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Abstract

In this thesis we address the explainability of web search engines and in particular of neural ranking
models for ad-hoc retrieval. We propose two explainable elements on the search engine result page:
a visualization of query term importance and a visualization of passage relevance. The idea is that
search engines that indicate to the user why results are retrieved improve user satisfaction and
gain user trust. We deduce the query term weights from the term gating network in the Deep
Relevance Matching Model (DRMM) and visualize them as a doughnut chart. In addition, we
train a passage-level version of DRMM that selects the most relevant passage from each document
and shows it as snippet on the result page. Next to the snippet we show a document thumbnail
with this passage highlighted. We evaluate the proposed interface in an online user study, asking
participants to judge the explainability and assessability of the interface. We find that users judge
our proposed interface significantly more explainable and easier to assess than a regular search
engine result page. However, they are not significantly better in selecting the relevant documents
from the top-5. This indicates that the explainability of the search engine result page leads to a
better user experience. Thus, we conclude that the proposed explainable elements are promising
as visualization for search engine users.
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Chapter 1

Introduction

Search engines are extremely commonly used for real-world applications like digital libraries and
Web search. Today machine learning is utilized to make search engines more powerful. Retrieval
models make use of features like click logs and relevance judgments to improve their performance
as well as the satisfaction of the users. The more powerful and sophisticated these search engines
become, the harder it is for users to understand why the retrieved documents or Web pages are
relevant to their search query. This has motivated a line of research to make search engines and
recommendation systems explainable to their users [1]. The idea is that if the system indicates to
the users why results are retrieved or recommended it gains more trust from the users

There has been more attention to explainable recommendation than to explainable search,
with a focus on explaining the user profiling aspect of recommendation systems [2]. Providing ex-
planations which clarify why an item is recommended improves the transparency, persuasiveness,
effectiveness, trustworthiness and user satisfaction of the recommendation systems [3]. It also helps
system designers to diagnose and improve the algorithm. As a first step towards explainable search
engines, we address the explainability of non-personalized web search engines. The explanation
of personalization in search engines is a very interesting topic for future work. In this work, we
focus on the explanation of query–document relevance on the search engine result page. By helping
users understand what the search engine does, we help them become more efficient and effective
searchers [4].

Some search engines include explainable features like the contribution of terms to ranking for-
mulas1 or spelling correction2. The most common type of explanation of relevance on the result
page is the search snippet, giving a preview of each retrieved document and thereby an indication
of its relevance. Query keywords are typically marked in boldface in the snippet to show the user
the query relevance of the document. The interpretability of search result snippets has been inves-
tigated by Mi and Jiang [5]. They found that snippets play an important role in explaining why
documents are retrieved and how useful those documents are.

In this thesis we propose a visualization of the explainable aspects of a neural ranking model
on the search engine result page. We use the Deep Relevance Matching Model (DRMM) [6] which
is a neural ranking model specifically designed for the ad-hoc retrieval task. Ad-hoc retrieval is the
information retrieval task behind search engines. Specifically, given a query, the system’s objective
is to retrieve the most relevant documents from a corpus. By adding explainable elements to the
DRMM we attempt to design a search engine that is more interpretable to the users.

Mi and Jiang [5], in their work, evaluate the search result summaries of an existing web search
engine3. They conduct an extensive user study to investigate how much users are informed by
regular search result summaries. On our part, we evaluate our own explainable search engine in-
terface with a user study. For the evaluation of our explainable interface we follow-up on the work
of Mi and Jiang by further investigating the explainability and assessability potentials of search
engine result pages. The explainability refers to the ability of the user to interpret why the system

1https://www.elastic.co/guide/en/elasticsearch/reference/current/search-explain.html
2https://swiftype.com/search-concepts/spelling-correction
3https://www.bing.com/
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returned the specific results. The assessability refers to the ability of the user to understand which
of the results are useful based solely on the search engine result page.

The contributions of this thesis can be summarized as follows. We make the importance of each
query term explicit using features of the model’s architecture and training process. Additionally,
we split the document in smaller passages to investigate the different matching scores between the
query and individual passages. We use the passage with the highest matching score as the search
result snippet of the document where it derives from. We propose an explainable user interface that
shows the query term importance as a doughnut chart, and the passage relevance as a document
thumbnail with passage highlights. We evaluate our explainable interface in a small-scale user
study in which participants judge the search engine result page on explainability and assessability.

1.1 Research Questions
The main goal of this thesis is to investigate and evaluate the explainability potentials of neu-

ral ranking models and in particular those of the Deep Relevance Matching Model (DRMM). We
attack the explainability task on two levels: on the query level and on the document level. Fur-
thermore, we design and implement an explainable search engine result page interface and conduct
a user study to evaluate it.

