
Master Computer Science

Programming a Stochastic Constraint

Optimisation Algorithm, by Optimisation

Name: Daniël Fokkinga
Student ID: 1532960

Date: 6/12/2019

Specialisation: Advanced Data Analytics

1st supervisor: Prof. dr. Holger H. Hoos
2nd supervisor: Anna Louise D. Latour Msc.
3nd supervisor: Marie Anastacio Msc.

2nd reader: Prof. dr. Siegfried Nijssen

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Stochastic Constraint Optimisation Problems (SCOPs), such as the viral marketing problem and powergrid

reliability problem, arise in fields like industry, governance and science. Recent developments combine techniques

from the fields of Probabilistic Logic Programming and Constraint Programming, and make it possible to model

and solve such SCOPs efficiently. Solving SCOPs exactly is NP-hard, and to solve real-world problems, the

design of exact SCOP solving methods must be highly optimised. To optimise the design of a recently developed

solving method for SCOPs on monotonic probability distributions, we follow the principle of Programming by

Optimisation. We expose design choices and add alternatives to those choices. This allows us to optimise these

choices using Automated Algorithm Configuration. We compare the performance of our optimised SCOP solver

to that of an expert-chosen default configuration of the solver. For a set of viral marketing problems, the

optimised solver runs up to 51 times faster and solves more than 80% of the instances that could not be solved

within a cutoff time of ten minutes by the default. For a set of powergrid reliability problems, the optimised

solver solves 9% more instances overall, and solves instances up to 17 times faster.

Contents

1 Introduction 1

2 Stochastic Constraint Optimisation Problems 3

2.1 Modelling SCOPs . 3

2.1.1 General SCOP model . 3

2.1.2 The viral marketing problem . 4

2.1.3 The powergrid reliability problem . 5

2.2 Näıve approach to solving SCOPs . 6

3 Solving SCOPs 8

3.1 Modelling stage . 8

3.2 Compilation stage . 9

3.2.1 Knowledge compilation . 9

3.2.2 Weighted model counting with OBDDs . 10

3.3 Solving stage . 12

3.3.1 Decomposition method . 12

3.3.2 Solving using constraint programming . 12

4 Programming by Optimisation 16

4.1 Programming by Optimisation . 16

4.2 Automated algorithm configuration . 16

4.2.1 The algorithm configuration problem . 17

4.2.2 Different configurators . 18

4.2.3 Application of AAC . 18

5 Approach 19

5.1 Configuring the compilation stage . 19

5.1.1 Sifting algorithms . 20

5.1.2 Window permutation approach . 21

5.1.3 Other variable ordering algorithms . 21

5.2 Configuring the solving stage . 21

5.2.1 Existing heuristics . 23

5.2.2 New heuristics . 23

6 Experiments 27

6.1 Experimental setup . 27

6.1.1 Datasets . 27

6.1.2 Protocol . 29

6.1.3 Hardware and software . 29

6.2 Results . 29

6.2.1 Viral marketing dataset results . 30

6.2.2 Powergrid dataset results . 30

6.2.3 Conclusion and discussions . 31

7 Conclusion 35

A Additional Results 36

A.1 Parameter importance . 36

A.2 Additional results powergrid dataset . 37

A.3 Comparison to existing MIP solvers . 37

Bibliography 41

Chapter 1

Introduction

In fields like industry, governance and science, problems in which one has to make optimal decisions under

constraints and uncertainty are common.

Consider for example the viral marketing problem, a well-known problem in the data mining literature [28].

This problem is defined on a probabilistic network, where nodes correspond to people and the directed edges

to stochastic influence relationships, indicating how likely a person is to influence another. We want to leverage

word-of-mouth marketing to promote a new product in the network. To start this process, we are given k free

samples to distribute to people in the network. Which group of k people is the most influential?

Another example is the powergrid reliability problem [16]. This problem is defined on a powergrid, where nodes

correspond to consumers and producers of power, and edges to powerlines. In the event of a natural disaster,

like an earthquake or hurricane, powerlines might break. If too many of them do, consumers may become

disconnected from the grid and lose power. Each powerline has a certain probability of remaining intact during

a disaster. By reinforcing powerlines we can increase this probability. This can be expensive and there is a limited

budget for powerline maintenance. Which powerlines do we reinforce such that we maximise the expected number

of power consumers that are still connected to a power producer after a disaster, while not exceeding our budget?

We call constraint optimisation problems that involve a constraint or objective function with a stochastic

component Stochastic Constraint Optimisation Problems (SCOPs) [29]. Besides the two problems mentioned

above, other examples of SCOPs include the problem of signaling-regulatory pathway inference [13] or a variant

of the landscape connectivity problem [45].

A recently developed method leverages modelling and solving techniques from the fields of Constraint Program-

ming (CP) and Probabilistic Logic Programming (PLP) to solve SCOPs on monotonic probability distributions

exactly [31]. This method consists of three stages. The first two stages use PLP for modelling the problem as a

logic program and compiling its probability distributions to a data structure that supports tractable probabilis-

tic inference. The third stage uses techniques from CP to search for an optimal solution, in a way that takes

advantage of specific properties of this data structure.

1

While this method has shown its merit in a proof of principle, it has not been optimised yet. Solving a problem

such as the viral marketing problem, is in general an NP-hard task [28]. The optimisation of the solving algorithm

is important, if we want the algorithm to scale to large problems.

The proposed solution to this problem is two-fold. First, many design choices are hard-coded in the current solver.

We apply the principle of Programming by Optimisation (PbO) [21] by exposing those choices as parameters

and providing alternatives to these choices. Then, we apply Automated Algorithm Configuration (AAC) [20] to

find which combination of those design choices performs best on a given set of problems.

Our contributions are the following:

1. We apply PbO to the pipeline presented by Latour et al. [31]: we expose parameters for configuration and

implement alternative design choices, before using AAC to optimise the resulting solver;

2. we show that the automatically configured version of this SCOP solver outperforms the hand-configured

version presented earlier by Latour et al. [31].

The remainder of this thesis is organised as follows. In Chapter 2 we provide the definition of the SCOPs we

study, along with examples and we show why they are challenging to solve. We then present an extensive outline

of the method we use the solve them, followed by an introduction to PbO and AAC. In Chapter 5 we list the

different parameters and design choices we consider in this work. We present experimental results in Chapter 6

and we conclude in Chapter 7, where we also provide some thoughts on future work.

2

Chapter 2

Stochastic Constraint Optimisation

Problems

Problems such as the viral marketing problem and the powergrid reliability problem can be modelled as a

Stochastic Constraint Optimisation Problem (SCOP). In this chapter, we show how to model these problems as

a SCOP and describe a näıve approach for solving them. We also discuss why this approach does not scale well

and therefore, what makes SCOPs such challenging problems.

2.1 Modelling SCOPs

To describe how to model SCOPs, we begin with a general introduction to SCOPs and further illustrate this

using two examples that are both defined on a probabilistic network.

2.1.1 General SCOP model

In this thesis, we consider SCOPs that are defined for two different types of Boolean variables. They can have

the value True or False. A variable to which a value can be assigned is a decision variable: their values are

determined by choice. A variable for which the value depends on a probability is a stochastic variable: each

stochastic variable has its own independent probability that determines its value. An assignment of truth values

to a set of decision variables is called a strategy, σ.

The objective is to maximise the objective function:

∑
i

ρi · vi, (2.1)

where vi can be either the value assigned to decision variable i or a conditional probability P (φi | σ); this

conditional probability represents the probability of an event φi happening, given a strategy σ. The meaning

3

of φi is further specified depending on the context of the SCOP under consideration, it could for example be

a stochastic variable taking a specific value. Later in this chapter we give some examples of such events. With

each vi we associate a reward ρi ∈ R+, such that the objective function represents expected utility. In this thesis,

we always assume ρi = 1 for simplicity. Generalizing the approaches discussed in this thesis to solve problems

where ρi 6= 1, is trivial as it only requires to multiply the conditional probabilities with the appropriate reward

to calculate the value of the objective function.

In practice, multiple different events can happen in a single problem and we are often only interested in a subset

of events. We call this subset the set of interest, Φ.

To solve an SCOP a strategy has to be found that maximises the objective function and satisfies a constraint. In

this thesis, we consider linear constraints on the cardinality of the solution [38]: the number of decision variables

that are True in the strategy σ. To find a solution that satisfies this constraint and maximises the objective

function, we can convert the objective function from Equation (2.1) into a stochastic constraint.∑
i

ρi · vi > θ (2.2)

This results in a constraint satisfaction problem. By repeatedly solving this problem, while increasing the

threshold θ ∈ R+ until no more solution is found, we can find the maximum value for the function from

Equation (2.1). The threshold θ takes the best value for
∑
i ρi · vi found so far for a valid solution and thus

increases each time we solve the constraint satisfaction problem.

The SCOPs we consider in this thesis have the special property that the probability distributions that are

involved in the objective function are monotonic. This means that if we change a strategy σ such that additional

decision variables are True, the value for Equation (2.1) can never decrease. In other words, for each conditional

probability, P (φ | σ) ≥ P (φ | σ′) holds for all σ′ and σ where σ′ is equal to σ except for one or more decision

variable that are True in σ′ and False in σ. This condition holds for the examples described in Section 2.1.2

and Section 2.1.3.

2.1.2 The viral marketing problem

In the viral marketing problem, the goal is to maximise the expected number of people that buy our product.

By leveraging word-of-mouth marketing we can make people that buy our product turn their acquaintances into

new buyers. Specifically, we assume stochastic relationships between people that determine how likely they are

to be influenced by other specific people in their social network. To initiate the word-of-mouth process, we can

distribute a limited number of free samples to people in the network. We want to give our samples to the most

influential people, but how do we select this group? For simplicity we make two assumptions in the following

example:

• A person that receives a free sample will always buy the product.

• If a person u buys the product and influences v, v will also buy the product.

Example 2.1.1. Modelling a viral marketing problem. We formulate a viral marketing problem for the

4

a

b

c d

0.8

0.1

0.4 0.3

Figure 2.1: Social network of four persons {a, b, c, d}, edges represent the mutual stochastic trust relationships

between the people [31].

network in Figure 2.1 as follows. For every node i, we define a decision variable di ∈ {0, 1}, and for every edge

(i, j) a stochastic variable tij with a probability of evaluating to True that is equal to the label on edge (i, j).

We represent the event that person i buys our product with φi.

Suppose that the people in this network can be divided in multiple categories and we are only interested in

turning people that belong to a specific category into customers. A possible reason for this could be that we are

only selling our product in a specific location, then we want to maximise the expected number of people in that

location that buy our product. We model this by defining our set of interest to be, e.g., Φ = {φa, φb}, meaning

we are only interested in the events that persons a and b buy our product.

The objective is to find a strategy σ that maximises
∑
φ∈Φ P (φ | σ) (the objective function).

Finally, we constrain the number of people that can receive a free sample:
∑
i∈{a,b,c,d} di ≤ k, where k ∈ N+ is

the number of free samples that are available for distribution.

