hine van Os)
for feedback and interpretation of the results, which led to new insights and
directions to focus on.

Future directions

In future work we plan to combine the bag-of-words and/or topic features with
the features extracted from the structured fields into a single model or into an
ensemble model to investigate the added value of using the texts from EMRs
for the prediction of stroke. We also plan to compare this model with the basic
risk factor algorithm that is currently used by general practitioners.

Furthermore, once we have access to the STIZON dataset we plan to apply
the techniques also to this significantly larger dataset. After some small mod-
ifications to the preprocessing phase we could also apply the pipeline to the
consultation notes to extract even more information for stroke prediction.

Other interesting directions for future work include developing a tool for Dutch
medical concept extraction, experimenting with other approaches for dealing
with strongly imbalanced high-dimensional data or including diseases similar
to stroke (e.g. cardiovascular diseases) in the prediction model. Finally and
importantly, it would be valuable to build female-specific prediction models or
age-specific prediction models, since evidence that different mechanisms play a
role in these groups is mounting.

31



Chapter 6

Conclusion

In this research we proposed a novel approach for stroke prediction by utilizing
unstructured information from EMRs. Stroke is one of the leading causes of
death in the Netherlands and early recognition of persons at risk could poten-
tially save lives. For real-life applications in diagnostication, the medical experts
who will be using the model should be able to trust and understand the model
completely.

Stroke occurs mainly in elderly persons and consequently prediction models for
stroke tend to indicate the numerous amount of age-related problems as possible
indicators for stroke, thereby obfuscating the actual predictors for stroke. This
research aimed to answer to following questions:

1. How can we develop an explainable text mining pipeline for the prediction
of stroke?

2. How can we discern the confounding effect of age from this information?

We developed a pipeline for the prediction of stroke based on unstructured in-
formation from Dutch medical notes, more specifically diagnosis descriptions in
EMRs from general practitioners.

We have compared two feature selection techniques, namely bag-of-words and
topic modeling, and we build an explainable logistic regression model for stroke
prediction. Furthermore, we analysed the confounding effect of age, again using
methods that are interpretable by medical experts.

Logistic regression models using either bag-of-words and topic features provide
interpretable information about stroke risk. We found that logistic regression
with topic features allow for the easiest interpretation about common medical
problems and their relation to stroke. Additionally, we demonstrated that KL
divergence applied to the relative frequencies of the words in each patient group,
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is an interpretable method for showing which words are more frequent in the
target group.

We developed clear visualisations of annotated logistic regression coefficients
for both age prediction and stroke prediction, that discern predictors (tokens or
topics) that are good predictors for both stroke and age from predictors that
are positive predictors stroke but negative predictors for age. Additionally, we
computed the mean token age of each token and found a broad distribution of
mean token ages, which we plotted against the KL divergence (Fig 4.4). These
visualisations discern to some extend the confounding effect of age from the
extracted information, while also being easy to interpret by medical experts or
others without advanced statistical knowledge.

Overall, we have shown multiple techniques for extracting relevant information
from texts, which proved to be not only interpretable but also are promising ap-
proaches for stroke prediction in real-life applications. It can be considered as a
first step in shifting the focus from structured health data towards the inclusion
of free text data and although we were unable to demonstrate this due to the
limitations of our dataset, we expect that these techniques have the potential
to aid the discovery of novel risk factors from texts and potentially also improve
the accuracy of stroke prediction models.

With this research we explored the utilization of unstructured clinical data in
disease prediction models, we advanced the understanding of the steps involved
in (pre)processing Dutch medical texts and we hoped to advance the knowledge
about risk factors for stroke.
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Appendices

A Negation trigger words

A list of Dutch negation trigger words based on [3].

‘afwezigheid van ’, ‘evenmin’, ‘gedaald’, ‘ geen ’,‘ geen aanwijzingen

voor ’,‘ geen klachten van ’,‘geen oorzaak van ’,‘ geen teken van ’,‘

geen tekenen van ’,‘ heeft geen ’,‘ kan niet ’,‘ leek niet ’,‘ niet

’,‘ niet als ’,‘onbekend ’,‘ uitsluiten’,‘ verdwenen’,‘ vertonen geen

’,‘ vertoonde geen ’,‘vrij van ’,‘weg ’,‘ zonder’,‘ zonder tekenen

van’

B Stopwords

A list of Dutch stopwords based on [17] excluding negation (stop)words.

aan, af, al, alles, als, altijd, andere, ben, bij, daar, dan, dat,

de, der, deze, die, dit, doch, doen, door, dus, een, eens, en, er,

ge, geweest, haar, had, heb, hebben, heeft, hem, het, hier, hij,

hoe, hun, iemand, iets, ik, in, is, ja, je, kan, kon, kunnen, maar,

me, meer, men, met, mij, mijn, moet, na, naar, niets, nog, nu, of,

om, omdat, onder, ons, ook, op, over, reeds, te, tegen, toch, toen,

tot, u, uit, uw, van, veel, voor, want, waren, was, wat, we, wel,

werd, wezen, wie, wij, wil, worden, wordt, zal, ze, zei, zelf,

zich, zij, zijn, zo, zou
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C LDA Topic model