The research questions that we address in this thesis are the following:

1. What is the ranking effectiveness of DRMM when selecting the most relevant passage of each
document?

2. How do users judge the explainability and assessability of our explainable search engine result
page compared to a regular result page?

3. How well can users select the relevant documents based on only the snippets on the result
page, in the explainable interface compared to the regular interface?

1.2 Thesis Organization
Chapter 2 introduces related work on ad-hoc retrieval, neural information retrieval and ex-

plainable search. Chapter 3 introduces the toolkits and the methods that we used for the ad-hoc
retrieval. We will also describe the explainable features that we developed to enhance the search
engine result page. In Chapter 4 we describe the experimental setup and the results of the retrieval
experiments. In Chapter 5 we describe the design and the results of the user study for evaluat-
ing our explainable interface. We conclude this thesis in Chapter 6 with answers to the research
questions and suggestions for future work.
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Chapter 2

Background

2.1 Ad-hoc retrieval
Ad-hoc retrieval is a classic information retrieval task where the user gives a query as input

and the system returns a ranked list of documents that are relevant to the query. The retrieved
documents that are ranked higher in the list are more likely to be relevant to the query. By the
term relevant we characterize documents that contain sufficient information to answer the specific
query, whereas all other documents are called non-relevant. A key characteristic of the ad-hoc
retrieval task is that the document collection remains relatively static, while new queries are given
to the system periodically. Additionally, the retrieval and hence the ranking of the documents
is based solely on the documents’ text and not on additional information like user feedback or
outgoing links, which are commonly used by web search engines [7, 8].

Given a large document collection, usually containing millions of documents, and a user query,
which is usually very short, we use a ranking function to retrieve the most relevant documents.
The ranking function calculates a relevance score for each query document pair and ranks the
documents in descending order based on that score. The top K documents are then presented
to the user as an output to the desired query. One of the most widely used ranking functions
in ad-hoc retrieval is Okapi BM25 [9]. It is based on the probabilistic relevance model as well
as the Term Frequency (TF) and the Inverse Document Frequency (IDF) to rank the retrieved
documents. In more detail, given a query q with n terms q1, q2, ..., qn and a document d BM25
calculates a relevance score:

score(q, d) =

i=1∑
n

IDF (qi) ·
TF (qi, d) · (k1 + 1)

TF (qi, d) + k1 · (1− b + b · |d|
avgDocLen )

(2.1)

where TF (qi, d) is the Term Frequency of the ith query term in document d and IDF (qi) its
Inverse Document Frequency, |d| is the length of document d in tokens and avgDocLen is the
average document length in the corpus. Finally, k1 and b are two parameters that represent the
term frequency saturation and the field length normalization respectively. These two parameters
are tunable but typically they are set as k1 ∈ [1.2, 2.0] and b = 0.75.

IDF (qi) is usually computed as:

IDF (qi) = log
N

df(qi)
(2.2)

where N is the total number of documents in the corpus, df(qi) is the document frequency of
qi. Despite being introduced several years ago, BM25 is still highly effective and is considered as
a very strong information retrieval baseline for large document collections.

Over the last years, various information retrieval toolkits have been built by the scientific com-
munity to facilitate the research of existing and the development of novel information retrieval
methods. Anserini [10] is an open source information retrieval toolkit built on top of Lucene1.

1https://lucene.apache.org/
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Figure 2.1: The two types of architectures for neural ranking models for information retrieval:
Interaction-focused models (left) and Representation-focused models (right)

The intuition behind its development is Lucene’s lack of systematic support for evaluation over
standard test collections. The advantage of Anserini over other research oriented IR toolkits such
as Indri2 and Galago3 is its efficiency in indexing and retrieval of large document collections. BM25
is included in the Anserini framework along with other traditional information retrieval algorithms
such as QL [11] and RM3 [12].

2.2 Neural information retrieval

Since the 2000s machine learning models have been applied to information retrieval. Learning
to rank (LTR) [13] models started outperforming traditional probabilistic methods for ad-hoc re-
trieval tasks mostly based on hand-crafted features. With the rise of deep learning, neural networks
emerged in the information retrieval field as well since they have a lot more potential for learning
than traditional models. In this thesis we focus on neural ranking models for ad-hoc retrieval,
which is a central task in information retrieval, but not the only one where neural ranking models
can be used.

