
Universiteit Leiden
ICT in Business and the Public Sector

Assessing Risks of
Open Source Components
in Software Due Diligence

Name: Age Kruijssen
Student-no: s2281457

Date: July 10, 2020

1st supervisor: Joost Visser
2nd supervisor: Xishu Li

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

iii

Abstract
Background: The majority of commercial software uses Open Source Software (OSS)
components. In acquisitions of software-intensive companies there is growing need to
understand and assess OSS component risks.
Objective: To assess risks of OSS components we built a model and supporting tool.
This tool helps in bridging the gap between qualitative and quantitative risk assessments
by using data from different sources to provide recommendations on risk mitigation ac-
tions.
Method: Our research consists of an exploratory and a confirmatory part. To create an
understanding of value adjustments for OSS component risks, exploratory research is done
through literature research, followed by the development of a model through literature
findings and interviews, and concluded by case studies. We then confirm the validity of
our model by creating a model implementation which is applied in case studies.

By studying risks of OSS component usage described in literature, we found that
the risks can be split into two main categories: security and copyright compliance risks.
For each category, one qualitative model was developed which shows how identifiable
situations are related to risk occurrences, and how these situations can be measured.
We validated and completed these models on the basis of expert input. Five experts in
software risk assessment and valuation were identified whom were split into two groups.
One group was used to validate and add to the literature findings. These findings improved
the qualitative models after which the improved models were validated with the second
group.

The qualitative models were implemented in a tool to assess OSS component risks.
Three Software Due Diligence (SDD) cases were identified for which OSS component
risk data is available. The tool was applied and improved through these case studies to
validate and improve the understanding of how risk assessment can be used in the value
determination of software.
Results: We found seven measurable indicators, and seven situations, to identify se-
curity risks. For copyright compliance we found three measurable indicators and nine
situations. Our tool was able to identify whether a component was outdated, had vulner-
abilities, contained a copyleft license or no license at all and was able to identify whether
a component was actively supported or not.
Conclusion: Our models and supporting tools can be used by SDD advisors to support
their clients in quantifying and mitigating risks in software systems deriving from OSS
component usage.

v

Acknowledgements
Due to the outbreak of COVID-19 my time writing this thesis took an unexpected turn;
from working in an office to working from home. Nevertheless, many remarkable people
have given me much (remote) support during my journey writing this paper.

First of all, I want to thank my supervisor, Joost, for his guidance, enthusiasm about the
topic, and his many good points of feedback. His interest in my work inspired me to keep
expanding my horizon surrounding the topics I was researching and became interested in.

Secondly, I want to thank my work supervisor, Erik, for giving me the opportunity to work
in a close team within EY. Even in times of Corona, he made me feel part of the team
at all times. Furthermore, I got trusted to create an extension to an existing business
process and apply my acquired knowledge in a lasting product for the company.

I want to thank my colleagues at EY for always being there to brainstorm over my ideas.
This helped me tremendously in finding new ideas and approaches.

I want to thank all of my family for always being there, and always support me no matter
what.

Finally, I want to thank my girlfriend, Katerina, for being my guiding light, keeping me
on track like no other.

Thank you!
Age

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Aims and Objectives . 2
1.3 Scope . 4
1.4 Research Questions . 5
1.5 Structure . 5

2 Background & Literature Review 9
2.1 OSS Risks . 9

2.1.1 Conceptualization of Risk 9
2.1.2 Qualitative Risks in OSS . 10
2.1.3 Benefits . 16
2.1.4 Conclusion . 16

2.2 Software Valuation . 17
2.2.1 Software as an Asset . 17
2.2.2 Cost of Risk . 19
2.2.3 Quantifying Risk Costs . 21
2.2.4 Conclusion . 22

3 Risk Model Design 25
3.1 Framework Selection . 25
3.2 Initial Model Design . 26

3.2.1 Security Risks . 28
3.2.2 Copyright Compliance . 30

3.3 Model Implementation . 32

vii

viii Contents

3.4 Model Validation . 38
3.5 Outline of Case Studies . 39

3.5.1 Case Study Approach . 40
3.5.2 Case A . 41
3.5.3 Case B . 41
3.5.4 Case C . 41

4 Model Validation 43
4.1 Expert Validation . 43

4.1.1 Security Risks Model Findings 43
4.1.2 Copyright Compliance Model Findings 46

4.2 Model Iterations . 49
4.2.1 Security Risks model Iteration 49
4.2.2 Copyright Compliance model Iteration 51

4.3 Decision Flow . 53
4.4 Case Studies . 55

4.4.1 Case A . 55
4.4.2 Case B . 62
4.4.3 Case C . 65

5 Discussion 69
5.1 Threats to Validity . 69

5.1.1 Internal Validity . 69
5.1.2 External Validity . 71

5.2 Limitations . 71
5.2.1 Risk of Failure . 71
5.2.2 Tool Limitations . 71

6 Conclusions 75
6.1 Achieved Aims and Objectives . 76
6.2 Contributions . 77
6.3 Future Work . 77

6.3.1 Repository Identification . 78
6.3.2 Fair Value Adjustments . 78

Contents ix

6.3.3 Component Usage Identification 79
6.4 Final Remarks . 79

Appendix A OSS Licenses 81

Appendix B Industry Sectors 83

Appendix C Technology Factors 85

References 87

Index 95

List of Figures

1.1 Data and process flow of the risk assessment for OSS component risks. 3
1.2 Flow of Research. 5

3.1 Security Risks model based on literature. 29
3.2 License Risks model based on literature. 31
3.3 Business Process Model and Notation (BPMN) of the implementation

of the risk models. 32
3.4 BPMN symbols used in this thesis. 33
3.5 Expanded sub-processes of the business process model. 34
3.6 Linked identify repository process part of Process Application OSS Data

sub-process (Figure 3.5b). 35

4.1 Final iteration of the Security Risks model. 50
4.2 Iteration of the Copyright Compliance model. 52
4.3 Decision tree for mitigation advice based on distributed applications. . 53
4.4 Probability function for the updating of a single component. Generated

using the Monte Carlo method. 58
4.5 Probability function for the updating of a single component. Generated

using the Monte Carlo method. 59

A.1 Software licenses and their usage rights and obligations. Reproduced
from (Choosealicense.com, 2019a). 82

x

List of Tables

1.1 Thesis Outline. 6

2.1 Mentioned OSS risks in literature. 11

2.2 OSS risks related to their potential qualitative value impacts. 16

2.3 Mathematical representation of system and value variables. 20

2.4 Qualitative literature risks categorized in quantitative categories. . . . 22

2.5 Potential damages of risks in OSS components. 23

3.1 Simplified propagation rules of RiskML models. 28

3.2 Required data points and their sources for the model implementation. . 37

4.1 Results of the first interview of the Security Risks model validation. . . 44

4.2 Results of the second interview of the Security Risks model validation. 45

4.3 Results of the third interview of the Security Risks model validation. . 45

4.4 Results of the fourth interview of the Security Risks model validation.
These results are based on the initial iteration of the model. 46

4.5 Results of the fifth interview of the Security Risks model validation.
These results are based on the initial iteration of the model. 46

4.6 Results of the first interview of the Copyright Compliance model vali-
dation. 47

4.7 Results of the second interview of the Copyright Compliance model
validation. 47

4.8 Results of the third interview of the Copyright Compliance model vali-
dation. 48

xi

xii List of Tables

4.9 Results of the fourth interview of the Copyright Compliance model val-
idation. These results are based on the initial iteration of the model.
. 48

4.10 Results of the fifth interview of the Copyright Compliance model val-
idation. These results are based on the initial iteration of the model.
. 48

4.11 Findings for Case A . 60
4.12 Relevant application data points for mitigation strategies in Case A. . 61
4.13 Findings for Case B . 63
4.14 Relevant application data points for mitigation strategies in Case B. . 65
4.15 Findings for Case C . 66
4.16 Relevant application data points for mitigation strategies in Case C. . . 67

5.1 Identification ratio of GitHub repositories from OSS components. . . . 70

C.1 Technology Factors . 85

List of Abbreviations

TDD Technical Due Diligence . 1

SDD Software Due Diligence . 1

OSS Open Source Software . 1

EY Ernst & Young . 1

M&A Mergers & Acquisitions . 58

LGPL GNU Lesser General Public License . 15

GPL GNU General Public License . 15

AGPL Affero General Public License. .15

LoC Lines of Code . 19

KLoC 1000 Lines of Code . 19

BPMN Business Process Model and Notation . 32

CVE Common Vulnerabilities and Exposures .51

NACE Statistical Classification of Economic Activities in the European Commu-
nity (Nomenclature statistique des activités économiques dans la Commu-
nauté européenne) .38

TF Technology Factor . 19

SS System Size . 19

RF Rebuild Factor . 19

PERT Program Evaluation and Review Technique . 40

RV Rebuild Value . 19

TI Technical Interest . 20

xiii

xiv List of Abbreviations

ME Mitigation Effort . 55

1

Introduction

According to the IT industry outlook 2020 (Computing Technology Industry As-
sociation, 2019, p.3,16,19) report, the information technology industry is projected
to grow with 3.7% to a worth of $5.2 trillion in 2020. 12% of this worth accounts
to software, meaning software is expected to be a $624 billion market in 2020.

Due to the growing size of the market there is an increased need for under-
standing software value from a business perspective. Acquisitions, mergers and
other investments in companies that rely heavily on software, need to be under-
stood in order to estimate the risks and returns that come from these investments.
Technical Due Diligence (TDD) exists to look at risks on a technical level. But
TDD only looks at software from a high-level perspective. This means it focuses at
general software aspects such as product development, service delivery and secu-
rity. Software Due Diligence (SDD) fills the low-level technical gap by evaluating
software quality and the related financial implications. This includes risks from
Open Source Software (OSS) components, rebuild costs and technical debt.

As part of their TDD service offerings, Ernst & Young (EY) offers SDD services.
In SDD services there is a need for an extension of existing techniques to assess
risks in software systems deriving from OSS component usage.

1

Chapter 1. Introduction 1.1. Problem Statement

1.1 | Problem Statement
OSS components are used in 95% of commercial software (Franch et al., 2013,
p.250). These components are used to add functionality to software while being
maintained by an ‘open source community’, a community of developers that work
on, among other things, open source projects. By being used in such a widespread
way, open source software is an important aspect in software valuation. As the
value of software is not only driven from its functionality but also from its future
proceeds and costs. Costs and proceeds are related to the risks and opportunities
of software, of which OSS is an important aspect.

Using OSS components in software systems comes with potential future costs
through risks such as: risk of infringement of licenses and/or intellectual property,
risk of software deprecation and security risks (Ruffin & Ebert, 2004; Franch et
al., 2013; Hauge, Cruzes, Conradi, Velle, & Skarpenes, 2010). Risks can reduce
value by the caused uncertainty in future cash flows (McKinsey, Copeland, Koller,
& Murrin, 2000). However, according to García García and Alonso Magdaleno
(2013) current accounting frameworks are not able to estimate the costs of OSS in
these valuations. Furthermore, earlier research fails to create a holistic understand-
ing of risks in OSS component usage and how these risks relate to value reductions
in software value assessment. This understanding is essential for estimating the
potential value reductions by using OSS components in value based software engi-
neering. With a growing focus on value delivery and value estimations (Dingsøyr
& Lassenius, 2016), researching the risks of OSS components and how these can be
identified will add further knowledge to these areas. As services such as SDD and
methods such as agile software development, continuous integration and continu-
ous delivery are growing, the need for an understanding of OSS component risks
in value determination becomes essential.

1.2 | Aims and Objectives
This research aims to fill the gap between OSS component risks and how this
impacts the value determination of software. The objective is to provide tool

2

Chapter 1. Introduction 1.2. Aims and Objectives

assistance that allows professionals engaged in value determination of software to
combine various data sources to identify risks and translate those risks to value
adjustments in a consistent and efficient manner.

We will research OSS component usage risks in literature and make these iden-
tifiable through the creation of risk models. These models will be implemented in
a tool which will be able to analyze OSS components by leveraging data from dif-
ferent sources and so being able to identify the risk properties set forth in the risk
models. This tool will be created as an extension to an existing business process
of EY to allow professionals to engage in the risk assessment of OSS component
risks in a consistent and efficient manner. By collecting data from existing SDD
cases where OSS component risk data is available we will extend our risk assess-
ment approach to include value adjustments based on OSS component risks. We
will create the decision logic to recommend mitigation strategies based on the risks
found in the risk assessment.

Figure 1.1: Data and process flow of the risk assessment for OSS component risks.

The OSS component risk assessment approach is shown in Figure 1.1. The
Static Analyzer which is used to analyze the source code is already in place in
the business process of EY. An extension to the business process will be made by
creating an automated and consistent approach to the Static OSS Analyzer and

3

Chapter 1. Introduction 1.3. Scope

Risk Analyzer processes. The supporting tool will be able to process the output
of the Static Analyzer. This will analyze all components that are used in the
applications of a client. As part of the analyses, external sources will be be queried
to create an understanding of risk in the components. The information that is
gathered will be analyzed based on different risk identifiers that are identified in
the risk models. These findings will be further analyzed in the Risk Analyzer. The
analyzed risks will result in a recommendation on how to mitigate the found risks for
every component. Furthermore, the risk analyzer will translate the risk assessments
of the used OSS components into Fair Value adjustments. These adjustments can
then be used in the reporting of EY towards the client.

1.3 | Scope
We focus on downward value adjustments based on risks and associated mitigation
costs, while the determination of a base value based on future benefits of OSS
components is kept out of scope. Determining a base value would rely on an
analyzes of functional considerations and not on which OSS components are used.
Furthermore, since the majority of software uses OSS components it is assumed
that using OSS components is beneficial for a software company. The scope of this
research is not to further identify these benefits, but rather it is to understand the
other side of using OSS components: the risks.

This research will qualify the relationship between risks and goals in the usage
of OSS components. A preliminary analysis will be done on the quantified assess-
ments of risks in relation to value determination of software. As the availability
on quantifiable data on this subject is limited, a statistical validation will not be
possible. Therefore, this study will put forth an initial approach on how OSS com-
ponent risk assessment can be used in value determination of software. This study
will enable future work to improve on these assessments by using more extensive
data sets.

4

Chapter 1. Introduction 1.4. Research Questions

1.4 | Research Questions
To improve the consistency of adjusting financial valuation based on the usage of
OSS components the following research question has been formulated:

How can Open Source Software (OSS) Component Risk Assessment be used for
the Value Determination of Software?

This question has been divided in different sub-questions. These sub-questions
will help to understand the important aspects of the research question, as well as
help to place the question into a larger context. To create a better understanding
within the context of this study, the following sub-questions have been formulated:

1. What risks are involved in using OSS components?

2. How can OSS component risks impact fair value?

3. How can OSS component risks be identified?

4. How can the costs of mitigating OSS component risks be quantified?

1.5 | Structure

Figure 1.2: Flow of Research.

5

Chapter 1. Introduction 1.5. Structure

Table 1.1: Thesis Outline.

Chapter Outline

1. Presents an overview of the study: the addressed problem, its ob-
jectives, the research questions, and the scope.

2. Provides a literature review of existing work. In this chapter
OSS component risks, software valuation and risk costs are described
based on existing literature.

3. Outlines the methodology for the risk model design. This will
discuss the model design based on the literature, the implementation
in EY’s business process, the development of the risk assessment tool
and the validation of the tool through interviews and case studies.

4. Displays the results of the model validation by presenting the final
model based on the results of the interviews. This chapter will also
present the results of the case studies.

5. Discusses the threats to validity and the limitations of our research
and developed tool.

6. States the conclusions based on the earlier presented results and
discussion. These conclusions are based on the posed research ques-
tions. Offers approaches for future works based on the limitations of
this study.

This research is divided into six chapters. The flow of this thesis is shown in
Figure 1.2. The content of each chapter will be described here and is outlined in
Table 1.1.

The first chapter, the current chapter, serves as an introduction. Here the
goal and purpose of this research are described. Furthermore, the aim, objectives
and the need for this research are explained. The second chapter will present
the background of the topic based on existing literature. Different concepts that
support the research in this thesis will be set forth. The third chapter will introduce
the process of designing the risk models: how the models are designed, validated
and implemented in the existing business process of EY. Furthermore, this chapter
will outline the case studies which are used to create an understanding of how risk
assessment can be used in the value determination of software. The results will be
outlined in chapter four which are used to validate the models. In this chapter the
final models are presented based on the presented results. The literature review

6

Chapter 1. Introduction 1.5. Structure

and the risk model design are all part of the exploratory research. The case studies
combine exploratory and confirmatory research by creating an understanding of
value and by applying the models on case study data. Finally, the model validation
is confirmatory research. Chapter five will discuss the threats to validity and the
limitations of our research. In this chapter we will also discuss the limitations of
the developed tool. In the final chapter, chapter six, we will conclude our research.
Here we will describe the achieved aims and objectives, which contributions this
research provides to literature as well as to EY, and how future works can further
improve the done research.