2.1.3 The powergrid reliability problem

In the powergrid reliability problem we are given a network in which nodes represent power producers (such as

powerplants), power consumers or intermediate grid nodes. The nodes are connected by powerlines. We want to

maximise the expected number of consumers that are still connected to at least one power producer in the case

of a natural disaster, during which powerlines can break. Each powerline has a probability that it remains intact

during a natural disaster. By reinforcing a powerline, we can increase this probability. We are given a budget for

such reinforcements. Which powerlines do we reinforce such that we maximise the number of consumers that

are still connected to producers after a natural disaster, while respecting our budget?

a

c

b

d

e

Figure 2.2: Network of powerlines between a producer a, three consumers {c, d, e} and an intermediate grid

node b.

Example 2.1.2. Modelling a powergrid reliability problem. For the network in Figure 2.2, we model

this problem as follows. For every powerline l we define a decision variable dl that indicates if the powerline is

chosen to be reinforced, and a stochastic variable tl, which indicates if the powerline remains intact during a

5

disaster. In our model, the probability pl that tl is True is defined as

pl =

pl,1 if dl = False;

pl,2 otherwise,

with pl,1 ≤ pl,2. We represent the event that a power consumer i is still connected to at least one power producer

as φi.

We define a set of interest, e.g., Φ = {φd, φe}, if we are only interested in a specific subset of power consumers.

A reason for this could be that we are only interested in buildings that fall under a certain category to be

connected to a power producer. For example if we want to maximise the expected number of hospitals that are

still connected.

The objective is to find a strategy σ that maximises
∑
φ∈Φ P (φ | σ).

We put a constraint on the powerlines that we reinforce:
∑
l∈lines dl · γl ≤ β, where β ∈ R+ is our budget, and

γl ∈ R+ is the cost for reinforcing powerline l.

Note that in this problem, the decision variables are associated with the edges in the network. In contrast, for

the viral marketing problem, the decision variables are associated with the nodes from the network.

2.2 Näıve approach to solving SCOPs

To solve any SCOP, we need a method to evaluate a strategy σ. To be able to do this, we first have to define the

conditional probability P (φ | σ) for any σ. For this purpose we can use Weighted Model Counting (WMC) [10],

we represent an event φ with a weighted propositional formula over decision variables and stochastic variables.

Example 2.2.1. WMC for a viral marketing problem. Consider the viral marketing problem from Sec-

tion 2.1.2. We model the event that person d buys the product by the following formula

φd = dd ∨ (dc ∧ tcd) ∨ (db ∧ tbc ∧ tcd) ∨ (da ∧ tac ∧ tcd) ∨ (db ∧ tba ∧ tbc ∧ tcb) ∨ (da ∧ tab ∧ tbc ∨ tcd) (2.3)

where each stochastic variable tij has a weight p(tij) ∈ [0, 1] corresponding to the probability of the variable

evaluating to True.

A possible strategy for k = 1 is to give a free sample only to person a. This results in a σ where da is True and

the other decision variables are False. Given σ, we calculate P (φd | σ) by the sum of all possible logical models

of the formula for φd. A logical model in this context is a combination of truth values for each stochastic variable

such that the formula evaluates to True. One example of a model for φd given σ = {da = >, db = dc = dd = ⊥}

is {tac = tcd = >, tab = tbc = ⊥}. The probability that the stochastic variables take the values in this model is

p(tac) · p(tcd) · (1− p(tab)) · (1− p(tbc)) = 0.8 · 0.3 · (1− 0.4) · (1− 0.1) = 0.1296.

To find the optimal strategy using this WMC approach, we can enumerate every possible strategy. The number

of possible strategies is 2n for n decision variables, therefore this is infeasible for large n. The other issue with

solving SCOPs comes from the difficulty of performing WMC, which is a #P-complete problem in the general

case [39]. To evaluate a single strategy, we have to sum the probabilities of all the possible logical models.

6

Table 2.1: Possible models for φd given σ = (da = >, db = dc = dd = ⊥)

Truth values

tab tac tbc tcd P (φd | σ)

⊥ > ⊥ > (1− 0.4) · 0.8 · (1− 0.1) · 0.3 = 0.1296

⊥ > > > (1− 0.4) · 0.8 · 0.9 · 0.3 = 0.0144

> ⊥ > > 0.4 · (1− 0.8) · 0.1 · 0.3 = 0.0024

> > ⊥ > 0.4 · 0.8 · (1− 0.9) · 0.3 = 0.0864

> > > > 0.4 · 0.8 · 0.1 · 0.3 = 0.0096 +

0.2424

Using the viral marketing example we can illustrate why it is difficult to calculate the probability for a single

strategy. To calculate P (φd | σ) for the strategy σ where only da is True, we have to calculate the probability

that there is a at least one path from node a to node d in the network from Figure 2.1. Such a path represents the

possibility that person d ends up being turned into a customer following the free sample handed out to person

a. Thus, to evaluate a strategy, we have to sum the probabilities of all possible models that at least one path

exists. However, simply calculating the sum of all these probabilities is not possible because, in general, these

probabilities are not mutually independent. It is therefore important to take into account that there might be an

overlap between different paths and we have to be careful not to count the same model more than once. In the

case of our example, the given strategy results in five possible models, see Table 2.1. Each of these combinations

of truth values for the stochastic variables results in φd evaluating to True given σ.

For larger, more complex networks, calculating the sum of all possible models for each strategy becomes in-

creasingly expensive. This is a problem when using WMC to solve SCOPs such as the viral marketing problem

and powergrid reliability problem. In the following chapter we introduce a recently developed method that is

designed to tackle the issues with this approach and efficiently solve SCOPs.

7

Chapter 3

Solving SCOPs

In Chapter 2 we describe the difficulties of solving SCOPs exactly, specifically the difficulty related to WMC

and the large search space of possible strategies. In earlier work [31], a solving method is proposed that tackles

these difficulties and is shown to solve SCOPs in an efficient manner. This method, which we will refer to as

SCOP solver, consists of three stages: modelling, compilation and solving. In this chapter we describe and

discuss these stages.

3.1 Modelling stage

In Section 2.2 we describe the approach of performing WMC on a weighted propositional formula φ. To con-

struct such a formula φ from the original SCOP definition, various methods exists [14,16]. SCOP solver uses

Probabilistic Logic Programming in the modelling stage to model the SCOP with a probabilistic programming

language. In this thesis and in the context of the previous work on SCOP solver, we study SCOPs that are

defined on probabilistic networks (similar to Examples 2.1.1 and 2.1.2), which result in complex probability

distributions. To have a convenient way of modelling SCOPs on probabilistic networks, SCOP solver uses

SC-ProbLog [29] that extends ProbLog [14, 17] with the possibility of modelling constraints and optimisation

criteria. ProbLog is an extension of Prolog such that it allows reasoning over uncertainty and is particularly

suited for modelling probabilistic networks [14].

Example 3.1.1. Modelling a viral marketing problem with SC-ProbLog. To illustrate how to model

SCOPs using the proposed SC-ProbLog syntax [29], Program 3.1 shows the program that models the viral

marketing problem from Example 2.1.1. It first defines the nodes (line 1) and edges (lines 2 and 3) from the

network. The edges and their weights correspond to stochastic variables and their probabilities. Then, it defines

that the edges are undirected (lines 4 and 5) and for each node a decision variable (line 6) indicating whether

we give a free sample to each person. Next, it defines how people can be influenced by their acquaintances and

become a customer (lines 7 and 8). Subsequently, it bounds the number of free samples to 2 (line 9). Finally, it

defines a probabilistic query for all people in our set of interest Φ, in this case person d with buys(d). For all

people in Φ, the program maximises the expected number of people buying our product (line 10). SC-ProbLog

8

Program 3.1: ProbLog program that models the viral marketing problem

1 person (a) . person (b) . person (c) . person (d) .

2 0 . 4 : : d i r e c t e d (a , b) . 0 . 8 : : d i r e c t e d (a , c) .

3 0 . 1 : : d i r e c t e d (b , c) . 0 . 3 : : d i r e c t e d (c , d) .

4 t r u s t s (X,Y) :− d i r e c t e d (X,Y) .

5 t r u s t s (X,Y) :− d i r e c t e d (Y,X) .

6 ? : : marketed (P) :− person (P) .

7 buys (X) :− marketed (X) .

8 buys (X) :− t r u s t s (X,Y) , buys (Y) .

9 { marketed (P) => 1 :− person (P) . } 2 .

10 #maximize{buys (d) . => 1 :− person (d) . }

is able to construct the formula φd from this program, this is called grounding the program [17].

3.2 Compilation stage

The second stage of SCOP solver is the compilation stage. In this section we describe this stage, specifically

what techniques are used to tackle the complexity of performing WMC as described in Section 2.2.

3.2.1 Knowledge compilation

After we have obtained a weighted propositional formula φ that defines the probability distributions for an event

in our SCOP, we can evaluate any strategy σ by performing WMC. In Section 2.2 we discuss the complexity of

WMC. To tackle this complexity, SCOP-solver uses knowledge compilation [12] during the compilation stage.

Knowledge compilation is widely used for probabilistic inference [13]. Compiling formulas like φ to compact

datastructures allows for more tractable inference, e.g. calculating P (φ | σ). The compilation (and minimisation)

of such datastructures is time-consuming, but this is an one-time effort. In the context of SCOP solver we

can use the same datastructure to evaluate multiple strategies. Moreover, compact and simple datastructures

also allow for simple or efficient design of algorithms that operate on those datastructures.

SCOP solver compiles φ to a compact representation in the form of an Ordered Binary Decision Diagram

(OBDD) [9]. Alternative data structures to OBDDs exist, such as Sentential Decision Diagrams [11], but

because the solving stage of SCOP-solver is specifically developed for OBDDs and uses properties unique

to the structure of OBDDs, we limit this section to the compilation of OBDDs. For an extensive overview on

OBDDs, see [4].

Example 3.2.1. Compiling φd from a viral marketing problem. In Figure 3.1 we show the OBDD

representing the formula for φd in Equation (2.3) from Example 2.1.1. This OBDD represents the probability

distributions for a single event in the SCOP, namely the event that person d buys the product. Like in the

SCOP, the OBDD consists of the same two Boolean variables: stochastic variables (circular nodes labeled tij)

9

P (φd)

tcd

dc

dd

tac

t∗bc tbc

t∗ab tab

da da
db

0 1

0.7

0.3

0.2 0.8

0.9

0.1

0.1

0.9

0.6 0.4 0.4 0.6

Figure 3.1: OBDD representing φd from Equation (2.3)

with variable order dd < tcd < dc < tac < tbc < tab <

da < db.

P (φd)

dd
tcd

dc
tac

db db

tab tab

tbc tbc

tbc

da

0 1

0.7

0.3

0.2 0.8

0.6

0.4 0.6

0.4

0.9

0.1 0.9

0.1

0.9 0.1

Figure 3.2: OBDD representing φd from Equation (2.3)

with variable order dd < tcd < dc < tac < db < tab <

tbc < da.

and decision variables (squares labeled di). Each node in the OBDD has two outgoing edges, the dashed (lo)

edge corresponds to the case where the variable is False and the solid (hi) edge where the variable is True. The

weights on the outgoing edges from the nodes labelled with stochastic variables represent the probabilities of

that variable being True or False. The weights of the outgoing edges of nodes labelled with decision variables

are determined by the strategy σ under consideration. For example, if dd is True in σ, its outgoing hi edge

gets weight 1 and the lo edge gets weight 0. The same variable can appear more than once in an OBDD, for

example tbc and tab in Figure 3.1. We use the symbol ∗ to distinguish two nodes labelled with the same variable.