Guo et al. [6] divided existing neural ranking models for information retrieval in two categories,
namely representation-focused and interaction-focused. Representation-focused models build sep-
arate complex representations for the query and the document and then calculate a relevance score
using some simple evaluation function. Different deep neural networks have been applied as repre-
sentation functions, including convolutional and recurrent networks [14]. This type of architecture
is more suitable for tasks concerned with semantic matching, such as automatic conversation and
paraphrase identification.

Interaction-focused models on the other hand build joint representations of query-document
pairs. This approach is based on the underlying assumption that relevance relies on the relation
between the two inputs. The representation functions of interaction-focused models reflect the sim-
ilarity or distance over each pair of input word vectors. In contrast to the representation-focused
architectures their representation functions are usually very simple, such as cosine similarity func-
tion and dot-product function, while their evaluation functions are complex (i.e., deep neural
networks). This architecture fits tasks with heterogeneous inputs concerned with relevance match-
ing, like ad-hoc retrieval and question answering.

In this thesis we use one of the most used neural ranking models, the Deep Relevance Matching
Model [6], which is an interaction-focused neural ranking model specifically designed for ad-hoc
retrieval. We choose this model because it integrates interpretable components. This components

2http://www.lemurproject.org/indri/
3http://www.lemurproject.org/galago.php
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can be deployed to attack the explainability task. In more detail, DRMM builds matching signals
between query terms and documents using word embeddings and gives them as input to a feed for-
ward matching network. Moreover, it employs a term gating network to capture the importance of
each query term and output a matching score for each query-document pair. The later component
is of high importance for our task since the query term importance will be visualized to improve
the interpretability of the retrieval results.

2.3 Explainable Search
Recent work on explainable search has been focused on three directions: explainable product

search [15], interpretability of neural retrieval models [16, 17] and their axiomatic analysis [18].
Explainable product search is closely related to explainable recommendation since both aim at
enhancing the user experience in online shopping and hence in increasing the profits of e-commerce
companies. Axiomatic analyses of neural retrieval models investigate to what extent the formal
constraints [19] of retrieval models are satisfied from neural ranking models.

On the other hand, research on the interpretability of neural retrieval models attempts to give
more insights to the user regarding the search process. Although current search engines have made
steps towards the transparency of their results, many users still have little understanding on how
they work. Singh and Anand [16] developed an explainable search engine designed to aid the users
in the search task. They used a modified version of LIME [20], adapted for rank learning, to
interpret the results of neural ranking algorithms. Moreover, they designed an interface for their
search engine in which they visualized the explanations.

The work by Singh and Anand does not involve user feedback for evaluating how helpful the
search engine is according to the users. Mi and Jiang [5] conducted an extensive user study to
address explainability of result pages. They evaluated the search result summaries of a commercial
search engine in which the document snippets are the explainable elements on the result page. In
the current thesis, we build on this work by implementing an explainable neural search engine and
evaluating its retrieval effectiveness as well as its explainable elements with user feedback.

7



Chapter 3

Methods

3.1 Ad-hoc retrieval architecture

A crucial part in the ad-hoc retrieval task, when neural ranking methods are used, is the combi-
nation of a retrieval step with a re-ranking step. The purpose of this combination is the reduction
of the computational demands of the neural ranking models. In the first step, K candidate docu-
ments for each query are selected using a traditional IR baseline. Then the retrieved documents
are reranked using the neural model in order to achieve better performance.

Specifically, for the integration between the initial ranking and the neural re-ranking we im-
plement a rather simple technique. We use and process the query-document relevance file that is
very common in hand-labeled ad-hoc retrieval datasets. In more detail, after retrieving the highest
ranked (top K ) documents for every query using BM25, we reconstruct the relevance file using
only the query-document pairs that were retrieved. The neural ranking is then performed on the
filtered query-document relevance file.

Although this technique may ignore some relevant documents from the re-ranking process, it
actually does not affect the results of the neural models while their training time is considerably
reduced. It is an information retrieval pipeline widely adopted by many previous works in neural
re-ranking for ad-hoc retrieval [6, 21]. The pipeline of the ranking and re-ranking process is shown
in Figure 3.1.

Figure 3.1: Architecture of the ad-hoc retrieval with neural re-ranking pipeline
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3.2 Ranking Documents

In our implementation we use Anserini1 to retrieve the top K documents for each query as
described in Section 3.1. The starting point is to build an inverted index for our document collec-
tion. After that we use the index to retrieve the top K relevant documents for each query with
BM25 [9]. Anserini includes an end-to-end information retrieval pipeline that supports Lucene’s
multi-threaded indexing and provides preprocessing for standard document formats used in IR –
TREC-style XML files, web pages in WARC format, etc. Additionaly, it has implementations for
various information retrieval algorithms. We interact with Anserini, which is written in Java, using
its command line interface. Hence, it offers an out of the box solution that can build an inverted
index and perform document ranking for a large document collection in a few minutes using its
own interface and limited computational resources.

