
Master Computer Science

A GE Benchmark and an automated GE comparison system

Name: Yitan Lou

Student ID: s1996177

Date: 29/10/2019

Specialisation: Computer Science and Advanced Data
Analytics

1nd supervisor: Dr. Hao Wang
2st supervisor: Prof. Dr. Thomas Bäck

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Grammatical Evolution (GE), an application of the Evolutionary Algorithm (EA), is usually used
to produce computer programs automatically. In the past decade, many GE and GE-variants sys-
tems have been implemented by researchers in the GE community. It brought us a simple problem,
which GE system is the better one? However, there is no universal GE benchmark available over
a long time, and most researchers were testing their systems in their way without a guideline.

In this work, we are proposing a highly-flexible benchmark for GE systems and applied this bench-
mark into an automatic GE comparison system, which can be used to compare the performance of
different GE and GE-variant systems. Benefit from the design of the ’Kernel-Interface’ structure
of this proposing benchmark, it is a cross-language benchmark, which means it can be used to
test GE systems implemented in different computer languages. Meanwhile, this benchmark also
incorporated an automatically hyper-parameter tuning algorithm with the name of MIP-EGO [1]
as a module, which can help systems to find out the most suitable configuration and thus reduce
the external effect from hyper-parameter settings as much as possible. As a test of this proposing
benchmark, two GE systems (PonyGE2 and SGE) are automatically tested, and the difference in
the performance of different systems, as well as some interesting patterns on the choose of hyper-
parameters, were founded. For instance, all tested systems are in favor of large population size on
all problems.

Acknowledgements

This master thesis was done at LIACS, Leiden under the supervision of Prof. Dr. Thomas Bäck and
Dr. H. Wang. I want to thank them for their generous help, advice, and patient guidance during
this project. Furthermore, I would like to thank my girlfriend and all my friends in Leiden for
providing spiritual support and for distracting me from stress. The accomplishment of the thesis
would never be possible without any of you.

Contents

1 Introduction 7
1.1 What is Grammatical Evolution? . 7
1.2 Dealing Problems . 7
1.3 Project Overview . 8
1.4 Structure of this work . 8

2 Background 9
2.1 Evolution in Biology . 9

2.1.1 Gene and Molecular Basis . 9
2.1.2 Expression of Gene . 10
2.1.3 Genetic Variation . 12
2.1.4 Natural Selection . 13

2.2 Evolutionary Computation . 14
2.2.1 Introduction and Brief History . 14
2.2.2 Individual and Population . 15
2.2.3 Evaluation function . 15
2.2.4 Variation (Crossover and Mutation) . 16
2.2.5 Selection Machanism . 17

2.3 Backus–Naur form . 17

3 Grammatical Evolution 19
3.1 Introduction to GE . 19
3.2 GE Mechanism . 19

3.2.1 Expression of gene in GE . 19
3.2.2 Architecture of GE . 21
3.2.3 Working Mechanism . 22

3.3 Discussion of GE . 23
3.4 GE systems . 25

3.4.1 PonyGE2 . 25
3.4.2 Structured Grammatical Evolution (SGE) 28
3.4.3 Grammar-Guided Evolutionary Search (GGES) 30

3.5 Hyper-parameter Tuning . 31

4 Method 34
4.1 Benchmark . 34

4.1.1 Default Benchmark problems . 34
4.1.2 Implementation of Benchmark and its Structure 39

4.2 Application . 40
4.2.1 Automated comparison over GE systems . 40
4.2.2 Basic Usage method . 43
4.2.3 Extend the benchmark . 44

4.3 Test settings . 45

2

5 Evaluation 48
5.1 Problem found in Test . 48
5.2 Result of Test . 48

5.2.1 Auxiliary results . 54

6 Conclusion and Discussion 57
6.1 Concusion for tested system . 57
6.2 Discussion and Future work . 58

A BNF Definition 59

B Hyper-parameter List 62

C Manual of System 64
C.1 File Structure . 64
C.2 Extend your benchmark . 64
C.3 Description of important files . 66

Bibliography 76

3

List of Figures

2.1 Gregor Mendel . 9
2.2 DNA’s chemical structure . 10
2.3 Fluorescent microscopy image of a human female chromosomes 10
2.4 The Central Dogma . 11
2.5 The genetic code . 11
2.6 Different colors of flower produced by mutation . 12
2.7 Thomas Hunt Morgan’s illustration of crossing over 13
2.8 The general scheme of an evolutionary algorithm as a flowchart. Figure courtesy to

Eiben et al. [2]. 15
2.9 Example of One-point crossover . 16
2.10 Example of bit-flip Mutation . 17
2.11 Parse tree for example BNF. 18

3.1 A comparison between Grammatical Evolution and natural biology. 20
3.2 derivation tree of example . 21
3.3 Architecture of GE . 22
3.4 Another perspective of Grammatical Evolution . 24
3.5 Organizational structure of the PonyGE2 Codebase 26
3.6 PonyGE2 control flow diagram for typical GE/GP setup 27
3.7 Example of mapping process in SGE . 29
3.8 The difference between GP and CFG-GP . 30

4.1 Example of the 11-Bit Boolean Multiplexer . 37
4.2 Santa Fe food trail for the Artificial Ant problem 38
4.3 Benchmark Structure . 39
4.4 Structure of This project . 41

5.1 StringMatch Problem . 49
5.2 Vladislavleva4 . 49
5.3 Keijzer6 Problem . 49
5.4 Banknote Problem . 50
5.5 Housing Problem . 50
5.6 Pagie Problem . 50
5.7 5-parity Problem . 50
5.8 Multiplexer 11 Problem . 50
5.9 Artificial Ant Problem . 50
5.10 The distribution of tuned Hyper-parameter for PonyGE2 system 53
5.11 The distribution of tuned Hyper-parameter for SGE system 54
5.12 The distribution of tuned Hyper-parameter for Ant Problem. 54
5.13 The distribution of tuned Hyper-parameter for Banknote Problem. 55
5.14 The distribution of tuned Hyper-parameter for Housing Problem. 55
5.15 The distribution of tuned Hyper-parameter for Keijzer6 Problem. 55
5.16 The distribution of tuned Hyper-parameter for Multiplexer-11 Problem. 55
5.17 The distribution of tuned Hyper-parameter for Pagie Problem. 56
5.18 The distribution of tuned Hyper-parameter for 5Parity Problem. 56
5.19 The distribution of tuned Hyper-parameter for String Match Problem. 56

4

5.20 The distribution of tuned Hyper-parameter for Vladislavleva4 Problem. 56

C.1 File Structure . 64

5

List of Tables

3.1 (Partial) Parameters list of PonyGE2 . 27
3.2 GP representation of a 6-multiplexer problem . 31
3.3 CFG-GP representation of a 6-multiplexer problem 31
3.4 List of hyper-parameters in GGES system. 31
3.5 Several Hyper-parameters groups tested on same problem showed great influence on

the performance of system. 32

4.1 The list of Produced File and Location of them. 44
4.2 Global Settings . 46
4.3 Hyper-parameters Tuning Range for PonyGE2 . 47
4.4 Hyper-parameters Tuning Range for SGE . 47

5.1 Final Fitness value of tested systems . 51
5.2 The improvement of tested system by hyper-parameter tuning 51
5.3 Result of t-statistical and p-value in hypothesis testing 52
5.4 The Mapping relation between tuned hyper-parameters and their representing code

in PonyGE2. 53
5.5 The Mapping relation of Problems. 53

6

Chapter 1

Introduction

1.1 What is Grammatical Evolution?

Automatic programming is a popular topic in the field of artificial intelligence and computer
science today. Many methodologies to this topic have enjoyed quite much success in this field. One
of them, Grammatical Evolution, which is usually written in abbreviation as GE, is an application
of Evolutionary Algorithm (EA) that inspired by the evolutionary process in biology. GE has
the ability to automatically generate mathematical expression, string sequence, or even program
fragment in any computer language [3][4].
Grammatical Evolution is generally a framework that allows a computer to automatically generate
an executable program. Under such a frame, every individual is a bit string, which can be derived
into a program fragment with the help of concrete derivation rules. And a large number of indi-
viduals consist of the population. The evolutionary process is performed on the population, which
means that new individuals can be produced by "elder" individuals, and those individuals can also
be eliminated in accordance with the "healthy" level.

1.2 Dealing Problems

Although the concept of GE has been published for only a few years, the community has developed
a considerable number of GE systems and GE variants. These squandering flowers all claim that
they are the most advantageous system or methodology in some aspects. Such a phenomenon is
beneficial for the development of Grammatical Evolution since it keeps the diversity in this field.
But it comes to a problem for many ordinary users of GE: ’Which system should I use for my
specific problem?’.
Similar to the situation in the brother field Genetic Programming (GP) [5], which is using the
Evolutionary Algorithm as the core to evolve the program, the GE community is also facing the
problem of no availability of universal benchmark to test GE systems. When a new GE system is
proposed, usually several test problems are necessary to test and demonstrate the performance of
the coming system. For a long time, the test problems are usually selected based on the experience
of developers in this field, making the test not that meaningful since everyone may use diverse
problems to test. On the other side, this status is not that friendly for unprofessional users who
want to use Grammatical evolution on their own applications, since they do not have sufficient
experience to choose a suitable problem set to test several GE systems on hand.
Another problem along with the testing GE systems is every problem may have its unique search
space landscape. It leads to the fact that the same configuration can have total different perfor-
mances over different problems. Since the hyper-parameters of most systems (e.g Evolutionary
parameters) for most GE systems are manually controlled by users, the performance of a GE
system may show some instability among a problem set, and also makes the task of comparison
between several GE systems a tricky problem. These two problems are the main issues to deal with
in this project.

7

1.3 Project Overview
In this work, we are trying to deal with abovementioned problems by designing an automated GE
system comparison system. To achieve this target, a Benchmark for Grammatical Evolution systems
with expandability is designed and implemented. Meanwhile, an automatic hyper-parameter tuning
method is used in this work combining with the benchmark to reduce passive influences from the
interplay between systematic configuration space and problem space at most.
Generally, this automated GE system comparison system can be observed in two parts, the bench-
mark and the comparison system. The benchmark part is actually a collection of problems, in a
way of their implementations and supportive documents. These benchmark problems are collected
from other works in the field of Grammatical Evolution and some other related fields, such as
Genetic Programming. Considering many GE systems are implemented in a different environment,
benchmark problems are implemented in C, combining with a high-level language interface for
systems implemented in high-level programming language calling. In such a way, the efficiency of
the program and the unity of the problem are ensured.
Another part of this project is the comparison system. This part is used to apply the bench-
mark to make the comparison over different Grammatical Evolution systems. The designed system
can automatically read in the predefined hyper-parameters list for every GE systems and control
them to run benchmark problems. As for the problem of every benchmark problem with different
best-suited configuration caused by their unique landscape in search space, a global optimization
algorithm called MIP-EGO [6] is used to tune the configuration of hyper-parameters of GE sys-
tems, which can reduce the configuration-caused influence on the performance of GE system as
much as possible.

1.4 Structure of this work
This rest of this thesis work is structured as follows. In Chapter 2, the background of evolution
in both biology and computation aspects is introduced, which is the underlying mechanism of
Grammatical Evolution. On the meanwhile, the primary representation method in Grammatical
Evolution, Backus-Naur Form (BNF) is illustrated in this part to help the reader to understand
how it works. In chapter 3, we expound the details of working scheme of grammatical evolution
and tested GE systems. On the other side, we briefly discuss some problems that Grammatical
Evolution is mainly facing. Furthermore, a global optimization method MIP-EGO, which was used
to optimize the hyper-parameters of tested systems in this project is also included in this chapter.
In chapter 4, we dive into the introduction of benchmark part and the implementation of the
automatic testing system. Chapter 5 gives the result of our test results and they are analyzed and
discussed in chapter 6, combining with our recommendation of future works.

8

Chapter 2

Background

2.1 Evolution in Biology

2.1.1 Gene and Molecular Basis
In the late 19th century, an Austrian scientist Gregor Mendel, observed the existence of "trait
inheritance" of pea plants, which means that the traits of pea plants follow the statistical laws. In
his long-term experiment, the traits of pea plants were recorded and tracked. In his work[7], the
concept "discrete inherited units" was used to explain the characteristics observed in his previous
experiments.

Figure 2.1: Gregor Mendel. Figure courtesy to A&E Television Networks1.

Later in 1889, in the book "Intracellular Pangenesis"[8] from Hugo de Vries, an assumption was
made that different physical characters have corresponding individual hereditary carriers. He named
the hereditary carriers as "pangenes". In the year 1905, the term "gene" was firstly introduced in
the work[9] from a Danish botanist Wilhelm Johannsen, to address the fundamental unit of heredity
inside organisms. Until the mid 20th century, scientists finally found out that Deoxyribonucleic acid
(DNA) is the substance people are looking for, which stores the genetic information[10][11], and
the structure of DNA was proved to be simply linear, according to the experiment result from
Benzer[12]. By combining with the observation in laboratory, Francis Crick proposed "the central
dogma" of molecular biology in his work [13], which is often stated in short as "DNA makes RNA
and RNA makes protein" [14], and the modern study of discrete inherited units of gene on a
molecular level is usually known under the name of "Molecular biology" or "Genetics".
The mechanism of DNA carrying the genetic information has been unveiled with the development
of molecular genetics[15], in which the chemical structure of DNA plays an important role. DNA is
usually a big chain-shape molecule composing of four different kinds of basic nucleotide sub-units.
The composition of each subunit was similar, a Deoxyribose, a phosphate group, and the most
important, one of the four nucleobases, which includes adenine (A), cytosine (C), guanine (G), and
thymine (T). Numerous deoxyribonucleic acid molecules connect to each other one by one with

1Gregor Mendel. (2019, April 17). Retrieved from https://www.biography.com/scientist/gregor-mendel

9

https://www.biography.com/scientist/gregor-mendel

the help of Phosphodiester bond, which is the bond between the phosphate group and Deoxyribose
sugar, and on the other side, nucleobases were also arranged into a string, on which the genetic
information is stored.
"Two chains of DNA twist around each other to form a DNA double helix with the phosphate-
sugar backbone spiralling around the outside", as it claimed in [15], and two hydrogen bonds can be
formed by adenine (A) and thymine (T) when they are aligned, whereas three hydrogen bonds can
be formed by cytosine and guanine (G), these two strands in a double helix must be complementary
to each other. This structure can be easily understood with the help of Figure 2.2.

Figure 2.2: DNA’s chemical structure. Non-covalent hydrogen bonds between the pairs are shown
as dashed lines. Figure courtesy to T., Shafeee3.

"A chromosome consists of a single, very long DNA helix on which thousands of genes are encoded"[15],
and all chromosomes inside the cell core carry all genetic information unit, which is usually called
’Gene’. For human’s instance, every person has 23 pairs of Chromosomes, including 22 pairs of
autosomes and one pair of sex chromosomes. They record all genetic information a person has.
In the field of molecular biology and genetics, the word ’Genome’ is used to refer to all genetic
material of an organism[16][17].

Figure 2.3: Fluorescent microscopy image of a human female chromosomes. Figure courtesy to
Bolzer et al5.

2.1.2 Expression of Gene

RNA is the abbreviation of Ribonucleic acid, which is also a kind of nucleic acid and shares a
similar structure with the DNA molecule, and both of them have four different kinds of nucleobases.
However, in most cases, the RNA molecule has only one stranded, and the length of RNA is much
shorter than DNA molecule [18]. Meanwhile, The complementary nucleobase for adenine (A) is
uracil (U) in RNA, rather than thymine (T), which plays a significant role in DNA structure[19].

3T., Shafee. (2015, April 17). The chemical structure of a four base pair fragment of a DNA double helix. Retrieved
June 20, 2019, from https://upload.wikimedia.org/wikipedia/commons/b/b2/DNA_chemical_structure_2.svg

5Bolzer et al., (2005) Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and
Prometaphase Rosettes. PLoS Biol 3(5): e157 DOI: 10.1371/journal.pbio.0030157, Figure 7a

10

https://upload.wikimedia.org/wikipedia/commons/b/b2/DNA_chemical_structure_2.svg

This structure allows RNA molecule to be complementary to a stranded of DNA molecule and
record all the information it has. Therefore RNA plays an essential role in the whole process of the
gene’s expression.
In Eukaryote, the expression of genetic follows the central dogma2.4, and starts with transcription,
in which an RNA copy of a gene’s DNA sequence is produced. This process is performed by
enzyme RNA polymerase (RNAP), which can locally open the double-stranded DNA and use one
of them as a template to produce an RNA molecule, which is complementary to the template DNA
segment[20]. The process of transcription makes an RNA copy of a gene’s DNA sequence and it is
called Messenger RNA (mRNA), which plays a role of an information carrier and it can be used
to produce protein in the process of translation, a later phase of gene expression.

Figure 2.4: The Central Dogma. Figure courtesy to Khanacademy6.

A codon refers to a sequence of three successive nucleotides on DNA or RNA sequence, in accor-
dance with one specific amino acid or stops flag in the production of protein. [21] In the process of
translation, the ribosome reads the mRNA sequence in and links the amino acid according to the
codon series on mRNA with the help of tRNAs, who carry amino acids to the ribosome and match
every codon with the amino acid it codes for[22]. Since there are four different kinds of nucleotides
and each codon has three nucleotides, there are 64 (43 = 64) possible codons in total. Each codon
can be translated to one specific amino acid except for three "stop" codon mark, and the rules of
representation are summarized into so-called "The genetic code", as it shows in Figure 2.5, based
on the work from Nirenberg et al. [23]

Figure 2.5: The genetic code. Figure courtesy to OpenStax7.

6Intro to gene expression (central dogma). (n.d.). Retrieved June 20, 2019, from https://www.
khanacademy.org/science/biology/gene-expression-central-dogma/central-dogma-transcription/a/
intro-to-gene-expression-central-dogma

7OpenStax, Biology. OpenStax CNX. Sep 29, 2015 http://cnx.org/contents/
185cbf87-c72e-48f5-b51e-f14f21b5eabd@9.87.

11

https://www.khanacademy.org/science/biology/gene-expression-central-dogma/central-dogma-transcription/a/intro-to-gene-expression-central-dogma
https://www.khanacademy.org/science/biology/gene-expression-central-dogma/central-dogma-transcription/a/intro-to-gene-expression-central-dogma
https://www.khanacademy.org/science/biology/gene-expression-central-dogma/central-dogma-transcription/a/intro-to-gene-expression-central-dogma
http://cnx.org/contents/185cbf87-c72e-48f5-b51e-f14f21b5eabd@9.87.
http://cnx.org/contents/185cbf87-c72e-48f5-b51e-f14f21b5eabd@9.87.

2.1.3 Genetic Variation

Genetic variation is one of the most important motive powers in the natural world to keep diversity,
which refers to the process of changes in the sequence of DNA, RNA or other cellular molecules
across generations. Germ cells, such as sperm and egg, is the central place which genetic variation
happens, but it can also be found in somatic or all other cells. It has several kinds of sources for
genetic variation, such like mutation and genetic recombination. The variation that arises in germ
cells can be inherited from individual to another one, or in other words, variation is unidirectional.
This caused the affection of population and ultimately the whole evolution process.[24]
Specifically, Mutation refers to the change on the nucleotide sequence of the genome, which can
belong to any organism, such like animals, plants, virus, or even extrachromosomal DNA[25].
Mutations can be caused by different reasons, includes errors during DNA duplication, any type
of damage to DNA molecule, error during replication, the error-prone repair process of error-prone
and countless unpredictable reasons[26]. The result of mutation may or may not be observable, for
example in the case of one codon was changed to another one, but both of them produce the same
amino acid, then this mutation may not have any effect to the phenotype of the organism.
Changes in DNA molecule caused by mutation could cause errors in protein production, which
lead to the production of partially or completely non-functional proteins. If a mutation affects the
production of a protein which plays a critical role in the organism, a medical condition can result
and it becomes a harmful mutation. But on the other side, the effect of mutation may be positive
in a given environment. For example, a mutation enables the organism better environmental stress
than wild-type organisms. According to the research from SW Doniger et al. in [27], 7% of point
mutations in noncoding DNA of yeast and 12% in coding DNA is harmful mutations. Other than
that, mutations are either neutral or beneficial for the organism to some extent.