Given a combination of truth values to the decision and stochastic variables, we can evaluate φd by following

the outgoing edges for each variable that correspond to these truth values, starting at the root node.

One important property of OBDDs that we want to highlight is the underlying variable order. The variable

order specifies the order in which variables are encountered during the traversal of the OBDD from root to

leaves and has a significant impact on the size and shape of an OBDD. To show how the variable order can

affect the OBDD, we show the OBDD for the same formula as in Figure 3.1, but with a different variable order

in Figure 3.2. This OBDD is larger and has a different shape.

3.2.2 Weighted model counting with OBDDs

This subsection describes how to perform WMC with an OBDD such that we can efficiently evaluate the

probability of P (φ | σ) for any strategy σ.

10

Given an OBDD that represents the probability distributions for φ, this OBDD can be mapped to an Arithmetic

Circuit (AC) as follows. We assign a node score, v(r), for each node r in the OBDD:

v(r) = w(r) · v(r+) + (1− w(r)) · v(r−) (3.1)

Each node r is labelled with a variable that has a weight w(r). If this variable is stochastic, w(r) equals the

probability that that variable evaluates to True. Note that this weight is in that case the same as the label of

the outgoing positive edge of the node. For the decision variables, w(r) is 1 if the variable is True in the given

strategy σ, else it is 0. The node r+ is the child following the hi (solid) edge of r. The node r− is the child

following the lo (dashed) edge of r. For the two leaves of the OBDD, 0 and 1, v(0) = 0 and v(1) = 1 hold.

The probability P (φ) is equal to the score of the root node of the OBDD. We can calculate v(r) (Equation (3.1))

for each node r in the OBDD in a bottom-up traversal to evaluate P (φ | σ) for any σ in time linear to the size

of the OBDD.

Example 3.2.2. Evaluating P (φd | σ) with an OBDD. Consider the propositional formula φd in Equa-

tion (2.3) from the viral marketing problem, which is represented by the OBDD in Figure 3.1. Given the strategy

σ = (da = >, db = dc = dd = ⊥), we calculate P (φd | σ) by mapping the OBDD to an AC as follows.

First we calculate v(da) and v(db):

v(da) = w(da) · v(1) + (1− w(da)) · v(0) = 1 · 1 + 0 · 0 = 1

v(db) = 0 · 1 + 1 · 0 = 0

Then we can calculate the scores for the two nodes each of tab and tbc.

v(t∗ab) = 0.4 · v(da) + 0.6 · v(db) = 0.4 · 1 + 0.6 · 0 = 0.4

v(tab) = 0.4 · v(da) + 0.6 · v(da) = 0.4 · 1 + 0.6 · 1 = 1

v(t∗bc) = 0.1 · v(tab) + 0.9 · 0 = 0.04

v(tbc) = 0.1 · v(da) + 0.9 · v(tab) = 0.1 · 1 + 0.9 · 1 = 1

Finally, we can calculate v(tac), v(dc), v(tcd) and v(dd) in that order, to arrive at the root node of the OBDD.

v(tac) = 0.8 · v(tbc) + 0.2 · v(t∗bc) = 0.8 · 1 + 0.2 · 0.04 = 0.808

v(dc) = 1 · v(tac) + 0 · 1 = 1 · 0.808 = 0.808

v(tcd) = 0.3 · v(dc) + 0.7 · 0 = 0.3 · 0.808 = 0.2424

P (φd) = v(dd) = 1 · v(tcd) + 0 · 1 = 1 · 0.2424 = 0.2424

If we sum the probabilities from Table 2.1, which has all the models for the same σ, we get the same value for

P (φd | σ).

0.1296 + 0.0144 + 0.0024 + 0.0864 + 0.0096 = 0.2424

In case we are interested in other events besides φd, for example if Φ = {φc, φd}, we would also have to evaluate

P (φc | σ) with a different OBDD and sum these probabilities, possibly multiplying with ρ, see Equation (2.1).

11

3.3 Solving stage

In the solving stage, SCOP solver uses the compiled OBDD to find the solution to the problem. In this section

we describe how to solve an SCOP once we have obtained the OBDD and thereby an efficient way of evaluating

any P (φ | σ). A näıve approach for this would be to enumerate every possible strategy σ and evaluate it using

the OBDD. Considering that for an SCOP with n decision variables 2n possible strategies exist, this approach

does not scale well. Therefore we need a method that has a more efficient way of traversing the search space of

possible strategies. SCOP solver uses techniques from Constraint Programming (CP) for this purpose.

3.3.1 Decomposition method

The decomposition method [29] converts the OBDD to an Arithmetic Circuit (AC) like described in Section 3.2.2

and decomposes it into a set of linear constraints. For each node in the circuit, a constraint is constructed that

represents the score of this node according to Equation (3.1). This decomposition then serves as an input for

existing Mixed Integer Programming (MIP) solvers or CP solvers. This approach has the disadvantage that

during search, there is no guarantee that a partial assignment for the decision variables can lead to a strategy

that satisfies the provided constraints and therefore to a feasible solution. For proof see [30].

3.3.2 Solving using constraint programming

To resolve the disadvantage that the decomposition method poses, the solving stage of SCOP solver uses a

different approach, also using CP techniques. In this subsection we give an introduction to CP and we describe

the solving stage of SCOP solver.

3.3.2.1 Introduction to constraint programming

In Section 2.1.1 we show how we can solve an SCOP by repeatedly solving a constraint satisfaction problem.

In practice, a CP solver solves such a problem by iteratively performing two processes, search and propagation.

In the context of the solving stage of SCOP solver this works as follows.

Each decision variable from the SCOP has a domain that holds its possible values. Because we consider SCOPs

defined on Boolean variables, initially this domain equals {0, 1}. During the search step, the solver selects an

unbound variable and assigns to this variable a value from its domain. Initially, the set of unbound variables

contains all the decision variables from the SCOP.

After each search step, propagation updates the domains of the remaining unbound variables. This is done by

removing values from the domains of variables that violate the provided constraint(s) of the problem. Because

the domains of the variables only hold two values, removing one value from this domain means that the variable

becomes fixed to the remaining value. If the domain of a variable becomes empty, the (partial) solution found

so far is infeasible. By backtracking to the previous search step, we can select a different variable to which we

assign a value and arrive at different solutions. For more details on CP, see [2].

12

3.3.2.2 Search step: branching on decision variables

During the search step an unbound decision variable is selected along with a value that is assigned to this

variable. During this step, SCOP solver uses branching heuristics to quickly find good partial solutions. A

branching heuristic combines a mechanism to select a variable with a mechanism that selects which value to

assign first to the selected variable. By backtracking, the solver can possibly assign the other value. Experiments

have been performed with different heuristics [31], we describe and discuss these heuristics in Section 5.2.1.

3.3.2.3 Propagation of a constraint on the OBDD

To ensure that we only branch over variables such that the partial solution can lead to feasible solutions, a new

method was developed in [30] for SCOP solver that takes care of the propagation for a global constraint on

the OBDD.

This constraint is not the constraint on the cardinality of the solution (the number of decision variables that

are True in the corresponding strategy σ). The constraint on the OBDD represents the constraint on the

objective function from the SCOP, that requires that this value is greater than a threshold θ, see Equation (2.2).

This constraint is interpreted as a constraint on the score of the root of the OBDD (see Section 3.2.2 and

Equation (3.1)). Because initially all decision variables are unbound, the weights of the outgoing edges of the

nodes labelled with those variables (see Section 3.2.2) are still undefined. The constraint on the score of the

root of the OBDD to be greater than θ is essentially a constraint on the weights we can put on those outgoing

edges.

Given a partial solution (a strategy σ) composed of truth values assigned to decision variables by previous search

steps and fixed variables with a domain of size 1. The first approach for propagation of the OBDD constraint

is as follows. For every remaining unbound variable d:

1. Create a new strategy σ′ that is equal to σ with in addition:

(a) Variable d temporarily fixed to False;

(b) All remaining unbound variables temporarily fixed to True.

2. Calculate P (φ | σ′): the score of the root of the OBDD.

3. If the score of the root of the OBDD is lower than the current threshold, P (φ | σ′) < θ, remove the value

False from the domain of d (d becomes fixed to True).

The key to this approach is that the problem under consideration has monotonic probability distributions, see

Section 2.1.1. This means that the upper bound of the score of the root of the OBDD is equal to the value it

has when we assign True to all unbound decision variables. This propagation algorithm has to calculate the

score of the root of the OBDD for every unbound decision variable to update their domains. Calculating the

score of the root node takes time linear in the size of the OBDD, see Section 3.2.2. Propagation of a constraint

on an OBDD of size n, if there are m unbound decision variables, therefore has the complexity of O(m · n).

13

Because propagation is required after every search step and thus possibly at every node in the search tree, this

is inefficient.

3.3.2.4 Propagation using derivatives

To improve over the efficiency of the näıve approach, another propagation algorithm has been proposed that uses

the concept of derivatives [30]. If we consider the score of the root of the OBDD according to Equation (3.1) to

be defined as a function with a strategy σ as input, f(σ), this propagation algorithm uses the partial derivatives

of f with respect to each unbound decision variable. Intuitively, the partial derivative of f with respect to

variable d represents the change in the score of the root of the OBDD if we change the value of d from True to

False.

The partial derivative of f with respect to variable d is calculated by:

∂f(d, σ′ \ d)

∂d
= f(σ′)− f(d = ⊥, σ′ \ d) (3.2)

where σ′ is a strategy that is obtained by taking the partial assignment of decision variables so far, σ, and

assigning the value True to all the remaining unbound variables from σ. The value of f(σ′) then represents the

upper bound for f given the strategy σ. f(d = ⊥, σ′ \ d) is the value of f when we switch the value of d in σ′

to False.

The propagation algorithm calculates this derivative for all unbound decision variables and checks the following

requirement for all:

f(σ′)− ∂f(d, σ′ \ d)

∂d
≥ θ (3.3)

If d does not meet this requirement, this means that if we do not assign True to d, we cannot reach the threshold

θ with our current strategy σ. Therefore, for all unbound variables d that do not meet this requirement, the

value False will be removed from its domain. By doing this, the propagation algorithm ensures that the current

(partial) strategy σ can lead to a strategy that satisfies the constraint from Equation (2.2).

Because the motivation for using derivatives is to improve on the efficiency of the propagation, an efficient

way of calculating these derivatives is key. This is done in an incremental manner in which the derivatives

of all unbound decision variables are calculated with a single bottom-up and top-down pass over the OBDD.

Instead of evaluating the OBDD for every unbound decision variable, we only need two sweeps to calculate all

the derivatives and perform propagation, improving the complexity of one propagation step to O(m + n). We

refer to this propagation algorithm as Full-sweep. For more details, see [30]. Moreover, in more recent work [31]

observations are addressed that further improve the efficiency, resulting in sub-linear propagation of the OBDD

constraint. In short, this improvement comes from the idea that it is not necessary to traverse certain parts of

the OBDD, whereas the Full-sweep algorithm always traverses the full OBDD twice. Specifically, it is shown that

it is only necessary to traverse the part of the OBDD between the borders of the highest and lowest unbound

decision variable. This part of the OBDD is referred to as the active part. We refer to this propagation algorithm

as Partial-sweep.