3.3 Re-Ranking Documents

The second step of the ad-hoc retrieval pipeline is the re-ranking process. We perform this
step using MatchZoo [22], a text-matching toolkit that facilitates the design, the comparison and
the sharing of deep text matching models. We use Matchzoo v2.22 which is written in Python
and offers implementations for data processing, neural matching models as well as their training
and evaluation. Its data processing module contains standard text preprocessing methods such as
word tokenization, stemming etc. using NLTK3 and various dataframe operation using Pandas4.
All neural network models are implemented using Keras5 and Tensorflow6.

We use MatchZoo’s implementation for DRMM to perform the neural re-ranking step. The
Deep Relevance Matching Model [6] is an interaction-focused neural ranking model specifically
designed for ad-hoc retrieval. It builds matching signals between query terms and documents
using word embeddings and gives them as input to a feed forward matching network that outputs
a matching score for each query-document pair.

Figure 3.2: Architecture of the Deep Relevance Matching Model [6]

1http://anserini.io
2https://github.com/NTMC-Community/MatchZoo
3https://www.nltk.org/
4https://pandas.pydata.org/
5https://keras.io/
6https://www.tensorflow.org/
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3.3.1 DRMM Model Architecture
In more detail, DRMM takes as input the term vectors of a query q = {w(q)

1 , w
(q)
2 , ... , w

(q)
M } and

a document d = {w(d)
1 , w

(d)
2 , ... , w

(d)
N } where w

(q)
i denotes the word embedding vector of the i-th

query term and w
(d)
j the word embedding vector of the j-th document term. These term vectors

are used to build local interactions between each pair of terms. For each query term the local
interactions are transformed into a fixed-length matching histogram. Consequently, the matching
histograms are the input of a feed forward neural network which learns hierarchical matching pat-
terns and produces a matching score for each query term. To generate the overall matching score
of a query the scores for each term are aggregated with a term gating network. The matching
score for each query-document pair is the dot product of the query term importance weights and
the output vector of the feed-forward network.

Matching Histograms

The first step in capturing local interactions between query terms and documents in DRMM
is to measure the cosine similarity between the word embedding vectors of every query term and
every document term. The major drawback of this approach is the variance in the sizes of the
local interactions due to the different lengths of queries and documents. In order to overcome
this obstacle, DRMM introduced the matching histogram mapping which is a key element in its
implementation. The basic idea behind matching histograms is the grouping of local interactions
according to different levels of signal strength. Since cosine similarity between the term vectors is
within the interval [−1, 1], this interval is discretized into equal sized bins in an ascending order
and each similarity score is assigned to the corresponding bin. The exact matching between query
and document term (cosine similarity=1 ) is treated as a separate bin. There are three types of
matching histograms:

• Count-based Histogram: Each bin contains the count of local interactions as the his-
togram value.

• Normalized Histogram: The count value in each bin is normalized by the total count of
terms in the document.

• LogCount-based Histogram: The count value in each bin is logarithmized to reduce the
range of histogram values. In our research, we only experimented with this type of match-
ing histograms since previous work [6] shows they outperform the other ways of matching
histogram mapping. An example of LogCount based histograms is shown in Figure 3.3.

Figure 3.3: The LogCount-based matching histograms for the query "Best retirement country"
and a relevant document from Robust04. Each histogram shows the interaction between a term
from the query and the specific document. Here we discretize the cosine similarity interval [-1,1]
in 30 bins.

Feed forward Matching Network

Using the matching histograms as input, DRMM employs a feed forward matching network to
learn the hierarchical matching patterns between documents and query terms. The choice of a feed
forward network in the architecture of the model ignores the position of the terms and focuses on
the strength of the signals. The output of the network is a matching score for each query term.
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Figure 3.4: A doughnut chart that depicts the importance of each term in the query "Nobel prize
winners" based on their respective attention values from DRMM’s term gating network

Term Gating Network

Another very important feature in the architecture of DRMM is the deployment of the term
gating network. The purpose of this addition is the modeling of query term importance. Instead
of just summing up the respective matching scores of each query term, the term gating network
controls the contribution of each matching score to the final relevance score. To calculate this
query term importance it produces an aggregation weight for each term using linear self-attention.
Specifically, for each query qi, its importance weight gi is returned by a softmax function.

gi =
exp(wgx

(q)
i )∑M

j=1 exp(wgx
(q)
j )

, i = 1, ...,M (3.1)

where x
(q)
i is the i-th query term input. This input can be either the embedding vector of the

corresponding term or its inverted document frequency. Consequently, wg which denotes the
weight parameter of the gating network is either a weight vector with the same dimensionality as
the embedding vector or a scalar weight when the IDF value is chosen as the input.