Figure 1.2 provides an overview of the relationship between the different mod-
els created in this research. The first created models, which will be discussed in
Section 3.2, are modelled using the RiskML modelling language. These models are
based on the risks identified in the literature as discussed in Section 2.1. Improve-
ments and validation of the RiskML models are done using unstructured interviews,
of which the process is described in Section 3.4. The results of these interviews,
and how this improves the models, is discussed in Section 4.2.

7

2

Background & Literature Review

2.1 | OSS Risks
OSS components are, just like any other software component, associated with a
set of risks. Risk assessment became a topic for study around 40 years ago (Aven,
2016). Because of this the definition of risk will be discussed first. After this the
different types of relevant risks will be outlined. Finally, a brief section will talk
about the benefits of using OSS components in commercial software.

This section will aim to answer the following sub-question: What risks are
involved in using OSS components? By looking at past literature on the subject a
theoretical framework on the subject of risks in OSS components can be formed.

2.1.1 | Conceptualization of Risk
Kaplan and Garrick (1981, p.13) state that “risk is probability and consequence”,
risk is a combination of uncertainty and damage. There must be a chance of some-
thing happening and there must be a consequence to it happening. ISO (2018)
defines this as a combination of consequences and the likelihood of the event hap-
pening, the “effect of uncertainty on objectives”. Aven (2016) shows an overview
of different conceptualizations of qualitative risks. The drawn conclusion of this
research is that risk is a combination of uncertainty in relation to events and con-
sequences. Sales et al. (2018) analyze risk in relation to value, the qualitative value
that someone attributes to an object or event (‘use value’). They state that value

9

Chapter 2. Background & Literature Review 2.1. OSS Risks

and risk are not independent of each other: there is no risk without value attribu-
tion. If the object or event is quantifiable the relation between risk and use value
also applies (Sales et al., 2018). Furthermore Sales et al. (2018) defines speculative
risk and pure risk. Speculative risks have a possibility of a positive and negative
outcome, while pure risks only have negative outcomes. The focus of our research
is on pure risks, as using OSS components that are ‘at risk’ lead to a negative
outcome for the user (risk damages or mitigation costs). The benefits of using OSS
components are dependent on what functionality these components offer, whether
other components offer similar functionality, and how the functionality may be
exploited to obtain business benefits. These questions are outside of the scope of
our research. Our work focuses on optimizing the understandings of the downside,
assuming the upside is given.

Based on literature and the scope of this research the following conceptualiza-
tion will be used:

Risk Uncertainty with the potential to have a negative effect on value.

2.1.2 | Qualitative Risks in OSS
Research by Ruffin and Ebert (2004); Franch et al. (2013); Hauge et al. (2010)
provide potential risks in the usage of OSS components. The main risks relate to:
risk of intellectual property right infringement, software deprecation and security
risks.

Later research by Silic et al. (2015) provide a taxonomy based on past literature
around the subject of OSS. Past research is combined with expert interviews to
provide a complete overview. This research was done without narrowing down to
OSS components. This research identifies the following areas of risk: general IT
security risks, lack of support or ownership; confidentiality, loss of data because
of malicious intent; integrity, data that becomes unreliable or inaccurate because
of OSS functionality; availability, how often the system functions; performance;
reliability according to specifications; maintainability, compatibility and interoper-
ability; regulatory, license and law conformance. While Silic et al. (2015) provides

10

Chapter 2. Background & Literature Review 2.1. OSS Risks

Table 2.1: Mentioned OSS risks in literature. X: found as an OSS component risk.
+: found as an OSS risk.

Risk

R
u
ffi
n
an

d
E
b
er
t
(2
00

4)

L
i
et

al
.
(2
00

8)

H
au

ge
et

al
.
(2
01

0)

S
il
ic

et
al
.
(2
01

5)

S
h
er
lo
ck

et
al
.
(2
01

8)

L
in
h
et

al
.
(2
01

9)

Security vulnerabilities X X + X
Code integrity + X
Reliability/Quality X X + +
Forking + X X
Changes in framework X X
Lack of Support X X + X X
Project discontinuation X + X
License/copyright compliance X + + X X
License conflict with sub-components X + X

an extensive overview of risks in OSS, it talks specific about OSS as a whole and
not about components. This makes the research less relevant for us.

As there is a lack of a complete risk overview for risks in OSS components
one will be created using the literature of Ruffin and Ebert (2004); Hauge et al.
(2010); Franch et al. (2013); Silic et al. (2015); Sherlock et al. (2018); Linh et al.
(2019). Table 2.1 shows an overview of the findings. The risks looked at are risks
for already adopted OSS components. This means adoption risks and risks not
found to be related to OSS components will not be mentioned. These risks are
outside the scope of this research. Risks shown in Table 2.1 have the potential to
do future harm to a product or company.

11

Chapter 2. Background & Literature Review 2.1. OSS Risks

2.1.2.1 | Security vulnerabilities

Vulnerabilities in components are an issue of security. By having vulnerabilities
external parties can potentially harm a company through the vulnerable software.
This can relate to harm such as stolen data or hostile takeover of a system. As can
be seen in Table 2.1 multiple articles mention this as a risk for OSS components.

2.1.2.2 | Code Integrity

The risk of code integrity has to do with potential harm due to unwanted code
execution. Since everyone is free to contribute to OSS, everyone has the ability
to add unsafe code or code of low quality. Code which lowers the level of code
integrity can be added with malicious intend or can be added by accident (Silic et
al., 2015).

Software which contains malicious code can act like malware; potentially taking
over a system, invalidate company data or giving third party access to sensitive
data.

2.1.2.3 | Reliability/Quality

Reliability or quality as a risk means whether the functionality and results of an
OSS component can be trusted. The risk here is the uncertainty of the changes
in functionality with updates and changes to the component. According to Ruffin
and Ebert (2004) OSS components should be regarded as ones own code. This
means there should be no assumptions about the quality of the component, and
no assumptions about a stable quality after updates to the component.

As shown in Table 2.1 this is a common risk associated with both general OSS
applications and OSS components. When a component is not reliable the internal
working of an application can stop functioning properly. This can cause issues such
as invalid outputs or invalidation of data.

12

Chapter 2. Background & Literature Review 2.1. OSS Risks

2.1.2.4 | Forking

Forking is the act of duplicating a codebase. This means that at the moment of
the fork, two identical codebases exists. For example: codebase-A and codebase-B.
These codebases do not share future development efforts, meaning that additions
to codebase-A are not included in codebase-B, and vice versa. This can mean that
one codebase is actively supported, while the other is not.

Linh et al. (2019) mention the risk of conflicting code caused by multiple people
extending a project. Using multiple components forked from the same codebase
could provide conflict in their functionality. Another risk is that the community
that contributed to the original project is now split over multiple projects. This
can decrease support causing an increase in issues such as vulnerabilities, integrity
and reliability.

2.1.2.5 | Changes in Framework

Linh et al. (2019) mention the risk of changes in the core functionality of an OSS
component. This means that functionality which a product can rely on might
be deprecated, meaning it is no longer supported. If the relied on functionality
is completely removed or altered, applications might not run properly with new
versions of the OSS component.

If applications stop working in the intended way because of changes in the
core functionality of OSS components, old functionality has to be maintained by
the implementer of the OSS component. Alternatively components have to be
replaced with a new component that provides the required functionality. In some
cases rewriting certain functionality to match the updated functionality in the OSS
component is enough to mitigate the risk occurrence.

2.1.2.6 | Lack of Support

Lack of support is related to risks such as reliability and security. Lack of support
can be described as the inability of the provider to resolve problems (Linh et al.,
2019). A component that has issues with support can increase the occurrence
chance of security and reliability risks. These risks might be resolved too late, or

13

Chapter 2. Background & Literature Review 2.1. OSS Risks

might not be detected at all. This puts the system at a higher risk for damages
and is classified by Linh et al. (2019) as a risk with a high cost impact.

2.1.2.7 | Project Discontinuation

An important risk in OSS is that the software can be discontinued. When this hap-
pens there is no more support for the software meaning that the full maintenance
responsibility comes to the implementer. As OSS projects can lack a traditional
support contract as found in commercial software, there is no guarantee for the
longevity of the provided support (Sherlock et al., 2018).

2.1.2.8 | License/Copyright Compliance

A license provides a contract between the licensor, the OSS owner, and the licensee,
the software user. This contract gives an overview of what can, and what cannot, be
done with the licensed software. The licensee is accountable for the terms described
in the license of such component. With over 50 different licenses available, to fully
comply with licenses it is advised to have legal council available (Sherlock et al.,
2018). If no license is available the software is still protected under copyright laws
(Choosealicense.com, 2019b).

The biggest issue with licenses is an issue during OSS adoption. During adop-
tion an OSS component should be found which matches the requirements of the
licensee. There are still risks of licenses in a running project. Firstly, OSS up-
dates or forks can change the license of a project causing the licensee to no longer
be compliant after this update or change. Failing to update would result in the
same risks as if a project would be discontinued all together (see Section 2.1.2.7).
Secondly, the requirements of the licensee change. For example, a non-distributed
piece of software can become distributed. In the case of some licenses this might
require open-sourcing the source-code of the software to be compliant with the OSS
license, which in case of propriety software might not be what a company wants.
Finally, due to the complexity of licenses a license might be wrongly interpreted.
Almeida, Murphy, Wilson, and Hoye (2017) showed that most software develop-

14

Chapter 2. Background & Literature Review 2.1. OSS Risks

ers have a hard time understanding licenses. This makes it questionable whether
existing projects fully comply with OSS licenses.

An overview of most OSS licenses is available in Appendix A showcasing the
requirements and limitation of each license. In cases of distribution the source code
might have to be distributed. In some licenses this is not the case when there is an
understanding of network distribution. This means for example a server running an
OSS component with a license which does not define network usage as distribution,
such as the GNU General Public License (GPL). When this server is called by
a web-application the software is not identified as being distributed, meaning the
server code can comply with the license’s requirements without being open-sourced
(Tiemann, 2007; Free Software Foundation, 2019). The Affero General Public
License (AGPL) closed this ‘loophole’ by introducing a specific clause to include
network distribution under the definition of distribution. In the server – web-
application example, this would mean the server-code would need to be open-
sourced to comply. In some licenses only changes to the component have to be
disclosed. This is the case for the GNU Lesser General Public License (LGPL). In
this case propriety software can include a LGPL licensed library and make use of
the functionality provided. In case the library itself is modified, the license requires
the modified library to be open-sourced.

2.1.2.9 | License Conflict with Sub-components

While an OSS component might display the license under which it is distributed,
this license is not always valid. This is because OSS components might in turn use
other components which are licensed different, or are not licensed at all. When these
licenses are not compliant with each other there is a risk of theft of intellectual-
property (Ruffin & Ebert, 2004; Sherlock et al., 2018). As licenses provide no
warranty for the validity of the software in regards to the license the licensee is still
responsible for any conflicts (Ruffin & Ebert, 2004).

15

Chapter 2. Background & Literature Review 2.1. OSS Risks

2.1.3 | Benefits
While OSS components are suspect to a wide range of risks they do not come with-
out benefits. Hauge et al. (2010) lists a wide range of potential benefits of using OSS
components: shorter time-to-market; reduction in development, maintenance and
license costs; community transparency regarding issues; and the quality, function-
ality and productivity benefits of software reuse. Since the majority of commercial
software uses OSS components it can be concluded that OSS components are a
requirement for most commercial viable software (Franch et al., 2013).

2.1.4 | Conclusion
The usage of OSS components includes qualitative risks as discussed in Section 2.1.2
and summarized in Table 2.2, which answers the question: What risks are involved
in using OSS components? As can be seen in Table 2.2 the following risks are
involved in using OSS components: security vulnerabilities, code integrity, reliabil-
ity/quality, forking, changes in framework, lack of support, project discontinuation,
license/copyright compliance and license conflict with sub-components.

Table 2.2: OSS risks related to their potential qualitative value impacts.

Risk Impact

Security vulnerabilities Damage to system integrity; Loss of data
Code integrity Damage to system integrity; Loss of data
Reliability/Quality Invalid functionality; Invalidation of data
Forking Loss of support
Changes in framework High update costs; Loss of support
Lack of support Increased security, integrity and reliability

risks
Project discontinuation Loss of support
License/copyright compliance Legal costs
License conflict with sub-components Legal costs

16

Chapter 2. Background & Literature Review 2.2. Software Valuation

2.2 | Software Valuation
All assets, including intangible assets such as software, have an intrinsic value. In
order to valuate an asset the cash flow, discount rates and growth rates have to be
taken into account. Based on these inputs the value of an asset for a company can
be determined, which can determine the intrinsic value of the asset (Damodaran,
2013).

Discount rates of cash flows are based on risks. By looking into the risks of
OSS components the discount rate on the integrating software can be estimated.
This section will provide an answer to the question: How can OSS component risks
impact fair value?

2.2.1 | Software as an Asset
Software is produced to provide use value. The use value is the value that the
software provides in a form of economical benefits. This benefits exist for software
after it has been put to use or has been sold (García García & Alonso Magdaleno,
2013). De Groot, Nugroho, Bäck, and Visser (2012) argue that software value can
be looked at from three perspectives: exchange value, production value and use
value. For this paper fair value will be used instead of exchange value as exchange
value can be largely influenced by either an unwilling participant or a lack of
transparency of information provision in a transaction. The fair value assumes
an orderly transaction which means that value adjustments will be based on the
product in a context were both parties are interested in a transaction of the product
for the optimal price.

Fair Value “The price that would be received to sell an asset or paid to trans-
fer a liability in an orderly transaction between market participants at the
measurement date.” (IFRS Foundation, 2018, p.671)

Production Value The cost to produce or replace the software.

Use Value The future economical benefits provided by the usage of software.

17

Chapter 2. Background & Literature Review 2.2. Software Valuation

To determine the value for intangible goods, different valuation methods can
be used. Some of these methods are as follow: the cost approach is based on
the production cost of an asset which leads to the production value; the market
approach bases the price of an intangible asset on similar assets available on the
market, leading to the fair value; the income approach looks at the use value from
a cash flow perspective, looking at the discounted cash flow with and without the
component.

This paper will focus on the market approach to evaluate the value of software.
Using this approach will lead to the fair value of software. Therefore, when the
terms value or software value are mentioned it will be implied to mean the fair
value of software. Different meanings of the word ‘value’ will be made explicit.

It can be difficult to determine which part of the cash flow is a result of the in-
tangible asset. Holterman (2004, p.274–275) describes three methods to determine
these cash flows: ‘premium pricing’, ‘relief from royalty’ and ‘multi-period excess
earnings’.

The premium pricing method compares a business with the intangible asset to
a business without this asset. By comparing the profit and product pricing an
estimate can be made for the cash flow impact of the intangible asset.

The relief from royalty method is used for intellectual property. When a piece of
intellectual property is owned by a business no royalties have to be paid. Comparing
the intangible asset to a comparable asset that has licensing costs available the
value, or saved costs, can be determined.

The multi-period excess earnings method is the same as the earlier described
income approach. This takes a cash flow of a business component from which the
intangible asset is a component. By offsetting the cash flows that are generated by
other assets the cash flow generated by the intangible asset can be determined.

Reilly (2008) states that the relief from royalty method can be used to determine
the value of copyrighted software. In case the return on royalties is fairly related to
the asset value, the relief from royalty method can also be used for a cost approach
instead of a market approach.

When valuating software companies there is often the alternative of producing
the software yourself. In a simple way this can be expressed as expecting a higher
use value, minus the price paid, than the production value of the software. This

18

Chapter 2. Background & Literature Review 2.2. Software Valuation

expression is limited though, as opportunity costs and the value of time-to-market
should be incorporated as well.

2.2.2 | Cost of Risk
Section 2.1 talks about risks in OSS components. Risks can impact value as they
can lead to future costs through damages, impact costs, or to earlier costs through
mitigation effort. While impact costs are based on the uncertainty in risks, the
probability of occurrence times the potential damages, mitigation effort is a proac-
tive cost to reduce the probability of risk occurrences (Boehm, 2003). Linh et al.
(2019) state that a mitigation strategy can be evaluated using the expected impact
cost. The cost of mitigation should be lower than the reduction in the expected
impact costs. In other words, the expected gain should be higher than the costs.

Nugroho, Visser, and Kuipers (2011, p.3–4) base Rebuild Value (RV), or effort
to rebuild an application, on the System Size (SS) times a Technology Factor (TF)
for the used technology. Multiplying this by the fraction, the percentage of Lines
of Code (LoC) which have to be rewritten, gives an estimation of effort for change
in person-months. According to Jones (1995); Nugroho et al. (2011) TF can be
calculated using a technology productivity factor. A factor to convert LoC to
effort based on the used technology. A later report by Jones (2017) provides the
amount of effort per 1000 Lines of Code (KLoC). This data can be weighted by
the percentage of code written in the relevant programming language to calculate
TF. Using this data the mitigation effort can be calculated using the System
Size (SS), the Technology Factor (TF) and the percentage of code which has to be
rewritten to mitigate the risks, the Rebuild Factor (RF). Table 2.3 presents the
methods to calculate these values. Table C.1 in Appendix C shows TF for relevant
programming languages based on an effort in person-months.