Both the Full- and Partial-sweep propagation algorithms were experimentally evaluated and compared to the

14

method described in Section 3.3.1 and shown their merit in a proof of principle [31]. To be able to apply these

algorithms along with the full pipeline of SCOP solver to larger and more complex problems, we believe there

is still an effort to be made to optimise this solver. In the following chapters we describe our approach and

related work we use for this purpose.

15

Chapter 4

Programming by Optimisation

To optimise the performance of the solver described in Chapter 3, we apply the Programming by Optimisation

(PbO) [21] paradigm. In this chapter, we provide an introduction to this concept, and an introduction to

Automated Algorithm Configuration (AAC), which enables the PbO paradigm.

4.1 Programming by Optimisation

During algorithm or software development, there are typically multiple ways of performing a single subtask.

Each approach could offer different advantages and suffer from other disadvantages possibly depending on its

application. However, often only one of these design choices is implemented in the final version of an algorithm

or software system. This choice is often made based on limited experimentation, with a specific application in

mind, while the alternatives are abandoned. These design choices have no effect on correctness, but can affect

performance, especially when dealing with computationally challenging problems.

The paradigm of Programming by Optimisation (PbO) introduces a different approach to deal with design

choices. Developers who take a PbO-based approach to software or algorithm design, implement multiple alter-

natives for many elements or components. They provide the end user with the choice between these options, by

exposing them as configurable parameters. Following the PbO paradigm, developers focus on exploring alterna-

tives for design choices instead of determining the best instantiations for specific applications. Expanding the

design space of a given algorithm or software system and exposing choices as configurable parameters provides

the basis for using automated algorithm configuration techniques for performance optimisation. The existence

of effective automated algorithm configuration procedures hence enables PbO-based algorithm and software

design.

4.2 Automated algorithm configuration

When we follow the paradigm of PbO, the resulting algorithm comes with a set of parameters. The parameter

settings of such an algorithm (its configuration) can have a substantial impact on its performance, and the

16

optimal choice may vary for different sets of problems. This applies to many, if not all, state-of-the-art algorithms

that come with multiple parameters. Using the right configuration of such an algorithm is then critical for

reaching state-of-the-art performance, especially when applied to NP-hard problems, such as SCOPs.

The process of automatically finding a configuration with optimised performance for a problem set is called

Automated Algorithm Configuration (AAC) [20]. In this section we introduce AAC by describing the problem

it aims to solve. We also give a short overview of some methods that have been developed in order to solve this

problem and give some examples of their application.

4.2.1 The algorithm configuration problem

The problem of finding the configuration for which the empirical performance of an algorithm for a given use

context is optimised, is called the algorithm configuration problem [20]. This problem is defined as follows. Given:

• a target algorithm A;

• a list of parameters q1, . . . , qn of A;

• a configuration space C that defines for each q` for ` ∈ {1, . . . , n} its domain and possible values; each set

of such values is a configuration c ∈ C;

• a set of problem instances I;

• a performance metric m that measures the performance of the target algorithm A on the instances of I

for a given configuration c,

find a configuration c∗ ∈ C that optimises performance metric m of A on I.

The configuration c∗ is expected to be one that performs well on instances similar to the ones in I. Carefully

selecting instances for I is therefore important: they need to be representative of the problems on which the

optimised algorithm will be applied. If the set of problem instances on which this algorithm was configured, was

not representative of new instances, it might not perform well. Another cause for this, could be that the set of

instances was too small or contained instances with too much variability between them.

The configuration space C may consist of parameters with different types of domains. Categorical parameters

have a discrete finite set of possible values and are mostly used to select from a number of possible components

of the algorithm. Integer- and real-valued parameters usually further specify the behaviour of the algorithm and

its components. Boolean parameters are used in turning off and on settings of the algorithm. Parameters can

also be conditional. Conditional parameters are parameters that have dependencies on other parameters, they

are only active if these other parameters are set to particular values.

Different metrics m can be used to measure the performance of the target algorithm A. When using a metric

such as median running time, it is possible that runs of A cannot provide solutions in a reasonable time on a

large part of the problem instances. This results in poor performance. Therefore, it is common practice to stop

17

these long runs and use a performance metric based on penalised averaging. A fixed penalty is then assigned to

runs in which the target algorithm is not able to find a solution within a given time frame.

4.2.2 Different configurators

There are several state-of-the-art methods available that solve the algorithm configuration problem. We refer

to these methods as configurators. In this section we will describe three of them, Iterated F-race (I/F-race),

Sequential Model-based Algorithm Configuration (SMAC) and Gender-based Genetic Algorithm Configuration

(GGA++).

The configurator Iterated F-race (I/F-race) [3] is a configurator that uses racing procedures. The concept of

racing is as follows. Every possible configuration is evaluated on instances from the set of problem instances

and any configurations that perform significantly worse than the leading configuration, are eliminated. This

leading configuration is the configuration that has the best performance at that point according to a given

performance metric m. Initially, the set of possible configurations can be too large to evaluate entirely. I/F-race

was developed such that the search in the configuration space could be more effective and focused on promising

candidates, selecting/generating candidate configurations by sampling a probabilistic model. This model consists

of probability distributions for the parameters of the algorithm. The configurations that survive each step, are

used to update this model, such that the sampling will increasingly favour promising configurations.

Sequential Model-based Algorithm Configuration (SMAC) [23] is a configurator that uses a model-based search.

In contrast to the probabilistic model used by I/F-race, SMAC builds a model that directly captures the

dependency of the performance of the target algorithm on its configuration. This model is used to predict

the performance of configurations on multiple instances and to select promising candidate configurations. This

method supports diversity of domains of parameters and conditional parameters.

Gender-based Genetic Algorithm Configuration (GGA) is a configurator that uses an approach based on a

Genetic Algorithm (GA). GGA++ [1] is an improvement to GGA and combines a GA with a model-based

approach, where in a similar fashion as SMAC, a model is used to predict performance of a configuration. In

GGA++, this prediction is used in addition to the crossover operator from the GA to create promising offspring,

where each offspring represents a configuration.

4.2.3 Application of AAC

As explained above, AAC is an essential tool for PbO-based software development. It has been applied success-

fully to algorithms that solve NP-hard problems, such as the Boolean satisfiability problem (SAT) [25] and the

Travelling Salesperson Problem (TSP) [33]. Because solvers designed for problems such as SAT and TSP often

have a large configuration space and considering the difficulty of the problems, we also expect the application

of AAC on other NP-hard problems, such as SCOPs to be benificial. Moreover, AAC also has been used to con-

figure state-of-the-art MIP solvers to improve their performance [22]. MIP solvers are also highly parametrised

and in Section 3.3.1 we briefly mentioned how a MIP solver has been used to solve SCOPs,

18

Chapter 5

Approach

The goal of the research in this thesis is to optimise the performance of SCOP solver described in Chapter 3.

In order to reach our research goal, we follow the PbO paradigm described in Chapter 4. We expose hard-coded

design choices in SCOP solver as parameters and add alternatives to these choices as additional parameter

values. This enables us to apply AAC (Section 4.2) and automatically optimise the performance of the resulting

solver. We identify design choices in the compilation stage and solving stage of SCOP solver. In this chapter

we discuss these choices and the alternatives to the current design.

5.1 Configuring the compilation stage

In the compilation stage of SCOP solver, the probability distributions of the problem are compiled to an

OBDD that allows for tractable probabilistic inference. In the solving stage this OBDD is used to find the

solution to the problem. In Section 3.3 we show that the efficiency of the solving stage of SCOP solver heavily

depends on the size of the OBDD. Specifically, the propagation of the global OBDD constraint is linear in the

size of the OBDD. The Partial-sweep propagation algorithm could perform even better, if there is a significant

difference between the size of the full OBDD and the size of the active part of the OBDD, as described in

Section 3.3.2.4. In general, a smaller, more compact OBDD results in improved performance of SCOP solver.

The size of the OBDD, as explained in Section 3.2, can be minimised by finding a good order of the OBDD’s

variables. Finding the optimal variable order is an NP-hard problem [7] and can therefore be time-consuming.

There exist many different variable ordering algorithms, but deciding which algorithm will perform best for

which application is not trivial. Therefore the choice between variable ordering algorithms is an interesting

design choice. The design space we consider for the compilation stage of SCOP solver consists of: a Boolean

variable that indicates whether to minimise an OBDD, or to leave it with default variable order; the different

variable ordering algorithms; and their parameters. We summarise this design space in Table 5.1.

In the remaining part of this section, we describe the variable ordering different algorithms we consider, which

in short, are the following:

19

• The Sifting algorithm [40];

• Two other variants of the Sifting algorithm, Symmetric sifting [37] and Group sifting [36];

• Variable ordering using the Window permutation approach from [27];

• Variable ordering using Simulated Annealing similar to [6] or a Genetic Algorithm inspired by [15];

• A random approach for variable ordering, based on the Sifting algorithm.

Table 5.1: SCOP solver parameters relevant to the compilation stage, their domains, short descriptions, and

conditions. Except for Minimise itself, parameters are conditioned on Minimise = True.

Compilation stage

Parameter Description

Minimise, domain: {False, True} Minimise the OBDD.

VarOrder, domain: {Sif, SymSif, GSif,

WP, SA, GA, Rand}

Sifting (Sif) [40], Symmetric Sifting (SymSif) [37], Group Sifting (GSif)

[36], Window Permutation (WP) [27], Genetic Algorithm (GA) [15],

Simulated Annealing (SA) [6], Random (Rand).

Converging, domain: {False, True} Repeat variable reordering algorithm until no improvement in OBDD size is

found (if VarOrder ∈ {Sif, SymSif, GSif, WP}).

MaxSwap, domain: N+ Upper bound on number of times two variables can be swapped in the variable

order (if VarOrder ∈ {Sif, SymSif, GSif }).

MaxSift, domain: N+ Upper bound on number of variables that are sifted, i.e. moved up and/or

down the variable order by swapping with other variables (if VarOrder ∈ {Sif,

SymSif, GSif }).

MaxGrowth, domain: R+ Maximum relative increase of OBDD size during minimisation (if VarOrder ∈

{Sif, SymSif, GSif }).

WSizes, domain: {2, 3, 4} Evaluate different permutations of WSizes consecutive variables in the variable

order at a time (if VarOrder = WP).

5.1.1 Sifting algorithms

The Sifting algorithm [40] is an algorithm based on the swap operation. A swap is an exchange of two adjacent

variables in the variable order. The general approach of this algorithm is to move each variable up and down in

the order by swapping and saving the best position, this is called sifting. With this algorithm there are three

extra parameters that can be set. MaxGrowth is the maximum increase of size of the OBDD during the sifting

of each variable, MaxSwap is the maximum number of swaps that can be performed during the sifting of each

variable and MaxSift is the maximum number of variables that can be sifted. There is also a converging version

of this algorithm that iterates until there is no longer any improvement to the size of the OBDD, otherwise each

variable is only considered once.