3.3.2 DRMM Model Training

To train the deep relevance matching model we employ a pairwise ranking loss function, which is
widely used in neural ranking and in ad-hoc information retrieval in general, called hinge loss. Like
in all pairwise loss functions, we compute hinge loss by taking the permutations of all document
pairs. Given two matching scores s(q, d+) and s(q, d−) where d+ is ranked higher than d− with
respect to query q, hinge loss is defined as:

L(q, d+, d−; Θ) = max(0, 1− s(q, d+) + s(q, d−)) (3.2)

with Θ as the weights used both in the feed forward matching network and the term gating network.
The model parameters are updated via standard backprogation using the Adadelta [23] optimizer
with mini-batches.

3.4 Explainability

In this thesis we attack the explainability task on two levels: on the query level and on the
document level. Based on the model’s architecture and training process we try to explain the
importance of each query term in a query. Additionally, we split the document in smaller passages
to investigate the different matching scores between queries and document passages.

11



Figure 3.5: Example thumbnails of retrieved documents for the query "Radio waves and brain
cancer" with the most relevance passage highlighted.

3.4.1 Query Term Importance

Queries are usually based on keywords and do not contain complex grammatical structures.
Moreover, most ad-hoc retrieval algorithms are based on the assumption that all query terms
should be of equal importance. Contrary to this hypothesis DRMM handles queries as separate
terms but, takes into account the importance of each term by employing the term gating network
(see Subsection 3.3.1).

On our part, we consider query term importance as a very important aspect of search results
interpretation. It is an actual real-time feedback to the user regarding the query he/she chose in
order to satisfy his/her information needs. These term weights are able to teach the users how to
search for what they are looking for, given a certain information retrieval system.

To obtain these weights we use the term gating network’s softmax function (see Equation 3.1).
This gating network can be alternatively described as the simplest form of attention function [24],
a linear self-attention. Subsequently, the outputs gi of the gating network can be described as
the outputs of an attention layer, also known as attention values. Since they are the output of a
softmax function these probabilities sum to 1, which makes their visualization trivial.

A simple example would be the term importance for the query "Nobel prize winners" that is
shown in Figure 3.4. Given this query a relevant document is expected to be about winners of
the Nobel prize. Intuitively the term "Nobel" is more important than the other two terms, in the
sense that retrieved documents that do not refer to it are probably irrelevant and that documents
describing other aspects of "Nobel" would be more relevant than documents about another "prize"
for instance. As expected, the term "Nobel" has the greatest attention probability among the
other two terms while the term "winners", which is also very important, comes second.

3.4.2 Passage Ranking

For the explainability of the document text matching we decided to adopt a passage-level ap-
proach. We split each document in passages to be able to deduce the matching scores between the
query and each passage, thereby allowing the selection of the best matching passage. Passages are
non-overlapping and have a length of 100 tokens each. Many documents in Robust04 are shorter
than 200 tokens and could not be split into longer passages. Moreover smaller passages can be
used as snippets for the search engine interface.

Following DRMM’s pipeline we build a matching histogram for each query–passage term pair
and then give it as input to the model. Since passage-level labels are not available, in order to train
the neural ranking model we have to assign a ground-truth relevance label to each passage-query
pair. To that end, we transfer the document relevance label to each passage in the document as

12



ground truth for learning the passage relevance.7

After we have trained the model and assigned a matching score to each passage using DRMM, we
use several methods to evaluate our model on the document level. Following Dai et. al [26] we take
the score of the passage with the highest matching score (‘maxP’), the sum of the matching scores
(‘sumP’) or the score of the first passage (‘firstP’) and use it to rank the documents. Furthermore,
we experiment with the mean of the matching scores (‘meanP’) of each document as well as their
median (‘medianP’). The results of our experiments are presented in Section 4.3.

Visualization of passage relevance. The passage with the highest matching score from each
query–document pair is considered to be the most relevant passage of the document and is shown
to the user as document snippet in the search results interface. We also employ another type
of visualization to enhance the explainability of the results. We show a thumbnail of the whole
document to the user in which the most relevant passage is highlighted, as illustrated in Figure 3.5.
This allows the user to better judge the relevance of the document based on the position of the
passage in the text and also gives information of where to search in the document for the most
relevant passage. This can be especially helpful in long documents where the information needed
by the user could be at the bottom of the document.