De Groot et al. (2012) created three models for software as an asset on an
enterprise level. These models are shown in their mathematical representation in
Table 2.3. By taking the central ideas of these models they can be used to get a
value adjustment for software as an asset.

The first model can be used to create an adjustment to the value based on
the mitigation costs of the OSS component risks in the application. The second

19

Chapter 2. Background & Literature Review 2.2. Software Valuation

Table 2.3: Mathematical representation of system and value variables.

Variable Formula

System Size SS = LoC
Rebuild Value RV = SS ∗ TF
Effort of Change/Mitigation Effort E (Ch) = RF ∗ RV

Adjusted Value
+3 = + −

∑5
8=1TI 8

+2 = + ∗ (1 − RF)
+1 = + −MC

model ignores the effort that is required to change part of the system, but looks
at the percentage of the system that needs change, RF. The value is adjusted
according to this factor. The third and final model lays the focus on an increase
in technical debt. Technical debt focuses on a compromise being made in software
development to speed up product delivery (Ampatzoglou, Ampatzoglou, Avgeriou,
& Chatzigeorgiou, 2015). For OSS components this could mean less time spent on
proper adoption increasing the future risks of a component. Technical Interest (TI)
is the increase in maintenance that comes from technical debt (Ampatzoglou et al.,
2015; De Groot et al., 2012). TI extends to loss of productivity, defects and loss of
quality (Avgeriou, Kruchten, Ozkaya, & Seaman, 2016). For OSS components it is
relevant to include the potential risk damages under defects which can be caused
by the technical debt of using at risk components.

The final model assumes not resolving technical debt and paying the price on
Technical Interest (TI) instead. The value is adjusted to the cost of TI over an
amortization time of five years. TI can be difficult to quantify as it is an estimate
on future cost. At the same time it is possible that there are no costs over technical
debt, meaning that TI is zero (Ampatzoglou et al., 2015). It can be hypothesized
that a properly adopted OSS component only has technical debt based on the risks
shown in Table 2.1, as there is no debt from adoption risks. This would mean that
TI equals the expected impact cost of the risks found in OSS component usage.

20

Chapter 2. Background & Literature Review 2.2. Software Valuation

2.2.3 | Quantifying Risk Costs
The expected impact costs of risks in OSS components can be based on the quali-
tative damages shown in Table 2.2.

The global average cost of a data breach is $3.92 million, with a cost of $150
per lost record (Ponemon Institute, 2019, p.3). These costs are relatively higher
for smaller companies versus bigger companies, expressed in cost per employee.
Mitigation strategies such as data encryption can reduce breach costs on average
by $360.000 (Ponemon Institute, 2019, p.8).

The legal costs for “big” companies can be around $300.000 per month in the
United States (Rosen, 2004, p.271). When looking at statutory damage costs for
copyright infringement the costs range from $750 to $30.000, while willful infringe-
ment tops at $150.000 (Rosen, 2004, p.273).

Software Freedom Conservancy v. Best Buy Co. (2010a) shows that the statu-
tory damages are uphold in court for violations of open source licenses, which in
this case was a violation of a GPL license. In addition to those costs, legal fees for
the opposing party can be claimed as is shown in Software Freedom Conservancy v.
Best Buy Co. (2010b). Further injunctive relief1 can be required which can further
impact business until the violation is resolved, which in this case meant the di-
rect prohibition to further distribute hardware that included copyrighted software
(Software Freedom Conservancy v. Best Buy Co., 2010a).

All open source licenses protect the licensor from any and all liabilities. In
case of conflicts between sub-components the licensee would be responsible at all
times. According to Rosen (2004) in different countries consumer right protections
might invalidate this disclaimer. This means that copyright infringement due to
license conflict can be lower as partial responsible goes to the licensor. This would
only apply in cases where the licensor can be held at least partially responsible for
conflicts. In the case of Welte v. Fantec (2013) Fantec argued for lesser responsible
because their contractor would be liable for the infringement of the GPL license. In
this case it was ruled that the distributor, Fantec, was itself responsible for licenses
in its sold product.

In case there is no more community support for an OSS component the imple-

1“a court-ordered act or prohibition against an act or condition” (The Free Dictionary, n.d.)

21

Chapter 2. Background & Literature Review 2.2. Software Valuation

menter is responsible for maintenance when issues arise. The effort for maintenance
can be quantified according to the model of Nugroho et al. (2011, p.5) which states
that maintenance effort is based on the quality of a system in combination with
the fraction which needs active maintenance.

Based on the qualitative impacts of the risks shown in Table 2.2 a categorization
can be made to match the qualitative impacts to their quantitative counterparts.
Risks where the quantitative impact is expected to be similar are collapsed under
a single category as seen in Table 2.4.

Table 2.4: Qualitative literature risks categorized in quantitative categories.

Literature Risks Quantitative Category

Lack of Support
Code integrity
Security vulnerabilities

Security risks

Reliability/Quality Risk of failure

Changes in framework
Project discontinuation
Forking

Loss of support

License conflict with sub-components
License/copyright compliance Copyright infringement

2.2.4 | Conclusion
The impact of risks in OSS components on the fair value of software can be quan-
tified in three different ways: by subtracting the mitigation cost of the risks, by
deducting the percentage of the software that needs to be refactored to mitigate
the risks or to deduct the damage of the risks over a five year period.

Section 2.2.3 quantifies the damages of security risks, loss of support and copy-
right infringement. These damages are summarized in Table 2.5. The damages
shown in Table 2.5 can be adjusted based on mitigation strategies, such as data
encryption, and might differ between countries. These damages will be used as a
baseline for the cost of risk damages of the risks in OSS components.

22

Chapter 2. Background & Literature Review 2.2. Software Valuation

Table 2.5: Potential damages of risks in OSS components.

Risk Category Risk Damages

Security Risks $150 per lost record or $3.92m total on average (global)
Loss of Support Maintenance Effort
Copyright Infringement $750–$150.000 (US) +

Legal costs ($300.000 monthly (US)) +
Compliance costs

23

3

Risk Model Design

This chapter will explain the methodology to estimate the downward impacts of
risks on software value. As stated in Section 1.2 the objective of this research is
to create a model that can estimate the risk impacts on the value of software. To
achieve this, initial risk models will be created based on the literature explored
in Section 2. Due to the limited amount of data available involving the relation
between OSS risks and software value a set of case studies will be used to research
this relationship. These case studies will include a risk analysis for OSS components
in software based on the developed risk models. The impact of these risks on the
value of software will be researched in the case studies, which are outlined in
Section 3.5.

3.1 | Framework Selection
Different frameworks are proposed in research to model software systems. The
relevance of such frameworks depends on the areas of these systems which are to
be analyzed. As this research is focused on the risks in OSS components, proposed
frameworks should enable the modelling of risk properties which can be used to
identify these risks. The identification of risks can be done through obstacle anal-
ysis, in which risks are looked at from a goal perspective. The non-satisfaction of
these goals can be measured through obstacles, risks, which satisfaction determines
the non-satisfaction of the above goals through a bottom-up approach (Cailliau &

25

Chapter 3. Risk Model Design 3.2. Initial Model Design

van Lamsweerde, 2013).

Yu and Mylopoulos (1994) introduce a goal-oriented modelling framework called
i*. In this framework goals are subdivided in sub-goals. Each goal can positively
or negatively relate to other goals, providing a top-down approach for modelling
systems. Goals are identifiable by measurable tasks and affected actors. This helps
in identifying different paths towards a goal and the related actors in these paths.

Different goal-oriented models have been proposed originating from the i* frame-
work with different focus areas. Sebastiani, Giorgini, and Mylopoulos (2004) pro-
pose a framework based on a minimum-cost goal approach, Asnar, Giorgini, and
Mylopoulos (2011) look at risks from a requirement engineering perspective, while
Siena, Morandini, and Susi (2014) base their framework around OSS component
risks. In the framework of Siena et al. (2014) goals are sub-divided in events which
cause non-satisfaction in the goals similarly to the obstacle analysis of Cailliau
and van Lamsweerde (2013). These events have a likelihood and severity of their
occurrence, which combined negatively affects the goals. These values can be con-
ceptually represented through situations which are measurable through indicators.

As the framework by Siena et al. (2014) is explicitly developed for the modelling
of OSS component risks this framework enables us to show the relation between
risks of OSS components and their identifying properties.

3.2 | Initial Model Design
Siena et al. (2014) describe the formal definition of the RiskML modelling language.
Based on literature research into the risks of OSS components initial risk models
are created as can be seen in Figure 3.1 and Figure 3.2. The graphical representa-
tion of the models is created using Microsoft Visio (Microsoft, 2019). The aim of
these model is to create a graphical representation of the risk categories shown in
Table 2.4. By using the RiskML modelling language OSS risks can be modelled in
a top-down approach from negatively impacted goals down to their indicators. A
negative impact on these goals, as represented by events, will reduce the value of
software. This value reduction can be represented through quantified methods and
costs as described in Section 2.2.2 and 2.2.3. It is important to note that RiskML

26

Chapter 3. Risk Model Design 3.2. Initial Model Design

only provides a negative connection between events and goals as defined by the
‘Impact’ relation.

As described by Siena et al. (2014) RiskML models are built up from different
concepts and relations:

� Indicator: Representation of a measurable property which is evidence for
the existence of a situation. An indicator can be used as a measurement of the
satisfaction, the measurement of truth, of a situation. This relation is mod-
eled using the ‘Indicate’ relation, where the indicator satisfies the situation
as being true.

� Situation: Situations present circumstances under which risk events can
occur. The existence of these circumstances can be measured through the
indicators of the situation. How situations relate to risk events are mod-
elled through the ‘Expose’, ’Protect’, ’Increase’ and ’Mitigate’ relations. The
increases or decreases from these relations are relevant relative to the satis-
faction of the situation.

– Expose: Increases the likelihood of a risk event occurrence.

– Protect: Decreases the likelihood of a risk event occurrence.

– Increase: Increases the severity of the consequences of a risk event
occurrence.

– Mitigate: Decreases the severity of the consequences of a risk event
occurrence.

� Event: Events represent possible occurrences which have a negative impact
on goals through the ‘Impact’ relation. These concepts have a likelihood and
severity property which are measured through situations.

� Risk: The model as a whole represents the uncertainty and consequences of
a risk.

The relations between the different concepts are summarized in Table 3.1.

27

Chapter 3. Risk Model Design 3.2. Initial Model Design

Table 3.1: Simplified propagation rules of RiskML models adopted from Siena et
al. (2014, p.8).

Relation Influence Type From To

Indicate Increase Satisfaction Indicator Situation
Impact Decrease Satisfaction Event Goal
Expose Increase Likelihood Situation/Event Event
Protect Decrease Likelihood Situation/Event Event
Increase Increase Severity Situation/Event Event
Mitigate Decrease Severity Situation/Event Event

3.2.1 | Security Risks
Coelho, Valente, Silva, and Shihab (2018) researched the indicators to measure
levels of maintenance for OSS projects on GitHub. The created model fits projects
into categories of being maintained and not being maintained. Projects that are
classified as finished are also considered unmaintained, even though these might still
solve reported issues. According to Coelho et al. (2018, p.4) the most important
indicators are the following:

� Amount of commits ()22,24)

� Maximum amount of days without a commit ()22,24)

� Maximum days without commits ()10,12)

� Maximum contributions by developer ()16,18)

� Amount of closed issues ()1,3)

Indicators are most relevant within a time interval of months. This is shown by their
) value, meaning a) value of 22,24 means the indicator applied over the last 22 to
24 months (i.e. amount of commits in the last 22 to 24 months). These indicators
depict the situations of Low activeness, Lack of active contributors and Issues are
actively resolved as can be seen in Figure 3.1. The amount of contributions by
developers is a quantification of the lack of support coming forth through forking.
A lack of active contributors means that the impact of a developer leaving the

28

Chapter 3. Risk Model Design 3.2. Initial Model Design

project has a bigger negative impact on the support level of the project than what
would be the case with more active contributors.

Figure 3.1: Security Risks model based on literature.

Vulnerabilities are categorized from low to critical as is equal to the way CAST
Highlight (CAST, 2020b) categorizes security vulnerabilities in OSS. Lowering

29

Chapter 3. Risk Model Design 3.2. Initial Model Design

the damage of security issues can be done by taking data security measurements
as described in Section 2.2.3. The interaction between activeness and framework
changes is based on the RiskML model by Siena et al. (2014).

3.2.2 | Copyright Compliance
Copyright compliance in OSS components is done by compliance with the license
provided with the component. Further compliance has to be done with all code
and components used in the licensed component. Depending on the license, compli-
ance might require open-sourcing propriety code, but such requirements might also
depend on the means of distribution (Tiemann, 2007; Free Software Foundation,
2019). The combination of the distribution situation and the type of copyleft, which
describes what part of the code needs be distributed under the same license, exposes
the non-compliance event as seen in Figure 3.2. Compliance with sub-components
and code used in the component is in general automatically satisfied when there is
compliance with the license. The exception here is license conflicts which causes
non-compliance, as discussed in Section 2.1.2.9 and described by Sherlock et al.
(2018); Ruffin and Ebert (2004). This means that licenses try to cover a part of
the code used in the component which they can not rightfully license, thus their
license does not actually cover this part of the code. As licenses explicitly state
that they carry no liability in any form, the licensee of the component would be
responsible for this issue (Rosen, 2004). If this is uphold, which depends on the
country, the implementer would be responsible for damages (Rosen, 2004; Ruffin
& Ebert, 2004). The Component has conflicting licenses in Figure 3.2 shows that
this exposes the risk of non-compliance. As further discussed by Rosen (2004) the
difference in risk impact exists in willful versus non-willful copyright infringement.
This is further exemplified in Section 2.2.3 by, among others, the Software Free-
dom Conservancy v. Best Buy Co. (2010a) case. In Figure 3.2 this is shown by
the increase relationship of the license is ignored situation to the non-compliance
event. As Sherlock et al. (2018) state, it is best to have gather legal council on the
matter to assure proper compliance. This means that the event of Non-compliance
can be protected by gathering legal advice on the matter.

30

Chapter 3. Risk Model Design 3.2. Initial Model Design

Figure 3.2: License Risks model based on literature.

31

Chapter 3. Risk Model Design 3.3. Model Implementation

3.3 | Model Implementation

Figure 3.3: Business Process Model and Notation (BPMN) of the implementation
of the risk models. Expansions of the sub-processes are shown in Figure 3.5.

The graphical models displayed in Figure 3.1 and 3.2 will be implemented us-
ing R: A Language and Environment for Statistical Computing (R Core Team,
2020). The models will use OSS lists provided by CAST Highlight (CAST, 2020b).
Based on the version, programming language and name of the OSS component the
correct repository can be looked up on GitHub. Choosealicense.com (2019a) and
CIRCL (2020) will be used to look up more information regarding the risks of the
components.

The model in Figure 3.3 depicts the business flow of using the model imple-
mentation of the models shown in Figure 3.1 and 3.2. The model in Figure 3.3
was created using Microsoft Visio (Microsoft, 2019) and is modelled according to
the BPMN 2.0 guidelines. A minimal legend of the used BPMN symbols in these
figures can be seen in Figure 3.4.

The first step in the business process is to acquire a CAST Highlight (CAST,
2020b) scan on the applications of the target of the transaction, the party that
is targeted to be acquired. The CAST Highlight (CAST, 2020b) scan software is

32

Chapter 3. Risk Model Design 3.3. Model Implementation

Figure 3.4: BPMN symbols used in this thesis.

used to scan the code of the applications, and submits these results to a database.
This can be seen in Figure 3.3 by the association between the Target and the Scan
Data.

Figure 3.5a shows the sub-process of the scan request. The scan is requested
by EY which includes instructions on how to perform the scan. After the target
completes the scan, a confirmation will be sent to EY. A manual check of comple-
tion is done against the scan data, this is done by validating the scanned results
against the known specifications of the applications. When it is determined that
the scan is missing certain applications the sub-process is repeated, otherwise the

33

Chapter 3. Risk Model Design 3.3. Model Implementation

(a) Process Scan Request sub-process.

(b) Process Application OSS Data sub-process. Linked identify repository process part is shown in Fig-
ure 3.6.

Figure 3.5: Expanded sub-processes of the business process model.

34

Chapter 3. Risk Model Design 3.3. Model Implementation

scan data can be used and analyzed.
CAST Highlight (CAST, 2020b) provides an overview of different code metrics

based on the results from the scan. This business process will focus exclusively on
the OSS scan results. As can be seen in Table 3.2, CAST Highlight (CAST, 2020b)
provides different data points about the used OSS components in the scanned
applications. The name, programming language, and version will be used to look
up the repository on GitHub. The vulnerabilities and license data points are later
used for the risk analysis.