20

The Sifting algorithm also has an symmetric variant, which can also be converging or not, called Symmetric

sifting [37]. Variables that at any point during the variable ordering process become adjacent are tested for

symmetry, which means that the size of the OBDD is invariant under the swapping of these variables. If this

is the case, the variables are then grouped together, which means they are swapped as a group instead of

individually.

The Group sifting algorithm [36] is a further extension of Symmetric sifting, where the grouping of variables

is not restricted just to symmetric variables but can be applied anywhere in the variable order. The general

approach in this algorithm is to find a good “neighbourhood” of variables for a single variable and then move the

variable and its neighbours around in search of a better position in the variable order. The notion of symmetry

is also extended further to better detect variables with strong affinity.

5.1.2 Window permutation approach

The Window permutation approach [27] considers only windows of w variables at a time, checking each per-

mutation of the variables in that window and keeping the best permutation. The higher the value for w, the

more time consuming the algorithm is, but the better the resulting order tends to be. In the implementation

we use for our research [42], the available window sizes are 2, 3 and 4, parametrized by WSizes. The converging

variant repeats itself until there is no longer any improvement found, otherwise the window is shifted over all

the variables only once.

5.1.3 Other variable ordering algorithms

Two other approaches that exist, use a Genetic Algorithm (GA) [6] or Simulated Annealing (SA) [15] to find

a good variable order. Currently, the parameters for each respective algorithm are hard-coded in their im-

plementation we are using for our research. In future work, we could further expand the design space of the

compilation stage to also include these exposed parameters, e.g., the population size in the case of a GA or the

cooling schedule for SA.

The last approach randomly chooses pairs of variables and are swapped in the order. This is done by repeatedly

swapping adjacent variables, the best order (in terms of OBDD size) among those obtained by these swaps is

retained. The number of pairs chosen for swapping is equal to the number of variables in the OBDD.

5.2 Configuring the solving stage

In Section 3.3.2 we describe how SCOP solver finds a solution to a given problem using CP. In this stage, we

consider two design choices. We summarise the design space of this stage in Table 5.2.

The first design choice is which algorithm we use to propagate the constraint on the OBDD, the Full-sweep or

Partial-sweep algorithm. In terms of complexity the Partial-sweep approach has an advantage over the Full-

sweep but this does not ensure that it will always result in the best performance in practice [31]. We parametrize

this design choice with the PropVersion parameter.

21

The second design choice is which branching heuristic to use. As mentioned in Section 3.3.2.2, a CP search

algorithm uses branching heuristics to decide in which order unbound decision variables are instantiated and

to decide for each variable which value to explore first: True or False. A good heuristic will be able to prune

a large space of the search tree early and traverse the search space faster, thus arrive at the solution faster.

Additionally, when solving a constraint satisfaction problem, a good heuristic might also lead to a higher value

for the objective function and thus to a higher value for the threshold θ (see Equation (2.2)) which speeds up

the search for the optimal value for Equation (2.1). Finding a good heuristic is not trivial and is often a trade-off

between time needed for its computation and its potential to make the optimal decisions, therefore we consider

this an interesting design choice to explore and optimise.

A branching heuristic consists of a variable selection heuristic and a mechanism for value selection. The variable

selection heuristic determines to which variable we will assign a value and value selection determines whether

to assign False or True to this variable. For simplicity, we combine the selection of the variable and the value

into a single notation in this section, but in practice and in Table 5.2 they are separated.

In the remainder of this section we describe the branching heuristics that have been used in earlier work and

new alternatives we have implemented. In our description of each heuristic, we describe how the next decision

variable is chosen, and indicate which value is assigned to that decision variable first. After backtracking, the

CP search algorithm may assign the other value.

Table 5.2: SCOP solver parameters relevant to the solving stage, their domains, short descriptions, and

conditions.

Solving stage

Parameter Description

PropVersion, domain: {Linear, Sub-linear} Version of the propagation algorithm.

SelectionHeur, domain: {Top, Bottom, Derivative,

Influence, Betweenness, Triangle, Similarity, Simmelian,

Degree, Forest-fire, Random}

Heuristics used for selection of variables.

ValueHeur, domain: {0, 1} Heuristic that determines whether to select the variable with

the highest value for SelectionHeur and assign True or the

lowest value and assign False.

TimeSteps, domain: N+ Maximum number of timesteps in which nodes can be influ-

enced (if SelectionHeur = Influence).

NodeSamples, domain: N+ Number of node samples used to estimate betweenness (if

SelectionHeur = Betweenness).

FireProbability, domain: R ∈ [0, 1] Probability that the fire spreads from one node to a neighbour

(if SelectionHeur = Forest-fire).

EdgesBurnt, domain: R ∈ [0, 1] Minimum fraction of the total number of edges in the graph

that have to burned (if SelectionHeur = Forest-fire).

22

5.2.1 Existing heuristics

As mentioned in Section 3.3.2.2, Latour et al. [31] performed experiments with six different branching heuristics.

These heuristics use information from the OBDD compiled in the compilation stage.

Top-0, Top-1, Bottom-1 and Bottom-1 are static heuristics and are inspired by the size and shape of the OBDD.

Top-0 (Bottom-0) branches on the highest (lowest) unbound decision variable in the OBDD’s variable order

and assigns to this variable the value False first. Their counterparts Top-1 (Bottom-1) assign the value True

first. In Section 3.3.2.4 we describe how the Partial-sweep propagation algorithm only has to traverse the active

part of the OBDD. The intuition behind these four heuristics is that by repeatedly selecting decision variables

that lie on the borders of the active part of the OBDD, we iteratively decrease the computation time of this

propagation algorithm.

The fifth and sixth heuristic use the calculated derivatives during the propagation of the constraint on the

OBDD. As explained in Section 3.3.2.4, the derivative of variable d represents the change in the value on the

root of the OBDD (Equation (3.1)) if we change the value of d from True to False. Consequently, a variable

with a high derivative has a large impact on the objective function. The heuristic Derivative-0 (Derivative-1)

assigns the value False (True) to the variable with the smallest (largest) absolute derivative. The derivatives of

variables change during the solving stage and are dynamic, recalculated after each propagation.

5.2.2 New heuristics

We propose new heuristics that take a different approach: they are derived directly from the network/graph on

which the SCOP under consideration is defined. For this purpose, we explored relevant work from the network

science literature.

In Examples 2.1.1 and 2.1.2 we describe two examples of an SCOP. An important difference between the two

is what the decision variables in the problems represent. In the viral marketing problem, decision variables

represent the choice whether to hand out a free sample to a person, represented by nodes in our social network.

Each node has a corresponding decision variable. However, in the powergrid reliability problem, the decision

variables represent the choice whether to reinforce a powerline, represented by edges, in the powergrid. Thus,

each edge has a corresponding decision variable. This means that the heuristics that we define based on the

graph of a problem need to be used to select both edges and nodes.

5.2.2.1 Social influence

The first set of new heuristics we propose use an approximation of the influence that a node has on the other

nodes in the network. This approach is inspired by work on social influence [8] that focuses on the influence

maximisation problem for networks. This problem has similarities to the viral marketing problem (Section 2.1.2)

in the sense that it aims to find the set of most influencial people in a network. In this problem the independent

cascade model for spread of influence [28] is used. In this model, nodes are able to spread influence to their

neighbours, where each neighbour can then in turn influence their own neighbourhood. This spread of influence

depends on the probability represented by the weight on the edges between nodes. The same model could for

23

example be applied to the network in Figure 2.1.

We calculate the influence of a node u as follows. Starting at timestep 0, node u is seeded with influence. Node

u can then spread this influence to its neighbours. For each neighbour v of u, u can influence v according to

the probability that is the weight of edge (u, v). If neighbour v is influenced, it can then in turn influence its

own neighbours. At each timestep t, all influenced nodes can influence their neighbours. We limit the number

of timesteps by T ∈ N+. The influence of node u is the number of unique nodes that is influenced at the end

of timestep T . The number of timesteps in which nodes can influence each other by a maximum of TimeSteps

(a configurable parameter of this heuristic). Influence-0 (Influence-1) first assigns the value False (true) to the

variable with the smallest (largest) influence.

To use this heuristic to select decision variables associated with edges from a network, we do the following:

the influence of an edge (u, v) is equal to the sum of the influences of nodes u and v. We think this is a good

measure in the sense that it represents the importance of the nodes an edge connects. Moreover, in the context

of a powergrid reliability problem, we do not include any probabilities in the calculation of the influence of a

node. Consequently we simply sum the number of unique nodes in the the TimeSteps-neighbourhoods of the

endpoints of each line. This is because, in our dataset (see Section 6.1.1), pl,1 is the same for each line l, and

the value of the probability on each line of the network depends on the value of the associated decision variable.

Therefore, if we do not take a strategy into account, the probabilities are all equal and it does not serve a

purpose to include them in the calculation of this heuristic. Even though we lose the stochastic component of

the heuristic in this case, it will still be able to distinguish edges that can lead to a high number of unique

nodes, which can be used as a measure of importance for the distribution of power.

5.2.2.2 Betweenness centrality

In network science, centrality measures are often used to identify the most important nodes in a graph. A popular

centrality measure to identify both important edges and important nodes is the betweenness centrality [19]. The

betweenness centrality is the sum of the fraction of all-pairs shortest paths that pass through either a given node

or edge. Nodes or edges through that lie on many shortest paths are important for the flow of information through

the network. For example, in the context of a viral marketing problem, the information about an advertised

product, or the distribution of power in the context of a powergrid reliability problem. Therefore we propose to

use this measure as a branching heuristic. The exact value for this heuristic can also be approximated by taking

a sample of nodes and only using those to estimate the betweenness, the size of this sample is parametrized

with NodeSamples. Betweenness-0 (Betweenness-1) first assigns the value False (true) to the variable with the

smallest (largest) betweenness centrality.

5.2.2.3 Graph sparsification methods

In the powergrid reliability problem, we assume that powerlines fail to function during a natural disaster and our

goal is to preserve those powerlines that are essential to connect consumers of power to producers. Essentially,

this has similarities to the nature of graph sparsification, that reduces the size of the network while preserving

certain properties. In recent work on graph sparsification [32], methods are described for edge sparsification

24

that can be understood as methods for rating edges by importance and then filtering globally by these scores.

We propose to use these edge scores as a heuristic for selecting suitable branching candidates. Implementation

is provided of the scoring methods in the NetworKit1 toolkit and assumes the graphs are unweighted.

Because the scoring methods do not take the edge weights into account, in the context of the viral marketing

problem, the proposed heuristics assume that all stochastic influence relationship have an equal probability.

The loss of this stochastic component means that the heuristics would not favour nodes over others if it is only

distinguished by influence relationships with a high probability.

The first method uses the number of triangles an edge is a part of in the graph. The number of triangles is

often used in the calculation of graph statistics such as the global and local clustering coefficient. We assume

the graph is undirected when calculating the number of triangles, such that the requirement for a triplet to

count as a triangle remains simple. Triangle-0 (Triangle-1) first assigns the value False (true) to the variable

that has the lowest (highest) triangle. We can calculate this for both decision variables that are defined on edges

or nodes.