Figure 2.6: Different colors of flower produced by mutation. Figure courtesy to Friedman, J8.

Apart from mutation, genetic recombination is another important category of genetic variation,
which describes the process, that genetic material from different organism exchanges when off-
springs are produced. This lead to the fact that gene fragment of offspring can be found on either
of its parents, but differs from its parent when treating gene as a whole.
For prokaryotes (such as bacteria), recombination can trigger between individuals through transfer,
or via the transmission of viruses (such as phage), and use genetic recombination to combine these
genes into their own inheritance. But for more complex organisms, recombination is usually due
to the interchange of homologous chromosomes. The exchange of genetic material between two
homologous chromosomes has the name of chromosomal crossover, which is firstly described by
Thomas Hunt Morgan[28], based on the discovery of Frans Alfons Janssens [29].

8Friedman, J. (2019, July 13). Moss rose or rose moss, Portulaca grandiflora, with flowers of two colors as a result
of a mutation. The orange is probably the mutant, as it’s closer to the purple wild type. Retrieved July 22, 2019,
from https://en.wikipedia.org/wiki/Mutation#/media/File:Portulaca_grandiflora_mutant1.jpg

12

https://en.wikipedia.org/wiki/Mutation#/media/File:Portulaca_grandiflora_mutant1.jpg

Figure 2.7: Thomas Hunt Morgan’s illustration of crossing over. Figure courtesy to Chamary, J10.

As a result of the chromosomal crossover, a new arrangement of a maternal and paternal allele
can be seen on the same chromosome. Even though the genes on chromosomes appear in the same
order, some alleles may have disparity. Since the existence of such a process and its result, it is
theoretically possible to get offsprings with any combination of parental alleles, and those alleles
appear on one offspring does not have any influences to each other. In other words, all alleles
are independently inherited. This important principle of "independent assortment" is known as
one of the fundamental principles of genetic inheritance[30]. Despite crossover is typically between
homologous regions of chromosomes, the crossover also has the possibility to be a Non-homologous
one. In normal cases of DNA replication, each strand of DNA is used as a template to produce a
new strand with the help of the principle of complementary base pairing, two identical and paired
chromosome should be created if it works properly. But sequence mismatch in this process, which
is theoretically rare but still possible to happen, may lead to unequal exchanges. This could result
in the deletion or insertion of genetic information to the chromosome, and be considered to be a
general resource of mutation within a genome[31].

2.1.4 Natural Selection

The term natural selection was popularized by English naturalist Charles Darwin, used to refer the
difference on phenotype performs influence on survival and reproduction of individual under natural
conditions[32]. it is known that natural variation occurs within all populations of organisms, some
of the variations may lead to some differences in traits (phenotype). These characters may reflect
better resilience to the environment, which could possibly become a reproductive and heritable
advantage since the gene controls these trait is also inheritable. For example, some difference may
enlarge an individual’s chance of surviving in a specific environment. Then this individual could
have a higher chance to inherit its gene to offspring since it has a higher reproductive rate. Even
though such heritable advantage from a trait to others is very slight in one generation, it could
become dominant over many generations. In this way, nature "select for" those individual with
reproductive advantage, and finally result in change is evolution, as Darwin described[33].
Formally, the process of natural selection could be described in the following part[34]:

• Variation. Variation in any sense of organism, which may involve body size, the number of
offspring, resistance to disease, etc.

• Inheritance. Some traits are passed to offspring from parents with consistency, while others
are prone to be affected by environment or weakly inheritable.

• Higher rate of population growth. The most population can generate more offspring than
the local environment can support. High mortality could be a shared experience for every
generation of the organism.

• Differential survival and production. Individuals with traits, which can better suit the local
environment, have a better chance to produce more offspring to the next generation.

10Chamary, J. (2016, May 30). Modern Biology Began In The New York ’Fly Room’. Retrieved June 22, 2019,
from https://www.forbes.com/sites/jvchamary/2016/03/18/the-fly-room/#319d281306d5

13

https://www.forbes.com/sites/jvchamary/2016/03/18/the-fly-room/#319d281306d5

An powerful evidence of natural selection was observed in Britain in the process of the industrial
revolution. The peppered moth has two colors in Great Britain, light and dark specifically. Due
to the industrial revolution, the air was severely polluted and many of trees became blackened.
This gives dark-colored moth a better chance to survive and produce offspring, as they had the
advantage of hiding from their predators. In around 50 years from the first dark moth being caught,
almost all newly caught moth in area of industrial Manchester was dark-colored. Only after the
air quality starts to improve by the Clean Air Act in 1956, dark moth becomes rare again and
light moth re-dominated in peppered moth population. The term "Fitness" is used to evaluate
individual adaptation to the environment, which plays a central role in the concept of natural
selection. For the former case, it can be concluded that dark moth has higher fitness than light one
during the industrial revolution, and the light moth has better fitness in other time verse visa.

2.2 Evolutionary Computation

2.2.1 Introduction and Brief History
In the area of Computer science, there is a family of the algorithms, which is inspired by the
natural biological evolution process and mainly used for global optimization problems, is called
Evolutionary Computation (EC). Due to the source of its inspiration, sometimes people also call it
Natural Computing, Evolutionary Algorithm, etc. Technically, Evolution Computing is a sub-field
of Artificial Intelligence (AI) and, a family of the generic population-based meta-heuristic opti-
mization algorithm.

Surprisingly, the start-point of applying the evolutionary computation can be traceable to 1940s,
which is even earlier than the breakthrough of computers [35]. In the late 1940s, the idea of
"genetical or evolutionary search" was firstly proposed by Alan Turing. And by the end of the
1960s, an actual computer program for "optimization through evolution and recombination" was
implemented by Bremermann, according to [2], whereas in the decade, three different streams of
the basic idea were developed separately. In the united states, Fogel et. al. proposed the idea of
"evolutionary programming" [36][37], while Holland named his algorithm as "Genetic Algorithm
(GA)" [38][39]. Simultaneously, the term of "Evolutionary Strategies" was used to refer the algo-
rithm from Schwefel and Rechenberg in Germany. For a long time after that, these different ideas
are developed independently until the last decade of the last century. Since the early 1990s, these
three genres have been seen as different representatives for one technology, which has come to
be a well-known field under the name of "Evolutionary Computation". Also, a new idea in this
area called "Genetic Programming (GP)" was put forward by Koza [40][41] in the age of 1990s.
Today, the term "Evolutionary Computing" is denoted for the whole field, meanwhile, the term
"Evolutionary Algorithm" is representing the algorithms involved in [2]. Grammatical Evolution,
which is the main topic of this work, can be seen as a branch of the GP since they share the same
philosophy to evolve program fragment.

As it has been discussed before, the field of Evolution Computation was generally inspired by the
natural process of evolution theory, so even if the existence of differences between several streams
in this field, they eventually share a same basic scheme. The common underlying idea is similar
to the evolution in the biological sense: A population of individuals is living in an environment
with limited resources, therefore the competition for these limited resources is inevitable. This
process will cause a rise in the aspect of fitness of the population over a long time. During this
process, those individuals with better fitness value have more chance to pass their ’gene’ to the
next generation. Variation such as mutation and recombination may happen, which is the motive
power of diversity, and a man-designed selection mechanism is playing the role of nature does in the
real world, to evaluate and select the individuals can survive in the artificial environment. Figure
2.8 demonstrate such process in a flowchart.
As it has been showd in this flow chart, to define a complete evolutionary algorithm, a list of
components is necessary to define, since EA is simulating the natural process artificially:

• Individual and Population

• Evaluation function (or fitness function)

14

Figure 2.8: The general scheme of an evolutionary algorithm as a flowchart. Figure courtesy to
Eiben et al. [2].

• Parent selection mechanism

• Variation operators (recombination and mutation)

• Replacement

2.2.2 Individual and Population
Different from the natural process, in the filed of EC, almost everything is defined by people since
it is an artificial simulation of the natural world. In the field of Evolutionary Computation, the
objects forming potential solution candidates within the original problem context are referred to
as phenotypes, and their encoding form, which is used in the process of the evolutionary algorithm
is known as genotypes. The word representation is saying the mapping from phenotypes to its
corresponding genotypes. Using the simplest example to illustrate this, two different species of
animal are represented by two binary code, 0 and 1. Here, these two species of animals are the
phenotypes and 0 and 1 are the genotypes representing the genotypes. What needs to pay attention
to is, the land space of genotypes may be very different from it of phenotypes, and EA’s work
mostly happens in the space of genotypes. Meanwhile, the word candidate solution, or individual
are synonyms of phenotype, they usually denote the possible solution in the space of original
problem. Wheares on the side of EA, people usually the term genotype,chromesome and again
individual are used to represent points in genotype space,which is the EA takes place, according
to [2].
All individual composed the population, who shapes the unit for evolution. A single individual is
static because their chromosome won’t change to adapt to the environment. But the population can
hold many candidate solutions, and together with the mechanism of variation ensure the diversity
of it. Therefore, the population is dynamic in the evolution, and we say the population can self-
adapt to the external environment. In almost all evolutionary algorithm, the size of the population
does not change during the evolution, which is also a simulation of the natural world, that is, the
resources are limited and the environment can only support a number of individuals to survive.
In the case of the population is larger than the environment can bear, selection would happen
to keep those currently better-fitted individuals and eliminate those worst part until the size of
the population is equal or smaller than the limitation. Thus, the population size is a pre-defined
parameter in most of EAs.

2.2.3 Evaluation function
As the name suggests, the evaluation function is a function to evaluate how fitness an individual
is, it basically defines what is good or bad for an individual in the context of original problem
space by giving an indicator, which is called fitness value, as the result of this function. It is the

15

basis of selection process since all selection are based on the fitness level of individuals. In the field
of Evolutionary computation, evaluation function also has aliases like fitness function, objective
function, etc. One instance for helping to understand this concept: The task is to evolve a string
"Hello World!".Here, the string "Hello World!" is the target string s∗, and every phenotype for
this problem is also a string with the name of ’evolved string’ s. For this problem, we have an
evaluation function is the edit distance between the evolved string and the target string, which is
formally written by F = Edit_Distance(s, s∗). The smaller the fitness value is, the better fitted
the individual is. This also indicates this problem as a minimization problem. Mathematically,
the transformation between the minimization problem and maximization problem is simple by
modifying the fitness function. For example in this string evolution case, it can be easily changed
into a maximization problem by using the reciprocal of previous fitness value as the new fitness
value, which is F

′
= Edit_Distance(s, s∗)−1.

2.2.4 Variation (Crossover and Mutation)

Variation is a mechanism to generate new individual by modifying genotypes spontaneously. As
a result of this, the new individual with never appeared genotypes and correspondingly new have
phenotypes may be created, which probably have different fitness levels from previously had. Similar
to variation in the biological world, variations are non-oriented, which means it can either created
better-fitted individuals or worse. Since it is the motive power of new genotypes and phenotypes, we
say it is the insurance of diversity of the population. Similar to it in the biological world, Variation
operators in EC can be divided into two categories: mutation and crossover.
Crossover, or recombination, is the variation method used to merge genetic information from
two parents individuals into their offspring genotype(s). The principle behind crossover is that,
simulating the mating process of organics with different but desirable features to inherit these
desirable features to their offsprings. Human is the most obvious example for this, the child usually
has some desirable or undesirable traits from their parents as the result of recombination. The
biology of this planet has proved that in a long-term, the recombination is a superior form of
reproduction and can improve the characteristics of species in a long-term no matter it is sexual or
asexual reproduction. The actual work of crossover in EC is generally the same with it in biology.
Think of the genotype as the DNA in biology, and every codon is the basic unit for crossover.
Figure 2.9 illustrates the simplest way of crossover in EC: one point crossover. Only one crossover
point is randomly located and tails of its two parents are swapped to get new off-springs. Each
rectangle in figure is representing a codon in genotype. Apart of this, there are several other type
of crossover in EC, such like two points crossover (two crossover points) and uniform crossover
(every codon is randomly seperatedly chosen to build new genotype).

Figure 2.9: Example of One-point crossover. Figure courtesy to Tutorialspoint.com11.

Different with it in the crossover, the mutation is the change of genotype applied on a single
individual rather than two, and mutation is usually very slight on the level of genotype, even
though it can cause a severe change in the aspect of phenotype. A mutation operator is usually
stochastic, the mutation on any codon should be usually unoriented and unbiased, the result of
mutation could be any possible value. For those changes who are oriented as it is known that can
result in a better-fitted phenotype, it is improper to classify them into mutation despite the fact
that they are unary operations. Mutation has several kinds of categories, Figure 2.10 demonstrate
the simplest bip-flip mutation, to randomly choose a mutation position on a bit string chromosome

11Tutorialspoint.com. (n.d.). Genetic Algorithms Tutorial. Retrieved July 27, 2019, from https://www.
tutorialspoint.com/genetic_algorithms/genetic_algorithms_crossover

16

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_crossover
https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_crossover

and flip the codon bit. Historically, mutation operator is responsible for various role in different
EC branch, according to [2]. In genetic programming (GP), it is often not used at all, whereas
in genetic algorithm (GA), it is responsible for creating new genotype fragment to enhance the
diversity of gene for the whole population.

Figure 2.10: Example of bit-flip Mutation. Figure courtesy to Tutorialspoint.com12.

2.2.5 Selection Machanism
The basic idea of selection is simple, to keep those better-fitted individuals and remove those worse
ones from the population. By performing selection, the overall fitness of the whole population
would gradually improve and converge to the (local) best solution in the problem context. The
main reason to have the selection mechanism in EC is the limitation of population size. Of course,
we can observe this in nature, in which the limitation of population size normally comes from the
limited resources, as previously mentioned. Selection in EC includes parents selection and survivals
selection.
Parent selection is used to choose the better individual in the sense of fitness as the parents for
the next generation. However, it does not means that the better individual can always inherit
their genetic information to the offsprings. In EC, the parents selection mechanism is typically
probabilistic, which means those individuals with higher fitness level have a higher chance to
become a parent than those have relatively low fitness values. Those less-fitted individuals still
have the chance to be a parent and pass their genetic information fragment to the next generation.
The main reason is that sometimes less-fitted individuals still carry genetic information fragment to
build the global optimum chromosome, and on the other side, the current better-fitted individuals
have the possibility to be local optimum. This probabilistic parents selection can avoid algorithm
to converge to the local optimum to some extent since some chromosome fragments, which is only
can be found in the less-fitted individual but crucial for the global optimum, still have the chance
to stay in population.
As for the survivals selection, the general idea is to eliminate those individuals with relative lower
fitness value, since the size of the whole population exceeds the limitation of it after the creation
of the offsprings by selected parents. In many works, survival selection is also called replacement,
which means the new-generated offsprings take over the positions of relatively less-fitted individuals
in the population.

2.3 Backus–Naur form
Backus–Naur Form or Backus Normal Form (BNF) is a formal mathematical shape to describe a
language. It is often used in the aspect of computer science to describe the syntax of a language,
such as programming languages and communication protocols. According to the theory of Chomsky
Hierarchy[42], Backus–Naur form is a kind of context-free grammar (CFG, type 2 in Chomsky
hierarchy), which has a relation with pushdown automata. Theoretically, type 0 grammar is related
to Turing machines can describe any computable problem, whereas type 2 can only represent a
proper subset of problems which type 0 grammar can describe. However, Chomsky type 0 grammar
has enormous difficulty in the aspect of either design or parse. Therefore context-free grammar is
usually used to formally represent high-level programming language in computer science, even
though Chomsky type 0 grammars have the advantage of expressive power[43]. Formally[44],a
Backus-Naur Form grammar is consist by tuple <T,N,P,S>, where

• T is a set of terminal symbols

• N is a set of non-terminal symbols
12Tutorialspoint.com. (n.d.). Genetic Algorithms Tutorial. Retrieved July 27, 2019, from https://www.

tutorialspoint.com/genetic_algorithms/genetic_algorithms_mutation

17

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_mutation
https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_mutation

• P is a set of production rules

• S is a start symbol

Terminal symbols are those symbols that cannot be further derived, whereas a series of terminals or
non-terminals could replace non-terminal with the help of production rules. Also, the start symbol
is the start point of derivation. The production rules are written in the following shape:

<symbol> ::= alternative1 [| alternative2]... (2.1)

For the left-hand side, the symbol is a non-terminal, and every alternative on the right-hand side
of derivation rules consist of one or more sequence of non-terminal or terminals. Alternatives are
separated by a vertical bar "|". The "::=" means that the symbol on the left-hand side must be
derived into one alternative on the right-hand side. Any sequence of terminals which is derived
by using the production rules is said to be syntactically correct, and the syntax correctness of a
derived sentence can be verified by building a parse tree, which reflects the derivation process.
As an example, considering underlying BNF can be derived into a simple mathematical expression:

(1)<expr> ::= <expr><op><expr> (A)
| (<expr><op><expr>) (B)
| <pre-op> (<expr>) (C)
| <var> (D)

(2)<op> ::= + (A)
| - (B)
| / (C)
| * (D)

(3)<pre-op> ::= sin (A)
| cos (B)
| tan (C)

(4)<var> ::= x (A)

Based on this BNF, assume that mathematical expression sin(x*x)+x is derived. Following parse
tree demonstrates how this expression is derivated.

Figure 2.11: Parse tree for example BNF.

18

Chapter 3

Grammatical Evolution

3.1 Introduction to GE

In this chapter, Grammatical Evolution (GE)[45], which can evolve computer program in any
computer language, will be disscussed in detail. Grammatical Evolution was firstly introduced by
Ryan et al.[45][46], who explored a unique way of using grammars to evolve programs in the aspect
of automatic programming.
To describe the working scheme in Grammatical Evolution briefly, GE uses an evolutionary algo-
rithm to evolve variable-length binary strings, which are considered as the genome of individuals
and used to represent corresponding integer string codons. At the same time, these integer codons
can determine which derivation rule is going to be used to produce mathematical expression, string,
or even program segment needed. Moreover, all these codons work together to form a valid solution.
The details of this working mechanism of GE will be discussed later.
GE is set up so that the EA component is an independent module out of the outputted program
by taking the virtue of the genotype-phenotype mapping mechanism. And the BNF, like the search
algorithm, is a plug-in part of the system that in charge of the outputted language and syntax.
Based on these characters, GE theoretically has the ability to evolve programs in any computer
language.