The expanded sub-process shown in Figure 3.5b depicts the processing of the
application OSS data. This is done as a batch for every application in a domain;
a category of applications from the target. This process is then repeated for every
domain that has to be analyzed. A manual configuration is required for every
domain, Configure the Processing of the Applications OSS Data in Figure 3.3, after
which the automated process, Process the Applications OSS Data, can be started.

Figure 3.6: Linked identify repository process part of Process Application OSS
Data sub-process (Figure 3.5b).

The first automated step is to retrieve the OSS data from the CAST Highlight
(CAST, 2020b) scan. This data is required to find the correct repository on GitHub.
This is done by searching GitHub for repositories with matching names and written
in the programming language identified by CAST Highlight (CAST, 2020b). As

35

Chapter 3. Risk Model Design 3.3. Model Implementation

can be seen in Figure 3.6 the correct repository can be identified by going through
the list of matching repositories on GitHub and matching the version and release
date to the ones reported by CAST Highlight (CAST, 2020b).

When the correct repository is identified, data from the repository can be gath-
ered; see Gather Repository Information in Figure 3.5b. As shown in Table 3.2 the
following data points are retrieved and calculated from GitHub: Amount of com-
mits, Days without commits, Amount of closed issues and Contribution/developer
ratio. These data points are used as indicators for the Lack of active contributors,
Issues are actively resolved and Low activeness situations in the risk model shown
in Figure 3.1. The Component versioning data point is also collected which can
directly satisfy the Outdated component version situation.

The Gather Vulnerability Information task can satisfy the Amount of Security
Vulnerabilities in the Security Risks model (Figure 3.1). This indicates the sat-
isfaction of the Vulnerable System situation. Vulnerabilities are provided in the
CAST Highlight (CAST, 2020b) output but can also be looked up using CVE
Search (CIRCL, 2020). This can provide an overview for vulnerabilities in the used
version of the component as well as the vulnerabilities in the latest version of the
component. By comparing the vulnerabilities between versions it becomes clear
whether there is a possible way to mitigate the vulnerabilities by upgrading the
component.

The next tasks in the sub-process shown in Figure 3.5b can further satisfy
different indicators and situations in the risk models. Gather Copyleft Infor-
mation can satisfy the License copyleft indicator in the Copyright Compliance
model (Figure 3.2). This is done by collecting the requirements of a license from
Choosealicense.com (2019a), which data is shown in Appendix A. The Means of
distribution as indicator of Component is distributed is collected as manual in-
put. The satisfaction op the situation Component is distributed combined with the
situation Non-propriety matching copyleft license can expose the Non-compliance
event. This task is also executed when the repository is not found on GitHub. In
this case the Scan Data will be directly used to determine the component license,
without the validation of GitHub. This non-validation will be included

By gathering all available risk data in the Gather component risk Indicators
sub-process, shown in Figure 3.5b, the likelihood of the event Lack of Support

36

Chapter 3. Risk Model Design 3.3. Model Implementation

occurrence can already be calculated (Figure 3.1). With the satisfaction of the sit-
uations Low activeness, Issues are actively resolved and Lack of active contributors
and the Random Forest implementation of Coelho et al. (2018) an estimate can
be made on whether the support of the component will last. The method of the
Random Forest implementation is further described in Section 3.2.1.

Finally in the final step of the Process application OSS Data sub-process, all
collected data will be exported to an Excel readable file. The data in this file can be
used in estimations of fair value adjustments, based on the calculated risk factors
and mitigation strategies.

Table 3.2: Required data points and their sources for the model implementation.

Source/Data Points

M
an

u
al

In
p
u
t

C
A
S
T

H
ig
h
li
gh

t
(C

A
S
T
,
20

20
b
)

G
it
H
u
b

C
IR

C
L
(2
02
0)

C
h
oo

se
al
ic
en

se
.c
om

(2
01

9a
)

Distribution form X
External risk protection factors X
Component name X
Component programming language X
Component versioning X X
Security vulnerabilities X X
License X X
License copyleft X
Amount of commits X
Days without commits X
Amount of closed issues X
Contribution/developer ratio X

37

Chapter 3. Risk Model Design 3.4. Model Validation

3.4 | Model Validation
For every case a set of data will be collected. These account for the following data
points:

� Which applications are part of the case

� Types of OSS risk findings (Security, Loss of Support, Copyright infringe-
ment)

� CAST Highlight (CAST, 2020b) output for application if available

� Cost analysis for OSS risks if available

� Application rebuild values

� Application sizes in LoC

� Major programming language(s) used

� Relative size of application written in the major programming language

� Scope of the engagement:

1. Software Quality Assessment

2. Software Composition Assessment

3. Software Sustainability Assessment

4. Software Due Diligence (SDD)

� Industry sector according to the broad Statistical Classification of Economic
Activities in the European Community (NACE) sections (European Commis-
sion, 2008, p.57)

These will be used in the case studies to assess the risks in the applications and cre-
ate an estimated range of costs to mitigate these risks. The scope of an engagement
is categorized in four types of assessment sorted by the depth of the assessment. A
Software Quality Assessment is the most basic form and SDD is the most inclusive
engagement form.

38

Chapter 3. Risk Model Design 3.5. Outline of Case Studies

To better group the different industries these will be categorized according
to NACE. This provides an existing categorization according to the European
standard. The cases will be associated with the sector they provide software for.
As the amount of cases is limited only the top level categories will be used which
are shown in Appendix B.

Finally, cost analyses will be gathered to create an understanding of value ad-
justments based on OSS risks. This will help in creating an approach for quantifi-
cation of these risks.

The risks of the components in the case applications will be assessed based on
the models shown in Figure 3.1 and 3.2. The following data points will be collected
in the unstructured interviews related to the models:

� Missing indicators, situations, events and/or goals.

� Incorrect indicators, situations, events and/or goals.

� Incorrect or missing relations.

� General feedback on the model

The conducted interviews will help in validating the created models. Further-
more, these interviews will help in creating a more complete picture of how risks can
be measured through missing or incorrect situations and indicators. Based on this
data an iteration of the models shown in Section 3.2 will be created. Furthermore,
case data will be analyzed through the model implementation in the case studies in
Section 4.4. In this section financial data will be used to create an understanding
of fair value adjustment based on risks in OSS components.

3.5 | Outline of Case Studies
Past merger and acquisitions of EY will be used as case studies to look into risks
of OSS components. Cases were selected based on the availability of OSS data.
Engagements were any aspect of OSS analysis was included will be used for this
research. Based on this, three cases were identified.

39

Chapter 3. Risk Model Design 3.5. Outline of Case Studies

3.5.1 | Case Study Approach
For every case OSS component data will be collected using the tool developed
as described in Section 3.3. Based on the output, the understanding of how risk
assessment can be used in the value determination of software will be improved
and validated.

Mitigation effort ranges will be based on data from Case A as this is the only case
which provides value estimations. This case will be used to determine minimum and
maximum effort for replacement and update mitigation strategies. These ranges
will be applied in all cases to validate our approach to value determination. Because
of this, this will be the first case to be analyzed.

Based on the rebuild value and the estimated effort to mitigate risks, effort
ranges for each component are created. According to Halkjelsvik and Jørgensen
(2018) time estimations with a minimum and a maximum value, aggregated by
their median value, do not give an accurate representation of actual time required.
One solution for this is a three point estimation according to the Program Evalua-
tion and Review Technique (PERT), although this assumes an estimation accuracy
of 99% for the maximum and minimum value. Halkjelsvik and Jørgensen (2018)
state that this accuracy is often not achieved. To get an accurate time prediction,
historical time predictions and their accuracies can be used to create a time dis-
tribution. Using this data an accurate prediction can be made using an adjusted
mean value of the time ranges.

As historical data of is not available, it is not possible to directly apply the
method of Halkjelsvik and Jørgensen (2018). Instead we apply the Monte Carlo
method to try to achieve similar results. This enables us to create an effort distri-
bution even though the available data is limited. In Section 4.4.1.1 this approach
will be further described.

Every case study will be divided in two parts. One part will discuss general
observations which will also include the output of the Static Analyzer and the
recommendation of the Risk Analyzer from the developed tool. The second part
will discuss the value determination based on the described values and approach
to value determination in Case A. This aligns with the Fair Value Adjustments
component of the Risk Analyzer. Case A will contain an extra part, Understanding

40

Chapter 3. Risk Model Design 3.5. Outline of Case Studies

Value, which will create an understanding of value based on the data in this case.

3.5.2 | Case A
Case A consists of a full SDD. This is the only engagement that includes a financial
assessment of the costs for OSS component risks. These financial assessments will
be used to create an understanding to the question: How can the costs of mitigating
OSS component risks be quantified? This understanding will be applied in and
validated through all case studies. There are 16 applications for which CAST
Highlight (CAST, 2020b) outputs are available for license and security risks.

3.5.3 | Case B
Case B consists of a Software Sustainability Assessment for a target in the ‘trans-
portation and storage’ sector. This case contains 18 applications for which a CAST
Highlight (CAST, 2020b) analysis is available. The analysis contains license and
security risks found in the used OSS components.

3.5.4 | Case C
The sector of Case C is software for the ‘human health and social work activities’.
The scope of the engagement consisted of a Software Sustainability Assessment. 30
applications are part of this engagement. These are available as CAST Highlight
(CAST, 2020b) output. This engagement does not include a cost quantification for
the OSS component risks.

41

4

Model Validation

4.1 | Expert Validation
The models in Figure 3.1 and 3.2 have been validated using unstructured inter-
views with experts on the topic. Results of these interviews will be outlined in this
section. Findings of the interviews represent inaccuracies, incompleteness or gen-
eral comments regarding the models and their representation of the risks. Based
on these interviews adaptions have been made to the models which will be shown
in this section. The first iteration of these models have been separately validated
by unstructured interviews with different members of the software team for which
the results are shown in Section 4.1.1.2 and 4.1.2.2.

4.1.1 | Security Risks Model Findings
Table 4.1, 4.2 and 4.3 show the results of the interviews about the model shown
in Figure 3.1. These results were used to improve the models accuracy and com-
pleteness. The first iteration, which was made by combining the results of the first
three interviews, was used in the last two interviews. Table 4.4 and 4.5 show the
results of these last two interview.

4.1.1.1 | Original Model Findings

43

Chapter 4. Model Validation 4.1. Expert Validation

Table 4.1: Results of the first interview of the Security Risks model validation.

Category Findings

Missing information Issue size of closed issues might be relevant to include.
Vulnerable system could use more indicators to predict
system vulnerability based on past vulnerabilities.
The amount of breaking changes between versions can
indicate how much support there is for older versions.
Encryption is one way to mitigate/protect the Lack of
Security, more methods exist.

Incorrect information Low activeness should be changed to Low project activ-
ity.
Amount of closed issues should be related to the ratio of
issues.
Framework changes might cause an outdated component,
not a general lack of support.
Low activeness does protect framework changes, al-
though this is not relevant as it does not indirectly pro-
tect Lack of Support.

General Feedback Ensure readability for the model to improve the adoption
of the model.

44

Chapter 4. Model Validation 4.1. Expert Validation

Table 4.2: Results of the second interview of the Security Risks model validation.

Category Findings

Missing information Protection through separation of OSS components and
data (no touch).
Active support of big companies through monetization
programs increases the trust in the component and with
that increases the usage and support.
Business processes to ensure updated libraries.
IT processes to ensure system security (Firewalls, Auto-
mated penetration tests, ISO 27001 compliance).

Incorrect information Outdated component create a direct lack of security, this
is less or not related to the level of support.
Commits indicators should together form one ‘decline in
commit activity’ indicator.

General Feedback Vulnerability prediction (building upon the Vulnerable
System situations) might give a better overview of the se-
curity but this should be outside the scope of this model.
Different colors between indicators, situations, events
and goals for clarity.
Structure the model in layers of indicators, situations,
events and goal for clarity.

Table 4.3: Results of the third interview of the Security Risks model validation.

Category Findings

Missing information OSS policies can mitigate the impact of framework
changes.

Incorrect information Issues should be an indicator of the ratio between opened
and closed.
Framework changes will only expose lack of support
when there are no key contributors. At the same time
when there are no active contributors, such changes are
unlikely to happen.
One security vulnerability is enough to make a system
vulnerable. The amount is less, or maybe not, relevant.

General Feedback Add the arrow (relationship) to the legend
Radical framework changes, as shown in the model, are
very unlikely to happen.

45

Chapter 4. Model Validation 4.1. Expert Validation

4.1.1.2 | Iterated Model Findings

Table 4.4: Results of the fourth interview of the Security Risks model validation.
These results are based on the initial iteration of the model.

Category Findings

Missing information Indicator for outdated component. This is a measurable
situation.
System security has more goals than ‘Keep Data Secure’:
malicious code injection, hostile system takeover, acting
as the system for malicious purposes. These also cause
business damages.

Incorrect information
General Feedback

Table 4.5: Results of the fifth interview of the Security Risks model validation.
These results are based on the initial iteration of the model.

Category Findings

Missing information Possible ways to measure the vulnerability of a system
would be to look at amount of bugs/issues reported and
how many are resolved. If too many (above a certain
threshold) issues are reported this might indicate that
there might exist more issues, unknowingly, in the sys-
tem.
Automated tests for components, instead of just for the
system, might protect a component from being vulnera-
ble.

Incorrect information
General Feedback System security and data security can be manually mea-

sured by a type of score sheet, indicating how ‘good’ a
company is at security processes and policies.

4.1.2 | Copyright Compliance Model Findings
The results of the validation of the Copyright Compliance model, shown in Fig-
ure 3.2, are shown in Table 4.6, 4.7 and 4.8. Based on these results the model

46

Chapter 4. Model Validation 4.1. Expert Validation

was improved for accuracy and completeness, and further validated with two more
interviews. The results of the last interviews are shown in Table 4.9 and 4.10.

4.1.2.1 | Original Model Findings

Table 4.6: Results of the first interview of the Copyright Compliance model vali-
dation.

Category Findings

Missing information Company policies for licenses.
The copyleft and distribution situations require a third
situation for compliance. This is the method of usage;
whether it is used in a modified form, used as an ‘as-is’
code implementation or used as a binary.
The requirements of different licenses are not included to
expose the non-compliance event. Licenses can require
disclaimers, a public code base and more.

Incorrect information
General Feedback

Table 4.7: Results of the second interview of the Copyright Compliance model
validation.

Category Findings

Missing information The deliberate removal of a license and acting like its
ones own code.
CI/CD license compliance checker.
Business processes to ensure compliance.
Company policies for licenses.

Incorrect information
General Feedback Improve clarity (as described in Table 4.2 under General

Feedback)

47

Chapter 4. Model Validation 4.1. Expert Validation

Table 4.8: Results of the third interview of the Copyright Compliance model vali-
dation.

Category Findings

Missing information Some components can have a dual license, this is missing
in the model.
Periodic OSS compliance checks can help a system to
improve their compliance with licenses.

Incorrect information “None” should be probably not be part of the copyleft
and distribution indicators, as that would assume the
indicator is satisfied when there is no copyleft or distri-
bution.

General Feedback

4.1.2.2 | Iterated Model Findings

Table 4.9: Results of the fourth interview of the Copyright Compliance model
validation. These results are based on the initial iteration of the model.

Category Findings

Missing information Add indicators for situations that are measurable
through automated data collection.

Incorrect information
General Feedback Switch around ‘Business OSS policies are in place’ and

‘License specific requirements are not met’ for clarity.

Table 4.10: Results of the fifth interview of the Copyright Compliance model vali-
dation. These results are based on the initial iteration of the model.

Category Findings

Missing information Components with dual licenses might be exposed/not-
exposed to non-compliance because of one license or the
other.

Incorrect information
General Feedback

48

Chapter 4. Model Validation 4.2. Model Iterations

4.2 | Model Iterations
Iterations of the risk models were created based on the results of the unstructured
interviews. The first iterations of the models were created based on the results of
the first three interviews of which the results are shown in Section 4.1.1 and 4.1.2.
These iterations were used in the last two interviews to be further validated and
completed. The final iterations are shown in Figure 4.1 and 4.2. In these iterations
changes are colored. In the case of an added symbol the symbol is outlined in
orange, if a relation is added or its end-point has changed it is also colored. Finally
if a symbol is not added, but the text is changed, only the text is colored to show
change.

4.2.1 | Security Risks model Iteration
Figure 4.1 shows the final iteration of the Security Risks model. This iteration is
based on the results of the interviews as shown in Section 4.1.1. Results shown in
Table 4.1, 4.2 and 4.3 are based on the model shown in Figure 3.1. The results
shown in Table 4.4 and 4.5 are based on an intermediate iteration. The final
iteration is an extension of the intermediate iteration based on the results of the
final two interviews.