Two other proposed methods aim to sparsify the graph in order to improve the speed and quality of community

detection algorithms. Specifically, these methods try to achieve local instead of global sparsification [41]. The local

similarity score is based on the similarity between the neighbourhoods of two given nodes. With this method,

edges are ranked according to the similarity of the nodes it connects and it avoids to destroy structures within

local communities. The quadrilateral simmelian backbone score uses the number of quadrangles containing an

edge to rank them. The argument for this approach is that it is capable of discriminating edges that are placed

within and between dense subgraphs and able to identify strong ties that hold together communities [34]. We

propose to use these edges scores as a branching heuristic to identify important edges within local communities.

This is in contrast to the heuristics that use betweenness centrality, which could aim to identify edges that serve

as a bridge between different communities. Similarity-0 (Similarity-1) first assigns the value False (true) to the

variable that has the lowest (highest) local similarity score. Quadrangle-0 (Quadrangle-1) first assigns the value

False (true) to the variable that has the lowest (highest) score according the quadrilateral simmelian backbone

method. To use these edges scores to identify important nodes in the same manner, we rank nodes based on

the scores of all its outgoing edges. To our knowledge we have three sensible options for this, taking the sum,

the average or the maximum of these edges scores. We use the sum of the edges scores. If we would use the

average or the maximum, we would rank nodes with a single important edges over a node with a large number

of perhaps insignificantly less important edges, which we want to avoid.

The edge forest fire method follows the idea that nodes are burned during a fire that starts at a random node

and spreads from neighbour to neighbour. Instead of a standard random walk, this fire can spread to more than

one neighbour at the same time (similar to the previously described influence) but already burned neighbours

cannot be burned again. The score calculated using this approach is based on the idea that edges that are visited

more frequently during these walks are more important. Forest-fire-0 (Forest-fire-1) first assigns the value False

(true) to the variable that has the lowest (highest) score according the edge forest fire method. In the same

1Available at https://networkit.github.io/.

25

https://networkit.github.io/

fashion as previously described, we use the sum of the scores for all (outgoing) edges a node to calculate its

value. Additionally, this heuristic has parameters to set the (constant) probability that a fire spreads from one

node to its neighbour, FireProbability and a minimum fraction of the total edges in the graph that have to

burned, EdgesBurnt.

The final method is called the local degree of an edge. With this method, the goal is to keep those edges in the

sparsified graph that lead to nodes with a high degree. This is based on the assumption that nodes with a high

degree serve as a “hub” that is crucial for a complex network’s topology and edges that lead to those hubs,

serve as a “hub backbone”. Degree-0 (Degree-1) first assigns the value False (true) to the variable that has the

lowest (highest) local degree score. For decision variables associated with a node, we simply use the degree of

each node.

5.2.2.4 Random

We also include a Random heuristic that should serve as a baseline and always selects a random decision variable.

For consistency in our implementation, this heuristic also generates values for each variable and selects the one

with the highest/lowest value and assigns to this a random value. For this purpose it generates an uniform

random number X ∈ [0, 1] for each decision variable. Random-0 (Random-1) first assigns the value False (true)

to the variable with the highest value for X. This heuristic should serve as a sensible baseline.

26

Chapter 6

Experiments

To evaluate our approach described in the previous chapter we automatically configured SCOP solver for

different applications and evaluated the configured solver. In this chapter we describe the setup for these

experiments, the results and their analysis.

Our experiments are guided by the hypothesis that exposing parameters of SCOP solver, providing alternative

design choices and automatically configuring the resulting algorithm for any set of given SCOP instances,

provides a configured SCOP solver that outperforms the original in terms of running time and number of

solved instances for a given cutoff time of ten minutes.

6.1 Experimental setup

In this section we describe the setup for our experiments: a description of the datasets, the experimental protocol,

the hardware and the software.

6.1.1 Datasets

Our hypothesis says that with our approach we can improve the performance of SCOP solver for any set of

given SCOP instances. To test this, we performed experiments on two different datasets. We summarise some

characteristics of these datasets in Table 6.1.

6.1.1.1 Viral marketing dataset

We formulated a viral marketing problem on directed multi-graph data from Facebook representing user inter-

actions [43]. This dataset consists of 46 952 nodes (users) and 876 993 edges (wall posts). We used community

detection [5] to extract all communities of twenty to thirty nodes. To convert these communities into probabilis-

tic networks, we used the independent cascade model for spread of influence [28]. When a user posts multiple

messages on the wall of another user, there are multiple (parallel) edges between these two users. Parallel edges

from node u to v are replaced by a single edge with weight of 1− (1− p)cuv , where cuv is the number of edges

27

Table 6.1: Size of the training and test of both the viral marketing dataset and powergrid dataset and the size

of the individual problem instances.

Dataset Size training Size test Nodes Edges

Viral marketing 197 196 20–30 28–96

Powergrid 72 66 20–70 22–70

from u to v, and p = 0.1 is a constant probability, which is interpreted as the probability a single wall post has

to influence the user that receives it.

The set of interest Φ on which we define our objective function consists of the fifty percent highest-degree nodes

in a community. We chose an upper bound of k = 10 on the cardinality of the solution for all networks. The size

of Φ and value of k are the result of initial experiments to achieve a reasonable running time (see Section 6.1.2).

The resulting set contains 393 problem instances, which we divided into a training and test set such that their

distributions of communities with different numbers of nodes are the same. The training set conists of 197

instances and the test set of 196 instances.

6.1.1.2 Powergrid dataset

The instances of the powergrid reliability problem are defined on network models of the European and North-

American high-voltage power grids [44], extracted by GridKit1. These networks are undirected graphs consisting

of power producers, consumers and minor grid nodes (nodes) and powerlines that connect them (edges).

For each powergrid from a single European country or North-American state, we extracted the greatest connected

components that contain at least one power producer. We selected the components that have at least twenty,

and at most 70 nodes and 70 edges, resulting in a set of 23 networks. The set of interest Φ, consists of a randomly

selected set of power consumers for each network. We set the size of Φ equal to 50% of the total number of

power consumers in each network, similarly to the instances from the viral marketing dataset.

We used a probability of 0.4 that a powerline remains intact during a natural disaster and 0.875 if it is rein-

forced [16]. We assume a uniform cost of γl = 1 for reinforcing a powerline l. We chose a budget of β = 10 for all

problem instances, such that the constraint on the cardinality of the solution is similar to that of the instances

in the viral marketing dataset.

Of the 23 networks, we distribute 12 (randomly selected) networks to the training set and 11 to the test set. For

each network, we create six instances with a different Φ such that our dataset consists of a reasonable number

of instances. The training set contains 72 instances and the test set 66 instances.

1Available from github.com/bdw/GridKit.

28

github.com/bdw/GridKit

6.1.2 Protocol

For our experiments we used SMAC [23] as our configurator, because it is a high-performing general purpose

configurator and freely available. Moreover, because of its model-based approach it is able to handle parameters

with different types of domains, which is important due to the parameters of our solver (see Table 5.1 and

Table 5.2).

For each of the datasets described in Section 6.1.1, we performed fifteen independent 48-hour runs of SMAC on

the training set. We minimised PAR10 (penalised average running time with penalty factor 10) and a cutoff time

of 600 CPU seconds, meaning that we measured the average running time of SCOP solver over all instances

in a given set and counted each timed-out run as ten times the cutoff time.

The cutoff time was selected based on initial experiments on the viral marketing dataset, such that a reasonable

success rate was achieved for the default configuration. The time limit for each SMAC run was adjusted according

to the cutoff time, following the example of scenarios with a similar cutoff time from AClib, a well-known

configuration library [26].

For each of these fifteen runs, we evaluated the final incumbent (the configuration with the best PAR10 value)

on the training set and selected the configuration with the best performance. We then evaluated this optimised

configuration on the test set and compared it with the default configuration. This default configuration of SCOP

solver was based on the results from previous experiments performed by Latour et al. [31], thus providing

a strong baseline for our configuration experiments. The default configuration does not perform any OBDD

minimisation, uses the Partial-sweep propagation algorithm and Derivative-1 as a branching heuristic.

6.1.3 Hardware and software

SCOP solver makes use of an SC-ProbLog version based on ProbLog 2.1 [17] for modelling, the dd 0.5.4

library [18] for OBDD compilation and the Scala 2.12 library OscaR 4.0.0 [35] for solving. We used the Cython

binding of the dd library to CUDD 3.0.0 [42] for the implementation of alternative minimisation methods for

the OBDDs. The heuristics based on the underlying graphs of problem instances are calculated using NetworkX

2.2 and NetworKit 5.0.1. Our configuration experiments were run on a cluster with 32 nodes, each equipped

with 94 GB RAM and two Intel Xeon E5-2683 CPUs with 16 cores, running at 3.0 GHz using CentOS Linux

7.6.1810; for our configuration experiments, we used SMAC [23] v3. The memory limit SCOP solver is allowed

for a single run was set to 15 GB RAM.

6.2 Results

To test our hypothesis on both of our datasets we evaluated the performance of the optimised configuration

and that of the default configuration on both the training and test set. In this section we present and discuss

these results.

29

6.2.1 Viral marketing dataset results

The optimised configuration for the dataset of viral marketing problems uses the Symmetric sifting algorithm for

variable ordering in the OBDD along with specific values for its parameters (MaxSwaps, MaxVars, MaxGrowth).

In the solving stage it uses the Full-sweep propagation algorithm and Betweenness-1 as branching heuristic.

The PAR10 values for both configurations are shown in Table 6.2 and Figure 6.1a. On the training set, the

optimised configuration yields a 74% decrease in PAR10 value compared to the default configuration and on the

test set a 88% decrease. Table 6.2 also shows the PAR10 values for those instances that were solved by either

configuration, or both. These values represent the performance on the solvable instances within this cutoff time.

The increase in performance on these instances, when we compare the optimised configuration to the default,

is even higher than that on all instances (a decrease in PAR10 of 98% on both the training and test set).

The running times of both configurations on individual instances are shown in Figure 6.2a. In this figure each

datapoint represents a single instance and we can see how much faster the optimised configuration is able to

solve it compared to the default configuration. We also indicate the total number of variables (stochastic and

decision) of each instance, which in this case is a good indication of how long it takes to solve an instance.

As the running time of the default configuration increases, the speedup (how much faster a solution is found when

comparing configurations) also tends to increase. The optimised configuration is able to achieve a maximum

speedup (on an instance solved by both configurations) of a factor 51 on the training set and of a factor 45

on the test set. The optimised configuration is also able to find a solution for many more instances than the

default configuration, while there is not a single instances that is solved by the default but not by the optimised

configuration. As shown in Table 6.3, the optimised configuration is able to solve 28 out of 197 more instances

on the training set and 26 out of 196 more on the test set. This is an increase in solved instances (on both

training and test) of 17%.

6.2.2 Powergrid dataset results

The optimised configuration for the dataset of powergrid reliability problem uses the Simulated annealing

algorithm for OBDD minimisation. In the solving stage it uses the Full-sweep propagation algorithm and

Derivative-1 as branching heuristic.

From the PAR10 values in Table 6.2 and Figure 6.1a we can observe a decrease of 34% in PAR10 value if we

compare the optimised configuration to the default on the training set and a decrease of 12% on the test set. If

we only consider the solved instances, the increase in performance that the optimised configuration achieves is

much higher with a decrease in PAR10 of 96% on the training set and 95% on the test set.