Implemented using sklearn.decompisition.LatentDirichletAllocation

Parameters:
Number of topics: 32
Maximum number of iterations: 10
Learning method: Online
Learning offset: 10
Learning decay: 0.7
Batch size: 128
Random state: 0

Coherence (W2V-TC): 0.3001

Topics:

0. contusie, overmatig cerumen, rechter, verruca, zwangerschap, seborrhoica,
onderbuik, nieuwe, gewricht, cyste

1. ziekte, geen, dermatomycose, hand, onychomycose, folliculitis, wondje,
medische gegevens, probleem, ontstoken

2. pneumonie, mictieklachten, trauma, hyperreactiviteit, handen, lichte,
gewone verkoudheid, contacteczeem, arthrose,
hand vinger symptomen klachten

3. rechts, vinger, urticaria, wond, menstruatie, dossier, ontsteking, gastroen-
teritis, zwanger, medisch

4. klachten, buikpijn, tonsillitis, lumbago, mond, cataract, acute, buikkram-
pen, tong, abces

5. huid, moe, viraal, droge, surmenage, bloedverlies, gelaat, hypercholes-
terolemie, artrose, epistaxis

6. linker, pijnlijke, benen, varices, ongeval, letsel, bijwerking, reflux, hiel-
spoor, ander

7. smear, infectie, partner, dyspnoe, incontinentie, ziektegevoel, moeheid,
urine, huid subcutis, relatieproblemen

8. diarree, allergie, vrouw, kneuzing, keratose, actinische, malaise, borsten,
chronisch, preventie

9. symptomen klachten, schouder, pijn, borst, arm, migraine, verhoogde,
oac, mycose, bloeddruk

10. gevoel, luchtweginfectie, anemie, schaafwond, bovenste, afwijkend, chron,
tekenbeet, nekpijn, gehoor
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11. links, fractuur, dig, been, oog, oor, lsp, voet, hand, ulcus

12. knie, rugpijn, acne, otitis media, tgv, teen, acute, pharyngitis, spruw,
mictie

13. sinusitis, moeheid, acute, chronische, obv, lwi, zwakte, unguis incarnatus,
hematoom, familie

14. jeuk, vaginale, astma, verruca seborroica, onderzoek, zorgen, vit, klacht,
osteoporose, b12

15. wratten, soa, zoon, dochter, partus, bevallen,
anticonceptie orale anticonceptie, waterpokken, angst, normale

16. eczeem, zwelling, syndroom, duizeligheid, lies, constitutioneel, seborroisch,
misselijkheid, vertigo, oogleden

17. hypertensie, bdz, rugklachten, reactie, mamma, allergische,
lage-rugpijn zonder uitstraling, lage, zonder, orgaanbeschadiging

18. obstipatie, uwi, oorpijn, ogen, bvo, onderbeen, erysipelas, naevi, droge,
visus

19. conjunctivitis, cerumen overmatig, nvzb, herpes zoster,
knie symptomen klachten, lipoom, bacteriele, verdenking, wang, irritatie

20. blwi, virale, borstkas symptomen klachten, hordeolum, maagpijn, ome,
vitamine, slaapstoornis, slapeloosheid, verkoudheid

21. administratieve verrichting, oma, hoofd, snijwond, depressie, lage rugpijn,
verkouden, corpus alienum, licht, influenza

22. acute infectie bovenste luchtwegen, hoofdpijn, enkel, distorsie, anticon-
ceptie, hooikoorts, braken, iud, collaps, verstuiking

23. problemen, bursitis, nek, elleboog, maagklachten, recidiverende, hyper-
ventilatie, myalgie, operatie, diabetes mellitus type

24. otitis externa, val, scheurwond snijwond, duim, nekklachten, voeten, hal-
lux, voet teen symptomen klachten, hemorroiden, beet

25. naevus, candida, acute bronchitis bronchiolitis, schouderklachten,
knieklachten, moedervlek, rug symptomen klachten, oedeem, cvrm, med-
icatie

26. hoesten, impetigo, pijnklachten, brandwond, spanningshoofdpijn, impetig-
inisatie, mollusca, contagiosa, slaapproblemen, atheroom

27. cystitis, neus, smear bvo, candidiasis, overleden, epicondylitis lateralis,
urineweginfectie, nek sympt klacht, spierpijn, ganglion
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28. koorts, keelpijn, bronchitis, atheroomcyste, hals, oud dossier, roken, va-
sectomie, angina, bloeding