7This is a simple approach that might lead to some passages being mislabeled [25], but for our current goal this
suffices.
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Chapter 4

Retrieval Evaluation

4.1 Data

For our experiments we used the Robust04 dataset [27] which is widely used to evaluate meth-
ods for ad-hoc information retrieval. The Robust04 corpus was used in the TREC Robust track
in 2004 and contains 528,155 documents from the Financial Times, the Federal Register 94, the
LA Times, and FBIS. Additionally the dataset has 250 topics which contain both a short title
and a description. We only used the topic titles as queries in our experiments which are short
(a few keywords) and therefore fit our the query term importance approach. The number of rel-
evant documents per query varies a lot in Robust04. The most relevant documents for a single
query are 448 while there is one query that does not have any relevant documents and was subse-
quently excluded from the experiments. The median number of relevant documents per query is 41.

In Subsection 3.4.2 we describe the methods we used to split the Robust04 on small passages.
We split each document in passages with a length of 100 tokens. Since the documents in the corpus
vary a lot in length, the number of passages from each document varies as well. However most
of the documents are short with the 28.3% having only one passage after the split. The average
document length is 4.5 passages and the longest document contains 2,284 passages. In Figure 4.1
we can see the frequency of the count of passages in the document collection.

4.2 Experimental Setup

Initial ranking. In the initial retrieval step, we use the Anserini toolkit and more specifically its
implementation of BM25, as we describe in Section 3.2. We choose K = 1000 documents, following
Yang [28], when retrieving complete documents and K = 100 when splitting the documents into
passages. We chose to reduce the number of initially retrieved documents in the passage approach
because of computational limitations. The caveat of this approach is a drop in the performance of
the initial retrieval model.

Neural re-ranking. For the re-ranking step we use MatchZoo’s implementation of the Deep
Relevance Matching Model (see Section 3.3). A drawback of this implementation is that it truncates
the first N words and takes them as input. In our experiments this had an impact when retrieving
complete documents where we used N = 500, following Yang’s work [28]. Furthermore, we split the
dataset in 5 folds with 50 queries each, following Huston and Croft [29]. We then conduct 5-fold
cross-validation where we use 3 folds for training, 1 for validation and 1 for testing [6, 30]. For the
DRMM implementation we use LogCount-based histograms with the bin size set to 30, following
Guo et al. [6]. In the feed-forward matching networks we used two hidden layers with 5 nodes
each and tanh as activation function. This specific architecture was chosen based on development
evaluation. For the embedding layer we used Glove embeddings [31] pretrained on 6B tokens with
300 dimensions.1 The query term embeddings were used as the input of the term gating network.

1https://nlp.stanford.edu/projects/glove/
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Figure 4.1: Frequency of passage count per document on the Robust04 corpus.

Implementation Details. All the aforementioned experiments were performed using the servers
of the Data Science Lab (DSLAB) of the Leiden Institute of Advanced Computer Science (LIACS).
For the training of the Deep Relevance Matching Model, which was the most computationally
expensive, duranium server was used. Duranium is a GPU server with six NVIDIA GeForce GTX
980 Ti and two NVIDIA GeForce GTX TITAN X Graphic Processing Units (GPU). Additionally,
the server has two Intel Xeon Processor E5-2650 v3 @ 2.30GHz with 20 cores (40 threads in total)
and 128GB of RAM. The preprocessing and the passage splitting of the Robust04 collection as
well as the initial document ranking were performed on adamant server. Adamant is a CPU server
with two Intel Xeon CPU E5-2630 v3 @ 2.40GHz with 16 cores (32 threads in total) and 512Gb
of RAM. Both servers run on CentOS Linux 7 (Core) OS.

4.3 Results

Table 4.1 shows the results of the retrieval experiments on the test set. The first row in
Table 4.1 are the results of Anserini’s BM25 on the document level with K = 1000 and acts as a
strong baseline. The second row are the results of our DRMM implementation on the document
level.2

MAP P@20 nDCG@20
BM25 0.2531 0.3631 0.4240
DRMM 0.2662 0.2974 0.3706
DRMM-maxP 0.3172 0.2650 0.3177
DRMM-sumP 0.2800 0.2309 0.2690
DRMM-firstP 0.3003 0.2700 0.3025
DRMM-meanP 0.3043 0.2760 0.3069
DRMM-medianP 0.2960 0.2720 0.2947

Table 4.1: Retrieval results on the Robust04 test data

The next rows show the results of our own methods for passage retrieval with evaluation on the
document level, as explained in Subsection 3.4.2. The results indicate that in terms of Precision@20
and nDCG@20 our models are less effective than BM25 and document-level DRMM, but they are
a bit better in terms of MAP. Even though we optimize for MAP the significant drop in terms
of Precision@20 and nDCG@20 of our proposed models shows that they cannot beat the strong