The results of the initial interview show that the initial model missed situations
around OSS policies and security measurements. Table 4.2 mentions examples of
IT process that can help ensure system security. These security measurements
are collected in a single new situation IT Security systems and processes are in
place. Table 4.1 mentions the lack of mitigation measurements. In the original
model the situation Data is encrypted was included. However, this situation does
not accurately represent multiple methods of data protection. Because of this the
situation was adapted to show multiple means of data protection: Data security
and breach policies are in place.

Indicators such as Amount of closed issues and Commits are relevant in a
relative context, as shown by the results in Table 4.1 and 4.3. Because of this these
have been changed to show a relative relation: Relative amount of closed issues
and Amount of commits relative to earlier amount of commits. The time units

49

Chapter 4. Model Validation 4.2. Model Iterations

Figure 4.1: Final iteration of the Security Risks model. Changes are colored in
orange. Clarifications are colored in aqua. Removed symbols and relations are not
displayed.

have also been removed as those were degrading the clarity of the model and were
too specific for a graphical representation of the risk.

For the situation Outdated component version two indicators were added: Used
component version and Last released component version. As the Outdated compo-
nent version is measurable by collected data these indicators add to the complete-
ness of the model. This addition is based on the results shown in Table 4.4. The
situation Outdated component version itself was changed to directly expose Lack
of Security as based on the results in Table 4.2.

As based on the results in Table 4.3 the indicator Amount of Security Vulnera-
bilities was changes to Has security vulnerabilities as one security vulnerability is
enough to put a system at risk.

A non-secure system can not only be targeted for data theft, but also for system

50

Chapter 4. Model Validation 4.2. Model Iterations

takeover or other forms of malicious intent. As shown in Table 4.4 example forms
of malicious intent are: malicious code injection, hostile system takeover or acting
as the system. The goal of a secure system is to protect it from malicious intent.
Because of this a goal has been added to the model: Maintain system integrity,
which shows another side of the importance of a secure system.

The final change in the model is the removal of Framework Changes situation.
This would expose the Lack of Support but at the same time be protected by
Low project activity (previously Low activeness). This situation was referred to as
“unlikely” (Table 4.3), or “not relevant” in the model’s context (Table 4.1).

Several interviewees mentioned the prediction of security vulnerabilities. Perl et
al. (2015) did research on the prediction of security vulnerabilities based on commits
and achieved accurate results. However, this study results are only applicable
on projects that had at least one Common Vulnerabilities and Exposures (CVE)
identified in the past, limiting the applicability on most components found in the
case studies. As also mentioned in Table 4.2 predicting security vulnerabilities will
be outside of the scope of this model and furthermore outside the scope of this
research.

4.2.2 | Copyright Compliance model Iteration
Figure 4.2 shows the final iteration of the Copyright Compliance model. In this
model the results of the interviews, as shown in Section 4.1.2, are incorporated.
The changes compared to the original model in Figure 3.2 will be discussed based
on the interview results.

Similarly to the results of the Security Risks model the Copyright Compliance
model lacked business and IT processes that help reduce risks, in this case non-
compliance. Results shown in Table 4.6, 4.7 and 4.8 mention automatic validation
of licenses, company policies for licenses and periodic (external) OSS compliance
checks. These are summarized in two new situations: Business OSS Policies are
in place and IT processes are in place to ensure compliance. These situations
reduce the likelihood of non-compliance, and thus have a protect relation to the
Non-compliance event.

51

Chapter 4. Model Validation 4.2. Model Iterations

Figure 4.2: Iteration of the Copyright Compliance model. Changes are colored in
orange. Clarifications are colored in aqua.

52

Chapter 4. Model Validation 4.3. Decision Flow

Table 4.6 mentions several requirements which might exist through the usage
of different licenses. In the original model in Figure 3.2 copyleft, which requires
the software to be open-sourced in a distributed form, is already included. Other
requirements, such as license disclaimers, are not included. Because of this the
License specific requirements are not met situation has been added. This covers
non-copyleft requirements of a license which can cause non-compliance with the
license.

The final change to the model is the addition of the Component does not con-
tain a license text in its files indicator. As mentioned in the results in Table 4.9
situations that can be measured by automatic data collection should include an
indicator.

As mentioned in Table 4.8 and 4.10 components can have multiple licenses.
Having multiple license is either an extension of the model, as every situation can
be looked at from the perspective of every license, or the license can be chosen from
multiple licenses in which case only one license applies. In either case, the situation
by itself does not expose Non-compliance, it exposes this event through the other
situations. Because of this multiple licenses were not included in the model.

The deliberate removal of a license, as mentioned in Table 4.7, was also not
included. The reason for this is that the removal of a license is similar to ignoring
a license. Both count as willful infringement which is covered in the License is
ignored situation. Because of this no separate situation was added.

4.3 | Decision Flow

Figure 4.3: Decision tree for mitigation advice based on distributed applications.

Using the developed tool, different recommendations will be generated for each
used component: Update, Replace, Validate or Ok. These recommendations are

53

Chapter 4. Model Validation 4.3. Decision Flow

based on the iterated risk models discussed in Section 4.2. In Figure 4.3 the decision
points for these recommendations are shown. Components are recommended to be
updated when they are outdated, replacement is advised when the component lacks
support or has a non-propriety matching license, and validation is advised in case
there are vulnerabilities found in the component.

In Figure 4.3 the decision Support Level <= 0,5 represents the Lack of Support
event in the Security Risks model. The cutoff point of 0,5 is based on the research
by (Coelho et al., 2018) which states that this point indicates a project support
level which is similar to an unmaintained project. The decision point Non-matching
Copyleft is relative to the distribution of an application which contains propriety
code. Non-matching means a form of copyleft which is more restricting than the
used distribution form. This decision point represents the Non-compliance event in
the Copyright Compliance. The Outdated and Vulnerable decision points represent
the Lack of Security event in the Security Risks model.

There is no definitive advice given based on found vulnerabilities. Vulnerabil-
ities can exist in situations in which they are not easily exploitable, can be easily
mitigated by updating the component or are not relevant because the OSS com-
ponent has no way to access sensitive areas of the system. Sensitive areas, such
as data or relevant areas for the system’s integrity, can be protected by limiting
the access of an application in a system. This advice is based on the results of the
second interview on security risks (Table 4.2).

Furthermore, while we describe the option to take on the role of project main-
tainer in Section 2.2.2 as a mitigation strategy, no such advice was found in the
case studies. Because of this we expect that this is no viable option cost wise, and
that mitigation through replacement or updating is a more efficient alternative.
Because of this, this strategy is not included in the mitigation advises as seen in
Figure 4.3.

Based on the created risk mitigation advises and the collected data we can
create an estimate of the costs required to carry out these advises. We can then
compare these costs with the expected impact costs of the risks as described in
Section 2.2.3, as the mitigation costs should be lower than the impact costs to
mitigate the risks from a financial risk management perspective.

54

Chapter 4. Model Validation 4.4. Case Studies

4.4 | Case Studies

4.4.1 | Case A
Case A contains 18 applications. In these applications several identified risks con-
tain Mitigation Effort (ME) estimations in case documentations. These estimations
are based on risks identified by consultants that worked on this case. As this re-
search managed to identify risks that are not identified in the original engagements,
not all identified components with risks contain ME estimations to resolve these
risks.

Based on the identified estimations we develop an approach for estimating fair
value adjustments. This approach will be outlined in Section 4.4.1.1. The case
findings are outlined and described in Section 4.4.1.2 and 4.4.1.3.

4.4.1.1 | Understanding Value

We found that update costs for components which are up-to-date to their major
version, i.e. the current version is v1.0.0 and the newest version is v1.3.2, are
not significant enough to measure. Components that are behind in their major
version, i.e. the current version is v1.3.2 and the newest version is v3.0.0, can
have significant costs for updates, although we found that this is often still not
the case. Only one component was found with update costs for a major version
update: the Spring Framework1. This framework was encountered with different
versions, both behind in major version, as well as behind but up-to-date with its
major version. The latter did not have a significant update cost. In total seven
component version were found which were both outdated based on their major
version, and were recommended to be updated by EY. Six of these were estimated
to be simple updates without any significant costs.

Interviews were conducted with consultants who were involved in this case.
Based on these interviews it was validated that components that are not behind
in their major version number often do not have significant update costs. It might
be possible to get a more accurate prediction for update costs by using more data

1https://github.com/spring-projects/spring-framework

55

Chapter 4. Model Validation 4.4. Case Studies

points besides the change in version number. Differences in functionality or LoC
between versions might act as data points for these cost estimations. As we do not
have enough data available on how these data points would relate to costs, and
no way to measure functionality changes, we decided to not include those in our
value estimations. Instead we only looked at differences in major versions between
the used component version and the latest component version. As with a major
version difference of zero, the costs to update are insignificant.

The most important data points that are missing to create value adjustments
are: how often a component is called in an application, and as what type the com-
ponent can be classified. Some examples of types of components are: frameworks,
logging components, testing frameworks and utility tools. These types could be
further extended to get a better idea of how much a component is integrated in the
application. This information would help in understanding the effort that would
be required to replace or update a component. At the same time, this could help
in understanding how much exposure is created by vulnerabilities in these com-
ponents. As a component that has no access to sensitive data might be less of a
security thread than a component that directly touches sensitive data.

Based on the information that is available, we can estimate lower and upper
bounds for update costs of a component. The maximum found costs for updating a
component was three person-months. These costs were associated with an update
of a framework which was expected to affect a major part of the codebase. This
component was part of application 2. The maximum costs for replacing a compo-
nent was found to be 200 person-hours for a component in application 3. While the
minimum cost of updating a component is not significant, the minimum cost for
replacing a component was found to be 40 hours for application 1. For application
2 a component replacement was estimated at 60 hours, but this replacements has a
lower Rebuild Factor (RF) due to the size of the application. As costs are looked at
from the perspective of the refactor effort, the component with an expected effort
of 60 hours will be used as a minimum.

Based on the mitigation effort we can estimate the expected affected LoC and
use this as a maximum in our estimations:

RF =
� (�ℎ)

SS ∗ TF

56

Chapter 4. Model Validation 4.4. Case Studies

Java is good for 65% of this application’s code, while C++ and C combined is
used in 35% of the application. CAST Highlight (CAST, 2020b) does not distin-
guish between C and C++, although based on the case documentation we know
that this application only uses C++. We weight the TF according to the percent-
age of code per programming language. The TF for used languages is shown in
Appendix C. Based on this data, application 2 has a weighted TF of 0,326. This
gives a RV of 131,86 (person-months) for the application.

RV = 404,6 ∗ 0,326 = 131,86

Based on the RV we can estimate the maximum RF for updating a component
to be 2,28%.

RF =
3

131,86
= 0,0228

Based on the calculated RV and the percentage of code that needs refactoring
(RF) the RV after adjustment can be calculated accordingly:

+2 = 132,21 ∗ (1 − 0,0228) = 128,86

This implies a Mitigation Effort (ME) of 132,21 − 129,21 = 3, thus aligning with
the value estimation based on effort:

+1 = 132,21 − 3 = 128,86

As security risks, which is the reason to update this component, have an average
impact cost of $3,92m the probability of one data breach has to be less than 0,64%
over a five year period2 to not mitigate the risk from a cost perspective. As these
security risks are based on publicly known vulnerabilities, we estimate that the
chance of a security breach is higher than this percentage. Therefore the +33 value
estimation is irrelevant for the mitigation of security risks.

The minimum effort to replace a component is 40 hours, which is based on the
same application. Using the same calculations this gives a RF of 0,0415%.

RF =
0,055

131,86
= 0,000415

2Assuming a $100,000 yearly developer salary.
3+3 calculates risk according to expected impact over a five year period; see Section 2.2.2

57

Chapter 4. Model Validation 4.4. Case Studies

The maximum cost to replace a component should at least have the same maxi-
mum as updating a component, as this means refactoring at least the same amount
of LoC as when updating a component. As we did not find a maximum in replace-
ment cost which is higher than the update costs, we assume the same RF maximum
for replacement as for updating: 2,28%. We expect this cost to be lower than the
expected impact cost of copyright infringement. This might depend on cost differ-
ences per country, but most importantly there should never be a recommendation
to break the law. Hence we disregard +3 for this risk.

Based on the interviews it was confirmed that most components should have
insignificant update costs. As it is expected that breaking changes will be caught
by automated tests, and that the development time to work out any issues are not
significant in the context of Mergers & Acquisitions (M&A). For replacing compo-
nents, there is always some significant effort required. Based on the uncertainties
of updating, but with multiple data points pointing towards a most likely scenario
with zero costs, we can use the PERT distribution which can be seen Figure 4.4.
For replacing components, we choose a uniform distribution as there is no available
estimation on the most likely effort. This distribution can be seen in Figure 4.5.
Using these values we can apply the Monte Carlo method to estimate the total RF
of an application.

(a) Probability distribution of the RF for up-
dating a single component.

(b) Cumulative probability of the RF for up-
dating a single component.

Figure 4.4: Probability function for the updating of a single component. Generated
using the Monte Carlo method.

58

Chapter 4. Model Validation 4.4. Case Studies

(a) Probability distribution of the RF for re-
placing a component.

(b) Cumulative probability of the RF for re-
placing a component.

Figure 4.5: Probability function for the updating of a single component. Generated
using the Monte Carlo method.

4.4.1.2 | General Findings

Table 4.11 shows the results of the used OSS components in Case A. In case doc-
uments costs for updates and component replacements are included. This data is
used as the first step in understanding update costs for components.

It is expected that the amount of OSS components varies based on the primary
language(s) used in an application. Some languages are more based around the
usage of OSS components, such as JavaScript, while others less, such as C#, as
can be seen in Table 4.11. What stands out in the case data is that the amounts
of used OSS components varies widely between applications written in the same
languages. For example application 11 and 12 are both written in Java with around
one million LoC. The difference in OSS components however, is a relative difference
of factor seven. It is possible that CAST Highlight (CAST, 2020b) is unable to
properly identify OSS components in certain applications, or the purpose of the
application might differ in such a way that it requires more or less OSS components.

In some applications CAST Highlight (CAST, 2020b) incorrectly identifies cer-
tain OSS components. An example of this is application 14 seen in Table 4.11.
In this application libraries of the .NET framework were identified as OSS com-
ponents. While the .NET framework is open source, most libraries found in this
application are part of this framework and should not be identified as individual
components. These are also not available as separate components on GitHub and
thus cannot be identified with their own risks.

59

Chapter4.
M
odelValidation

4.4.
Case

Studies
Table 4.11: Findings for Case A. Primary languages are the used languages that represent over 75% of the code of
the application. Primary languages are ordered by their size.

Application Identification Advice Findings Findings (Identified)

A
p
p
li
ca
ti
on

K
L
oC

P
ri
m
ar
y
L
an

gu
ag
e(
s)

C
om

p
on

en
ts

Id
en
ti
fi
ed

R
ep

os
it
or
ie
s

N
on

-i
d
en
ti
fi
ed

R
ep

os
it
or
ie
s

U
p
d
at
e

R
ep

la
ce

V
al
id
at
e

O
u
td
at
ed

C
om

p
on

en
ts

O
u
td
at
ed

M
aj
or

V
er
si
on

s

V
u
ln
er
ab

le
C
om

p
on

en
ts

W
ea
k
C
op

yl
ef
t
L
ic
en

se
s

S
tr
on

g
C
op

yl
ef
t
L
ic
en

se
s

S
tr
on

g
N
et
w
or
k
C
op

yl
ef
t
L
ic
en

se
s

U
n
li
ce
n
se
d
C
om

p
on

en
ts

U
n
su
p
p
or
te
d
C
om

p
on

en
ts

S
u
p
p
or
te
d
C
om

p
on

en
ts

1 137,436 Java 243 22 221 69 10 3 75 23 7 5 5 0 2 5 17
2 404,583 Java/C/C++ 256 14 242 188 12 6 198 78 38 5 12 0 0 0 14
3 1345,366 C# 59 21 38 34 5 1 37 15 11 2 1 0 0 4 17
4 349,442 C# 1358 891 467 751 64 11 776 422 40 0 0 0 1 65 826
5 3,32 JavaScript 904 701 203 589 46 7 619 418 38 0 0 0 1 46 655
6 6,311 JavaScript 850 658 192 556 46 5 589 401 37 1 0 0 1 46 612
7 6,034 JavaScript 1440 1071 369 878 77 9 931 527 53 0 0 0 3 77 994
8 7,443 JavaScript 832 646 186 538 44 6 567 383 43 0 0 0 1 44 602
9 1,408 JavaScript 1177 900 277 731 56 6 765 485 50 1 0 0 1 56 844
10 108,16 JavaScript/PHP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 972,209 Java 225 44 181 185 15 1 195 50 32 2 7 0 0 8 36
12 1158,496 Java 1928 1250 678 1117 95 18 1156 579 50 1 0 0 1 97 1153
13 396,972 Java 1022 688 334 639 53 5 662 339 34 0 1 0 0 53 635
14 11,151 C# 45 5 40 41 0 0 41 30 4 2 0 0 0 0 5
15 9,058 Java/Typescript 1335 936 399 935 69 6 979 546 53 3 1 0 1 70 866
16 229,999 C# 133 18 115 92 2 2 93 57 12 3 1 0 0 1 17
17 360,322 Java/JavaScript 73 32 41 57 4 2 60 24 13 1 0 0 0 4 28
18 5,187 Scala 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60

Chapter 4. Model Validation 4.4. Case Studies

4.4.1.3 | Value Determination

Table 4.12: Relevant application data points for mitigation strategies in Case A.