29. angst, archief, lage rugpijn zond uitstr, eci, frequente mictie aandrang,
tinea pedis, hernia, ivm, man, oksel

30. cerumen, immunisatie preventieve medicatie, griep, overgewicht, jicht, mo-
gelijk, balanitis, recidief, spanningsklachten, hematurie

31. pijn, voet, rug, tendinitis, niet, wrat, pols, dermatofibroom, thorax, tho-
racale
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D NMF Topic model

Implemented using sklearn.decompisition.NMF

Parameters:
Number of features: 3000
Number of topics: 32
Initialization: Nonnegative Double Singular Value Decomposition (NNDSVD)
Alpha: 0.1
L1 ratio: 0.5
Random state: 42

Coherence (W2V-TC): 0.4734

Topics:

0. hoesten, hyperreactiviteit, obv, verkouden, kinkhoest, viraal, griep, astma,
verkoudheid, dyspnoe

1. eczeem, constitutioneel, seborroisch, seborrhoisch, dyshidrotisch, roos, han-
den, mycose, seb, oogleden

2. cystitis, urineweginfectie, urineweginfecties, nao, recidiverende, rec, recidi-
verend, geen, prostatitis, recidief

3. pijn, knie, borst, onderbuik, schouder, been, thorax, heup, voet, rug

4. sinusitis, acute, chronische, chron, recidiverende, rhinitis, verkoudheid,
verkouden, recidief, beginnende

5. acute infectie bovenste luchtwegen, viraal, recidiverende, boven, griep,
wsch, icm, hoest, vaak, rec

6. cerumen, bdz, ads, oor, verwijderd, ome, oren, cerumen overmatig, beide,
oorpijn

7. obstipatie, ibs, tgv, obv, buikklachten, zwangerschap, chronische, diverti-
culitis, colon, gebruik

8. immunisatie preventieve medicatie, griepvaccinatie, tetanus, griep, bcg,
hep, reis, zweten, goed, gold

9. buikpijn, gelokaliseerde, buikkrampen, gegeneraliseerde, gegen, eci, onder-
buik, ibs, diverticulitis, appendicitis

10. administratieve verrichting, ion, kennismaking, aangemeld, niet, verhuiz-
ing, algemeen, nieuwe, verhuisd, inschr

11. klachten, mictie, knie, nek, gehoor, thoracale, schouder, psychische, vagi-
nale, depressieve
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12. conjunctivitis, bacteriele, allergische, virale, infectieuze, bacterile, reactie,
ods, bact, bdz

13. otitis externa, bdz, links, rechts, ads, lichte, ome, recidiverende, otitis, oor

14. uwi, geen, recidiverende, rec, hematurie, prostatitis, bewezen, niet, jaar,
mictieklachten

15. blwi, virale, viraal, luchtweginfectie, infectie, hyperreactiviteit, lwi, infect,
bovenste, obv

16. hoofdpijn, migraine, eci, nek, spanningshoofdpijn, moe, nekklachten, val,
duizeligheid, tgv

17. wratten, voet, hand, handen, voeten, vingers, seb, voetzool, vinger, beide

18. symptomen klachten, schouder, nek, keel, pols, heup, enkel, arm, bursitis,
elleboog

19. keelpijn, viraal, virale, oorpijn, verkouden, infect, pharyngitis, griep, pfeif-
fer, heesheid

20. koorts, eci, viraal, infect, griep, obv, lwi, braken, vaccinatie, zonder

21. moeheid, ziektegevoel, zwakte, eci, malaise, surmenage, wrs, duizeligheid,
tgv, anemie

22. overmatig cerumen, bdz, rechts, links, oor, otitis, ads, ome,
cerumen overmatig, oorsuizen

23. contusie, voet, knie, hand, fractuur, pols, dig, enkel, links, distorsie

24. diarree, braken, infectieuze, overgeven, chronische, spugen, bijwerking,
misselijk, bloed, obv

25. bronchitis, chronische, astma, lichte, hyperreactiviteit, chron, copd,
acute bronchitis bronchiolitis, griep, recidiverende

26. pneumonie, links, rechts, influenza, griep, beginnende, verdenking, atyp-
ische, cave, opname

27. tonsillitis, acute, otitis media, pharyngitis, lumbago, chronische, periton-
sillair, abces, myringitis, acuta

28. hypertensie, orgaanbeschadiging, zonder, essentiele, essentile, cvrm, hy-
percholesterolemie, diabetes mellitus type, diabetes mellitus, secundaire

29. oma, bdz, links, rechts, ome, ads, loopoor, oorpijn, beginnende, knieklachten

30. naevus, moedervlek, rug, dermale, naevocellularis, wang, buik, atypische,
hals, benigne

31. archief, brieven, a62, kennismaking, oud, vorige, gegevens, inschrijffor-
mulier, medisch, inschr
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