3.2 GE Mechanism

3.2.1 Expression of gene in GE

Similar to other Evolutionary Algorithms, Grammatical Evolution got inspiration from the biologi-
cal process in nature. It is simulating the process of production of protein from the genetic material
of an organism, and protein is the fundamental material for an organism to maintain basic live
operation and expression of heritable traits[47].
In the last chapter, the process of expression of genetic material was briefly introduced, every
group of three consecutive nucleotides, which was called codon, are used to build protein as a
group. The corresponding relation between codons and amino acid produced is called ’the genetic
code’. Therefore, the sequence of these amino acids is determined by the sequence of codons on the
DNA molecule. These amino acids are basic blocks to construct protein, as they are connected one
by one with each other to become a protein molecule, and it can be concluded that the sequence
of codons determines the production of protein. The result of the expression of gene interacting
with the environment the organism lives is so-called phenotype.
The process of gene expression is similar in Grammatical Evolution, Figure 3.1 shows a comparison
between the process of expression of the gene in Grammatical Evolution and the natural world.
In grammatical Evolution, a binary string with variable length was treated as a "DNA" molecule
to store inheritable genetic information of an individual. Moreover, the binary string is usually a
thing all individuals have. So in most cases, an individual is represented by a binary string. Usually,

2O’Neill, M. (Ed.). (1998, October 02). Grammatical Evolution. Retrieved May 25, 2019, from http://www.
grammatical-evolution.org/papers/gp98/node2.html

19

http://www.grammatical-evolution.org/papers/gp98/node2.html
http://www.grammatical-evolution.org/papers/gp98/node2.html

Figure 3.1: A comparison between Grammatical Evolution and natural biology. Figure courtesy
to O’Neill, M.2.

binary string is easy for a computer to read, but not that convenient for a human to understand.
Before the expression, a process called transcription is necessary that the binary string will be
converted to an integer string. This process is used to simulate the process of passing information
from DNA to RNA before translation in the organism. The integer string is used in the mapping
process, in which the string can be converted into program segments or any other terminals, with
the help of the BNF file, which stores all production rules in it. Every integer on the string will
perform a "mod n" calculation, on which n is the number of possible derivation rules, and the
result of such calculation is the order of derivation rule. For every integer in the integer string,
such process will perform once until terminals have replaced all non-terminal. It is noteworthy
that in most grammatical systems (includes the original paper), this process is depth-first, even
though it is possible to do this in breadth-first. As a result of this operation, the binary string will
be ’translated’ into a string, a mathematical expression or a program segment called phenotype.
This operation is also a simulation of the process from RNA to amino acid, and finally, protein. To
illustrate this process in GE better, an example from [44] gives a great insight into how it works:
Considering an individual with a start symbol <expr>:

11011100 11001011 00110011 01111011 00000010 00101101 ...

Before the mapping/translation process, convert this binary string into a integer string and we can
get:

220 203 51 123 2 45 ...

Here, the BNF at the end of the last chapter will still be used. For the start symbol <expr>, we
have four derivation rules to choose from:

(1)<expr> ::= <expr><op><expr> (A)
| (<expr><op><expr>) (B)
| <pre-op> (<expr>) (C)
| <var> (D)

So, for the first codon 220, we can get the order of selected derivation rule by 220 mod 4 = 0, so
rule (A) will be chosen, and the expression <expr> will be extended to

<expr><op><expr>

Then taking the next codon for the first non-terminal in the last expression. Due to that 203 mod 4 =
3, the last of four production rules will be selected to replace the first <expr>. And the expression
becomes:

20

<var><op><expr>

Since <var> involves only one choice, it can be directly mapped into X and the expression becomes

X <op> <expr>

Then we can deal with the <op> in the expression. We can see that the <op> has the derivation
rules of:
(2)<op> ::= + (A)

| - (B)
| / (C)
| * (D)

Since 51 mod 4 = 3, the option (D) is selected to replace <op>, and the expression will be modified
to

X * < expr>

This depth-first expansion will continue until all non-terminals are replaced by terminals. And for
this example we are discussing, the expression would finally become:

X ∗X

The whole process of this example can be summarized into Figure 3.2.

Figure 3.2: derivation tree of example. Figure courtesy to Ryan, Conor[44].

In Grammatical Evolution, it is not necessary that all codons have to be used. In this example,
the last codons are not used ,and the last two codons are remained and have totally no influence
for the phenotype. On the other side, if the length of the genome is not long enough to derive all
non-terminal, this individual will be regarded to be invalid. A technique called ’Wrapping’ can be
used to relieve the influence of problem. While wrapping is used and the genome of an individual
is not long enough to derive a phenotype, the codons are used in a circle, just like the genome
are wrapped up. After the last codon is used, the first codons of the genome are going to be
orderly used from the first codon again. In addition, it is likely some slight differences may exist
between different GE variants. For example, in some GE variants or systems, when a non-terminal
has only one production rule (<var> case in our example), ’mod ’ operation is performed on the
corresponding codon. In other words, all non-terminal are treated in the same way, regardless of
the number of production rules it has.

3.2.2 Architecture of GE
Although the expression of the gene in Grammatical Evolution is novel, the global structure of
Grammatical Evolution still follows some basic disciplines of Evolutionary Algorithm. To build a

21

complete Grammatical Evolution system, every part in Problem, Grammar and Search Algorithm
is indispensable. To look at this in high level, GE provides a skeleton to solve a specific problem,
Grammar is an approach to describe the method to solve the problem in a formal way (maybe a
program segment), and the Search Algorithm provides the methodology to get access to the final
answer. Figure 3.3 shows the architecture of a Grammatical Evolution system.

Figure 3.3: Architecture of GE. Figure courtesy to Ryan, Conor[44].

The search algorithm is a method to approach one of the local optima or global optima of the
corresponding problem. It provides an effective way to continuously optimize the solution closer to
the optimum value in the search space. In standard Grammatical Evolution[46][45][3], Evolutionary
Algorithm (usually Genetic Algorithm) is used as the core of it. As an optimization technique, this
technique starts to find the optimum at any random point, optimize it continuously, and can always
find at least one local optimum. Theoretically, the Search Algorithm can be replaced with other
techniques to approach the same target as GE does. For example, T. Stützle et al. use another
stochastic local search heuristics called ’Irace’ to replace the standard EA method in their work[48].
Grammar is the way to express a problem formally, or in other words, a mapping mechanism of
a problem to map genotypes into phenotypes. In standard GE and most of GE-variants, BNF is
used as the expression method of mapping mechanism. As a context-free grammar, BNF is a type
2 Grammar in Chomsky hierarchy with good expression power and relatively easy to use. Similar
to the Search algorithm, grammar can be seen as a module in Grammatical Evolution and it is
replaceable to change BNF to other options. Ortega A. et al. [43] developed Christiansen Grammar
Evolution (CGE) by replacing context-free grammar by Christiansen grammars (which is a type 0
grammar) and it makes that GE-variant have a better ability to describe more complex problems.
The ’problem’ in Figure 3.3 refers to the puzzle system that is going to dealing with, for example, to
build a program that can sum up an Arithmetic progression. To describe a problem in Grammatical
Evolution, one fitness function is the crucial thing, which is critical to evaluate an individual.

3.2.3 Working Mechanism

With the knowledge of how the genome is expressed, the working mechanism of Grammatical
Evolution can be seen more clearly. In a Grammatical Evolution system, the first step to evolve a
population is always to initialize one, on which all evolutionary manipulations from Grammatical
Evolution system will be performed. In GE, the initialization technique can be either similar or
different with a normal evolutionary algorithm. For the first situation, the initialization is performed
on the basis of the genome. On the other side, it is also possible for GE to perform the initialization
on the basis of Derivation Tree. Formally, derivation tree (or phase tree) is an ordered, rooted tree
representing how a context-free grammar is derived into a specific syntactic structure, just like
Figure 2.11 shows. In the field of GE, researchers have invented several tree-based initialization
techniques except for the simplest random derivation tree initialization. For example, Ramped
Half-Half initialization (RHH) was firstly introduced by Ryan et al. [49] to initialize, and Fagan et
al. [50] further developed Position Independent Grow (PI Grow) technique on the base of traditional
RHH technique.

22

After the population has been initialized, a step of evaluation is necessary for the population.
For the evaluation, due to the fact that the phenotype in GE is usually a program segment, it is
necessary to make certain the judge criteria about how to evaluate the phenotype program before
the system starts to run. The indicator of this is called fitness value, which represents how good
the phenotype program is. The system will always be given a fitness value for every individual
in the population. And the function to calculate the fitness value has the name of the evaluation
function, which is pre-defined by the user or stated problem setting.
The number of iteration of evolution is called generation. In each generation, a similar operation is
performed on the whole population and to generate a new population to replace the older one. This
process is also an imitation of the behavior of the real organism in the natural environment. All the
operations on each generation can be categorized into several parts; they are selection, crossover,
mutation, evaluation, and replacement, which come from the evolutionary algorithm. They will be
iteratively performed in every generation :

• Selection here means the parents selection, which is based on the fitness value of each
individual. Those individuals with better fitness have a higher possibility to be selected to
pass their genome to the next generation.

• Crossover and mutation are similar to what they are in the evolutionary algorithm since
the core of GE is still an EA. Both crossover and mutation are only performed on the genotype
of individuals with given crossover rate and mutation rate.

• Evaluation is performed for the new generation.

• Replacement is the final step in every generation; those individuals with worse fitness value
will be replaced by those with better fitness value to keep the population size stable. This
step will replace the old generation with the new population.

Algorithm 1 describe this whole process formally. Since GE is an application of evolutionary algo-
rithm (EA), the workflow of GE is the same with other evolutionary algorithms.

Algorithm 1 Grammatical Evolution
Require: Termination_condition,Mapping_scheme
BEGIN
n⇐ 0
INITIALIZATION of the first population
EVALUATE the first population
while Termination_condition NOT satisfied do
n⇐ n + 1
PARENTS SELECTION
CROSSOVER population
MUTATE population
EVALUATE population
REPLACEMENT

end while
END

3.3 Discussion of GE

Grammatical Evolution is such a method to theoretically solve almost any kinds of problem in
the way of optimization consistently if the definition of the problem is precise and adequate. But
as a matter of fact, still, many hindrances are placed on the way towards that possibility. The
limit of computation power causes some of the hindrances, and some of other hindrances are the
result of the structure of GE itself. In this section, the main problem GE is currently facing will
be discussed, and some immature personal ideas are declared as well.

23

The first hindrance, which is also the least important one for GE is the limitation of compu-
tation power. As it has been declared in the previous part of this chapter, Grammatical Evolution
still uses EA as its core to evolve its population. Due to the design of Evolutionary Algorithm,
it always needs to maintain a relatively significant population to keep those ’potential’ gene frag-
ments for the global optimum or even local optimum, which may be dispersed in many different
individuals throughout the entire evolution process. This design demands more computation re-
sources for sure, if we compare this to those strongly oriented searching methods. However, it is
also the essences of EA as well as nature, that the composed of several simple parts can sometimes
produce surprising results.

The Grammar file, which is used to indicate how genotype is mapped into phenotype in gram-
matical evolution, also has a significant influence on the performance of GE. Different from our
intuition, the grammar file is not merely an external file for grammatical evolution system. It plays
one of the essential roles in the whole process of evolution. Figure 3.4 illustrates the mechanism
of grammatical evolution from another perspective. Mapping, search mechanism, and evaluating
mechanism include almost all manipulation we have to solve our problem. Among these, the gram-
mar file defines every rule of mapping process wheres the design of GE algorithm controls the
mapping mechanism. Any tiny modification in the grammar file can cause a considerable differ-
ence in the GE process. However, in the field of GE, such vital files have to be purely written
by people. This lead to the fact that the great performance of Grammatical Evolution has great
reliance on an expert-written and well-designed grammar file for most problems. This problem is
not severe in some widely-used test problems since many different grammars have been tested in
the community for millions of times and many researchers have done much work for these, and
these grammar files are acceptable for these problems. But in the more general case, especially for
those applications or user-customized problems from non-expert users, the grammar file from them
may become the roadblock toward the better performance of GE. Dirk Schweim et al. [51] studied
the structure of grammar for GE and advised the average branching factor, which is the expected
number of non-terminals chosen in mapping one genotype codon to a phenotype tree code, should
be as close to 1 as possible to help with the efficiency of GE. However, it is still uneasy about
writing a proper and efficient grammar for a specific problem, since the average branching factor
is the only evaluation of an existing grammar .

Figure 3.4: Another perspective of Grammatical Evolution

Meanwhile, the design of GE itself also brought some problems. In canonical grammatical evolu-
tion, the selection of non-terminal is revealed by doing a mod calculation over the codons. Since

24

the number of available derivation rules is usually small, it is easy to get the same result in this
calculation, even if the codons are different. This mapping mechanism of grammatical evolution
implies an N to 1 relationship between the genotype and phenotypes. That is, every phenotype
has a large number of corresponding genotypes. In theory, a phenotype in solution space is ac-
cessible to be found in the case that it has at least one correspondent point in the search space.
The N to 1 relationship between genotypes and phenotypes in GE is highly redundant, as it can
have a number of points in search space, it actually needs to locate the global optimum or local
optimum we are searching for. This character may sometimes increase the possibility for GE to
get the optimum point. However, it also decreases the efficiency of the search process, since many
candidates genotypes tested in the search process may finally point to one same phenotype, and
the evaluation of phenotype may be computation costly in some problems.

On the other side, this mapping mechanism also has the problem of low locality. The deriva-
tion of genotype to phenotype is a repeated nesting loop since the selection of one derivation rules
can influence the later derivation. This derivation way may causes a phenomenon different from
the expression of the gene in the natural world. Because in GE, a neighborhood genotype may
have a phenotype with no similarity. This character diverses from our intuition that neighboring
genotypes should usually correspond to neighboring phenotypes. In other words, if we visualize
the landscape of fitness of all possible points in search space, what we get is a rugged space full of
ravines and spikes. The term of low locality is used to represent this character in the community
of GE. It can cause the search process much harder since the direction of evolution is hard to find
for either local or global optimums.

In fact, many variants of GE have tried to solve the problem of high redundancy and low locality.
For example, the SGE system, which was tested in this project, is a great example that made ef-
forts in this regard. However, in theory, a GE variant algorithm with lower redundancy and higher
locality does not mean the change of search space. These two characters are only helpful for the GE
system to improve its efficiency in the searching process. This leads to the fact that an ’advanced’
GE variant system cannot make sure that it always performs better than a canonical GE system
since they are usually dancing on the same stage.

3.4 GE systems

3.4.1 PonyGE2

PonyGE2[52] is a python implemented Grammatical Evolution system, which is developed by
UCD’s Natural Computing Research and Application Group. PonyGE2 provides a modular-based
implementation of GE, which is the most significant advantage when it is compared to other GE
implementations and also its author’s first python-based GE- implementation PonyGE[53], which
allows users to modify almost every part in Grammatical Evolution. These merits lead to the fact
that PonyGE2 may be a "rapid-prototyping medium for any python workout", as it said in their
work.

Before the publication of PonyGE2, Grammatical Evolution has been implemented in many com-
puter languages, including C[54], java[55], R[56], and even Ruby[57]. Due to some historical reasons,
most of the previous work cannot reach a good balance among functional integrity,good acceptance
of implemented language, cleanness and compactness of code as well as structure. To address these
problems, PonyGE2 merged the characters of modular design and feature-rich aspect from GEVA
(java implemented GE system)[55] on the basis of PonyGE, and reconstructed all codes into a
package structure[52]. With their efforts, a new python-implemented GE system with much newly
added functionality package is born, which is PonyGE2.The code structure of PonyGE2 can be
seen in Figure 3.5. This clear structure allows users to understand what every modular is doing
and to work on a specific part of this system without reviewing dozens of irrelevant codes. Mean-
while, with such a structure, users have great flexibility to modify any modular of original work,
for example, to use a user-written fitness function library to replace the original one.

25

Figure 3.5: Organizational structure of the PonyGE2 Codebase. Figure courtesy to Fenton et
al. [52].

PonyGE2 can be referred to as a canonical GE system, as it can be set to follow all basic disciplines
of standard Grammatical Evolution [46][45][3], even it has great flexibility to do other experimental
GE-variants experiments. The general workflow in PonyGE2 for typical can be seen in Figure 3.6,
which is also the default setting of this PonyGE2 system.
One of the most significant advantages of Grammatical Evolution is that PonyGE2 integrates the
ability to mix and matches representation tree, which means not only a genome is kept in the
evolving process, but also a full derivation tree which corresponds to the genome. This character
allows more operators to perform in PonyGE2, as some operators can only be used in the derivation
tree of individuals. With the potential to be one of the most powerful systems in the aspect of
Grammatical Evolution, PonyGE2 has a significant number of options for users to choose in its
parameter list. In almost every step of Evolution, several options are available. These options are
also the guarantee of the high flexibility of this GE system to some extent.
Most of the available options in PonyGE2 are represented in an abbreviated form for convenient
considerations, for example, when users need to use Position Independent Grow Initialization,
it is necessary to feed the configuration with command parameter ’– initialization PI_grow’ or
modifying the parameters file. Meanwhile, some of these options still have sub-parameters, which
are only useful when a specific option is selected. Using the previous example to demonstrate,
when ’PI_grow’ initialization method is used, the minimum and maximum initialization depth
are activated to control the initialization process in GE. In the case of no other value specified
by the user, the system will automatically use its default value. Table 3.1 depict the relation of
most configurable options and their sub-parameters, which is summarized from the Wiki document
of PonyGE2 project. Since it is redundant to explain all parameters of PonyGE2, this part can
be easily found on their project Wiki. In the matter of fact, much more parameters are defined
in PonyGE2 system, but no detailed explanation and description are specified on their either
published paper [52] and their website document2. In the actual test of this project, some of these
parameters are disabled for safety reason, as some specific parameter can easily cause the error of
project. For this part, a detailed description can be found in chapter 4.

2https://github.com/PonyGE/PonyGE2/wiki

26

https://github.com/PonyGE/PonyGE2/wiki

Figure 3.6: PonyGE2 control flow diagram for typical GE/GP setup. Figure courtesy to Fenton
et al. [52].

Parameter Name Options Related sub-parameter sub-parameter range

initialization

uniform_genome init_genome_length INT
uniform_tree max_init_tree_depth INTrhh
PI_grow min_init_tree_depth

selection
tournament tournament_size INTnsga2_selection
truncation selection_proportion [0,1]

crossover

tournament

- -
fixed_twopoint
variable_onepoint
variable_twopoint
subtree

mutation
int_flip_per_codon mutation_probability [0,1]
int_flip_per_ind mutation_events [INT]subtree

replacement
generational elite_size integer in [1,100]
steady_state - -
nsga2_replacement - -

Table 3.1: (Partial) Parameters list of PonyGE2

27

On the other side, every option is implemented in the way of a submodule, so users can write their
own option/extension module to become a part of PonyGE2 system.

3.4.2 Structured Grammatical Evolution (SGE)
Structured Grammatical Evolution is a recent variant of canonical grammatical evolution, which
was firstly published in the work [58] by Lourenço et al. from the University of Coimbra. One
point to note is that, since they have also named their system as Structured Grammatical Evolu-
tion (SGE), the word SGE can represent the algorithm as well as the corresponding system. In this
section, the main difference between SGE and canonical GE will be introduced, and meanwhile,
some important information about the corresponded SGE system will be delivered.

As it has been introduced before in section 3.2, GE uses a context-free grammar to realize the target
of mapping genotype into the phenotype. Due to the mechanism of it works, one of the problems it
comes with is the problem of high redundancy and low locality, which could be potentially harmful
to the efficiency of GE [59][60]. SGE is proposed to relieve the issues of locality and redundancy of
canonical grammatical evolution by replacing the context-free grammar to a structured mapping
method. Different from the situation in GE, a one-to-one mapping mechanism between the genotype
and the non-terminals are used in the SGE. To archive this target, a pre-processing procedure is
required. By such a procedure, the standard context-free grammar can be translated into SGE-
used grammar. In SGE, every genotype is represented by several sets of integers, rather than a long
integer string in canonical grammatical evolution. Here, one example is used to demonstrate this
difference of representing method between SGE and canonical grammatical evolution. Considering
we have following context-free grammar:

<start> ::= <expr><op><expr> (0)
| <expr> (1)

<expr> ::= <term><op><term> (0)
| (<term><op><term>) (1)

<op> ::= + (0)
| - (1)
| / (2)
| * (3)

<term> ::= x1 (0)
| 1 (1)

One individual with the genotype of [27, 7, 55, 22, 3, 4, 30, 16, 203, 24] can be finally be derived into
the phenotype (1/1) + x1 ∗ x1. And it is obvious that this phenotype can have many potential
genotype because of the working mechianism of GE, such like [7, 7, 55, 22, 3, 4, 30, 16, 203, 24].