A
p
p
li
ca
ti
on

M
aj
or

U
p
d
at
es

R
ep

la
ce
m
en
ts

W
ei
gh

te
d
T
F

R
V

M
in
im

u
m

M
E

M
E
(1
st

qu
ar
ti
le
)

M
ed

ia
n
M
E

M
ea
n
M
E

M
E
(3
rd

qu
ar
ti
le
)

M
ax

im
u
m

M
E

V
ar
ia
n
ce

S
ta
n
d
ar
d
D
ev
ia
ti
on

1 19 10 0,35 48,31 4,25 8,17 8,99 9,00 9,82 14,26 10,30 3,21
2 71 12 0,33 131,85 35,18 50,49 53,60 53,66 56,79 75,43 166,73 12,91
3 13 5 0,33 439,80 17,01 41,14 46,63 46,76 52,24 82,87 448,85 21,19
4 408 64 0,32 113,28 211,12 252,04 258,37 258,43 264,76 301,40 832,53 28,85
5 400 46 0,31 1,02 1,76 2,03 2,08 2,08 2,14 2,44 0,05 0,22
6 378 46 0,31 1,94 3,21 3,70 3,80 3,80 3,90 4,41 0,15 0,38
7 494 77 0,31 1,85 4,44 4,99 5,10 5,10 5,22 5,85 0,20 0,45
8 366 44 0,31 2,28 3,61 4,21 4,32 4,32 4,44 5,05 0,21 0,46
9 460 56 0,31 0,43 0,87 1,01 1,03 1,03 1,06 1,19 0,01 0,10
10 0 0 NA NA NA NA NA NA NA NA NA NA
11 185 15 0,35 337,36 224,57 283,42 294,86 295,04 306,49 371,03 2200,73 46,91
12 550 95 0,35 408,83 1130,19 1270,67 1297,68 1297,89 1325,04 1469,80 11830,15 108,77
13 320 53 0,34 135,45 206,66 239,77 246,62 246,65 253,44 292,71 761,60 27,60
14 30 0 0,33 3,67 0,18 0,37 0,42 0,42 0,46 0,72 0,03 0,17
15 529 69 0,34 3,12 7,54 8,53 8,72 8,72 8,92 10,06 0,65 0,81
16 51 2 0,32 74,73 8,75 14,91 16,15 16,19 17,41 24,62 25,87 5,09
17 22 4 0,34 121,50 6,56 14,04 15,65 15,69 17,32 26,41 40,65 6,38
18 0 0 NA NA NA NA NA NA NA NA NA NA

As can be seen in Table 4.12 most of the applications with OSS components have
a higher ME in their best case mitigation scenario than their RV. What this means
is that it is estimated, in the best case, to be more costly to mitigate all the issues
than to rebuild the application in the same way. Since most of these applications
require to solve issues of multiple hundreds of components, from which more than
10% require replacements, which have a higher mean effort than updates, this is
not unrealistic. It is important to note here that RV does not equal the fair value,
meaning that the value adjustment, ME, can be lower than the fair value of the
application.

61

Chapter 4. Model Validation 4.4. Case Studies

4.4.2 | Case B
This case only has three applications that contain a large amount of OSS com-
ponents. These applications are primarily written in JavaScript/Typescript. This
case also contains some applications that are written in languages that are not
encountered in other cases such as Swift and Kotlin.

4.4.2.1 | General Findings

As can be seen in Table 4.13, of the 18 applications in Case B 13 contained identified
OSS components. Most of these applications contained less than 100 components,
which compared to Case A can be identified as an overall low usage of OSS com-
ponents. As the overall component usage is relatively low, it is a question on how
well CAST Highlight (CAST, 2020b) is able to detect components. Some applica-
tions are written in lesser used languages which might cause less OSS component
to exists for these languages. Examples of this are application 7 and 9, which are
written in Swift and Kotlin respectively. These applications are also smaller based
on their LoC than most other applications, which might be related to a smaller
usage of OSS components. However, other applications such as applications 3, 12
and 13 are written in languages that were using a higher relative amount of com-
ponents in Case A. This might be explained by their lower amount of LoC, which
creates a different need for OSS components, or because they were written by a
different company with different OSS policies.

62

Chapter4.
M
odelValidation

4.4.
Case

Studies

Table 4.13: Findings for Case B. Primary languages are the used languages that represent over 75% of the code of
the application. Primary languages are ordered by their size.

Application Identification Advice Findings Findings (Identified)
A
p
p
li
ca
ti
on

K
L
oC

P
ri
m
ar
y
L
an

gu
ag
e(
s)

C
om

p
on

en
ts

Id
en
ti
fi
ed

R
ep

os
it
or
ie
s

N
on

-i
d
en
ti
fi
ed

R
ep

os
it
or
ie
s

U
p
d
at
e

R
ep

la
ce

V
al
id
at
e

O
u
td
at
ed

C
om

p
on

en
ts

O
u
td
at
ed

M
aj
or

V
er
si
on

s

V
u
ln
er
ab

le
C
om

p
on

en
ts

W
ea
k
C
op

yl
ef
t
L
ic
en

se
s

S
tr
on

g
C
op

yl
ef
t
L
ic
en

se
s

S
tr
on

g
N
et
w
or
k
C
op

yl
ef
t
L
ic
en

se
s

U
n
li
ce
n
se
d
C
om

p
on

en
ts

U
n
su
p
p
or
te
d
C
om

p
on

en
ts

S
u
p
p
or
te
d
C
om

p
on

en
ts

1 148,471 PHP 22 9 13 15 2 0 16 5 9 1 0 0 0 2 7
2 24,301 C# 1 1 0 1 0 0 1 1 0 0 0 0 0 0 1
3 59,888 Java 3 2 1 1 1 0 2 0 0 0 1 0 0 0 2
4 863,028 JavaScript 1317 904 413 954 79 8 1019 575 68 8 8 1 14 72 832
5 18,334 PHP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0,477 Python 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1,971 Swift 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 5,459 Python 4 2 2 2 0 0 2 1 0 0 0 0 0 0 2
9 1,403 Kotlin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 514,175 PHP/JavaScript 79 27 52 46 5 0 49 22 4 0 2 1 5 2 25
11 258,763 JavaScript/PHP 4 2 2 1 3 0 3 3 1 0 1 1 2 1 1
12 78,289 C# 2 1 1 2 0 0 2 1 0 0 0 0 0 0 1
13 87,268 JavaScript 20 11 9 10 4 0 14 7 5 1 0 0 0 4 7
14 1382,299 JavaScript/PHP 2107 1426 681 1431 127 14 1522 886 98 15 10 3 8 118 1308
15 108,114 PHP 5 4 1 5 0 0 5 3 0 0 0 0 0 0 4
16 8,105 Typescript 1033 838 195 545 67 10 573 346 35 0 0 0 0 69 769
17 15,57 JavaScript/PHP 13 4 9 10 0 1 10 2 1 0 0 0 0 0 4
18 108,032 C/C++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63

Chapter 4. Model Validation 4.4. Case Studies

Not all components use some form of releasing versions through Git or GitHub,
such that these are available on GitHub through the Git Tag system or the GitHub
‘Release’ system. Some components use these tools but these are not as up-to-
date as the releases reported on their distribution platform. When either of these
situations is the case, such that no up-to date release version information is available
on GitHub, components cannot properly be identified on GitHub. This is the
case because the tool matches the latest known release reported by the CAST
Highlight (CAST, 2020b) output to the information on GitHub. This can cause
issues in identifying repositories as the repository might be found, but the release
information cannot be matched as this data is outdated on GitHub. Meaning that
the repository will not be correctly identified, and thus will be reported as a non-
identified repository. This causes a lower GitHub identification ratio throughout
all applications than what we expect with up-to date information.

4.4.2.2 | Value Determination

As can be seen in Table 4.14 it is costly to not be a step ahead of issues with OSS
components. For example application 4 requires almost half of its components
to be updated to a new major version and is recommended to replace 79 of its
components. As can be seen by the 25-75% range of ME this will likely cost around
three times the cost of building the application. Even though these estimates are
based on rough estimates, the costs of updating alone is expected to surpass 542
person-months in 25% of the cases, which is based on a more certain estimate than
replacements and is still two times RV.

64

Chapter 4. Model Validation 4.4. Case Studies

Table 4.14: Relevant application data points for mitigation strategies in Case B.

A
p
p
li
ca
ti
on

M
aj
or

U
p
d
at
es

R
ep

la
ce
m
en
ts

W
ei
gh

te
d
T
F

R
V

M
in
im

u
m

M
E

M
E
(1
st

qu
ar
ti
le
)

M
ed

ia
n
M
E

M
ea
n
M
E

M
E
(3
rd

qu
ar
ti
le
)

M
ax

im
u
m

M
E

V
ar
ia
n
ce

S
ta
n
d
ar
d
D
ev
ia
ti
on

1 5 2 0,35 51,43 0,34 1,73 2,14 2,15 2,56 4,62 1,93 1,39
2 1 0 0,33 8,00 0,00 0,01 0,02 0,03 0,04 0,17 0,00 0,06
3 0 1 0,35 21,14 0,00 0,12 0,24 0,24 0,36 0,48 0,03 0,17
4 545 79 0,31 268,75 689,13 781,91 799,04 799,14 816,25 916,43 5288,25 72,72
5 0 0 NA NA NA NA NA NA NA NA NA NA
6 0 0 NA NA NA NA NA NA NA NA NA NA
7 0 0 NA NA NA NA NA NA NA NA NA NA
8 1 0 0,37 2,02 0,00 0,00 0,01 0,01 0,01 0,04 0,00 0,02
9 0 0 NA NA NA NA NA NA NA NA NA NA
10 17 5 0,33 171,73 7,92 18,55 20,83 20,88 23,17 36,29 83,05 9,11
11 1 3 0,33 85,47 0,15 2,54 3,26 3,25 3,96 6,67 4,47 2,11
12 1 0 0,33 25,77 0,00 0,03 0,08 0,10 0,14 0,55 0,04 0,20
13 4 4 0,32 27,62 0,27 1,40 1,68 1,68 1,96 3,30 0,95 0,98
14 837 127 0,33 455,40 1891,10 2072,54 2108,93 2109,02 2145,23 2360,02 22591,14 150,30
15 3 0 0,35 37,56 0,01 0,27 0,40 0,43 0,56 1,56 0,29 0,53
16 327 67 0,36 2,90 4,87 5,67 5,82 5,82 5,97 6,88 0,41 0,64
17 2 0 0,33 5,08 0,00 0,02 0,03 0,04 0,05 0,17 0,00 0,06
18 0 0 NA NA NA NA NA NA NA NA NA NA

4.4.3 | Case C
This case consists of the most applications. There are all analyzed on their OSS
component risks. Value estimations are made based on the approach described in
Section 4.4.1.1 are are outlined in Section 4.4.3.2.

4.4.3.1 | General Findings

Notably in the results of Case C is that the languages C, Objective C and C++
are not distinguishable by CAST Highlight (CAST, 2020b). In Table 4.15 it can be
seen that applications using these languages have a combination of these languages
as their Primary Language(s). This is most likely due to the same syntax of these
languages. While this does not cause the identification of OSS components to
change, it does affect the effort per LoC for the application, as these value differ
between the overlapping languages. This is further discussed in Section 4.4.3.2.

65

Chapter 4. Model Validation 4.4. Case Studies

Table 4.15: Findings for Case C. Primary languages are the used languages that
represent over 75% of the code of the application. Primary languages are ordered
by their size.

Application Identification Advice Findings Findings (Identified)

A
p
p
li
ca
ti
on

K
L
oC

P
ri
m
ar
y
L
an

gu
ag
e(
s)

C
om

p
on

en
ts

Id
en
ti
fi
ed

R
ep

os
it
or
ie
s

N
on

-i
d
en
ti
fi
ed

R
ep

os
it
or
ie
s

U
p
d
at
e

R
ep

la
ce

V
al
id
at
e

O
u
td
at
ed

C
om

p
on

en
ts

O
u
td
at
ed

M
aj
or

V
er
si
on

s

V
u
ln
er
ab

le
C
om

p
on

en
ts

W
ea
k
C
op

yl
ef
t
L
ic
en

se
s

S
tr
on

g
C
op

yl
ef
t
L
ic
en

se
s

S
tr
on

g
N
et
w
or
k
C
op

yl
ef
t
L
ic
en

se
s

U
n
li
ce
n
se
d
C
om

p
on

en
ts

U
n
su
p
p
or
te
d
C
om

p
on

en
ts

S
u
p
p
or
te
d
C
om

p
on

en
ts

1 14,219 C/C++ 4 0 4 2 0 1 2 0 4 0 0 0 0 0 0
2 30,334 C/C++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 14,062 C/C++ 4 2 2 2 0 1 2 1 1 2 0 0 0 0 2
4 57,269 Ruby/JavaScript 10 2 8 4 2 0 6 4 0 0 2 0 0 0 2
5 0,263 Typescript/JavaScript 1390 923 467 758 47 13 776 429 29 0 0 0 1 58 865
6 10,899 C/C++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 23,97 Java 5 0 5 4 0 0 4 1 0 0 0 0 0 0 0
8 455,814 C/C++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 7777,341 C/C++ 1032 739 293 690 52 6 718 413 44 3 6 0 2 59 680
10 97,889 C# 104 11 93 71 2 2 72 17 7 1 2 0 0 0 11
11 4,35 Python 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 876,055 C# 1388 862 526 871 50 10 893 442 50 2 1 1 2 63 799
13 27,957 Typescript 1275 969 306 844 54 11 871 516 52 0 0 0 0 72 897
14 155,481 C# 85 18 67 69 1 0 70 37 2 0 0 0 0 1 17
15 94,956 C/C++ 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0
16 2201,544 C/C++/C# 392 40 352 290 8 3 296 123 15 3 4 4 0 0 40
17 24,502 C#/JavaScript 1036 725 311 741 36 4 759 498 32 0 0 0 0 48 677
18 75,013 C/C++ 5 0 5 3 0 1 3 0 1 0 0 0 0 0 0
19 415,947 C# 2322 1390 932 1475 77 770 1517 892 70 0 2 2 0 99 1291
20 90,224 JavaScript/C# 30 16 14 23 1 0 23 4 1 0 0 0 0 3 13
21 55,513 Objective C/C++/C/C++/C# 13 6 7 6 3 0 8 5 0 0 0 0 0 3 3
22 535,116 C/C++ 5 1 4 2 1 0 3 1 0 1 1 0 0 0 1
23 3641,832 C/C++ 11 2 9 9 0 0 9 5 0 0 0 0 0 0 2
24 25,656 C#/C/C++ 257 204 53 193 13 51 198 116 18 0 0 0 0 14 190
25 1371,947 C/C++ 30 7 23 14 2 1 15 6 2 0 1 1 0 0 7
26 28,86 Ruby 207 159 48 147 10 2 153 44 25 0 4 0 0 10 149
27 179,112 Ruby/JavaScript 258 178 80 185 15 4 195 63 37 0 5 0 1 15 163
28 102,608 C/C++ 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0
29 55,336 C# 19 11 8 14 1 0 14 6 3 0 0 0 0 1 10
30 30,717 C/C++ 7 1 6 5 0 2 5 1 2 2 0 0 0 0 1

66

Chapter 4. Model Validation 4.4. Case Studies

4.4.3.2 | Value Determination

Table 4.16: Relevant application data points for mitigation strategies in Case C.