For this dataset, the optimised configuration is able to achieve a maximum speedup of a factor 13 on the training

set and of a factor 17 on the test set. While it is clear that the optimised configuration generally outperforms

the default configuration, there are a few instances on which the default configuration is able to find a solution

faster than the optimised configuration. We discuss this in Section 6.2.3.

If we look at the number of timeouts in Table 6.3, we can see that the optimised configuration is able to solve

30

Table 6.2: PAR10 values with a cutoff of 600 CPU seconds of both configurations on the instances from the

viral marketing dataset and powergrid dataset. Values are calculated for all instances and only the instances

that were solved by either configuration within the cutoff time.

All instances Solved instances

Dataset Configuration Training Test Training Test

Viral marketing
Default 1 151.4 914.1 919.3 835.0

Optimised 295.6 111.2 22.5 19.7

Powergrid
Default 1 546.8 2 294.9 656.2 442.3

Optimised 1 021.5 2 014.2 25.8 21.2

T
ra

in

T
es

t

S
o
lv

ed
tr

a
in

S
o
lv

ed
te

st

100

101

102

103

104

P
A

R
1
0

va
lu

e

Default

Optimised

(a) Viral marketing dataset.

T
ra

in

T
es

t

S
o
lv

ed
tr

a
in

S
o
lv

ed
te

st

100

101

102

103

104

P
A

R
1
0

va
lu

e

Default

Optimised

(b) Powergrid dataset.

Figure 6.1: PAR10 values presented in Table 6.2 visualized as bar plot.

more instances than the default. Specifically, 5 out of 72 more instances from the training set and 3 out of 66

more on the test set, an increase in solved instances of 9%.

6.2.3 Conclusion and discussions

In this subsection we draw our conclusions from the presented results. We also further analyse and discuss any

results that warrant this.

6.2.3.1 General conclusion

In terms for running time on individual instances and in PAR10 value, on both datasets, the optimised con-

figuration outperforms the default configuration. This confirms our hypothesis for these sets of SCOPs. We

attribute this to the fact that that by applying AAC, we found a previously unexplored configuration of our

highly parametric SCOP solver framework that is better suited to the problems from these datasets than the

default configuration.

31

100 101 102

Default configuration

100

101

102

O
p
ti

m
is

ed
co

n
fi
g
u
ra

ti
o
n

Training set

100 101 102

Default configuration

Test set

70

80

90

100

110

120

130

140

150

N
u
m

b
er

o
f

va
ria

b
les

(a) Viral marketing dataset. The default configuration has 37 timeouts on the training and 29 on the test set. The optimised

configuration has 9 timeouts on the training and 3 on the test set.

100 101 102

Default configuration

100

101

102

O
p
ti

m
is

ed
co

n
fi
g
u
ra

ti
o
n

Training set

100 101 102

Default configuration

Test set

50

60

70

80

90

100

110

120

N
u
m

b
er

o
f

va
ria

b
les

(b) Powergrid dataset. The default configuration has 17 timeouts on the training and 25 on the test set. The optimised configuration

has 12 timeouts on the training and 22 on the test set.

Figure 6.2: Running time [CPU s] of both configurations on both datasets, with a cutoff time of 600 seconds

(indicated by horizontal and vertical dotted lines). The diagonal dashed lines represent differences in running

time of factors of 10 and 100.

32

Table 6.3: Number of timeouts of both configurations on the instances from the viral marketing dataset and

powergrid dataset. The total number of instances for the viral marketing dataset are 197 and 196 for training

and test respectively, for the powergrid dataset they are 72 and 66 (see Table 6.1).

Dataset Configuration Training Test

Viral marketing
Default 37 29

Optimised 9 3

Powergrid
Default 17 25

Optimised 12 22

6.2.3.2 Comparing configurations

Following from this conclusion we can also take a closer look at the the differences in the optimised configurations

for both datasets and the default. For both datasets, performing OBDD minimisation by improving the variable

order results in better performance overall. As discussed in Section 5.1, a minimised OBDD can attribute to

improved performance because it saves computation time in the solving stage. Between the two datasets there

is a difference in which variable order algorithm results in the best performance on the training set. This shows

that for different applications, different algorithms can achieve the best results in terms of size and shape of the

minimised OBDD and computation time required to find the corresponding variable order. The second parameter

for which both optimised configurations differ from the default is the version of the propagation algorithm, where

the Full-sweep algorithm apparently offers better performance on the two datasets. We suspect that this is due

to the computation required for updating the data used to know which parts of the OBDD are unnecessary

to traverse during propagation. The computation time required for this could outweigh the time it saves with

more efficient propagation. Lastly, the optimised configuration for the set of viral marketing problems also uses

a different branching heuristic. For the viral marketing problems, using Betweenness-1 as branching heuristic

is better than using the derivatives. Possibly because for social networks (on which we define these problems),

the betweenness centrality is an especially good indication of importance from the perspective of control on the

flow of information. This corresponds well to the viral marketing problem setting, because the goal is to spread

information about an advertised product in this setting.

6.2.3.3 Comparing results between datasets

An observation that warrants discussion is that while we have concluded that the optimised configuration out-

performs the default configuration, the improvement we achieve over the default configuration on the powergrid

dataset is less pronounced than that achieved for the viral marketing dataset. This is especially true for the

PAR10 value over all instances from the dataset. We attribute this to the high number of timeouts that occur in

this dataset, relative to the number of timeouts on the viral marketing dataset. From all instances of the training

set 17% is currently not solved within the cutoff time by either configuration and 33% of the instances in the

test set. These instances have a very high influence on the PAR10 values. As previously noted, the increase in

performance on the solved instances is much higher than on all instances. When we increase the cutoff time from

33

600 seconds to 2 400 seconds and evaluate both configurations on the test set again, the PAR10 value default

configuration is 9 111.6 and that of the optimised configuration 5 978.8. This is a decrease in PAR10 of 34% and

the optimised configuration has 16 timeouts while the default configuration has 25. The increase in cutoff time

results in a significant increase in solved instances while the default configuration does not even slightly profit

from this. See Section A.2 for all results of the evaluation with the increased cutoff time.

6.2.3.4 Outliers in the powergrid dataset

In Figure 6.2b there is one group of instances that stands out on which the default configuration significantly

outperforms the optimised configuration. These six instances are all derived from the powergrid network from

the Mexican state Chihuahua. These instances are not necessarily difficult to solve, considering the default

configuration finds a solution within ten seconds. However, minimising the compiled OBDD for these instances

has a significant negative effect on the total running time. If we run the same configuration without any OBDD

minimisation these instances are also solved within ten seconds.

34

Chapter 7

Conclusion

We presented an approach to automatically optimise the configuration of a high-performance method for solv-

ing Stochastic Constraint Optimisation Problems (SCOPs) [31]. Following the Programming by Optimisation

paradigm [21], we considered alternatives to the design choices made for several key components of this method

and exposed those as parameters. We then applied Automated Algorithm Configuration to the resulting, highly

parametric algorithm framework, using SMAC [23], in order to optimise its configuration for a set of SCOPs.

We evaluated the running time of the automatically configured solver against that of expert-chosen default

settings, the one that was the best performing configuration from the experiments of Latour et al. [31], on two

benchmarks.

On a set of viral marketing problems, the optimised configuration solved 17% more instances than the default

configuration within a cutoff time of ten minutes, and achieved up to a 51-fold speedup on the solved instances.

For a set of powergrid reliability problems, the optimised configuration solved 9% more instances within the

same cutoff time and achieved up to a 17-fold speedup on the solved instances.

In future work, we will perform experiments on another dataset, which is composed of instances from a third

problem setting. This problem setting is a variant of influence spreading applied to citation networks that extends

the viral marketing problem with an extra requirement resulting in an itemset enumeration problem. Other

research directions could include the expansion of the design space for different parts of the solver, considering

a large part of the computation time is spend on grounding the program of the instances and compiling the

Ordered Binary Decision Diagram in the modelling and compilation stage of the solver. To decrease the time

spent during these steps is essential if we want to solve instances that are currently unsolvable with this solver.

35

Appendix A

Additional Results

In addition to the results presented in Section 6.2, we present results from some additional experiments in this

appendix.

A.1 Parameter importance

Using the data from our configuration experiments we can analyse the importance of the parameters of SCOP

solver to determine which parameters have the most influence over the algorithms performance. For this

purpose we use PyImp, a parameter importance analysis tool and its implementation of the functional ANOVA

(fANOVA) algorithm [24] to quantify the importance of parameters.

In Table A.1 and Table A.2 we show the five most important parameters according to the fANOVA analysis

for the two datasets. The values calculated and shown in the third column of the table are percentages that

show how much variance across the whole configuration space, during configuration, can be explained by that

parameter. Intuitively, if a parameter is responsible for a higher variance, this means that this parameter can

have a larger effect on the performance of SCOP solver.

For both datasets, the parameters that determines which algorithm is used for ordering the OBDD’s variables is

deemed the most important. The two parameters that determine the branching heuristic, SelectionHeur and

ValueHeur are also ranked highly. Therefore we can conclude that there is a significant difference in performance

between the variable order algorithms and branching heuristics we consider in the design space of SCOP solver.

Surprisingly, the parameter that determines whether or not to perform OBDD minimisation, (Minimise), is

not high ranked. This can be explained by the fact that there is a lot of variance between the minimisation

methods, or variable order algorithms, as seen by the high ranking of the VarOrder parameter.

36

Table A.1: Parameter importance determined by fANOVA on the viral marketing dataset.

Rank Parameter Variance (%)

1 VarOrder 40.0

2 SelectionHeur 4.2

3 PropVersion 2.0

4 ValueHeur 1.2

5 MaxGrowth 0.6

Table A.2: Parameter importance determined by fANOVA on the powergrid dataset.

Rank Parameter Variance (%)

1 VarOrder 25.0

2 SelectionHeur 9.2

3 MaxGrowth 7.9

4 ValueHeur 2.0

5 PropVersion 0.7

A.2 Additional results powergrid dataset

In Section 6.2 we mention that we also performed evaluation experiments on the powergrid dataset with an

increased cutoff time, because of the high number of timeouts on the test set. In this section we present results

from an evaluation of the same default and optimised configuration on the test set, but with a cutoff time of

2 400 seconds instead of 600 seconds. In Table A.3 we can see that this results in a decrease of PAR10 of 34%

if we compare the optimised configuration to the default configuration. In Figure A.1 we can see the running

times on the individual instances and the number of timeouts. The optimised configuration is able to solve 22%

more instances than the default.

Table A.3: PAR10 values with a cutoff of 2400 seconds of both configurations on the instances from the powergrid

dataset on all instances and only the instaces that were solved by either configuration within the cutoff time.

Configuration All instances Solved instances

Default 9 111.6 4 347.3

Optimised 5 978.8 212.0

A.3 Comparison to existing MIP solvers

In Section 3.3.1 we describe the decomposition method [29] that converts the OBDD compiled in the compi-

lation stage of SCOP solver to an Arithmetic Circuit and decomposes this into a set of linear constraints.