However, in SGE, one phenotype can only have one genotype. For this case, the genotype in SGE
is written in [[0][1,0][2,0,3][1,1,0,0]]. Each bracket here is representing one non-terminal in order.
In the first bracket we have only a 0, it means that for the first non-terminal, rule (0) of first non-
terminal (<start>) will be used for derivation from the <start> to <expr><op><expr>. And for the
second bracket, we have two value 1 and 0, which means rule (0) and rule (1) of second non-terminal
(<expr>) will be used for derivation respectively to (<term><op><term>)<op><term><op><term>.
This process continues until the translation for all four non-terminals end. Figure 3.7 demonstrate
this process in a more intuitive way. Due to the reason that codons controlling different kinds of
non-terminals are separated, even they are still mapping in a depth-first way, there is no different
to map all codons belongs to the same non-terminals into terminals according to the order of
non-terminals at once, just as a layer structure does.
This new mapping mechanism is the main difference between GE and SGE, which has also brought
several characteristics as results of that, which are different from canonical GE:

• Because of the way SGE deal with grammar, no recursion in Grammar is permitted for the

28

Figure 3.7: Example of mapping process in SGE

grammar file for SGE. Pre-processing is mandatory to translate standard context-free gram-
mar to SGE-used grammar. The maximum recursion level must be pre-defined for transferring
a context-free grammar to a grammar without any recursion, to limit the genotype size.

• All integers in genotype are bounded by the number of possible options of the corresponding
non-terminals, as a result of every integer is representing. A derivation rule to use. However,
in Grammatical Evolution, integers in genotype could theoretically be any natural number,
since it uses a ’mod’ calculation to choose which derivation rule to use. The SGE’s structure
ensures that one variation on one codon would not affect the derivation of other non-terminals,
and this characteristic lead to the high locality in theory.

• In SGE, the relation between genotype and phenotype is always one to one, since every codon
is directly referring to a derivation rules, whereas in GE, the relation between genotype and
phenotype is usually N to 1. This design reduces the redundancy of canonical GE and does
the search for optimum more efficient in theory.

• Since the shape of genotype in SGE is restricted to a set of list with the sizes of occurrence
number of corresponding non-terminals, the variation operation in the evolution process has
less diversity than canonical GE. For example, the crossover in SGE can only be performed
on candidates with the same structure of genotype. Some advanced operation technique for
GE (e.g., derivation-tree based crossover technique) is not permitted in SGE.

SGE system3 is implemented in python2 by the same team who designed the Structured Grammat-
ical Evolution. It is relatively a smaller system when it is compared with the previously mentioned
PonyGE2 system. This system does not have so many options to choose as PonyGE2 does, only
basic evolutionary configuration and another unique parameter for SGE, which is the maximal
recursion level for grammar. All configurable options for SGE and explanation are listed in the
following list:

1. POPULATION_SIZE: The size of the maximal population in each generation. In the case
of the population still have a vacancy for the candidate, a new individual will be created by
the existing population until the population size reaches the limitation.

2. ELITISM: The number of candidates kept at the end of each generation, which means these
candidates can survive from one generation to the next generation.

3https://github.com/nunolourenco/sge

29

https://github.com/nunolourenco/sge

3. TOURNAMENT: The parameter "TOURNAMENT" is used for selecting a parent individual
for generating new individuals. In this process, a "TOURNAMENT" size of candidate parents
will be randomly selected from the population to build a pool, and the individual with the
best fitness value will be chosen as the parent to generate new individual .together with
another parent. Each parent is selected independently.

4. PROB_CROSSOVER: The probability of crossover in generating a new individual.

5. PROB_MUTATION: The probability of mutating at each mutable single codon. Every mu-
tation independently happens.

6. MAX_REC_LEVEL: The maximal recursion level to transfer context-free grammar to no-
recursion grammar in SGE.

3.4.3 Grammar-Guided Evolutionary Search (GGES)

Grammar-Guided Evolutionary Search (GGES) is a system used to support the experimental work
of [61] to examine the performance of canonical GE and context-free grammar genetic program-
ming (CFG-GP). And in their later work, the system also has included an implementation of
Structured Grammatical Evolution (SGE), which is the method mentioned in the previous sec-
tion 3.4.2.

According to the introduction of CFG-GP in the work [62], both GP and CFG-GP are a tree-
based technique with a little difference in the way of representation. Here, a small example (6-bit
multiplexer) is used to demonstrate the difference between GP and CFG-GP. Table 3.2 is the
representation of example problem, and the number after GP non-terminals is the number of
necessary components number of corresponded non-terminals to achieve so-called "closure." Only
if "closure" is achieved, the produced function will not cause errors. On the other side, Table 3.3
is the grammar file of the example problem in the shape of BNF. Figure 3.8 shows the process
that GP and CFG-GP produce a same binary function:(a0 or a1) and (not d0).

Figure 3.8: The difference between GP and CFG-GP. One same program produced by GP and
CFG-GP respectively.

From this example we can get some feeling about that even though GP and CFG-GP are both tree-
based technique, the grammar of CFG-GP implicit contains the grammar constraint for produced
program since all production must follow the rules defined in the grammar files, whereas in GP
the concept of closure is necessary to avoid invalid production of programs which is result from the

30

GP terminals a0,a1,d0,d1,d2,d3
GP non-terminals and(2), if(3), or(2), not(1)

Table 3.2: GP representation of a 6-multiplexer problem

<start> ::=
 ::= and | or | not | if | <T>
<T> ::= a0 | a1 | d0 | d1 | d2 | d3

Table 3.3: CFG-GP representation of a 6-multiplexer problem

mixed usage of component with different roles. On other words, the CFG-GP uses grammar solved
the problem of a valid structure (representing a valid phenotype) in program production, which is
achieved by importing a rule of "closure" in GP. As for the system of GGES, the current version
of GGES system includes totally three different techniques, includes CFG-GP, GE (standard) and
SGE. One point worth to mention is, the SGE inside the GGES cannot deal with grammar file
with any recursive rules, whereas in original SGE system, users can define a maximal recursion
depth to transfer an ordinary grammar file into a grammar file automatically can be accepted by
the core of SGE. This makes most grammar files we are using cannot be accepted by the SGE
module in GGES system.

The control of hyper-parameters of GGES system is accomplished by using a configuration file.
The list of hyper-parameters and their default values in GGES system can be found in Table 3.4.

Name Range and (Default Value)
Representation CFG-GP GE SGE
Population Size INT,(1000)
Generations INT,(50)

Tournament Size INT,(3)
Elitism Count INT,(1)
Crossover Rate [0,1],(0.9)
Mutation Rate [0,1],(0.05)

Max. Initialisation Depth INT,(2) -
Min. Initialisation Depth INT,(6) -

Max. Depth INT,(17) -
Wrapping - Boolean, (False)

Table 3.4: List of hyper-parameters in GGES system.

3.5 Hyper-parameter Tuning

Even though most of the Grammatical Evolution systems have the ability to evolve executable
computer program fragments or mathematical expression automatically, some parameters are still
necessary to control the process of the evolution process. As these parameters are on a high-
level aspect, they are usually called hyper-parameters to distinguish from parameters in low-level
aspects, such as those parameters in evolved programs. These hyper-parameters usually has a great
influence on the performance of the Grammatical Evolution system. For example, when PonyGE2
system is being tested, several different hyper-parameter sets as follows are tested on the same
problem4:

4Only a part of hyper-parameters of PonyGE2 system are selected for this test here, all other hyper-parameters
are not mentioned remains as the default value of PonyGE2 system.

31

Problem: StringMatch Problem (symbolic regression)
Target: Good Morning
Fitness call limit: 10000
System: PonyGE2

Group init tree depth max tree depth crossover rate tournament size Best in 5 runs
1 13 19 0.75 8 0.500
2 13 19 0.75 5 1.486
3 11 15 0.75 8 1.976
4 13 19 0.70 8 0.670

Table 3.5: Several Hyper-parameters groups tested on same problem showed great influence on the
performance of system.

As the result shows in 3.5, a big difference can be caused by different groups of hyper-parameters
despite only small modification between them. In this test, we modify only one hyper-parameter
from the default value (group1) for each group, but the performance of the final result from dif-
ferent groups of parameters expresses an absolute relative error of 295.2%. This result implies the
fact that, the value of hyperparameters on the Grammatical Evolution system.

The setting of Hyper-parameters is usually done manually based on the experience of users, which
is usually uncontrollable for the performance and sometimes time-wasting to search for a suit-
able hyper-parameter setting for one specific problem. Due to this reason, an automatic hyper-
parameter tuning method is necessary to help tested grammatical evolution system to perform as
good as possible. Here we see this problem as an optimization problem, in order to find the most
suitable hyper-parameter setting for GE systems and their testing problems. In this project, an
algorithm called Mixed Integer Parallel Efficient Global Optimization1(MIP-EGO)[1] is used for
hyper-parameter tuning over Grammatical Evolution system. MIP-EGO is a global search strategy
that is designed for black-box functions, according to this work from Dr. H. Wang from Leiden
University, which is also a supervisor of this work.

For this complex optimization problem, considering the search space of hyper-parameter is repre-
sented by C, and what we are looking for is one best-performed hyper-parameter setting c∗ ∈ C. To
solve this, a statistical model is constructed on the basis of several randomly selected starting points
on the search space of hyper-parameters. The EGO algorithm relies on a so-called meta-model,
which will construct n sample points in the space of hyper-parameter space: X = {x1,x2, . . . ,xn}.
For the case of MIP-EGO, the random forest is selected to be this meta-model. The sampling
method is based on the Latin hypercube sampling (LHS) [63]. And simultaneously, the perfor-
mance of tested system by sample configurations is denoted by Y = {F (x1), F (x2), . . . , F (xn)}.
This performance is represented by a metric value, which is obtained by averaging the result of
testing the GE system on one specific problem with given hyper-parameter configuration xn over
several times. In this project, this metric is the average value over 5 tests on a given configuration.
After acquiring all data pairs of X and Y , meta-modeling will product a predictor F̂ of the per-
formance metric, and a metric s2, which is used to measure the uncertainty of the prediction(e.g.,
mean square error). Meanwhile, other unobserved configuration will be quantified by the so-called
Moment-GeneratingFunction of Improvement (MGFI) [6, 64], which has the ability to balance the
trade-off between prediction and uncertainty from observed hyper-parameter configurations, de-
fined as M(x; F̂ , s2, t) = Φ

(
Fmin−F̂ ′

s

)
exp

(
(Fmin − F̂ − 1)t + s2t2

2

)
, F̂ ′ = F̂ − s2t. Formally, this

algorithm can be described in Algorithm 2.

32

Algorithm 2 Mixed Integer Parallel EGO for Hyper-parameters Optimisation (MIP-EGO)
Target: MIP-EGO(C, F, q, t0)
sample the initial data set (X,Y)
evaluate Y ← {F (x1), F (x2), . . . , F (xn)}
train random forest: F̂ , ŝ2 ← (X,Y)
while stopping criteria are not fulfilled do
for i = 1→ q do
t← t0 exp(N (0, 1))
x′ ← arg maxx∈CM(x; F̂ , ŝ2, t)
compute y′ ← F (x′)

end for
X ← X ∪ {x′}
Y ← Y ∪ {y′}
re-training: F̂ , ŝ2 ← (X,Y)

end while

33

Chapter 4

Method

4.1 Benchmark

When different Grammatical Evolution systems are compared, what is going to be done usually is
to test these systems on many problems and compare their performance on that. Most of GE and
variants systems are using similar principles to evolve solutions for specific problems, and these GE
systems usually ask for some exogenous information which is connected with the problem it deals
with. This exogenous information that GE systems asking for includes an evaluation function, a
grammar file, and sometimes a training/testing dataset in the cases of it is a supervised learning
problem. For example, when the PonyGE2 system is used to evolve a target string, a grammar
file and the evaluation function are prerequisites for the system. Moreover, since we are meant to
evolve a specific string, the training data is the target string itself.

In order to make a comparison between different GE systems, a benchmark is quite essential to
evaluate the performance of systems, and also make sure that every tested system is sharing the
same information for every specific problem. The benchmark for GE typically composed of many
independent problems, and the performances of tested systems were typically represented by the
fitness level of tested systems on all benchmark problems. Each problem in the benchmark should
have its grammar file, an evaluation function(or fitness function), and training data or dataset if
the problem is a supervised learning problem.

One problem we are facing with is, which problem could be a candidate of benchmark problems. In
the work of [5], James McDermott et al. suggested that problems which are mostly used in testing
Genetic programming systems mainly come from historical reasons. Lourenço et al. imply that a
similar situation is also for the field of Grammatical Evolution in their work [60] too. Considering
the fact that on the one hand, most of the work in the field of Grammatical Evolution is still
using some problems for historical or empirical reasons. And on the other hand, researchers in the
community tend to add their own problems to test. In this work, we choose some most-widely used
problems in other works in this field as benchmark problems, and also leaves a method to add
new problems into the benchmark. In such a way, we believe the benchmark can have both great
expansibility and historical continuity to previous works in this community.

4.1.1 Default Benchmark problems

In this work, several problems were widely used in the filed of Grammatical Evolution and Genetic
programming are considered to become benchmark problems. The selection of benchmark problems
also refers some idea from [5], since GP and GE are neighbor fields and many problems are shared
in these two fields. One point worth to mentioned is, all problems in this benchmark are considered
to be minimization problems since we believe it helps to simplify configurations over different
systems.

1. String Match problem

34

String Match problem can be seen as an instance of symbolic regression problems. The target
of string match problem is a purely a string. As a simple but classic symbolic regression
problem, this String Match problem is collected from the demo problems of PonyGE2 system,
with some modification on the calculation of fitness. With a pre-defined target string s∗, GE
system is asked to evolve a string s. In the case of perfect evolution, there should be no
difference between s and s∗, which could be expressed as s = s∗.
The BNF file for this problem can generate both vowel letters and consonant letters in
Uppercase and lowercase. On the same time, several simple characters are included in the
BNF file, such as question mark, Exclamation mark, etc. The specific definition of the BNF
file for this problem can be found in Appendix A.
The object function of String Match problem here is using the edit distance, which is different
from it in PonyGE2’s demo problem. In compare with the method used in the original problem
in PonyGE2 (the distance of string in ASCII code), edit distance (also known as Levenshtein
distance) is a more intuitive method to evaluate the distance of two strings. Therefore, the
objective function of this problem is defined as the minimal edit distance between the target
string and candidate string. In the case of a perfect evolved candidate, the fitness will become
zero since the candidate is exactly the same with the target string. On the other side, For the
worst case, the fitness value can be the length of the target string L. Formally, the objective
function (or fitness function) can be defined by:

f(s) = LevensteinDistance(s, s∗)→ min, (4.1)

2. Regression problem (Vladislavleva4) Regression problem is also a kind of symbolic re-
gression problem, but with a target of a mathematical expression. For the case of Vladislavleva4[5],
the target mathematical expression is a 5-variable real-value function:

g∗(x) =
10

5 + (x0 − 3)2 + (x1 − 3)2 + (x2 − 3)2 + (x3 − 3)2 + (x4 − 3)2
(4.2)

In order to evolve this mathematical expression, several primary mathematical characters and
variables are included in its BNF file, e.g., +,−, ∗, /, sin, tan. In the meanwhile, a limitation
for evolved constant also exists, which only allow generating constant between 0 and 100
with maximally two digits. Detailed definition of this BNF can be found in Appendix A. On
Vladislavleva4 problem, the quality of the candidate mathematical expression g is represented
by the RMSE(root mean squared error) value to the target formula g∗ on a data set, which
is consist of 5000 points {x1, . . . ,x5000}. The objective function can be written as:

f(g) =

√√√√ 1

5000

5000∑
i=1

(g∗(xi)− g(xi))
2 → min . (4.3)

3. Regression problem (Keijzer6) Keijzer6 is also known as Harmonic curve regression
problem. Similar with previous mentioned Vladislavleva4 problem, Keijzer6 problem [65] is
also a symbolic regression problem with a target of one variable function. A smaller variable
number also lead to the fact that the search space for Keijzer6 is smaller than Vladislavleva4.
The BNF of Keijzer6 problem shares similar non-terminal with other symbolic regression with
the target of a mathematical expression, and the detailed bnf file can be found in Appendix
A. The target fucntion of Keijzer6 problem is

g∗(x) =

x∑
i=1

1

i
(4.4)

As a supervised problem, every candidate is trained on a train set with a size of 50 and tested
on a test set, which includes 120 samples. And the fitness level of this problem is represented
by the root mean squared error on the base of the test set.

f3(g) =

√√√√ 1

120

120∑
i=1

(g∗(xi)− g(xi))
2 → min . (4.5)

35

4. Regression problem (Pagie polynominal) As a regression problem, the Pagie problem
has a reputation for being a relatively hard problem[66][5] even it has only two variables and
a smooth searching space. The target function to approximate for this problem is:

g∗(x, y) =
1

1 + x−4
+

1

1 + y−4
(4.6)

The training set for this function is sampled on the interval of [−5, 5] with a step s = 0.4 for
both variables respectively, who has a total of 676 (26*26) sample points. The production
rules allow GE system to use eight kinds of operations, which can be found in Appendix A.
Assuming the evolved function candidate as g, the fitness value f of this problem is defined
by the RMSE of g on the test set T , which is sampled by the target function g∗ on the
interval of [−5, 5] with the step s = 0.1, with a total of 10000 (100*100) instances. Formally
written, the objective function for the Pagie problem is:

f(g) =

√∑10000
i=1 (g(xi, yi)− g∗(xi, yi))2

10000
→ min . (4.7)

5. Classification problem (Banknote) The classification problem is a kind of problem to
identify which category one element belongs based on a group of training data, which contains
some observations of characteristics from know categories. Here, the banknote problem is
included in this benchmark. The Banknote problem is to evolving a formula to identify
whether a banknote is fake or not based on four numerical indicators extracted from its image
of that banknote. The GE system is necessary to evolve a decision function g : R4 → {1,−1}
to assign an indicator (1 represents real, and -1 means fake) to classify its authenticity. As
a supervised learning problem, the Banknote problem owns a training data set with 372
instances, and all evolved individuals will be tested on a test set with 1000 instances.

The BNF file of Banknote problem allows to use only six mathematical operators(+,-,*,/,
square root and logarithm), detailed deviation rules can be found in Appendix A. Also, the
fitness value of this problem is defined as the F1 score of the results of classification on the
test set, which is formally written in:

f = 1− F1(g) = 1− 2× precision× recall
precision + recall

→ min, (4.8)

6. Predictive problem (Boston Housing) The target of Boston housing problem is a housing
price prediction model, which is built on a data set composed by the real housing prices of
Boston area and their corresponding demographic data. This problem is collected from UCI
repository [67]. This problem can also be seen as a supervised, regression problem without
a known best answer. Similar to the regression problem, the GE system needs to evolve a
formula g to predict housing prices on the basis of 13 variables in the data set. The size
of the training set is 354, and, 152 instances are used for testing the evolved candidates.
Apart from 13 variables, six kinds of basic mathematical operations (+,−, ∗, /, log, sqrt) and
eight different constants are allowed to be used in evolving process. The detailed description
is listed in its BNF file A. The fitness level is represented by the RMSE on the tested set,
officially written in:

f(g) =

√√√√ 1

152

152∑
i=1

(g∗(xi)− g(xi))
2 → min . (4.9)

7. Constructed problem (Max[py]) Max problem is an instance of constructed problems,
according to the classification in [5]. The target of this problem is quite simple, to produce a
program fragment which can produce a return value as big as possible with several limited
statements in computer programming language and constants. Considering the candidate
here is an executable computer program fragment and the way we evaluate it is to run it, we
choose python as the program language for this problem due to its character of it being an

36

interpreted language, and no compilation is necessary for the execution. The grammar rules
for this problem can be found in Appendix A, which is modified based on Pymax problem
from PonyGE2 system to avoid some loop-caused rules since it cannot be dealt with by some
GE systems.