2The results in terms of P@20 and nDCG@20 are lower than in the original paper [6], but our implementation
is not identical to the original. Other papers have reported different results as well [30]
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Figure 4.2: Passage matching score dispersion for the top 5 most relevant documents for the query:
"Radio waves and brain cancer".

baselines of BM25 and the standard DRMM. In more detail, the DRMM-maxP model performs the
best in terms of MAP and nDCG@20 among our proposed models, while DRMM-meanP performs
better in terms of P@20. For the evaluation of the explainable features that we developed we use
the DRMM-maxP model whose performance is considered sufficient.

In Figure 4.2 we can see the distribution of matching scores across passages of the same docu-
ment. The five documents are the highest ranked documents for the query "radio waves and brain
cancer". For the ranking of the documents the DRMM-maxP model was used. This means that
the documents are ranked based on the highest matching score among their passages. We observe
that in most documents there is a significant difference between the highest and the lowest scoring
passages of a documents.

The boxplot for Document 2 shows that the lowest ranked passage has a matching score of -0.6
while the highest has a score of 1.6 which is an outlier for the specific document. The fact that
highest ranked passages are outliers in many cases could possibly lead to many documents ranking
higher than they should. However, other approaches like DRMM-meanP or DRMM-medianP where
scores that depict the overall matching of the documents seem to perform worse in terms of most
evaluation metrics as shown in Table 4.1. The explanation is that in many relevant documents the
information that are related to the query occur in small parts of the document, that can even fit
in one passage. Thus, a high matching score of a single passage can lead to a good ranking of the
whole document.
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Chapter 5

User Evaluation

5.1 Study Design
To evaluate the explainability of our methods we conducted a user study. For the study pur-

poses we created two interfaces for our search engine result pages (SERP), namely one explainable
and one regular. The regular interface resembles most web search engines showing the result’s title
and abstract. The explainable interface builds up to that and includes the query term importance
doughnut and the document thumbnails as described in Section 3.4. The two interfaces were com-
pared in an online user study. The study used a 2x2 within-subject design to evaluate the two
different interfaces. The participants were split in two groups and each group evaluated different
interfaces of the same result pages in alternating order.

Query selection. We hand-selected six queries from the Robust04 dataset1 in order to show
their result pages to the participants. The selected queries are shown in Table 5.1. The search
engine result pages contained the query and the top-5 documents that were retrieved based on the
query. We selected the queries so as to satisfy three basic criteria:

1. At least one relevant document should occur in the five highest ranked documents of the
query.

2. All five retrieved documents should have a title field2 to be shown in their SERP.

3. The query should consist of at least three terms, to have an informative query term impor-
tance doughnut chart.

For each query we retrieved the most relevant documents based on our ranking and neural
re-ranking methods as described in chapter 3. Specifically, the DRMM-maxP method was used
for the retrieval of the documents that were used in the user study. In this method the relevant
documents are ranked based on their highest ranked passage. The highest ranked passages were
also used as the snippets of the documents in the SERP.

our
query id

Robust04
query id

query relevant documents
in top-5

1 310 radio waves and brain cancer A
2 318 best retirement country A,E
3 384 space station moon A
4 400 amazon rain forest C,D,E
5 613 berlin wall disposal B
6 615 timber exports asia B

Table 5.1: Selected queries for the user study. The relevant documents in the top 5 are indicated
with letters, where A denotes the first-ranked document and E denotes the fifth-ranked document

1Only the titles of the topics were used as queries
2Documents from Federal Register 94 do not contain a title field and are difficult to be visualized in a SERP.
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Figure 5.1: Left: Interface R (regular). Right: Interface E (explainable)

User interfaces. We created two static interfaces for our search engine result pages to compare
them. Two custom templates were designed, one for each interface, in order to look as close to
most search engine result pages to that day as possible. The web pages were hosted on the web
server of LIACS (Leiden Institute of Advanced Computer Science) in order to be accessible to all
participants remotely. Both interfaces are shown in 5.1:

• Interface R (regular) is a classic search engine result page, showing the title and a snippet
for each retrieved document. The snippets shown are the most relevant passages from the
document and the query terms in the snippet are marked with boldface.

• Interface E (explainable) is the experimental interface that we built by adding explainable
characteristics to the classic search engine result page. The title and the most relevant passage
as a snippet are shown together with the query terms marked with boldface. Additionally, a
thumbnail on the left of each document indicates the position of the most relevant passage
in the document. On the upper right of the page the doughnut chart shows the importance
weight (attention value) of each query term.