This decomposition can then serve as an input for Mixed Integer Programming (MIP) solvers. We performed

configuration experiments for such a MIP solver on the MIPs created from the decomposition of the OBDDs

37

100 101 102 103

Default configuration

100

101

102

103

O
p
ti

m
is

ed
co

n
fi
g
u
ra

ti
o
n

Test set

50

60

70

80

90

100

110

N
u
m

b
er

o
f

va
ria

b
les

Figure A.1: Running time [CPU s] of both configurations on the test instances from the powergrid dataset, with

a cutoff time of 2 400 seconds (indicated by horizontal and vertical dashed lines). The diagonal dashed lines

represent differences in running time of factors of 10, 100 and 1 000. The default configuration has 25 timeouts.

The optimised configuration has 16.

38

compiled by the optimised configuration of SCOP solver on both our dataset of viral marketing problems.

We compare the performance of this solver to the optimised configuration of the solving stage of SCOP solver

(see Section 6.2) on the same OBDDs used to construct the MIPs. Note that instances for which SCOP solver

cannot compile the OBDD within the original cutoff time of 600 are not used in the experiments. The training

set consists of 188 instances and the test set of 193 instances.

We used CPLEX 12.4 as MIP solver and Gurobi 8.1.1 to create MIP instances from our OBDDs. We used

the same protocol as described in Section 6.1.2 for this experiment, but use a cutoff of 300 seconds. This is

because, compared to SCOP solver, the modelling and compilation stage is skipped.

In Table A.4 we can see the resulting PAR10 values of the optimised and default configuration of CPLEX

and the optimised configuration of the solving stage of SCOP solver. The optimised configuration achieves a

decrease of 28% compared to the default configuration on the training set and a decrease of 27% on the test set.

In Figure A.2a we can see the running times on the individual instances and the number of timeouts of both

configuration of CPLEX. In Figure A.2b the running times on the individual instances of the optimised con-

figurations of CPLEX and SCOP solver are compared. Even though the optimised configuration of CPLEX

outperforms the default configuration, the optimised configuration of the solving stage of SCOP solver still

offers much better overall performance.

Table A.4: PAR10 values with a cutoff of 300 CPU seconds of both configurations of CPLEX and the optimised

configuration for the solving stage of SCOP solver on the instances from the viral marketing dataset.

Solver Configuration Training Test

CPLEX
Default 170.4 166.4

Optimised 122.0 121.3

SCOP solver Optimised 7.0 22.5

39

100 101 102

Default configuration

100

101

102

O
p
ti

m
is

ed
co

n
fi
g
u
ra

ti
o
n

Training set

100 101 102

Default configuration

Test set

(a) Comparison of both configurations of CPLEX on both the training and test set. Both configurations have 7 timeouts on the

training set. The optimised configuration has 7 timeouts on the test set and the default configuration 10.

100 101 102

CPLEX (Optimised configuration)

100

101

102

S
C

O
P

so
lv

e
r

(O
p

ti
m

is
ed

so
lv

in
g

st
a
g
e)

Training set

100 101 102

CPLEX (Optimised configuration)

Test set

(b) The optimised configuration of CPLEX compared to the optimised configuration of SCOP solver on both the training and test

set. The latter does not have any timeouts on the training set and 1 timeout on the test set.

Figure A.2: Running time [CPU s] on individual instances, with a cutoff time of 600 seconds (indicated by

horizontal and vertical dotted lines). The diagonal dashed lines represent differences in running time of factors

of 10 and 100.

40

Bibliography

[1] C. Ansótegui, Y. Malitsky, H. Samulowitz, M. Sellmann, and K. Tierney. Model-based genetic algorithms

for algorithm configuration. In Proceedings of IJCAI, pages 733–739, 2015.

[2] K. Apt. Principles of constraint programming. 2003.

[3] P. Balaprakash, M. Birattari, and T. Stützle. Improvement strategies for the F-Race algorithm: Sampling

design and iterative refinement. In Proceedings of HM, pages 108–122, 2007.

[4] M. Ben-Ari. Mathematical logic for computer science. 2012.

[5] V.D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks.

JSTAT, 2008(10):P10008, 2008.

[6] B. Bollig, M. Löbbing, and I. Wegener. Simulated annealing to improve variable orderings for OBDDs. In

Proceedings of IWLS, 1995.

[7] B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is NP-complete. IEEE Transactions

on computers, 45:993–1002, 1996.

[8] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social influence in nearly optimal time. In

Proceedings of ACM-SIAM SODA, pages 946–957, 2014.

[9] R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Comput-

ers, 35(8):677–691, 1986.

[10] M. Chavira and A. Darwiche. On probabilistic inference by weighted model counting. Artificial Intelligence,

172(6-7):772–799, 2008.

[11] A. Darwiche. SDD: A new canonical representation of propositional knowledge bases. In Proceedings of

IJCAI, pages 819–826, 2011.

[12] A. Darwiche and P. Marquis. A perspective on knowledge compilation. In Proceedings of IJCAI, pages

175–182, 2001.

[13] L. De Raedt, K. Kersting, A. Kimmig, K. Revoredo, and H. Toivonen. Compressing probabilistic prolog

programs. Machine Learning, 70(2-3):151–168, 2008.

41

[14] L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: a probabilistic prolog and its application in link

discovery. In Proceedings of IJCAI, pages 2468–2473, 2007.

[15] R. Drechsler, B. Becker, and N. Gockel. Genetic algorithm for variable ordering of OBDDs. IEEE Computers

and Digital Techniques, 143(6):364–368, 1996.

[16] L. Duenas-Osorio, K.S. Meel, R. Paredes, and M.Y. Vardi. Counting-based reliability estimation for power-

transmission grids. In Proceedings of AAAI, pages 4488–4494, 2017.

[17] D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann, I. Thon, G. Janssens, and

L. De Raedt. Inference and learning in probabilistic logic programs using weighted boolean formulas.

Theory and Practice of Logic Programming, 15(3):358–401, 2015.

[18] I. Filippidis. dd python library, 2018. Available at https://pypi.org/project/dd/.

[19] L.C. Freeman. A set of measures of centrality based on betweenness. Sociometry, pages 35–41, 1977.

[20] H.H. Hoos. Automated algorithm configuration and parameter tuning. In Autonomous search, pages 37–71.

2011.

[21] H.H. Hoos. Programming by optimization. Communications of the ACM, 55(2):70–80, 2012.

[22] F. Hutter, H.H Hoos, and K. Leyton-Brown. Automated configuration of mixed integer programming

solvers. In Proceedings of CPAIOR, pages 186–202, 2010.

[23] F. Hutter, H.H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm

configuration. In Proceedings of LION, pages 507–523, 2011.

[24] F. Hutter, H.H. Hoos, and K. Leyton-Brown. An efficient approach for assessing hyperparameter impor-

tance. In Proceedings of ICML, pages 754–762, 2014.

[25] F. Hutter, M. Lindauer, A. Balint, S. Bayless, H.H. Hoos, and K. Leyton-Brown. The configurable SAT

solver challenge (CSSC). Artificial Intelligence, 243:1–25, 2017.

[26] F. Hutter, M. López-Ibáñez, C. Fawcett, M. Lindauer, H.H. Hoos, K. Leyton-Brown, and T. Stützle. AClib:

A benchmark library for algorithm configuration. In Proceedings of LION, pages 36–40, 2014.

[27] N. Ishiura, H. Sawada, and S. Yajima. Minimization of binary decision diagrams based on exchanges of

variables. In Proceedings of IEEE ICCAD, pages 472–475, 1991.

[28] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. In

Proceedings of ACM SIGKDD, pages 137–146, 2003.

[29] A.L.D. Latour, B. Babaki, A. Dries, A. Kimmig, G. Van den Broeck, and S. Nijssen. Combining stochastic

constraint optimization and probabilistic programming. In Proceedings of CP, pages 495–511, 2017.

[30] A.L.D. Latour, B. Babaki, and S. Nijssen. Stochastic constraint optimization using propagation on ordered

binary decision diagrams. 2018.

42

[31] A.L.D. Latour, B. Babaki, and S. Nijssen. Constraint propagation on Binary Decision Diagrams for mining

probabilistic networks. In Proceedings of IJCAI, pages 1137–1145, 2019.

[32] C.L. Lindner, G. Staudt, M. Hamann, H. Meyerhenke, and D. Wagner. Structure-preserving sparsification

of social networks. In Proceedings of ASONAM, pages 448–454, 2015.

[33] M. López-Ibánez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace package, iterated race for

automatic algorithm configuration. Technical report, IRIDIA Technical Report Series, 2011.

[34] A. Nocaj, M. Ortmann, and U. Brandes. Untangling hairballs. In Proceedings of GD, pages 101–112, 2014.

[35] OscaR Team. OscaR: Scala in OR, 2012. Available at https://bitbucket.org/oscarlib/oscar.

[36] S. Panda and F. Somenzi. Who are the variables in your neighborhood. In Proceedings of IEEE/ACM

ICCAD, pages 74–77, 1995.

[37] S. Panda, F. Somenzi, and B.F. Plessier. Symmetry detection and dynamic variable ordering of decision

diagrams. In Proceedings of IEEE/ACM ICCAD, pages 628–631, 1994.

[38] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming. 2006.

[39] D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2):273–302, 1996.

[40] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In Proceedings of IEEE/ACM

ICCAD, pages 42–47, 1993.

[41] V. Satuluri, S. Parthasarathy, and Y. Ruan. Local graph sparsification for scalable clustering. In Proceedings

of SIGMOD, pages 721–732, 2011.

[42] F. Somenzi. CUDD: CU Decision Diagram package-release 2.4.0, 2004. University of Colorado at Boulder.

[43] B. Viswanath, A. Mislove, M. Cha, and K.P. Gummadi. On the evolution of user interaction in Facebook.

In Proceedings of ACM SIGCOMM WOSN, pages 37–42, 2009.

[44] B. Wiegmans. Gridkit: European and North-American extracts, 2016.

[45] Y. Xue, X. Wu, D. Morin, B. Dilkina, A. Fuller, J.A. Royle, and C.P. Gomes. Dynamic optimization of

landscape connectivity embedding spatial-capture-recapture information. In Proceedings of AAAI, pages

4552–4558, 2017.

43

	Introduction
	Stochastic Constraint Optimisation Problems
	Modelling SCOPs
	General SCOP model
	The viral marketing problem
	The powergrid reliability problem

	Naïve approach to solving SCOPs

	Solving SCOPs
	Modelling stage
	Compilation stage
	Knowledge compilation
	Weighted model counting with OBDDs

	Solving stage
	Decomposition method
	Solving using constraint programming

	Programming by Optimisation
	Programming by Optimisation
	Automated algorithm configuration
	The algorithm configuration problem
	Different configurators
	Application of AAC

	Approach
	Configuring the compilation stage
	Sifting algorithms
	Window permutation approach
	Other variable ordering algorithms

	Configuring the solving stage
	Existing heuristics
	New heuristics

	Experiments
	Experimental setup
	Datasets
	Protocol
	Hardware and software

	Results
	Viral marketing dataset results
	Powergrid dataset results
	Conclusion and discussions

	Conclusion
	Additional Results
	Parameter importance
	Additional results powergrid dataset
	Comparison to existing MIP solvers

	Bibliography