A
p
p
li
ca
ti
on

M
aj
or

U
p
d
at
es

R
ep

la
ce
m
en
ts

W
ei
gh

te
d
T
F

R
V

M
in
im

u
m

M
E

M
E
(1
st

qu
ar
ti
le
)

M
ed

ia
n
M
E

M
ea
n
M
E

M
E
(3
rd

qu
ar
ti
le
)

M
ax

im
u
m

M
E

V
ar
ia
n
ce

S
ta
n
d
ar
d
D
ev
ia
ti
on

1 0 0 0,32 4,51 0 0 0 0 0 0 0 0
2 0 0 NA NA NA NA NA NA NA NA NA NA
3 0 0 0,32 4,44 0 0 0 0 0 0 0 0
4 3 2 0,33 18,92 0,03 0,50 0,64 0,65 0,79 1,45 0,21 0,46
5 411 47 0,337 0,088 0,16 0,18 0,19 0,19 0,19 0,22 0,00 0,02
6 0 0 NA NA NA NA NA NA NA NA NA NA
7 1 0 0,35 8,46 0,00 0,01 0,02 0,03 0,05 0,18 0,00 0,07
8 0 0 NA NA NA NA NA NA NA NA NA NA
9 390 52 0,32 2474,75 4333,78 5005,73 5137,14 5137,64 5268,04 6019,77 291554,65 539,96
10 13 2 0,33 32,22 0,68 2,00 2,32 2,33 2,64 4,58 1,58 1,26
11 0 0 NA NA NA NA NA NA NA NA NA NA
12 418 50 0,33 288,13 522,19 606,60 622,14 622,23 637,93 721,67 4077,33 63,85
13 497 54 0,35 9,86 20,65 24,13 24,71 24,71 25,28 28,31 6,02 2,45
14 37 1 0,33 51,71 3,71 7,12 7,83 7,86 8,56 12,74 8,39 2,90
15 0 0 0,32 30,71 0 0 0 0 0 0 0 0
16 117 8 0,32 714,18 266,76 363,43 382,41 382,72 401,50 512,00 6171,96 78,56
17 483 36 0,33 8,16 15,54 17,88 18,33 18,33 18,77 21,18 3,26 1,81
18 0 0 0,32 23,77 0 0 0 0 0 0 0 0
19 859 77 0,34 139,34 518,26 567,00 577,41 577,46 587,85 641,46 1562,73 39,53
20 4 1 0,31 28,29 0,05 0,56 0,75 0,75 0,93 1,91 0,37 0,61
21 3 3 0,35 19,30 0,12 0,71 0,88 0,88 1,05 1,87 0,32 0,57
22 0 1 0,32 169,58 0,01 0,97 1,94 1,94 2,90 3,87 1,86 1,36
23 4 0 0,32 1154,10 0,41 12,04 16,75 17,51 22,09 58,45 387,57 19,69
24 111 13 0,33 8,53 3,55 4,63 4,86 4,87 5,10 6,41 0,84 0,92
25 6 2 0,32 436,14 3,26 16,13 19,76 19,87 23,48 43,43 170,10 13,04
26 42 10 0,34 9,69 1,49 2,46 2,65 2,65 2,85 3,89 0,59 0,77
27 60 15 0,32 58,09 14,85 21,78 23,16 23,19 24,59 32,27 31,17 5,58
28 0 0 0,32 32,67 0 0 0 0 0 0 0 0
29 6 1 0,33 18,39 0,09 0,49 0,62 0,63 0,75 1,48 0,21 0,46
30 1 0 0,32 9,76 0,00 0,01 0,03 0,04 0,05 0,21 0,01 0,08

Table 4.16 shows the estimated ME for applications in Case C. In applications
that contain a combination of C and C++ or Objective C and C++, both were
weighted as 50% relative to the total usage of these two languages for the calculation
of TF. As neither the case documentation, nor the CAST Highlight (CAST, 2020b)
output distinguish between C and C++, and Objective C and C++, it is unknown
what the exact usages are of C, C++ and Objective C individually.

67

Chapter 4. Model Validation 4.4. Case Studies

As can be seen in Table 4.16, in application 5, 9, 12, 13, 17 and 19, the minimum
ME exceeds the RV of the application. As the fair value of the application can be
higher than the RV, this does not mean that the costs exceed the value of the
application. It does show that resolving all issues in these applications is more
costly than rebuilding the application in the current state.

68

5

Discussion

In this chapter the threats to validity and limitations of this study will be discussed.
Validity will be discussed from an internal and external perspective.

5.1 | Threats to Validity

5.1.1 | Internal Validity
As became clear from the interview results, Vulnerable System (Figure 4.1) could
be more adequately measured. Firstly, as explored by Pashchenko, Plate, Ponta,
Sabetta, and Massacci (2018) not all dependencies are deployed. This means that
certain vulnerabilities are not exposed and might not be relevant in measuring
whether a system is vulnerable or not. Secondly, not every vulnerability is ex-
ploitable in the context of the application and some vulnerabilities require a cer-
tain amount of access to the system to exploit. These criteria could give a more
complete indication of whether a system is vulnerable or not. This research looks
for vulnerabilities in multiple vulnerability databases. While this might not give a
complete view of exploitability, it does give a good indication on whether or not
an application is potentially at risk to data loss or loss of system integrity.

The amount of OSS components in some applications deviated marginally from
other applications. Some applications did not have any OSS components, while
these still contained thousands LoC. Other applications with small codebases

69

Chapter 5. Discussion 5.1. Threats to Validity

contained many OSS components. As this study relies on the output of CAST
Highlight (CAST, 2020b) there is no way to validate the completeness or accuracy
of the reported OSS components in an application. While this might limit the
completeness in the reported risks through the developed tool, it does not limit
the researched approach to determining value in software through OSS component
risk assessment.

5.1.1.1 | Repository Identification Ratio

Table 5.1: Identification ratio of GitHub repositories from OSS components.

Case Identification Ratio

Case A 66.5%
Case B 67.8%
Case C 63,4%

Average 65,9%

The tool is able to identify the repositories of around 66% of the components,
as can be seen in Table 5.1. We expect this to be slightly higher in reality as some
components are part of a larger framework, so they do not exist as their own com-
ponent, but are identified as such. Because of this, applications which use large
frameworks can have a relative low identification ratio compared to other appli-
cations. Non-identified components can cause risks to not be identified. As data
points are missing for these components which are required to create a complete
understanding of the risks. While we do not expect this to change the outcome of
this study it is an issue to explore in future works.

5.1.1.2 | Accuracy of Mitigation Effort

Mitigation Effort (ME) is based on a limited data set of Case A. While this un-
certainty is included in the estimations it is possible that maximum costs are not
accurate, and that these are either higher or lower. If this is the case, the value
adjustments will change accordingly. As there is no ground truth to validate these
findings, there is no statistical evaluation possible of these estimations. However,

70

Chapter 5. Discussion 5.2. Limitations

we provide an approach which is consistent and is improvable by providing more
accurate data. Future works can validate the results of this method against a
ground truth and improve this method with different data points.

5.1.2 | External Validity
This research is based on data availability through CAST Highlight (CAST, 2020b),
limiting the generalizability of the created approach in case this data is not avail-
able. The approach to identify risks and create fair value adjustments is, however,
generalizable, as long as it is understood which OSS components are used in an
application.

5.2 | Limitations
This researched created the initial steps in understanding the impact of OSS com-
ponent risks on the value determination of software. In this chapter the limitations
of this research will be discussed.

5.2.1 | Risk of Failure
In Section 2.1 the risk of failure was discussed. This risk was not further incorpo-
rated in the risk models discussed in this research. The reason for this is that the
cost for risk of failure is dependent on the application and the functionality of the
component. This makes it less generalizable than the costs for security risks, lack
of support or copyright infringement. Due to this the risk of failure was deemed to
be outside of the scope of this research. For this reason the understanding of this
risk in relation to value determination is still limited.

5.2.2 | Tool Limitations
To assess the risks of OSS components in applications a tool was created based on
the created qualitative models in this research. The limitations of this implemen-
tation are discussed in this section.

71

Chapter 5. Discussion 5.2. Limitations

5.2.2.1 | Accessibility of Data

Git repositories can be hosted on a multitude of platforms. Of these platforms,
GitHub is the largest host of repositories (Kalliamvakou et al., 2014). This study
primarily aimed to identify risks based on data of GitHub. Therefore risk findings
of repositories not hosted on GitHub are limited.

The means of identifying repositories in the model implementation is also lim-
ited. A subset of components reported by CAST Highlight (CAST, 2020b) are
hosted on GitHub but could not be retrieved. As CAST Highlight (CAST, 2020b)
only reports a limited amount of information about the repository this informa-
tion is not always enough to identify the correct repository. This again limits the
completeness of the risk assessment in software.

Some application do not contain any OSS component according to CAST High-
light (CAST, 2020b). While this might be expected for applications that contain
only a few thousand LoC, it is a rare occurrence for applications with thousands
LoC. Based on the results of the case studies it is expected that there are miss-
ing OSS components in the output of CAST Highlight (CAST, 2020b) which are
therefore not included in the risk assessment. This limits the completeness of risk
assessment of the application as a whole.

5.2.2.2 | Identification of Situations

In the RiskML models shown in Section 4.2 some situations lack indicators. While
information on some situations can be gathered through non-automated means,
such as through interviews with developers, this is not the case for all of them.
Situations such as Component has conflicting licenses are important to determine
whether an application is compliant with certain licenses. The issue with these
situations is that the implementation of these models is not capable to identify
whether these situations are fulfilled. This means that it cannot be determined
whether a component is at risk based on these situations. While these situations
help in the understanding of the risks, and therefore the risk assessment, the tool
is limited in assessing the risks completely due to these missing data points.

72

Chapter 5. Discussion 5.2. Limitations

5.2.2.3 | Generalization Capability of Machine Learning

As discussed in Section 3.3 to determine the support level of a component the
Random Forest implementation of Coelho et al. (2018) was used. Any form of
machine learning can suffer from bias due to overfitting or underfitting the model.
To reduce this form of bias a form of cross-fitting was applied on the dataset: K-
Fold Cross Validation. In this form of cross-fitting the model is trained with a
percentage of the complete training set, while the other set is used for validation.
This confirmed the accuracy of the model. Furthermore the differently trained
models were applied to new data from the case studies. An aggregation of the
results (supported or non-supported) was reported as the support level for the
OSS component. In this way the certainty of the prediction on the available data
could be estimated. A high value indicates a high likelihood that the component is
actively maintained, while a low value means a high likelihood that the component
is no longer maintained. As the accuracy of a machine learning tool is never 100%,
there is a limitation in the outcomes of this model due to the possible inaccuracy
of the machine learning model.

73

6

Conclusions

This research aimed to provide an answer to the question: How can Open Source
Software (OSS) Component Risk Assessment be used for the Value Determination
of Software? In this section we will provide an answer to this question through the
formulated sub-questions.

What risks are involved in using OSS components? The following risks
exist in using OSS components: security risks, risk of failure, loss of support and
copyright infringement.

How can OSS component risks impact fair value? Risks in using OSS
components can impact the fair value by possible damages to a company. Alterna-
tively fair value adjustments can be based on the mitigation costs of risks. Possible
damages of risks can happen through security breaches in case of security risks,
lawsuits and possible fines or injunctive relief in case of copyright infringement,
and maintenance costs in case of loss of support.

How can OSS component risks be identified? Identification of a risk
can be done by looking at different situations which can exist within a company
or an application, combined affecting the likelihood and/or severity of risk occur-
rences. We found seven situations that can help in assessing security risks and
eight situations to assess copyright compliance risks.

How can the costs of mitigating OSS component risks be quantified?
Costs of mitigating risks in components can be quantified by looking at the amount
of a system which has to be rebuild for each OSS component risk. These values can
be used to calculate a best case, most likely and worst case total amount of effort

75

Chapter 6. Conclusions 6.1. Achieved Aims and Objectives

that is required to mitigate those risks, which effort equals the mitigation cost.

How can Open Source Software (OSS) Component Risk Assessment
be used for the Value Determination of Software? Risk assessment can be
done by identifying risk situations in OSS components. The situations that iden-
tify risk events, in combination with an understanding of how business processes
help mitigate and protect against damages from these risks, help in understanding
which components and how these components bring risk to an application. When
at risk components are identified, the value of software can be adjusted based on
the potential damages or mitigation costs for these risks. Components that are
at risk based on a lack of support or copyright compliance issues, should be re-
placed. While lack of support can be mitigated by taking up the maintainer role,
this is estimated to not be feasible in terms of costs. As when the expected impact
cost is higher than the mitigation cost, it is better to mitigate the risk. Security
vulnerabilities can sometimes be resolved by upgrading a component. If the lat-
est version still contains security vulnerabilities migrating to a similar component
without vulnerabilities might be a solution.

We propose a method to quantify value adjustments based on a best case, most
likely and worst case effort estimation. By applying the Monte Carlo method on
these values, with a distribution matching the certainty of this data, an effort range
can be generated. By deducting these effort values from the fair value of software,
a new value range can be determined for software.

6.1 | Achieved Aims and Objectives
The aim of this research was to fill the gap between OSS component risks and how
this impacts the value determination of software. We filled this gap by creating
two qualitative models that display the relations between different risk indicators
and the goals of an application in relation to these risks. We created a tool to
further assess the risks in case studies based on the qualitative models. This tool
was created using R: A Language and Environment for Statistical Computing (R
Core Team, 2020). With this tool we were able to collect data on the indicators
for the researched risks. These indicators were used to assess whether a component

76

Chapter 6. Conclusions 6.2. Contributions

was at risk or not. We recommended two courses of action for components at risk:
update or replace. A separate recommendation was given for vulnerabilities: vali-
date. Components that could resolve their issues by updating were recommended
to do so, as updating is cheaper than replacing. Replacement was advised in case
a component had a support score lower or equal to 0.5 which meant that the com-
ponent was no longer maintained. In case there were copyleft licenses found, and
the application was distributed, the tool recommends to replace the component.

6.2 | Contributions
The overall contribution of this thesis is a designed and created approach to de-
termine fair value adjustments in the context of software acquisitions based on
software and data analytics. In the course of doing so an improved understanding
of the relationship between OSS components and software value was developed.
This understanding contributes to the literature of value estimation and delivery
in SDD, agile methods, continuous delivery and continuous integration.

Two conceptual models were created to increase the understanding of security
and copyright compliance risks in OSS components. These models further a quan-
tifiable approach in determining whether components are at risk. We created a
consistent method to determining value impacts of risks based on their mitigation
strategies.

To gather and analyze OSS risks data in the case studies of this research a tool
was created. This tool is able to gather and analyze data from different sources
and combines these in a recommendation on risk mitigation per used component.
These recommendation are translated into fair value adjustments based on their
mitigation effort. This tool is a contribution towards EY as the tool is transferred
in full to EY whom also included its use in their business processes.

6.3 | Future Work
As described in Section 5.2, this study comes with several limitations based on the
availability of data. This study looked at how risk assessment of OSS components

77

Chapter 6. Conclusions 6.3. Future Work

can be used for value determination of software, in future work this approach can
be further extended to gather further quantifiable results.

6.3.1 | Repository Identification
This research made the first steps in filling the gap between OSS component risks
and the impact of these risks on value determination of software. As described
in Section 5.2.2.1, not every GitHub repository can be identified. At the same
time identification of releases can be troublesome as addressed in Section 4.4.2.
A proposed solution for future works is identification through distribution plat-
forms such as NPM or Maven. CAST Highlight (CAST, 2020b) contains the URLs
for the identified components on the respective distribution platform. Currently
this information is not available through their API, but it is available in their
online platform. These distribution platforms often contain the URL to the cor-
rect GitHub page, including ones that currently cannot be identified. Using this
information can also help in identifying proper release information, as release in-
formation from both the distribution platform and GitHub can be collected and
validated against each other. As release information is not always up-to-date on
one of these platform, using both will ensure the latest information.

6.3.2 | Fair Value Adjustments
This research provides a method of identifying risks in OSS components and cre-
ating an preliminary understanding of how this translates into value adjustments.
However, it lacks understanding in how a component is used, and what the func-
tionality of a component is. To create a more accurate understanding of value
adjustments based on the identified risks a more detailed understanding of these
topics is required. Understanding of usage can be done in the form of the amount
of calls to the component in an application, or with a more simplistic approach by
having a baseline of different types of components. Neither of these two things are
currently known through CAST Highlight (CAST, 2020b) but might be available
in the future.

78

Chapter 6. Conclusions 6.4. Final Remarks

For future work we propose the inclusion of the data points: type and usage
of components. These data points can be used to determine a more accurate esti-
mation of mitigation costs through updating or replacements of components. The
method which we propose in Section 4.4.1.1 can be used with more accurate estima-
tions per component to create a consistent and accurate range of mitigation effort
for OSS component risks in applications. Identification of the type of component
can be done by classification based on the contents of a README file. Prana,
Treude, Thung, Atapattu, and Lo (2019) did work on such a GitHub classification
method which can be further researched in the context of value determination of
software. Usage of a component can be done by scanning the code of an applica-
tion. By scanning the code for patterns that relate to used components it might be
possible to get a size estimation of the component in relation to the application.

6.3.3 | Component Usage Identification
In the current state CAST Highlight (CAST, 2020b) does not include a way to
retrieve component usage information. CAST Application Intelligence Platform
(CAST, 2020a) has the option to scan an application for occurrences of keywords.
A possible way to identify how often a component is used is by extracting the
function names from a component’s source code. These can then be included as
keywords in an application (re-)scan. This will give an initial insight in the usage
of components in an application in an automated way.