The evaluation of this problem is direct and straightforward. Since the target of this problem
is to make the produced number as large as possible, the reciprocal of the produced number
will be used as the fitness value and make the problem into a minimization problem. More-
over, we also multiply a constant 1000000 to make the fitness value more intuitive for users.
Formally written, the candidate program will be noted by character P , and the fitness of this
problem can be calculated by:

f = 1000000 ∗ 1

output(P)
→ min . (4.10)

8. 5-Parity problem Parity is a classical problem in the community of GP and GE. The target
of this problem is to find out a boolean function that takes an input of binary string, and
returns an indicator about whether the input is even(0) or odd(1). In the case of the length
of the input is 5, it is called 5-parity problem. Four different binary operations are allowed to
use To evolve such a boolean function, specific rules for the evolving process can be found in
Appendix A The evaluation of evolved candidate is intuitive, all possible inputs are used as
the test set, and the candidate phenotype would run through the whole test set. The fitness
function is represented by the miss-computed instances in the test set, formally written by
formula, in which g and i are representing the phenotype of the evolved candidate and the
instances in test set respectively, and fi is the correct result of instances:

f(g) =

25∑
i=1

(g(i)− fi)→ min . (4.11)

9. Multiplexer problem (11-bits) The Multiplexer problem was firstly introduced in the
work of Koza [41], whose target is to simulate a multiplexer in the field of electronics. For
this test problem, an 11-bit multiplexer is used. It has an input of 3 ’address’ bits and 8
(23 = 8) data registers, totally 11 bits. Every single input is either 0 or 1. The 11-bits
multiplexer function should have the ability to select the particular data bit that is singled
out by the three address bits. For example, when we have three address bits with value 110,
the value stored in the seventh data register (i9) should be the output, just like fig 4.1 shows.

Figure 4.1: Example of the 11-Bit Boolean Multiplexer with the input 11000000010. The first three
bits are the address arguments whose binary value indicates the data bit i9 as the output.

The BNF file of this problem defines as it shows in Appendix A. With this BNF file,
the GE system can generate a multiplexer simulator in the form of a Boolean expression

37

g(i0, i1, ..., i11), whose output would be boolean value, i.e either True(1) or False(0). A per-
fect multiplexer boolean expression can always give out the value stored in the correct data
register (between i3 and i10) according to the corresponding 3-bits address (from i0 to i2).

Theoretically, the 11-bit multiplexer problem has a total of 2048 (211) possible combination
of all 11 inputs. For this problem, all 2048 possible combinations are used as the test set to
test every evolved candidate. Meanwhile, to make this problem as a minimization problem,
the fitness value of this problem is defined as the number of mismatched output in the 2048
trails, which can be formally defined by the following formula:

f(g) = 211 −
211∑
i=1

g(i0, i1, ..., i11)→ min . (4.12)

10. Santa Fe trail problem (Artificial Ant Problem) The artificial ant problem is a kind
of Path Finding and Planning problem, according to the categorization in [5]. The target of
this problem is to evolve a set of logic for an artificial ant Gant. This set of logic can help
the ant to find all food lying along an irregular path on a square plane with a width of 32
grids, according to the work[41]. There are 89 food pellets on the plane in total, and the ant’s
starting point is at the upper-left cell of the plane with the coordinate (0,0) and facing to
the east (right). Figure 4.2 shows the position of food pellets on the plane.

Figure 4.2: Santa Fe food trail for the Artificial Ant problem. Black cells are the food pellets and
gray cells are the gaps in the trail. 2

The artificial ant has only a very limited vision of its world. Specifically, it can only perceive
whether there is a food pellet in the adjacent cell in front of or not. And the ant can only
available for only three different operations:

• Turn Left: The ant turns left for 90 degrees without moving.

• Turn Right: The ant turns right for 90 degrees without moving.

2Controlling bloat : individual and population based approaches in genetic programming
- Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/
Santa-Fe-food-trail-for-the-Artificial-Ant-problem-Black-cells-are-the-food-pellets_fig4_
277165074/actions#reference[accessed 10 Jul, 2019]

38

https://www.researchgate.net/figure/Santa-Fe-food-trail-for-the-Artificial-Ant-problem-Black-cells-are-the-food-pellets_fig4_277165074/actions#reference
https://www.researchgate.net/figure/Santa-Fe-food-trail-for-the-Artificial-Ant-problem-Black-cells-are-the-food-pellets_fig4_277165074/actions#reference
https://www.researchgate.net/figure/Santa-Fe-food-trail-for-the-Artificial-Ant-problem-Black-cells-are-the-food-pellets_fig4_277165074/actions#reference

• Move Forward: The ant move 1 step toward the direction it is facing. In the case of
there is food in the cell the ant entering, it eats this food pellet.

On the same time, the artificial ant can have the logic of IF-ELSE conditional operators.
Apart from previously mentioned operations, no further operation is available for the ant.
The BNF file in Appendix A defines all these operations and other supportive non-terminals.
It also has the limitation of the maximum basic operation number, 543. Which means the
evolved artificial ant can only turn left, turn right, or move forward for a maximum of 543
times.

The fitness of this problem is easy to describe, which is the number of rest food pellet on
the plane. That is, the more food pellets the evolved ant can eat, the better fitness it has.
Formally, the objective function can be written as:

f(Gant) = 89− exec(Gant)→ min . (4.13)

4.1.2 Implementation of Benchmark and its Structure

The benchmark designed in this work is mainly used for testing different GE and GE variant
systems. However, every system has its implementation environment. For example, PonyGE2[52]
only support a python environment with version number is higher than 3.5, whereas SGE[60] system
is only available for python2.7 at most. Some other GE variant systems may also be implemented
in C, Java, or any other computer languages according to the habit of its author. This reality has
caused the difficulty for the implementation of this benchmark since it is not easy to ensure the
broad applicability for different GE systems come with different implementation languages.
In order to ensure the applicability of benchmark for GE and GE variant systems, a method in
implementation is used here. That is, those parts need to be programmed, i.e., objection functions
for every benchmark problems, are implemented in a relative underlying language, C-language.
Meanwhile, interfaces for different languages are provided to adapt to different run-time environ-
ments. By such a design to ensure the broad applicability, and on another side, to reduce repetitive
work on coding object function in different languages, the overview of this benchmark can be seen
in Figure 4.3:

Figure 4.3: Benchmark Structure

39

Benefit from the great portability and adaptability of C language to other computer languages,
this C-based implementation of the objective function is an insurance of easy-calling for other
language implemented systems. In the case of a new GE system is necessary to test, the work of
programming all test problem is simplified to write an interface for the corresponding language.
In this work, an interface for Python is implemented with the help of Cython package since two
system are going to be tested in this work (PonyGE2 and SGE) are implemented in Python2 and
Python3 respectively. And of course, for C and C++ implemented systems, no further interface
is necessary, as they can call the objective function directly. As for other computer languages, the
interfaces for them needs some efforts from users and it may also be our future work and released
in later versions. As for the detail of usage for this benchmark, it comes with the application of
this benchmark and will be discussed in detail in later sections.

4.2 Application

4.2.1 Automated comparison over GE systems
In this work, the designed benchmark is used to compare the performance of different Grammat-
ical Evolution systems, and an automated comparison system is implemented. They compared
systems include PonyGE2 and SGE. Preliminary, GGES system is also included in this project for
a broader comparison. However, since a technical problem we found in the test phase, we finally dis-
abled it and excluded GGES system in this work. The specific reason will be discussed in Chapter 6.

The comparison over different GE systems is revealed in such a way, that for every tested GE
system g, the tested system will be controlled to run every problem on a given problem set P =
(p1, p2, ..., pn) (by default, every problem in benchmark will be tested). Here, for every independent
problem pn, a fitness value f will be given as an output of the GE system, and the hyper-parameter
configuration of the GE system is denoted as c. The fitness value f can be represented by fg,n =
G(c, pn), in which G means to run problem pn on system g with configuration c. Here, we can
consider each benchmark problem as an optimization problem, and the search space is constructed
by the hyper-parameter configuration. MIP-EGO will be used to find a best hyper-parameter
configuration c∗, which is corresponding to the best fitness value(minimum value) f∗g,n = G(c∗, pn).
Due to the problem that, the global optimum of different problems may locate at a different position
since the landscape of the search space of different problems could differ from each other. So for
every independent problem, the optimization needs to be executed separately. Similar to this, even
for the same problem, the optimization process for two systems needs to be done separately because
of their hyper-parameters are totally different. After iterate this process on both test problems
and systems, the best possible configurations for given system g on each problem F ∗(g, P) =
(f∗g,1, f

∗
g,2, ..., f

∗
g,n) would be found. Moreover, when the hyper-parameter tuning process for different

systems {g1, g2, ..., gn} is finished, their performance over different problems can be compared by
using their fitness value generated on different test systems with ’best-suited’ hyper-parameter
configurations. Algorithm 3 formally describe this process. In which q represents the iteration
number of MIP-EGO algorithm. In this project, the value of q is set to 100.

Algorithm 3 Automated GE systems Comparison Test

Target: F ∗(g, P) for all g in g
′

= {g1, g2, ..., gn}
for g in g

′
= {g1, g2, ..., gn} do

Initialization for System Controller for system g
Interface build for objective functions calling
for p in P = (p1, p2, ..., pn) do
MIP-EGO(c, F, q) {F = fg,n = G(c, pn)}

end for
end for

The implementation of this automated comparison test completed by Python3, and the usage of
this system will be introduced in a later section. Here, Figure 4.4 shows an overview of abstract
structure for this work.

40

F
ig
ur
e
4.
4:

St
ru
ct
ur
e
of

T
hi
s
pr
oj
ec
t

41

To use the GE comparison system and compare different grammatical evolution systems, several
input elements is necessary to prepare before the test starts, which are:

• Hyper-parameter list for test systems: Every system has different names and ranges
of their hyper-parameters, so it is important to tell the comparison system previously, what
hyper-parameters every test systems have and the tuning range of them. In this project, this
work is achieved by reading a JSON file which includes a list hyper-parameters. Thus for
every test system, a JSON file is necessary to specify all names of system and ranges of it.
The specific form of this can refer to an example in Appendix B.1.

• A name list of tested systems: Before running a GE system comparison automatically,
it is necessary to tell the computer what systems are going to compare. A list of name of all
test systems needs to be specified. In the meanwhile, the code of the tested system must be
reachable for this project. The GE comparison system will automatically call systems to test
problems.

• A name list of tested problems: By default, all problems in the benchmark will be tested
for the comparison, but this is not mandatory. User has the authority to test only part of it or
specify their problem. The name list of the tested problems is specified. If the new problem is
added for the test, the name list of tested prorblem must be implemented first. For detailed
information, please refer to the manual of this project3.

Correspondingly, the output of this comparison system is not simply an indicator of "who is the
best". It includes a wide range of information and files as the output for the test to help users get
to know about the tested system and their relative performance better. They include:

• Formatted data file for best-founded hyper-parameter configuration: For each sys-
tem, the best-founded configuration for every problem will be stored in CSV file.

• Formatted data file for best-founded fitness value: For each system and benchmark
problem, the fitness value in each iteration of the tuning process is stored in a CSV file.

• Problem-based fitness curve: The change of fitness value of tested systems on all bench-
mark problems over the whole hyper-parameter tuning process. Both the average value and
standard deviation are shown in this graph in the case of multiple time test.

• Distribution of Tuned hyper-parameter: After the hyper-parameter tuning process, the
best-founded configuration are stored. In the case of the test has tested for multiple times,
the distribution of hyper-parameter is shown in parallel coordinates and may reveal some
interesting patterns.

• Log files: In this system, all original log files generated by either tested systems and com-
parison systems are kept to avoid any loss of important information. The categories of log
files will be introduced later in the following part.

For the reason that the comparison between different systems can be in many aspects, and it is
usually tough for us to predict all requirements in the phase of implementation, different types
of original log files are recorded in this project. By such a way, it is believed that most useful
information can be decently stored to cover the potential needs as much as possible. On the other
side, the standard output, which is the output on the console of the testing machine, also covers
innumerable critical information. In this project, all standard outputs on the console are stored for
further analysis, and it is strongly advised to do so in customized usage too. All these log files can
be categorized into four parts:

1. Global Output logs: This kind of log file records the standard output which is printed to
the console of the test machine, which is the most valuable type of log files. This type of log
includes the output of interface compiling, information produced by hyper-parameter tuning
process (MIP-EGO package), objective value for every iteration, best objective value until
know for every iteration, etc. The analysis is mainly based on this kind of log files. This log is

3https://github.com/dabingrosewood/MasterThesisProj/

42

https://github.com/dabingrosewood/MasterThesisProj/

generated by ’nohup’ in command line4, every execution of ’management.py’ produces such
a log file.

2. Configuration records: For each process of hyper-parameter tuning, the best configuration
for the current problem and system will be recorded in this type of log file. Similar, the best
objective value will be stored here, too. The name of this type of log follows the schema of
out_[SYSTEM_NAME]_[PROBLEM_NAME]_[TIMESTAMP][MACHINE_NAME].txt.

3. Fitness value records: Every hyper-parameter tuning process last for many iterations
(100 in this project). Also, for every configuration generated in one iteration, it is tested for
several times (5 in this project). Every test produces a corresponded objective value, and
it will be stored in this type of files. For those all objective value belongs to the same
problem and same system, are stored in one file. The name of them follow the schema
summary_of_[SYSTEM_NAME]_[PROBLEM_NAME]_[MACHINE_NAME].log and lo-
cated at the root folder of systems separately.

4. Test system logs: Every tested system has its run time logs, which is usually stored in their
system folder. This part of log files was temporarily not used in this project.

4.2.2 Basic Usage method

The way of implementation follows the way we mentioned in the previous section. In this section,
the primary usage method of our automatic GE comparison system is introduced. In the case of
a more detailed description of software description or document is necessary, please refer to the
Appendix C.
According to different sub-targets of this system, the system is composed of two parts apart from
the benchmark itself, test part and analyzing part. The test part covers the work before the output
file in Figure 4.4, and the analyzing part does the rest of the work. Test part aims to use the
designed benchmark to GE system candidates and record all information in different kinds of log
files. And correspondingly, the target of analyzing part is to extract meaningful information from
generated log files and give out some meaningful statistical data. The layout of the file structure
for this software can be found in Appendix C.
As has been mentioned previously, it is necessary to specify some information as the input of this
test system. The list of hyper-parameters for every test system must be manually completed in
JSON files and be placed in directory ’util’. An example of the list of hyper-parameters in a JSON
form can be found in Appendix B.1. For the rest of the input, it is necessary to specify them in
the main program of "management.py". Following codes is an excellent example of it.

if __name__ == "__main__":
global_log_cleaner() # clean previous test result

#here to define the problem for the comparison
problem_set=[’ant’,’string_match’,’vladislavleva4’,’mux11’]

#shared parameters
n_step=10
n_init_sample=5
eval_type=’dict’
max_eval_each=50000
test_sys=[’SGE’,’PonyGE2’]
parameter_list_dir=’/util’

test=TesterManager(test_sys, problem_set, n_step, n_init_sample,
eval_type, max_eval_each, parameter_list_dir)

test.run()

4In this work, command like ’nohup python3 management.py >logs/out-
put_[MACHINE_NAME]_[TEST_NUMBER].txt 2>&1 &’ is used to store standard output which is print
to console, which generate this kind of log files.

43

By running "management.py", the system will execute the test part of the GE comparison system.
And it is recommended to call this script by using command like "nohup python3 manage-
ment.py >logs/output_[MachineName].txt 2>&1 &" , since this command tells the com-
puter to automatically stores produced standard output into corresponding log file under "logs"
directory, which is the global output logs mentioned before.

On the other side, the analyzing part is responsible for data extraction from generated log files and
analyzing work. By default, the file "post_test/paramerter_extractor.py" is the main program for
the analyzing work. Following codes specify how to use it.

if __name__ == "__main__":
default_log_dir = "../logs/"

The problem set used in test. The orders of given problems matters.
dealing_problem_set = [’ant’,’string_match’,’vladislavleva4’,’mux11’]

extract information for original log files.
It produces two type of files:
1. For each problem and system, a .csv file records all tuned

hyper-parameters."Configuration_[SYSTEM]_[PROBLEM].csv"
2. For each problem and system, a .csv file records all fitness value in each

iteration of hyper-parameter tuning.
extractor = PARAMETERS_EXTRACTOR(default_log_dir, dealing_problem_set)
extractor.run()

comparison between different GE systems on different benchmark problems.
This method will produce
system_analyzer(target_dir=’tmp/’, show=True)

Draw a coordinate parallel to show the distribution of hyper-parameters.
conf_analyzer(target_dir=’tmp_para’, show=True)

This script can extract information from the original global log file, transform data into ’.csv’
formatted files and produced the default outputs, including the graph of (average) fitness change
over the hyper-parameter tuning process, the parallel coordinate of distribution of tuned hyper-
parameters as well as a formatted data file for these graphs. Following Table 4.1 demonstrated the
descriptions and locations of generated files of automated GE comparison system:

Name Location Description
[Problem].jpg post_test\ Problem-based fitness curve.
[Sys]_[Problem].csv post_test\tmp\ Formatted best-founded fitness values file.

configurations_[Sys]_[Problem].csv post_test\tmppara\ Formatted best-founded hyper-parameter
configurations file.

configurations_[Sys].png post_test\distr_conf\ Distribution of Tuned hyper-parameter.
output_[machine]_*.txt logs\ Global Output logs.
out_[Sys]_[Problem]*.txt logs\ Configuration records.

Table 4.1: The list of Produced File and Location of them.

In this project, both the changed of fitness from different systems and distribution of their tuned
configuration will be analyzed to compare systems and their reasons for that. In Chapter 5, the
result of the analysis will be discussed in detail.

4.2.3 Extend the benchmark

For most Grammatical Evolution system users, no matter their target is to compare different
system or to run their applications, benchmark problems cannot fully satisfy their demand. For
this reason, the expansibility of this benchmark must be considered. Before adding a new problem

44

into this work, several prerequisites must be satisfied to keep the general schema of the benchmark.
That is,

• Since every test problem could be called for millions of times during the period of test, the
efficiency of the program must be taken into consideration. Therefore, the newly added fitness
function should be written in C language to keep the running efficiency and the adaptability
for test systems.

• If the newly added problem is a supervised learning problem and has training and testing
datasets, they must be named by Train.txt and Test.txt respectively.

• The final main function for calling the objective function for the newly added problem should
be named type eval_[ProblemName]() and the source file should be included in ’fitness.h,’
which is as a composite of objective functions of this benchmark.

• In the case of the new problem is a supervised probelm, it is necessary to store the training
set and the test set in two seperated files. Each line represents an instance of data.

After satisfying all these prerequisites, we still need to implemented an interface for the envi-
ronment of the corresponding GE system. Here, one example for adding new test problem to
PonyGE2(Python) is used to demonstrated here. In the case of a new problem is going to added
into the benchmark for test:

1. Coding the evaluation of problem into ’.h’ or ’.c’ file, name of function for calling it as int
evaluate_[problem_name](argv[]) and include it in ’ \ cython\ fitness.h’

2. Adding the declaration of calling evaluation function for new problem in ’ \ cython\ interface.pyc’

3. Copy the whole cython folder into ’PonyGE2 \src \fitness ’ and build it.

4. Adding a fitness class in PonyGE2 system, under ’PonyGE2 \src \fitness ’, use "from
cython.interface import evaluate_[problem_name]" to call coded evaluation function.

5. Copy necessary files (grammar, dataset) into corresponding place in test system.

6. Run the test with parameter files or command line.

For the detail description of how to add new problem into the benchmark, please review the Manual
in Appendix C or the ’README.md’ file.

4.3 Test settings

Two GE systems, PonyGE2 and SGE, are compared by using previous mentions automatic GE
comparison system in this work as a test of this benchmark. In this section, the detailed setting
in our comparison test is explained to ensure that readers can repeat our test easily. The Global
setting is to tell the computer what system and problems to test and control the hyper-parameter
tuning process of them. Iteration Number is the number of iteration of MIP-EGO process for each
problem and system. Initial Point Num. represents how many sample points to construct in the
initialization of MIP-EGO algorithm, which is the n if that algorithm. Maximum objective function
calling number defines the limitation for calling fitness function in every run of the GE system.
Meanwhile, the test is going to be executed for 20 times independently to limit the influence of the
exception case. All results in chapter 5 will be using the average value of valid results of these 20
runs.

4https://github.com/dabingrosewood/MasterThesisProj

45

https://github.com/dabingrosewood/MasterThesisProj

Name Value
Number of independent test 20
Test systems PonyGE2,SGE
Test Problems Ant,String_Match,Mux11,...
Iteration Num. 100
Initial Point Num. 5
Maximum Objective Function Calling Num. 50000

Table 4.2: Global Settings

Apart from the global settings, the tuning range for hyper-parameters of GE systems is also
predefined before the test. In the test phase of this project, we found that different kinds of error
can easily accompany the tuning of some hyper-parameter. Especially for the PonyGE2 system,
when several hyper-parameter is open to be tuned, it is almost for sure that error would occur. We
looked into these problems and analyzed the reasons for them, classify these problems into three
categories of reason.

• The first type of error comes because of the way PonyGE2 defines its systematic parameters.
A sub-parameter may have a relation with several high-level parameters, even if they are
representing different things. For example, one parameter with the name of "mutation_event"
is a sub-parameter of options for two parameters simultaneously. In the case of mutation
method is chosen to be "subtree" or "int_flip_per_codon", "mutation_event" is enabled
to represent how many times this kind of mutation could happen. Because of these two
mutation method are totally different, a totally error-free number for "int_flip_per_codon"
can easily cause error for "subtree" mutation5. To deal with this kind of problem, we spilled
the parameter "mutation_event" into two in the process of hyper-parameter tuning, each
one is connected with one specific way of mutation, and they are tuned independently as two
different hyper-parameters.

• The second type of error is the so-called time-out error. In PonyGE2 system, some hyper-
parameter is in control of the depth of the derivation tree. It is easy to understand that, the
deeper the tree is, the bigger the search space is. In the case of the search space is too big for
the current computer, the program will constantly run without ending or with a huge time
cost. In order to deal with this problem, the hyper-parameters is controlling the depth of the
tree will be remained as default to balance the trade-off between time cost and performance
of the system.

• The third type of error comes from the limitation of options themselves. Some options have
strict pre-requisite to use. For example, "nsga2 selection" method is only available for multiple
objective optimization problems. For this kind of problem, these unavailable options will be
excluded from the option list of tuning.

Similar with the PonyGE2 system, SGE system can also suffer from the second type of problem of
PonyGE does, as SGE has a hyper-parameter with the name MAX_REC_LEVEL to control the
maximal recursion level in transferring context-free grammar to non-recursion grammar. Therefore,
a similar method is used in SGE to avoid the error: MAX_REC_LEVEL will remain as the default
value (5) in most of the problems. For a special case string_match problem, this value is manually
increased because of default value limited the performance of system6 Moreover, the calculation of
fitness for this problem is not computation costly, so increasing the value of MAX_REC_LEVEL
will not cause time-out error.
Table 4.3 and 4.4 specified ranges of tuning for hyper-parameters in PonyGE2 and SGE sys-
tem respectively. The detailed explanation of mentioned hyper-parameters can be found in the
introduction of these GE systems in chapter 3.4.

5int_flip_per_codon mutation can have a large range of mutation number that subtree mutation in PonyGE2
since the way subtree works, it will generate a new tree to replace the subtree on the mutation point, too many
times of this kind of mutation could make the tree exceed the limitation of tree depth.

6The structure of grammar for this problem requires many recursions to generate even a short string. Because
of this complex structure of grammar file definition for this problem, a "small" value of MAX_REC_LEVEL is
unsuitable for this problem.

46

Name of Hyper-parameter Type Value/Range
INITIALISATION Nominal "PI_grow", "rhh", "uniform_tree"

CROSSOVER Nominal "variable_onepoint", "variable_twopoint",
"fixed_twopoint", "fixed_onepoint"

CROSSOVER_PROBABILITY Continuous [0, 1]

MUTATION Nominal "int_flip_per_codon", "subtree",
"int_flip_per_ind"

MUTATION_PROBABILITY Continuous [0, 1]
MUTATION_EVENT_SUBTREE Ordinal [1, 5]
MUTATION_EVENT_FlIP Ordinal [1, 100]
SELECTION_PROPORTION Continuous [0, 1]

SELECTION Nominal "tournament", "truncation",
"variable_onepoint"

TOURNAMENT_SIZE Ordinal [1, 50]
ELITE_SIZE Ordinal [1, 100]
CODON_SIZE Ordinal [200, 1000]
MAX_GENOME_LENGTH_SIZE Ordinal [100, 500]
POPULATION_SIZE Ordinal [100, 1000]

Table 4.3: Hyper-parameters Tuning Range for PonyGE2

Name of Hyper-parameter Type Value/Range
POPULATION_SIZE Ordinal [100, 1000]
ELITISM Ordinal [50, 500]
TOURNAMENT Ordinal [1, 50]
PROB_CROSSOVER Continuous [0, 1]
PROB_MUTATION Continuous [0, 1]

Table 4.4: Hyper-parameters Tuning Range for SGE

47

Chapter 5

Evaluation

5.1 Problem found in Test

As it has been mentioned previously, GGES was firstly included in the project to compare its
performance with other GE systems. The problem we found is that, in the test phase, an unstable
problem about acquiring standard output from GGES system for python was found, by which
the management script is written. This could lead to the result that the extracted test result for
GGES is not correct, so the part of GGES problem is disabled in the last version of this work.
This part will become our future work, to solve the problem of acquiring blocked, standard output
from GGES system.

In the test phase, we found that the execution of the Max problem cost a massive amount of
time on our test machine under our testing settings. According to the grammar file and generated
candidates, the main reason for this vast time cost comes from the design of grammar and the
target of this problem. It is allowed to generate a nested-loop structure in this problem. In order to
generate a number as large as possible, GE system tends to build a very deep nested loop since the
depth of loop is almost the synonym of the large number under the setting of this problem. However,
the cost for that is a huge time cost to calculate the function includes this deeply nested loop. In
order to ensure the integrity and consistency of this test, this extremely time-costly problem was
excluded in this test to make this test could be finished in an acceptable time.

5.2 Result of Test

The application of the proposed benchmark frame is used to compare two grammatical evolution
system in this project. Even though all GE and variant systems follow the same general idea of
GE, the performance of two systems shows some difference, and their characters diverge.

In many symbolic regression problems (StringMatch, Keijzer6, and Vladislavleva4), PonyGE2 sys-
tem seems reached a performance wall after a very limited number of iteration of hyper-parameter
tuning. The standard deviation is also tiny, which proves this it is stable for PonyGE2 system
to reach such a performance wall under current configuration tuning range. The situation of the
SGE system is different. In StringMatch problem, SGE system continually increases its perfor-
mance throughout the whole hyper-parameter tuning process. Also, in the case of keijzer6 prob-
lem, PonyGE2 approach the value 0 very early and remain stable in all runs, whereas SGE was
still struggling to eliminate the error between evaluated individuals and target sample. As for
the Vladislavleva4 problem, SGE’s progress is much slower than PonyGE2 system. Moreover, for
all these problems, the SGE system never performs better than the PonyGE2 system, even it is
approaching the fitness value of the PonGE2 system. The change of fitness value throughout the
hyper-parameter tuning for both systems on symbolic regression problem can be found in Figure
5.1 to 5.3.

The result of the banknote problem share some characters from previously mentioned problems. As

48

Figure 5.4 shows their performance on this classification problem. In the whole process of hyper-
parameter tuning, the error value of the SGE system remains bigger than it is from PonyGE2
system. On the same time, the standard deviation for both systems shrink throughout the whole
process and become relatively small at the end of tuning, which is considered to be an evidence
that both systems are approaching their global or local optimum under the tuned configurations.

The SGE system turns back its situation in the Housing problem, a supervised learning problem
with a relatively larger number of variables. Even though SGE PonyGE2 owns a better start point
at the first iteration, SGE surpasses PonyGE2 very soon and keep it leading until the end of the
tuning process with stability. A similar situation also exists in problem Pagie and 5-Parity. As
Figure 5.6 shows, SGE outperformed PonyGE2 in the whole process and, it hits the performance
wall very early. For the 5-Parity Problem, both systems improved their performance throughout
the hyper-parameter tuning process, but SGE got a relative better result at the end of it.

Multiplexer 11 is a problem with higher complexity when we compare this to other problems in
this benchmark. One point to mention is, the time cost for running this problem is much higher
than others. Considering the core of SGE and PonyGE2 systems remain unchanged, the most time
cost is used in evaluating evolved individuals. For this problem, SGE and PonyGE2 perform almost
equally well at the start of hyper-parameter tuning, as it shows in 5.8. But with the number of
iteration goes up, PonyGE2 system opens the gap with SGE system, the fitness value of PonyGE2
decrease slightly faster than SGE system. What different with other problems is, the standard
deviation of the SGE system is smaller than PonyGE2, which proves that SGE’s performance is a
little bit more stable than its competitor on this problem.

In the test of the artificial ant (Santa Fe train) problem, the performance of the SGE system is
worse than PonyGE2 still. At the beginning iteration of hyper-parameter tuning, we say the per-
formance of SGE system is volatile since a relatively high standard deviation was observed at the
first 20 iterations. PonyGE2 reached the optimum value after around 30 iterations and SGE cost
almost 50 iterations. During the whole tuning process, PonyGE2 shows better stability with very
limited standard deviation.

One interesting phenomenon that attracts our intention is, there is a large difference of performance
at the start iteration over several problems, as it shows in Figure 5.1 to Figure 5.4 and Figure 5.9.
In all these problems, PonyGE2 always has a much better start point than SGE. We thought of
two reasons, and these reasons may also interact with each other to cause this phenomenon. One
possible reason is that the SGE system is more sensitive to the hyper-parameter than PonyGE2.
In compare with PonyGE2, the SGE system has a much shorter parameter list, and it makes this
system more sensible than PonyGE2 since they are following a similar evolving mechanism. The
result of the test also supports this idea since SGE has bigger improvements in more problems
than its opponent with the help of hyper-parameter tuning. This sensibility of SGE may cause the
worse result than PonyGE2 at the start of the hyper-parameter tuning process since both systems
may not have proper configurations on hand, and SGE is much more sensitive to that. The second

Figure 5.1: StringMatch Prob-
lem

Figure 5.2: Vladislavleva4 Figure 5.3: Keijzer6 Problem

49

Figure 5.4: Banknote Problem Figure 5.5: Housing Problem

Figure 5.6: Pagie Problem Figure 5.7: 5-parity Problem

Figure 5.8: Multiplexer 11 Problem Figure 5.9: Artificial Ant Problem

50

reason is that PonyGE2 has a better initialization technique. As introduced in Chapter 3, PonyGE2
is not a basic version of GE, and many advanced techniques (includes initialization techniques) are
optional in this system to enhance the performance of GE. In the case of the initialization process
of hyper-parameter is just finished, and no proper configuration is available for both systems, the
evolution of the system could be at relatively low efficiency. Under such a setting, the initialization
technique would be determent for the performance of tested systems.

Name of Problem Final Fitness (standard deviation) Difference(+/-)PonyGE2 SGE
StringMatch 15.0(±0) 16.3(±0.7) +8.7%
Keijzer6 9.85(±30)e-5 1.21(±0.780)e-3 +1128.4%

Vladislavleva4 0.015(±0.001) 0.168(±0.005) +1020.0%
Pagie 0.131(±0.010) 0.116(±0.003) −11.5%

Banknote 0.525(±0.002) 0.570(±0.002) +8.6%
Housing 4.879(±0.119) 4.555(±0.066) −6.6%
5-parity 7.136(±0.472) 6.474(±0.696) −11.3%

Artificial Ant 0.00(±0) 0.43(±1.15) +∞
Multiplexer 11 420.3(±36.8) 503.1(±37.8) +19.7%

Table 5.1: Final Fitness value of tested systems (PonyGE2 and SGE) on benchmark problems and
their Difference2. A Positive difference represents PonyGE2 performs better and verse visa.

Table 5.1 summarizes the final result for system SGE and PonyGE2 on all tested benchmark prob-
lems. The final result for tested systems are recorded and the difference between them are repre-
sented by relative difference RD, which is calculated by formula RD = (FSGE−FPonyGE2)/FPonyGE2.
Generally saying PonyGE2 performs better than SGE in the test we have finished: on more than
60% tested benchmark problems, PonyGE2 system acquired better(smaller) fitness values than
SGE system did. However, it is unfair to say that PonyGE2 system is better than SGE system.
What must be taken into consideration is, this result is only for the given configurations in this
test, and some hyper-parameters may influence the result are remain default value due to some
reasons mentioned in chapter 4. Hence, a more detailed discussion is necessary for the problem
’which system is better,’ and this part will be left in chapter 6.

Actually, if we compare the performance of systems vertically, we can compare the performance
of these systems vertically and see the results differently. In table 5.2, we compared these two
systems’ performance between the start of the hyper-parameter tuning and the end of it. Here
we use absolute relative error to express the improvement these system has achieved, who follows
the same idea of previous relative difference and calculated by |FStart − FEnd|/FEnd.. Generally,
both systems achieved better performance by hyper-parameter tuning. The banknote is the least
improved problem for both systems, which has only 4.8% and 6.1% improvement respectively.

Problem PonyGE2 SGE
First Last Imp.3 First Last Imp.3

StringMatch 16.1(±0.8) 15(±0) 7.4% 20.9±1.7 16.3(±0.7) 28.5%
Keijzer6 3.27(±9.8)e-4 9.85(±30)e-5 232% 6.53(±8.98)e-3 1.21(±0.780)e-3 422%

Vladislavleva4 0.028(±0.005) 0.015(±0.001) 92.3% 0.183(±0.001) 0.168(±0.005) 8.9%
Pagie 0.178(±0.024) 0.131(±0.010) 35.3% 0.172(±0.045) 0.116(±0.003) 49.0%

Banknote 0.550(±0.009) 0.525(±0.002) 4.8% 0.606(±0.002) 0.570(±0.002) 6.1%
Housing 5.542(±0.494) 4.879(±0.119) 13.6% 5.786(±0.619) 4.555(±0.066) 27.0%
5-Parity 9.27(±0.581) 7.136(±0.472) 29.9% 9.578(±1.677) 6.474(±0.696) 48.0%

Artificial Ant 6.5(±3.67) 0.0(±0) ∞ 16.2(±14.3) 0.43(1.2) 3683%
Multiplexer 11 625.1(±92.0) 420.3(±36.8) 48.7% 633.0(±60) 503.1(±37.9) 25.8%

Table 5.2: The improvement of tested system by hyper-parameters tuning of tested systems, the
number in parentheses is the standard deviation of corresponding data.

2A positive difference value means PonyGE2 acquires better result on that problem and verse visa.

51

Here, we assumed that the result of a GE system with finite configuration over a specific problem
follows the normal distribution, and did a hypothesis testing to verify whether these differences
caused by hyper-parameter tuning is the improvement rather than any exceptional cases. Consid-
ering the fact that the test number is smaller than 30, we use the t-test to estimate that these two
groups of fitness value (before and after the hyper-parameter tuning) is different, which also means
that such a process improves the performance of GE system. For every system on every tested
problem, we test the difference independently in the following ways. We made the hypothesis on
the fitness value F :

Ho : Fbefore = Fafter (5.1)
H1 : Fbefore > Fafter (5.2)

Here, since the H1 is representing GE system can perform better with tuned configuration, we
shall use the threshold for one-tailed testing. And the formula used to calculate t-statistic is:

t =
X̄1 − X̄2√

(n1−1)S2
1+(n1−1)S2

2

n1+n2−2 (1
n1
− 1

n2
)

(5.3)

By calculating the t-statistical, we can get the p-values for both system in all tested problem in
Table 5.3.

Name of Problem PonyGE2 SGE
t-stat p-value t-stat p-value

StringMatch 6.077 7.628e-6 9.466 2.441e-8
Keijzer6 0.973 0.341 2.472 0.023

Vladislavleva4 11.967 7.601e-11 10.595 3.998e-8
Pagie 8.015 2.425e-8 5.648 1.838e-5

Banknote 11.029 4.556e-10 9.045 3.556e-8
Housing 8.837 3.077e-8 5.828 8.457e-6
5-Parity 12.495 1.750e-14 7.453 1.070e-7

Artificial Ant 7.865 2.152e-7 4.120 0.0011
Multiplexer 11 6.697 4.274e-6 9.044 3.557e-8

Table 5.3: Result of t-statistical and p-value in hypothesis testing

In statistics, the Significance Level commonly used is usually a = 0.05. And for our tested problems,
the p-values are mostly much smaller than this value except for the Keijzer6 problem. For these
cases of p < a = 0.05, we can directly refuse the H0 and saying that the fitness value before and
after the hyper-parameter tuning has a significant difference in statistics. As for the only exception,
the Keijzer6 problem, due to the fact that the fitness value is approaching the optimum (0), we can
say that the fitness value does not show any significant improvement by hyper-parameter tuning,
but the result is already good enough for this problem.
Besides, the tuned hyper-parameters shows some patterns at the end of the experiment. Underlying
figures 5.2 and 5.2 shows the distribution of tuned hyper-parameters for PonyGE2 and SGE system
in two parallel coordinates respectively. For PonyGE2 system, some of the parameters’ name is
categorized into integers for helping computer draw the graph. The mapping relations are listed in
Table 5.4.
Even though not all hyper-parameters are selected to show in the Figure 5.2 due to its complex
structure of configuration, it is still apparent to find out some configuration bias exists in the distri-
bution of tuned hyper-parameters for system PonyGE2. For example, Type 1 (variable_onepoint)
of crossover dominates in the selection of crossover, and a high crossover rate seems more attractive
than a low crossover rate. The situation in mutation part is different. All settings are concentrated
on Type 2 (subtree), Type 3(int_flip_per_ind), Type 1 (int_flip_per_codon) of mutation had
not even been chosen at one time. Meanwhile, some color-based (which means they are problem-
based) patterns are not clearly seen from this graph but can be found in the problem-independent
graph for distribution of hyper-parameters in Auxiliary results in section 5.2.1.

3Imp. represent for Improvement.

52

Categories Origianl Name Representing Code (Integer)

Initialization
rhh 1

PI_grow 2
uniform_tree 3

Crossover

variable_onepoint 1
variable_twopoint 2
fixed_twopoint 3
fixed_onepoint 4

Mutation
int_flip_per_codon 1

subtree 2
int_flip_per_ind 3

Selection tournament 1
truncation 2

Table 5.4: The Mapping relation between tuned hyper-parameters and their representing code in
PonyGE2.

Categories Origianl Name Representing Code (Integer)

Problem

Ant 1
Banknote 2
Housing 3
Keijzer6 4
mux11 5
Pagie 6
Parity5 7

String_Match 8
Vladislavleva4 9

Table 5.5: The Mapping relation of Problems for Figure 5.2 and Figure 5.2.