6.4 | Final Remarks
As part of this research we developed a tool to assess the risks of used OSS com-
ponents in an application. This tool was developed based on the CAST Highlight
(CAST, 2020b) output which is a powerful, but limited, source of information on
OSS risks. The developed tool is able to improve on this output by assessing risks,
and recommending mitigation options for these risks. It has already been success-
fully applied in a running case during this research, and will be applied in more

79

Chapter 6. Conclusions 6.4. Final Remarks

cases in the future. Due to this success, the tool is being integrated in the standard
business process of EY.

80

A

OSS Licenses

81

Appendix A. OSS Licenses

Figure A.1: Software licenses and their usage rights and obligations. Reproduced
from (Choosealicense.com, 2019a).

82

B

Industry Sectors

Top level industry categories, reproduced from European Commission (2008, p.57):

� Agriculture, forestry and fishing

� Mining and quarrying

� Manufacturing

� Electricity, gas, steam and air conditioning supply

� Water supply; sewerage, waste management and remediation activities

� Construction

� Wholesale and retail trade; repair of motor vehicles and motorcycles

� Transportation and storage

� Accommodation and food service activities

� Information and communication

� Financial and insurance activities

� Real estate activities

� Professional, scientific and technical activities

� Administrative and support service activities

83

Appendix B. Industry Sectors

� Public administration and defence; compulsory social security

� Education

� Human health and social work activities

� Arts, entertainment and recreation

� Other service activities

� Activities of households as employers; undifferentiated goods- and services-
producing activities of households for own use

84

C

Technology Factors

Table C.1: Technology Factor (TF) for languages used in applications in the case
studies discussed in Section 4.4. Adapted from Jones (2017, p.49–51)

Technology TF (person-months)

PL/SQL 0,56971

Objective C 0,4029
Delphi 0,3900
Typescript 0,35802

Ruby 0,3387
C# 0,3291
Java 0,3259
C++ 0,3259
PHP 0,3259
Python 0,3259
JavaScript 0,3067
C 0,2810

2Value is based on “TranscriptSQL” Jones (2017, p.51)
2Value is based on “Mixed Languages” Jones (2017, p.51)

85

References

Almeida, D. A., Murphy, G. C., Wilson, G., & Hoye, M. (2017). Do Software De-
velopers Understand Open Source Licenses? IEEE International Conference
on Program Comprehension, 1–11. doi: 10.1109/ICPC.2017.7

Ampatzoglou, A., Ampatzoglou, A., Avgeriou, P., & Chatzigeorgiou, A. (2015).
Establishing a framework for managing interest in technical debt. In Bmsd
2015 - proceedings of the 5th international symposium on business modeling
and software design (pp. 75–85). doi: 10.5220/0005885700750085

Asnar, Y., Giorgini, P., & Mylopoulos, J. (2011). Goal-driven risk assessment in
requirements engineering. Requirements Engineering , 16 (2), 101–116. doi:
10.1007/s00766-010-0112-x

Aven, T. (2016). Risk assessment and risk management: Review of recent advances
on their foundation. European Journal of Operational Research, 253 (1), 1–13.
doi: 10.1016/j.ejor.2015.12.023

Avgeriou, P., Kruchten, P., Ozkaya, I., & Seaman, C. (2016). Managing Technical
Debt in Software Engineering (Dagstuhl Seminar 16162). Dagstuhl Reports ,
6 (4), 110–138. doi: 10.4230/DagRep.6.4.110

Boehm, B. (2003). Value-based software engineering. ACM SIGSOFT Software
Engineering Notes , 28 (2), 3. doi: 10.1145/638750.638775

Cailliau, A., & van Lamsweerde, A. (2013). Assessing requirements-related risks
through probabilistic goals and obstacles. Requirements Engineering , 18 (2),

87

References

129–146. doi: 10.1007/s00766-013-0168-5

CAST. (2020a). CAST Application Intelligence Platform. Retrieved from
https://www.castsoftware.com/products/application-intelligence

-platform

CAST. (2020b). CAST Highlight. Retrieved from https://www.castsoftware

.com/products/highlight

Choosealicense.com. (2019a). Appendix. Retrieved 05-03-2020, from https://

choosealicense.com/appendix/

Choosealicense.com. (2019b). No License. Retrieved 24-02-2020, from https://

choosealicense.com/no-permission/

CIRCL. (2020). CVE Search. Retrieved from http://cve.circl.lu/

Coelho, J., Valente, M. T., Silva, L. L., & Shihab, E. (2018). Identifying unmain-
tained projects in github. International Symposium on Empirical Software
Engineering and Measurement . doi: 10.1145/3239235.3240501

Computing Technology Industry Association. (2019). IT industry outlook 2020
(Tech. Rep.). Retrieved from https://comptiacdn.azureedge.net/

webcontent/docs/default-source/research-reports/comptia-it

-industry-outlook-2020.pdf?sfvrsn=8869ad68_0

Damodaran, A. (2013). The Dark Side of Valuation (Second ed.). New Jersey: FT
Press.

De Groot, J., Nugroho, A., Bäck, T., & Visser, J. (2012). What is the value of
your software? In 2012 3rd international workshop on managing technical
debt, mtd 2012 - proceedings (pp. 37–44). doi: 10.1109/MTD.2012.6225998

Dingsøyr, T., & Lassenius, C. (2016). Emerging themes in agile software de-

88

https://www.castsoftware.com/products/application-intelligence-platform
https://www.castsoftware.com/products/application-intelligence-platform
https://www.castsoftware.com/products/highlight
https://www.castsoftware.com/products/highlight
https://choosealicense.com/appendix/
https://choosealicense.com/appendix/
https://choosealicense.com/no-permission/
https://choosealicense.com/no-permission/
http://cve.circl.lu/
https://comptiacdn.azureedge.net/webcontent/docs/default-source/research-reports/comptia-it-industry-outlook-2020.pdf?sfvrsn=8869ad68_0
https://comptiacdn.azureedge.net/webcontent/docs/default-source/research-reports/comptia-it-industry-outlook-2020.pdf?sfvrsn=8869ad68_0
https://comptiacdn.azureedge.net/webcontent/docs/default-source/research-reports/comptia-it-industry-outlook-2020.pdf?sfvrsn=8869ad68_0

References

velopment: Introduction to the special section on continuous value de-
livery. Information and Software Technology , 77 , 56–60. doi: 10.1016/
j.infsof.2016.04.018

European Commission. (2008). NACE Rev. 2 – Statistical classification of economic
activites in the European Community.

Franch, X., Susi, A., Annosi, M. C., Ayala, C., Glott, R., Gross, D., . . . Siena, A.
(2013). Managing risk in open source software adoption. In ICSOFT 2013 -
proceedings of the 8th international joint conference on software technologies
(pp. 258–264). doi: 10.5220/0004592802580264

Free Software Foundation. (2019). Frequently Asked Questions about version
2 of the GNU GPL. Retrieved 05-03-2020, from https://www.gnu.org/

licenses/old-licenses/gpl-2.0-faq.html

García García, J., & Alonso Magdaleno, M. (2013). Valuation of open source
software: how do you put a value on free? Revista de Gestão, Finanças e
Contabilidade, 3 (1), 3–16. doi: 10.29386/rgfc.v3i1.106

Halkjelsvik, T., & Jørgensen, M. (2018). Time Predictions - Understanding and
Avoiding Unrealism in Project Planning and Everyday Life.

Hauge, Ø., Cruzes, D. S., Conradi, R., Velle, K. S., & Skarpenes, T. A. (2010).
Risks and risk mitigation in open source software adoption: Bridging the
gap between literature and practice. In IFIP advances in information and
communication technology (Vol. 319 AICT, pp. 105–118). doi: 10.1007/978
-3-642-13244-5_9

Holterman, W. (2004). Waardebepaling in het kader van de goodwill impairment-
test. Maandblad Voor Accountancy en Bedrijfseconomie, 78 (6), 261–268. doi:
10.5117/mab.78.17510

IFRS Foundation. (2018). IFRS 13 Fair Value Measurement. In IFRS R©

89

https://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html

References

standards (pp. 667–714). Retrieved from http://eifrs.ifrs.org/eifrs/

bnstandards/en/IFRS13.pdf

ISO. (2018). ISO 31000:2018(en) Risk management — Guidelines. Retrieved
21-02-2020, from https://www.iso.org/obp/ui/{#}iso:std:iso:31000:

ed-2:v1:en

Jones, C. (1995). Backfiring: Converting lines of code to function points. Com-
puter , 28 (11), 87–88. doi: 10.1109/2.471193

Jones, C. (2017). Software Economics and Function Point Metrics: Thirty years of
IFPUG Progress (Tech. Rep.). Retrieved from https://www.ifpug.org/wp

-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software

-Economics-and-Function-Point-Metrics-Capers-Jones.pdf

Kalliamvakou, E., Singer, L., Gousios, G., German, D. M., Blincoe, K., & Damian,
D. (2014). The promises and perils of mining GitHub. doi: 10.1145/2597073
.2597074

Kaplan, S., & Garrick, B. J. (1981). On The Quantitative Definition of Risk. Risk
Analysis , 1 (1), 11–27. doi: 10.1111/j.1539-6924.1981.tb01350.x

Li, J., Conradi, R., Slyngstad, O. P., Torchiano, M., Morisio, M., & Bunse, C.
(2008). A state-of-the-practice survey of risk management in development
with off-the-shelf software components. IEEE Transactions on Software En-
gineering , 34 (2), 271–286. doi: 10.1109/TSE.2008.14

Linh, N. D., Hung, P. D., Diep, V. T., & Tung, T. D. (2019). Risk management
in projects based on open-source software. ACM International Conference
Proceeding Series , Part F1479 , 178–183. doi: 10.1145/3316615.3316648

McKinsey, I., Copeland, T. E., Koller, T., & Murrin, J. (2000). Valuation: mea-
suring and managing the value of companies. Wiley.

90

http://eifrs.ifrs.org/eifrs/bnstandards/en/IFRS13.pdf
http://eifrs.ifrs.org/eifrs/bnstandards/en/IFRS13.pdf
https://www.iso.org/obp/ui/{#}iso:std:iso:31000:ed-2:v1:en
https://www.iso.org/obp/ui/{#}iso:std:iso:31000:ed-2:v1:en
https://www.ifpug.org/wp-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software-Economics-and-Function-Point-Metrics-Capers-Jones.pdf
https://www.ifpug.org/wp-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software-Economics-and-Function-Point-Metrics-Capers-Jones.pdf
https://www.ifpug.org/wp-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software-Economics-and-Function-Point-Metrics-Capers-Jones.pdf

References

Microsoft. (2019). Microsoft Visio.

Nugroho, A., Visser, J., & Kuipers, T. (2011). An empirical model of techni-
cal debt and interest. In Proceedings - international conference on software
engineering (pp. 1–8). doi: 10.1145/1985362.1985364

Pashchenko, I., Plate, H., Ponta, S. E., Sabetta, A., & Massacci, F. (2018). Vul-
nerable open source dependencies. In Acm / ieee international symposium on
empirical soft-ware engineering and measurement (esem) (esem ’18), october
11–12, 2018, oulu, finland (pp. 1–10). doi: 10.1145/3239235.3268920

Perl, H., Dechand, S., Smith, M., Arp, D., Yamaguchi, F., Rieck, K., . . .
Acar, Y. (2015). VCCFinder: Finding potential vulnerabilities in open-
source projects to assist code audits. Proceedings of the ACM Conference
on Computer and Communications Security , 2015-October , 426–437. doi:
10.1145/2810103.2813604

Ponemon Institute. (2019). Cost of a data breach report (Tech. Rep.). Retrieved
from https://www.ibm.com/downloads/cas/ZBZLY7KL

Prana, G. A. A., Treude, C., Thung, F., Atapattu, T., & Lo, D. (2019). Categoriz-
ing the Content of GitHub README Files. Empirical Software Engineering ,
24 (3), 1296–1327. doi: 10.1007/s10664-018-9660-3

R Core Team. (2020). R: A language and environment for statistical computing.
Vienna, Austria. Retrieved from https://www.R-project.org

Reilly, R. F. (2008). The Relief from Royalty Method of Intellectual Property Val-
uation. Insights , Autumn, 20–43. Retrieved from http://www.willamette

.com/insights_journal/08/autumn_2008_2.pdf

Rosen, L. (2004). Open Source Licensing. Upper Saddle River, New Jersey:
Prentice Hall.

91

https://www.ibm.com/downloads/cas/ZBZLY7KL
https://www.R-project.org
http://www.willamette.com/insights_journal/08/autumn_2008_2.pdf
http://www.willamette.com/insights_journal/08/autumn_2008_2.pdf

References

Ruffin, M., & Ebert, C. (2004). Using Open Source Software in Product
Development: A Primer. IEEE Software, 21 (1), 82–86. doi: 10.1109/
MS.2004.1259227

Sales, T. P., Baião, F., Guizzardi, G., Almeida, J. P. A., Guarino, N., & My-
lopoulos, J. (2018). The common ontology of value and risk. In Inter-
national conference on conceptual modeling (pp. 121–135). doi: 10.1007/
978-3-030-00847-5_11

Sebastiani, R., Giorgini, P., & Mylopoulos, J. (2004). Simple and minimum-cost
satisfiability for goal models. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 3084 , 20–35. doi: 10.1007/978-3-540-25975-6_4

Sherlock, J., Muniswamaiah, M., Clarke, L., & Cicoria, S. (2018). Open Source
Software Opportunities and Risks. CoRR, abs/1812.1 , 10. Retrieved from
http://arxiv.org/abs/1812.11697

Siena, A., Morandini, M., & Susi, A. (2014). Modelling risks in open source software
component selection. In International conference on conceptual modeling (pp.
335–348). doi: 10.1007/978-3-319-12206-9_28

Silic, M., Back, A., & Silic, D. (2015). Taxonomy of technological risks of open
source software in the enterprise adoption context. Information and Com-
puter Security , 23 (5), 570–583. doi: 10.1108/ICS-08-2014-0056

Software Freedom Conservancy v. Best Buy Co., No. 1:2009cv10155 - Document
131 (S.D.N.Y. 2010)

Software Freedom Conservancy v. Best Buy Co., No. 1:2009cv10155 - Document
132 (S.D.N.Y. 2010)

The Free Dictionary. (n.d.). Injunctive Relief. Retrieved 02-03-2020, from https://

legal-dictionary.thefreedictionary.com/injunctive+relief

92

http://arxiv.org/abs/1812.11697
https://legal-dictionary.thefreedictionary.com/injunctive+relief
https://legal-dictionary.thefreedictionary.com/injunctive+relief

References

Tiemann, M. (2007). GNU Affero GPL version 3 and the "ASP loophole". Re-
trieved 05-03-2020, from https://opensource.org/node/152

Welte v. Fantec, Az.: 308 O 10/13 (Landgericht Hamburg, 2010)

Yu, E. S., & Mylopoulos, J. (1994). From E-R to “A-R” - modelling strate-
gic actor relationships for business process reengineering. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 881 LNCS (December), 548–565. doi:
10.1007/3-540-58786-1_101

93

https://opensource.org/node/152

Index

Fair Value, 17

Licensee, 14
Licensor, 14

Multi-period Excess Earnings, 18

Premium Pricing, 18
Production Value, 17

Rebuild Value, 19
Relief from Royalty, 18
Risk, 10

Changes in Framework, 13
Code Integrity, 12
Copyright Compliance, see License

Compliance
Forking, 13
Lack of Support, 13
License Compliance, 14
License Conflict with Sub-components,

15
Project Discontinuation, 14
Reliability, 12
Security Vulnerabilities, 12

Technology Factor, 19

Use Value, 17

95

	Introduction
	Problem Statement
	Aims and Objectives
	Scope
	Research Questions
	Structure

	Background & Literature Review
	OSS Risks
	Conceptualization of Risk
	Qualitative Risks in OSS
	Benefits
	Conclusion

	Software Valuation
	Software as an Asset
	Cost of Risk
	Quantifying Risk Costs
	Conclusion

	Risk Model Design
	Framework Selection
	Initial Model Design
	Security Risks
	Copyright Compliance

	Model Implementation
	Model Validation
	Outline of Case Studies
	Case Study Approach
	Case A
	Case B
	Case C

	Model Validation
	Expert Validation
	Security Risks Model Findings
	Copyright Compliance Model Findings

	Model Iterations
	Security Risks model Iteration
	Copyright Compliance model Iteration

	Decision Flow
	Case Studies
	Case A
	Case B
	Case C

	Discussion
	Threats to Validity
	Internal Validity
	External Validity

	Limitations
	Risk of Failure
	Tool Limitations

	Conclusions
	Achieved Aims and Objectives
	Contributions
	Future Work
	Repository Identification
	Fair Value Adjustments
	Component Usage Identification

	Final Remarks

	OSS Licenses
	Industry Sectors
	Technology Factors
	References
	Index