Figure 5.10: The distribution of tuned Hyper-parameter for PonyGE2 system. Names of these pa-
rameters in orders are ’Probelm’,’Population Size’,’Initialization (Method)’, ’Crossover’,’Crossover
Rate’,’Mutation’,’Elite Size’,’Selection’ and . All non-numerical type of parameters have been cat-
egorized. Mapping between colors and problems can be found in Table 5.5.

53

Similar, some regular pattern can also be found in the case of the SGE system. Matched with
our guess, the hyper-parameter of population size converged to a large number, and we believe
it is because a large population is a benefit for the performance. It also seems many samples are
located at a relatively low range of Elitism and a relatively high range of tournament size. One
penitential reason for this is that a relatively small elitism size combines with a large tournament
size may help to improve the efficiency of selection. As for the crossover rate, it seems a mid-rage
crossover rate (around 0.5) is not that popular, although this trend is not very clear. However, in
the last parameters, most configurations tuned to a low mutation rate expect for several orange
lines, which are representing the cases of the multiplexer 11 problem. To look at the relationship
between hyper-parameters pattern and problems more precise, the parallel coordinates of hyper-
parameters for every problem and systems are separately showed in section 5.2.1.

Figure 5.11: The distribution of tuned Hyper-parameter for PonyGE2 system.Names of these pa-
rameters in orders are ’Population Size’, ’Elitism’,’Tournament Size’,’Crossover Rate’ and ’Muta-
tion Rate’. All non-numerical type of parameters have been categorized. Mapping between colors
and problems can be found in Table 5.5.

5.2.1 Auxiliary results

Figure 5.12: The distribution of tuned Hyper-parameter for Ant Problem.

54

Figure 5.13: The distribution of tuned Hyper-parameter for Banknote Problem.

Figure 5.14: The distribution of tuned Hyper-parameter for Housing Problem.

Figure 5.15: The distribution of tuned Hyper-parameter for Keijzer6 Problem.

Figure 5.16: The distribution of tuned Hyper-parameter for Multiplexer-11 Problem.

55

Figure 5.17: The distribution of tuned Hyper-parameter for Pagie Problem.

Figure 5.18: The distribution of tuned Hyper-parameter for 5Parity Problem.

Figure 5.19: The distribution of tuned Hyper-parameter for String Match Problem.

Figure 5.20: The distribution of tuned Hyper-parameter for Vladislavleva4 Problem.

56

Chapter 6

Conclusion and Discussion

6.1 Concusion for tested system
In this section, the result of comparison on two GE systems will be analyzed. Two tested systems,
PonyGE2 and SGE both expressed the ability of grammatical evolution in dealing with the com-
plex problem from different fields. If we compare these two systems horizontally, the conclusion
comes to that the PonyGE2 system performs better than the SGE system to some extent, since
PonyGE2 got better final results on more benchmark problems. However, this conclusion is under
the limitation of our experimental settings, that all configurable parameters and their tuning range
are shown at the end of chapter 4.

Even if we said that the PonyGE2 system performs better than the SGE system, it is still very
hard to directly define which system is a better choice in a practical application. The main reason
of that is, the lists of configurable hyper-parameters for two tested systems has a huge difference
and some of them remains as the default value in our test. It makes the comparison between the
two tested systems is not that precisely ’fair’ to some extent. Meanwhile, the performance they can
achieve is restricted not only by these hyper-parameters, but also dozens of factors, such like the
grammar of the problem, the benchmark structure (which problems are selected to test) or even
the time cost limit for a specific application.
However, considering the characters these two systems showed in this test, we conclude that
PonyGE2 is currently a more powerful system, and it is suitable for most researcher and expert
users. This conclusion is based on the following reasons:

• PonyGE2 performs better in more problems, no matter it is in the sense of final result or
stability of fitness values. In some problem, the result of PonyGE2 in the first iteration of
hyper-parameter tuning is even better than SGE got at the end of the tuning process.

• The number of configurable parameters in this system is considerable, which brought great
extendibility but also difficult to get started with. Fortunately, detailed and easy-to-read
documentation compensate for it.

• PonyGE2 is a well designed, modulated system. Users may modify the composition of this
system easily and convert it into other GE variant. Furthermore, PonyGE2 is the second
version of PonyGE series and is still in maintenance, whereas SGE seems not.

As for the SGE systems, we see it as a simplified GE system which is suitable for non-expert users.

• SGE has a concise configurable hyper-parameters list, and the ranges for most of the config-
urations are not necessary for further discussion since they are just a probability and can be
easily set to [0, 1].

• The performance of SGE is acceptable for most of the problems. Especially, SGE shows a
better ability in dealing with complex problems than in simple symbolic regression problems,
which may be a benefit of its high locality design. Considering that most non-expert usage is
complex heuristic problems, SGE may fit these complex problem from real applications and
non-expert users.

57

6.2 Discussion and Future work
Even though it seems that PonyGE2 performs better than SGE in the aspect of the final result,
both of them have got an excellent result if we look at their performance on these tested problems.
However, what makes the difference between the PonyGE2 system and the SGE system is waiting
for discussion. As we know, canonical GE is mainly criticized for its insufficient random genome
initialization, and the problem of low locality and high redundancy. Furthermore, SGE was firstly
proposed to relieve the problem of low locality and high redundancy by designing a new mapping
mechanism. Nevertheless, the result may imply that the mapping mechanism from SGE has not
that good influences on the performance of these specific problems.

We dived into the mechanism of SGE and found that the limitation of SGE grammar that a max-
imum depth must be specified beforehand may make those individuals with higher complexity is
unreachable for the SGE system under default configuration. In other words, the complexity of
evolved individuals for SGE is linearly related to the recursion level in SGE, whereas they are not
related in canonical GE with wrapping. The limit of recursion level may lead to the result that
some local or global optimum points with the high complexity of construction are unreachable
for SGE. However, the canonical GE still has the chance to find it, although the search may be
inefficient as a result of its high redundancy and low locality. Although the limitation of maximal
tree depth also exists in PonyGE2, the default value of it is set to a much higher value for the
consideration of python eval() stack limit and has a much broader space for the system to search in.

Meanwhile, PonyGE2 itself also makes some progress in dealing with the problem of insufficient
initialization. As it stated in their work [52], it provided some tree-based initialization technique
apart from the basic random genome initialization method, which can build all valid individu-
als. Also, the PonyGE2 system has a built-in valid individual monitoring mechanism. All invalid
individuals generated will be discarded directly. Both ways can relieve the previously mentioned
problems of GE and reduce some criticism from the community. Therefore, it is fairer to say that
PonyGE2 is an advanced version of GE.

One another problem we found in this project is the benchmark design. In this project, several
widely used problem is collected in the benchmark for testing GE systems, and the criteria for
selecting is, to choose the most widely used problems in the community. In the process of reviewing
works in the field of grammatical evolution, we found that many testing problems are prevalent
purely because of historical reasons. It has never been detailed discussed how a scientific benchmark
designed for GE should look like, despite an improper benchmark that may provide misleading
information on performance. In this work, we got some inspiration for designing the benchmark
from work [5], which gives some advice in benchmark design for Genetic Programming (GP).
However, it is still disputable that grammatical evolution should be viewed as just a variant of GP
or an independent stream of evolutionary algorithms, that probably leads to the fact that advises
in work [5] does not suit GE well. Therefore, some work in researching the design of benchmark
exclusive for GE is necessary for the community, which can also be our future work. In this work,
a pipeline for testing GE systems has been constructed, and we believe this can largely relieve the
workload of this future work.

58

Appendix A

BNF Definition

BNF files regulates the mapping process of Grammatical Evolution systems. Every Benchmakr
problem owns their own BNF definition since they are describing different process to map the
search space into their solution space. In this section, BNF definition for every benchmark prblems
are listed.

StringMatch

<start> ::= <string>

<string> ::= <letter> | <letter><string>
<letter> ::= <vowel> | <consonant> | <char>
<char> ::= " " | ! | ? | , | .
<vowel> ::= <lower_vowel> | <upper_vowel>
<lower_vowel> ::= a|e|o|i|u
<upper_vowel> ::= A|E|I|O|U

<consonant> ::= <lower_consonant> | <upper_consonant>
<lower_consonant> ::= b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z
<upper_consonant> ::= B|C|D|F|G|H|J|K|L|M|N|P|Q|R|S|T|V|W|X|Y|Z

Keilzer6

<start> ::= <e>

<e> ::= <e>+<e> | <e>-<e> | <e>*<e> | div(<e>,<e>)
| psqrt(<e>) | sin(<e>) | tanh(<e>) | exp(<e>) | plog(<e>)
| x[0] | x[0] | x[0] | x[0] | x[0]
| <c><c>.<c><c>| <c><c>.<c><c>| <c><c>.<c><c>| <c><c>.<c><c>

<c> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

59

Vladislavleva4

<start> ::= <e>

<e> ::= <e>+<e> | <e>-<e> | <e>*<e> | div(<e>,<e>)
| psqrt(<e>) | sin(<e>) | tanh(<e>) | exp(<e>) | plog(<e>)
| x[0] | x[1] | x[2] | x[3] | x[4] | <c><c>.<c><c>

<c> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Pagie

<start> ::= <expr>
<expr> ::= <expr><op><expr> | (<expr>) | <pre-op>(<expr>) | <var>
<op> ::= + | - | * | /
<pre-op> ::= sin | cos | exp | plog
<var> ::= x[<idx>]
<idx> ::= 0 | 1

Banknote

<start> ::= <e>
<e> ::= (<e> <op> <e>) | <f1>(<e>) | <f2>(<e>, <e>) | <v> | <c>
<op> ::= + | * | -
<f1> ::= psqrt | plog
<f2> ::= pdiv
<v> ::= x[<idx>]
<idx> :: = 0 | 1 | 2 | 3
<c> ::= -1.0 | -0.1 | -0.01 | -0.001 | 0.001 | 0.01 | 0.1 | 1.0
<c> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Boston Housing

<start> ::= <e>
<e> ::= (<e> <op> <e>) | <f1>(<e>) | <f2>(<e>, <e>) | <v> | <c>
<op> ::= + | * | -
<f1> ::= psqrt | plog
<f2> ::= pdiv
<v> ::= x[<idx>]
<idx> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12
<c> ::= -1.0 | -0.1 | -0.01 | -0.001 | 0.001 | 0.01 | 0.1 | 1.0

5-Parity

<start> ::=
 ::= and | or | not (and)

| not (or) | <var>
<var> :: = b0|b1|b2|b3|b4

60

Max(py)

<start> ::= <defp>::<callp>
<defp> ::= def p()::x = 0.0::<code>::return x:
<callp> ::= XXX_output_XXX = p()

<code> ::= x = <expr> | for i in <seq>::<code>:
| x = <expr> ::<code>| for i in <seq>::<code>:::<code>

<expr> ::= <const> | x | (x + <const>) | (x * <const>)
<const> ::= 0.5
<seq> ::= [<csitems>] | range(<i>+1)
<i> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6
<csitems> ::= <item> | <item>, <csitems>
<item> ::= <i>

Santa Fe Trail

<start> ::= begin <code> end
<code> ::= <line> | <code> <line>
<line> ::= <condition> | <op>
<condition> ::= ifa begin <opcode> end begin <opcode> end
<opcode> ::= <op> | <opcode> <op>
<op> ::= tl | tr | mv

Multiplexer

<start> ::=

 ::= () and ()
| () or ()
| not ()
| if () () ()
| <var>

<var> ::= i0 | i1 | i2 | i3 | i4 | i5 | i6 | i7 | i8 | i9 | i10

61

Appendix B

Hyper-parameter List

Listing B.1: example hyper-parameter list for PonyGE2 system

[{
" name ": " INITIALISATION ",
" type ": " NominalSpace ",
" options ": [" PI_grow ", " rhh ", " uniform_tree "]

},{
" name ": " CROSSOVER ",
" type ": " NominalSpace ",
" options ": [" variable_onepoint ", " variable_twopoint ", **

**" fixed_twopoint ", " fixed_onepoint "]

},{
" name ": " CROSSOVER_PROBABILITY ",
" type ": " ContinuousSpace ",
" range ": [0,1]

},{
" name ": " MUTATION ",
" type ": " NominalSpace ",
" options ": [" int_flip_per_codon ", " subtree ", " int_flip_per_ind "]

},{
" name ": " MUTATION_PROBABILITY ",
" type ": " ContinuousSpace ",
" range ": [0,1]

},{
" name ": " MUTATION_EVENT_SUBTREE ",
" type ": " OrdinalSpace ",
" range ": [1,5]

},{
" name ": " MUTATION_EVENT_FlIP ",
" type ": " OrdinalSpace ",
" range ": [1,100]

},{
" name ": " SELECTION_PROPORTION ",
" type ": " ContinuousSpace ",
" range ": [0,1]

},{
" name ": " SELECTION ",
" type ": " NominalSpace ",
" options ": [" tournament ", " truncation "]

},{
" name ": " TOURNAMENT_SIZE ",
" type ": " OrdinalSpace ",

62

" range ": [1,50]
},{

" name ": " CODON_SIZE ",
" type ": " OrdinalSpace ",
" range ": [200,1000]

},{
" name ": " MAX_GENOME_LENGTH ",
" type ": " OrdinalSpace ",
" range ": [100,500]

},{
" name ": " MAX_INIT_TREE_DEPTH ",
" type ": " OrdinalSpace ",
" range ": [5,20]

},{
" name ": " MAX_TREE_DEPTH ",
" type ": " OrdinalSpace ",
" range ": [10,50]

},{
" name ": " POPULATION_SIZE ",
" type ": " OrdinalSpace ",
" range ": [100,500]

}
]

63

Appendix C

Manual of System

C.1 File Structure

Figure C.1: File Structure

C.2 Extend your benchmark

1. Write your own fitness function and interface
1. Write your fitness function int evaluate_[problem_name](argv[]) or #include your ’problem.c’

in ’cython/fitness.h’.

2. Add the declaration of your evaluate function under cdef extern from "fitness.h" : in
’interface.pyc’.

3. Add the interface function for your test system language, following the scheme of eval_[problem](argv[])

Example(cython for python2 and python3):

64

cdef extern from "fitness.h" :
double rmse(double *prediction_value, double *actual_value,int length);

def fitness_rmse(np.ndarray[double, ndim=1, mode="c"] y not None, np.ndarray[double,
ndim=1, mode="c"] yhat not None):
result = rmse(<double*> np.PyArray_DATA(y),<double*> np.PyArray_DATA(yhat),y.shape[0])
return result

‘‘‘

2. Add new problem to test system
For PonyGE2 system:

To run your own problem in PonyGE2 system, you still need to 1. add a fitness class under
PonyGE2/src/fitness, following the schema of

from fitness.base_ff_classes.base_ff import base_ff
from fitness.cython.interface import your_fitness_function
class problem_name(base_ff):

def __init__(self):
super().__init__()

@eval_counter
def evaluate(self, ind, **kwargs):

return your_fitness_function(**kwargs)

2. add a parameter text file under PonyGE2/src/parameters 3. copy the BNF file of your problem
into PonyGE2/src/grammars

For SGE system:

To run your own problem in SGE system,you need to write a scirpt python file for each problem
you are going to test. Following code is a good template to start with.

import sys,os
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + ’/../’)
from util.cython.interface import your_fitness_function

class PROBLEM_NAME:
def evaluate(self, individual):

error=your_fitness_function(**kwargs)
return (error, {})

if __name__ == "__main__":
import core.grammar as grammar
import core.sge
experience_name = "WHATEVER/"
grammar = grammar.Grammar("../grammars/BNF_NAME", 5)
evaluation_function = PROBLEM_NAME()
core.sge.evolutionary_algorithm(grammar = grammar, eval_func=evaluation_function,

exp_name=experience_name)

For SGE system:

1. For the test in GGES system, you need to write a test program for your selected problem (in
/demo),copy your bnf into /bnf directory and assign your fitness function’s return value to
eval function respectively.

65

2. For the reference of these work, please mimic the /demo/template.c file.

3. After finishing this part, you need to modify the Makefile by adding some declaration of
your problem like following examples.

BIN:
++ $(BINDIR)/YOUR_PROBLEM
++ $(BINDIR)/YOUR_PROBLEM: $(DEMO_OBJS) $(OBJDIR)/YOUR_PROBLEM.o $(LIB)
++ @echo linking $@ from $^
++ @$(CC) $(CFLAGS) $^ -o $@ $(LFLAGS)
‘‘‘

*Since the GGES system has some problem to pass its standard output to python3, this part is
not used in the thesis project.*

C.3 Description of important files

Testing Part
Here, the details of the test module will be introduced from bottom to up. At the bottom of the
system, the GE system needs to execute different basic problem and constantly tune its hyper-
parameter. The way system got parameters is different by systems, for instance, PonyGE2 gets
parameters by command and SGE takes configuration from the configuration file. We read in all
hyper-parameters and feed them into system. The MIP-EGO module is running on the top of the
testing system and asking for a ’Fitness value’ as an indicator for hyper-parameter tuning, this
value is extracted from the standard output of test systems. The iteration of "MIP-EGO gives
configuration to test system" and "test system give objective value" will last an iteration number
of times, which is 100 in this project and can be modified by users. Following codes shows how
these works:

#FILE:Management.py
def run_XXX(cmd):

’’’
:param cmd: command to run system
:return: extracted final fitness value from standard output.
’’’
...
return fitness

def obj_func(x):
’’’
This fucntion feed hyper-parameters into system and execute it.
:param x: hyper-paramater setting.
:return: objective value for hyper-parameter tuning.
’’’
...

same configuration will be executed 5 times and took the average value as objective
value

pool = Pool(processes=5)
for i in range(5):

result.append(pool.apply_async(run_sge, args=(cmd,)))
for i in result:

fitness = i.get()
if fitness == np.nan:

err += 1
else:

valid_result.append(float(fitness))
pool.close()

66

f = np.average(valid_result)
dev=np.std(valid_result)
...

return f

def hyper_parameter_tuning_sge(n_step,n_init_sample,eval_type,
max_eval_each,problem_set,para_list):
’’’

:param n_step:
:param n_init_sample:
:param eval_type:
:param max_eval_each:
:param problem_set:
:param para_list:
:return:
’’’
...
for problem in problem_set:

...
opt = BO(search_space, obj_func, model, max_iter=n_step,

n_init_sample=n_init_sample,
n_point=1,
n_job=1,
minimize=minimize_problem,
eval_type=eval_type,
verbose=True,
optimizer=’MIES’)

xopt, fitness, stop_dict = opt.run()
...

On a higher level of test module, we implemented test classes for every independent test systems,
who works as the controller of the automatic test for specific system. The name of each test class
follows the way of Tester_SystemName , such like Tester_PONYGE2. For every test class,
they are generally composed by several same methods:

FILE:Management.py
class Tester_XXX:

def __init__(self,n_step,n_init_sample,eval_type,max_eval_each,para_list=...):
’’’
:param n_step: Iteration number of hyper-parameter tuning.
:param n_init_sample: Initialization point number for hyper-parameter tuning.
:param eval_type: Evaluation type.
:param max_eval_each: Maximal allowed evaluation function calling number.
:param para_list: Location of tuned hyper-parameter list in json.
’’’
...

def make_interface(self):
copy the interface into src/fitness and build
...

def refresh_interface(self):
refresh the interface for system
...

def clear_log(self):
clear previous result and log files
...

def give_problem(self,problem_set):
assign problem to this test, para ’problem_set’ in list.
...

67

def run_PonyGE2(self):
run the test(including hyper-parameter tuning)
hyper_para_tuning_XXX.hyper_parameter_tuning_GGES(self.n_step, self.n_init_sample,

self.eval_type, self.max_eval_each, self.problem_set,
self.para_list)

def make_problem(self):
copy necessary files for test problem
...

On the top of test module, a ’Test manager’ is in charge of the automatic comparison between
systems. It ensures all tester share same configuration to run the test and also provides a simple
interfaces to users.

#FILE:src/hyper_parameter_tuning.py
class TesterManager:

def
__init__(self,test_systems,test_problems,n_step,n_init_sample,eval_type,max_eval_each,para_dict):
...

def run(self):
base = os.getcwd()

clean previous test result
global_log_cleaner()
if ’PonyGE2’ in self.test_systems:

****Test PonyGE2*****
tester = Tester_PONYGE2(n_step = n_step,

n_init_sample = n_init_sample,
eval_type=eval_type,
max_eval_each=max_eval_each,
para_list=self.para_dict+’/hyper_para_list_PonyGE2.json’
)

tester.give_problem(self.test_problems)
tester.make_interface()
tester.refresh_interface()
tester.run_PonyGE2()
os.chdir(base)

if ’SGE’ in self.test_systems:
****Test SGE*****
...

if ’GGES’ in self.test_systems:
*****Test GGES*****
...

print("All test finished, now quitting...")

To run a complete test, it is necessary to define all requested parameters in "management.py".
Following codes is a good example for running a test. In order to extract data conveniently, it
is recommend to run the test by using command like "nohup python3 management.py >logs/out-
put_[MachineName].txt 2>&1 &"

if __name__ == "__main__":
global_log_cleaner() # clean previous test result

#here to define the problem for the comparison
full_problem_set=[’ant’,’string_match’,’vladislavleva4’,’mux11’]

#shared parameters
n_step=10
n_init_sample=5

68

eval_type=’dict’
max_eval_each=50000
test_sys=[’SGE’,’PonyGE2’]

test=TesterManager(test_sys,part_problem_set,n_step,n_init_sample,eval_type,max_eval_each,’/util’)
test.run()

\label{testing}

On the other side, the analyzing module is responsible for data extraction from generated log
files and analyzing work. One point need to be mentioned is that, the usage of this module is
only effective with specific naming method for generated log files, which is produced by previously
mentioned command. In compare with the great variability of the analyzing work, the need of using
parameter extraction is stable. Following codes specified how parameter extractor is implemented,
and leaves analyzing part to users as it may be different from person to person according to their
demands. Meanwhile, the two methods used for generating statistical graph in this project is also
included, they are used for generating the distribution of hyper-parameter after hyper-parameter
tuning and the comparison graph between different systems.

class PARAMETERS_EXTRACTOR:
"""
This class is used to extract data from log files generated by running management.py.
"""

def __init__(self, dir, problem_set):
’’’
:param dir: location of log
:param problem_set: tested problem
’’’
...

def getpara(self, system_name):
’’’
This funciton is used to extract the name of tuned HYPER_PARAMETER in the test, by

reading the json file which
control hyper-parameters in.
:param system_name: Name of tested system
:return: A list of tuned parameters
’’’
...

def output_analyzer(self, f):
"""
This funciton extract data from std_out of test, which start with ’output’.
std_out are stored in those files with the name of ’output_MACHINE_NAME_IDNEX.txt’.
:param f: files
:return: A list includes fitness value in each iteration of tuning process for

every systems and problems
A List with following structure:[level1,level1,[...]]
Level1:(SYSTEM_NAME,[level2],[level2],[...])
Level2:[PROBLEM_NAME,[level3],[level3],[...]]
Level3:[[Iteration_number,Fitness_value],[Iteration_number,Fitness_value],[...]]

"""
...

def out_analyzer(self, system_name, f,type):
’’’
In the benchmark test, for every problem the system will store its best-founded

hyper-parameters settings, under
the name of out_SYSTEMNAME_PROBLEM_TIME_MACHINENAME.txt. They are generated by

class Tester.
This funciton is used to extract the best founded hyper-parameter setting stored

69

in one file f.
A dict includes the parameter_name and it’s value will be returned.
:param system_name:
:param f:
:param type: returned type, can be ’list’ or ’dict’
:return: A list/dict of Tuned configuration
’’’
...

def csv_writer(self, data):
’’’
This function is used to transfer data into .csv file for further usage.
:param data:
:return:
’’’
...

def run(self):
’’’
Run though all files in target_dir and extract data according to the content it

have.
This produces two type of files:

1. For each problem and system, a .csv file records all tuned
hyper-parameters."Configuration_[SYSTEM]_[PROBLEM].csv"

2. For each problem and system, a .csv file records all fitness value in each
iteration of hyper-parameter tuning.

’’’
...

Analyzing Part
In compare with the great variability of the analyzing work, the need for using parameter extraction
is relatively stable. Following codes specified several main methods in this part.

#FILE:post_test/parameter_extractor.py
class PARAMETERS_EXTRACTOR:

"""
This class is used to extract data from log files generated by running management.py.
"""

def __init__(self, dir, problem_set):
’’’
:param dir: location of log
:param problem_set: tested problem
’’’
...

def getpara(self, system_name):
’’’
This funciton is used to extract the name of tuned HYPER_PARAMETER in the test, by

reading the json file which
control hyper-parameters in.
:param system_name: Name of tested system
:return: A list of tuned parameters
’’’
...

def output_analyzer(self, f):
"""
This funciton extract data from std_out of test, which start with ’output’.

70

std_out are stored in those files with the name of ’output_MACHINE_NAME_IDNEX.txt’.
:param f: files
:return: A list includes fitness value in each iteration of tuning process for

every systems and problems
A List with following structure:[level1,level1,[...]]
Level1:(SYSTEM_NAME,[level2],[level2],[...])
Level2:[PROBLEM_NAME,[level3],[level3],[...]]
Level3:[[Iteration_number,Fitness_value],[Iteration_number,Fitness_value],[...]]

"""
...

def out_analyzer(self, system_name, f,type):
’’’
In the benchmark test, for every problem the system will store its best-founded

hyper-parameters settings, under
the name of out_SYSTEMNAME_PROBLEM_TIME_MACHINENAME.txt. They are generated by

class Tester.
This funciton is used to extract the best founded hyper-parameter setting stored

in one file f.
A dict includes the parameter_name and it’s value will be returned.
:param system_name:
:param f:
:param type: returned type, can be ’list’ or ’dict’
:return: A list/dict of Tuned configuration
’’’
...

def csv_writer(self, data):
’’’
This function is used to transfer data into .csv file for further usage.
:param data:
:return:
’’’
...

def run(self):
’’’
Run though all files in target_dir and extract data according to the content it

have.
This produces two type of files:

1. For each problem and system, a .csv file records all tuned
hyper-parameters."Configuration_[SYSTEM]_[PROBLEM].csv"

2. For each problem and system, a .csv file records all fitness value in each
iteration of hyper-parameter tuning.

’’’
...

def system_analyzer(target_dir=’tmp/’, show=False):
’’’
Draw comparison graph for each problem.
:param target_dir: target directory stores formatted fitness data over the

configuration tuning.
:return:
’’’
...

def conf_analyzer(target_dir=’tmp_para/’, show=False):
’’’
Draw the distribution of hyper-parameter after hyper-parameter tuning.
Used to find some patterns on hyper-parameter tuning.
:param target_dir: The target directory stores formatted best-found configurations

71

over the configuration tuning.
:param show:
:return:
’’’
...

Here, several information extractors which for log files generated by testing system are imple-
mented, which can extract information from them and, this information will be converted to a
formatted data file and stored. For example, for every system and every problem, a .csv file will
be generated to record the change of fitness value over alliteration and every independent test. By
doing this prepossessing work, generated data is much easier to users for analysis work.

72

Bibliography

[1] Hao Wang, Bas van Stein, Michael Emmerich, and Thomas Back. A new acquisition function
for bayesian optimization based on the moment-generating function. In 2017 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC), pages 507–512. IEEE, 2017.

[2] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary computing, volume 53.
Springer, 2003.

[3] Michael O’Neill and Conor Ryan. Grammatical evolution: Evolutionary automatic program-
ming in a arbitrary language, volume 4 of genetic programming, 2003.

[4] Conor Ryan, Michael O’Neill, and JJ Collins. Introduction to 20 years of grammatical evolu-
tion. In Handbook of Grammatical Evolution, pages 1–21. Springer, 2018.

[5] James McDermott, David R White, Sean Luke, Luca Manzoni, Mauro Castelli, Leonardo
Vanneschi, Wojciech Jaskowski, Krzysztof Krawiec, Robin Harper, Kenneth De Jong, et al.
Genetic programming needs better benchmarks. In Proceedings of the 14th annual conference
on Genetic and evolutionary computation, pages 791–798. ACM, 2012.

[6] Hao Wang, Bas van Stein, Michael Emmerich, and Thomas Bäck. A New Acquisition Function
for Bayesian Optimization Based on the Moment-Generating Function. In Systems, Man, and
Cybernetics (SMC), 2017 IEEE International Conference on, pages 507–512. IEEE, 2017.

[7] Gregor Mendel. Versuche über pflanzenhybriden. In Versuche über Pflanzenhybriden, pages
21–64. Springer, 1970.

[8] Hugo De Vries. Intracellular pangenesis. Open Court Chicago, 1910.

[9] Wilhelm Johannsen. Arvelighedslærens elementer. 1905.

[10] Oswald T Avery, Colin M MacLeod, and Maclyn McCarty. Studies on the chemical nature of
the substance inducing transformation of pneumococcal types: induction of transformation by
a desoxyribonucleic acid fraction isolated from pneumococcus type iii. Journal of experimental
medicine, 79(2):137–158, 1944.

[11] Alfred D Hershey and Martha Chase. Independent functions of viral protein and nucleic acid
in growth of bacteriophage. The Journal of general physiology, 36(1):39–56, 1952.

[12] Seymour Benzer. Fine structure of a genetic region in bacteriophage. Proceedings of the
National Academy of Sciences of the United States of America, 41(6):344, 1955.

[13] Francis HC Crick. On protein synthesis. In Symp Soc Exp Biol, volume 12, page 8, 1958.

[14] Sarah Leavitt. Deciphering the genetic code: Marshall Nirenberg. Office of NIH History, 2004.

[15] Chris A Kaiser, Monty Krieger, Harvey Lodish, and Arnold Berk. Molecular cell biology. WH
Freeman, 2007.

[16] Jürgen Brosius. The fragmented gene. Annals of the New York Academy of Sciences,
1178(1):186–193, 2009.

[17] Matt Ridley and Paul Matthews. Genome. Howes, 2000.

73

[18] Wolfram Saenger. Principles of nucleic acid structure. Springer Science & Business Media,
2013.

[19] Jeremy M Berg, John L Tymoczko, and Lubert Stryer. Biochemistry, ; w. h, 2002.

[20] Finn Werner and Dina Grohmann. Evolution of multisubunit rna polymerases in the three
domains of life. Nature Reviews Microbiology, 9(2):85, 2011.

[21] Joshua B Plotkin, Jonathan Dushoff, Michael M Desai, and Hunter B Fraser. Codon usage
and selection on proteins. Journal of molecular evolution, 63(5):635, 2006.

[22] OpenStax. Ribosomes and protein synthesis, Oct 2016.

[23] M Nirenberg, P Leder, M Bernfield, R Brimacombe, J Trupin, F Rottman, and C O’neal. Rna
codewords and protein synthesis, vii. on the general nature of the rna code. Proceedings of
the National Academy of Sciences of the United States of America, 53(5):1161, 1965.

[24] What is genetic variation?, Sep 2017.

[25] Alfred G Knudson. Mutation and cancer: statistical study of retinoblastoma. Proceedings of
the National Academy of Sciences, 68(4):820–823, 1971.

[26] Yael T Aminetzach, J Michael Macpherson, and Dmitri A Petrov. Pesticide resistance via
transposition-mediated adaptive gene truncation in drosophila. Science, 309(5735):764–767,
2005.

[27] Scott W Doniger, Hyun Seok Kim, Devjanee Swain, Daniella Corcuera, Morgan Williams,
Shiaw-Pyng Yang, and Justin C Fay. A catalog of neutral and deleterious polymorphism in
yeast. PLoS genetics, 4(8):e1000183, 2008.

[28] Thomas Hunt Morgan. Sex limited inheritance in drosophila. Science, 32(812):120–122, 1910.

[29] Federica Turriziani Colonna. Barbara mcclintock’s transposon experiments in maize (1931–
1951). Embryo Project Encyclopedia, 2017.

[30] James D Watson. Molecular biology of the gene. Pearson Education India, 2004.

[31] W-H Li, Dan Graur, et al. Fundamentals of molecular evolution. Sinauer Associates, 1991.

[32] Ronald Aylmer Fisher. The genetical theory of natural selection: a complete variorum edition.
Oxford University Press, 1999.

[33] Susumu Ohno. Evolution by gene duplication. Springer Science & Business Media, 2013.

[34] University of Michigan. Evolution and natural selection. https://globalchange.umich.edu/
globalchange1/current/lectures/selection/selection.html. Accessed May 21, 2019.

[35] David B Fogel. Evolutionary computation: the fossil record. Wiley-IEEE Press, 1998.

[36] Lawrence J Fogel. Artificial intelligence through a simulation of evolution. In Proc. of the 2nd
Cybernetics Science Symp., 1965, 1965.

[37] Lawrence J Fogel, Peter J Angeline, and David B Fogel. Approach to self-adaptation on
finite state machines. In Evolutionary Programming IV: Proceedings of the Fourth Annual
Conference on Evolutionary Programming, volume 355. MIT Press, 1995.

[38] John H Holland. Genetic algorithms and the optimal allocation of trials. SIAM Journal on
Computing, 2(2):88–105, 1973.

[39] John Henry Holland et al. Adaptation in natural and artificial systems: an introductory anal-
ysis with applications to biology, control, and artificial intelligence. MIT press, 1992.

[40] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. Genetic program-
ming: an introduction, volume 1. Morgan Kaufmann San Francisco, 1998.

74

https://globalchange.umich.edu/globalchange1/current/lectures/selection/selection.html
https://globalchange.umich.edu/globalchange1/current/lectures/selection/selection.html

[41] John R Koza and John R Koza. Genetic programming: on the programming of computers by
means of natural selection, volume 1. MIT press, 1992.

[42] Noam Chomsky. Formal properties of grammars. Handbook of Math. Psychology, 2:328–418,
1963.

[43] Alfonso Ortega, Marina De La Cruz, and Manuel Alfonseca. Christiansen grammar evolution:
grammatical evolution with semantics. IEEE Transactions on Evolutionary Computation,
11(1):77–90, 2007.

[44] Conor Ryan. Grammatical evolution tutorial. In Proceedings of the 12th annual conference
companion on Genetic and evolutionary computation, pages 2385–2412. ACM, 2010.

[45] Michael O’Neill and Conor Ryan. Grammatical evolution. IEEE Transactions on Evolutionary
Computation, 5(4):349–358, 2001.

[46] Conor Ryan, John James Collins, and Michael O Neill. Grammatical evolution: Evolving
programs for an arbitrary language. In European Conference on Genetic Programming, pages
83–96. Springer, 1998.

[47] Lewin Benjamin. Genes vii, 2000.

[48] Franco Mascia, Manuel López-Ibáñez, Jérémie Dubois-Lacoste, and Thomas Stützle.
Grammar-based generation of stochastic local search heuristics through automatic algorithm
configuration tools. Computers & operations research, 51:190–199, 2014.

[49] Conor Ryan and R Muhammad Atif Azad. Sensible initialisation in grammatical evolution.
In GECCO, pages 142–145. AAAI, 2003.

[50] David Fagan, Michael Fenton, and Michael O’Neill. Exploring position independent initialisa-
tion in grammatical evolution. In 2016 IEEE Congress on Evolutionary Computation (CEC),
pages 5060–5067. IEEE, 2016.

[51] Dirk Schweim, Ann Thorhauer, and Franz Rothlauf. On the non-uniform redundancy of repre-
sentations for grammatical evolution: The influence of grammars. In Handbook of Grammatical
Evolution, pages 55–78. Springer, 2018.

[52] Michael Fenton, James McDermott, David Fagan, Stefan Forstenlechner, Erik Hemberg, and
Michael O’Neill. Ponyge2: Grammatical evolution in python. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion, pages 1194–1201. ACM, 2017.

[53] James McDermott Erik Hemberg. Ponyge.

[54] M Nicolau and D Slattery. libge-grammatical evolution library (2006).

[55] Michael O’Neill, Erik Hemberg, Conor Gilligan, Eliott Bartley, James McDermott, and An-
thony Brabazon. Geva: grammatical evolution in java. SIGEVOlution, 3(2):17–22, 2008.

[56] Farzad Noorian, Anthony Mihirana de Silva, Philip HW Leong, et al. gramevol: Grammatical
evolution in r. Journal of Statistical Software, 71(1):1–26, 2016.

[57] Pavel Suchmann. Grammatical evolution ruby exploratory toolkit.

[58] Nuno Lourenço, Francisco B Pereira, and Ernesto Costa. Unveiling the properties of structured
grammatical evolution. Genetic Programming and Evolvable Machines, 17(3):251–289, 2016.

[59] Franz Rothlauf and Marie Oetzel. On the locality of grammatical evolution. In European
Conference on Genetic Programming, pages 320–330. Springer, 2006.

[60] Nuno Lourenço, Filipe Assunção, Francisco B Pereira, Ernesto Costa, and Penousal Machado.
Structured grammatical evolution: a dynamic approach. In Handbook of Grammatical Evolu-
tion, pages 137–161. Springer, 2018.

75

[61] Peter A Whigham, Grant Dick, James Maclaurin, and Caitlin A Owen. Examining the best
of both worlds of grammatical evolution. In Proceedings of the 2015 Annual Conference on
Genetic and Evolutionary Computation, pages 1111–1118. ACM, 2015.

[62] Peter A Whigham et al. Grammatically-based genetic programming. In Proceedings of the
workshop on genetic programming: from theory to real-world applications, volume 16, pages
33–41, 1995.

[63] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics,
21(2):239–245, 1979.

[64] Hao Wang, Michael Emmerich, and Thomas Bäck. Cooling strategies for the moment-
generating function in bayesian global optimization. In 2018 IEEE Congress on Evolutionary
Computation (CEC), pages 1–8, July 2018.

[65] Maarten Keijzer. Improving symbolic regression with interval arithmetic and linear scaling.
In European Conference on Genetic Programming, pages 70–82. Springer, 2003.

[66] Robin Harper. Spatial co-evolution: quicker, fitter and less bloated. In Proceedings of the 14th
annual conference on Genetic and evolutionary computation, pages 759–766. ACM, 2012.

[67] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

76

	Introduction
	What is Grammatical Evolution?
	Dealing Problems
	Project Overview
	Structure of this work

	Background
	Evolution in Biology
	Gene and Molecular Basis
	Expression of Gene
	Genetic Variation
	Natural Selection

	Evolutionary Computation
	Introduction and Brief History
	Individual and Population
	Evaluation function
	Variation (Crossover and Mutation)
	Selection Machanism

	Backus–Naur form

	Grammatical Evolution
	Introduction to GE
	GE Mechanism
	Expression of gene in GE
	Architecture of GE
	Working Mechanism

	Discussion of GE
	GE systems
	PonyGE2
	Structured Grammatical Evolution (SGE)
	Grammar-Guided Evolutionary Search (GGES)

	Hyper-parameter Tuning

	Method
	Benchmark
	Default Benchmark problems
	Implementation of Benchmark and its Structure

	Application
	Automated comparison over GE systems
	Basic Usage method
	Extend the benchmark

	Test settings

	Evaluation
	Problem found in Test
	Result of Test
	Auxiliary results

	Conclusion and Discussion
	Concusion for tested system
	Discussion and Future work

	BNF Definition
	Hyper-parameter List
	Manual of System
	File Structure
	Extend your benchmark
	Description of important files

	Bibliography