Participants. The user study was performed online and 22 volunteers participated. The partic-
ipants were randomly split into two groups (Group A and B). The two groups judged the same set
of queries but based on different interfaces. In more detail, participants in group A saw queries 1,3
and 5 in interface R and queries 2,4 and 6 in interface E. Participants in group B saw queries 1,3
and 5 in interface E and queries 2,4 and 6 in interface R. The queries were shown to the groups in
different order but in a way that the interfaces were alternating, starting from the interface R.

5.2 Result Page Judgments
We asked from the participants to read the result pages and answer to a few questions regarding

the results. To create our evaluation form we were based on the paper by Mi and Jiang [5], but as
opposed to their work the users had to evaluate the result pages as a whole instead of the individual
snippets. The evaluation criteria of our user study were explainability and assessability. The two
following questions were used to evaluate the aforementioned criteria. Participants were asked to
respond to them using a five point Likert-type scale from 1 (Strongly Disagree) to 5 (Strongly
Agree).

• (Explainability) "By looking at the result page, I can understand why the search engine
returned these results for the shown query."

• (Assessability) "By looking at the result page, I can tell which results are useful without
opening the links."

Additionally, the participants were asked to respond to one more question: "By looking at the
result page, can you tell which of the returned documents are relevant to the query?" (checkboxes
for documents A-E, or ’None of the above’). The users were not able to read the full documents,
they had to answer the question by solely looking at the search engine result page.
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5.3 Results

We examine the explainability and assessability scores of the two interfaces over all queries and
all participants. For each interface we have 66 scores for explainability and 66 for assessability. The
mean explainability score for the regular interface was 3.4 and for the explainable interface was
4.2. The mean assessability score for the regular interface is 3.6 while for the explainable interface
was 4.4. We observe that the explainable interface scored higher than the regular in terms of both
evaluation criteria. The dispersion of assessability and explainability scores for the two interfaces
is shown in Figure 5.2.

Figure 5.2: Dispersion of assessability (left) and explainability (right) scores for both interfaces.

5.3.1 Significance testing

Moreover, we used three-way ANOVA to test the significance of the differences of the ex-
plainability and assessability scores between the two interfaces. The three factors (independent
variables) of the analysis are "interface","participant" and "query" and the dependent variables
are explainability and assessability (we performed a three-way ANOVA for each of them sepa-
rately). In Table 5.2 and Table 5.3 we can see the summaries for the three-way anova analyses for
explainability and assessability respectively. It is clear from the analyses’ results (F(1,1) = 30.7
, p < 0.001 for explainability ; F(1,1) = 39.6 , p < 0.001 for assessability) that the differences
between the two interfaces are significant for both evaluation metrics. Moreover, the very large
F-Values of the interface variable show that there is a large variation between the two interfaces
and hence we can conclude that the interface is the most significant factor for both assessability
and explainability.

F-Value P-Value
interface 30.7 0.000
participant 3.38 0.000
query 3.29 0.008

Table 5.2: Three-way anova summary for ex-
plainability (dependent variable)

F-Value P-Value
interface 39.6 0.000
participant 3.09 0.000
query 0.99 0.424

Table 5.3: Three-way anova summary for as-
sessability (dependent variable)
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Per-participant analysis. Additionaly, the three-way anova analyses show that the there are
significant differences between the answers of participants as well (F(1,21) = 3.38 , p < 0.001 for
explainability ; F(1,21) = 3.09 , p < 0.001 for assessability). To further analyse the significance
of the difference between the participants we use the Wilcoxon signed-rank test. The scores of the
test (dependent samples with n = 22) indicate that the two interfaces are significantly different
both in terms of explainability (W = 22.5 , p = 0.001) and assessability (W = 18.5 , p = 0.002).
The vast majority of participants (17 and 18 respectively) judge both the explainability and the
assessability of the explainable interface higher than those of the regular interface.

Per-query analysis Finally, the anova results for the query factor show that the differences
in the explainability scores between the queries are significant (F(1,5) = 3.29 , p = 0.008) while
they are not significant for the assessability scores (F(1,5) = 0.99 , p = 0.424). These results are
further explained by Figure 5.3 which shows a breakout per query. For each of the six queries,
the average explainability and assessability scores are plotted for the two interfaces. The left plot
(for explainability) shows quite some variation between the queries. The query represented by the
cyan line is the only query for which the explainable interface scores slightly lower (4.1) than the
regular interface (4.2). This is query 4, “amazon rain forest”. One characteristic of this query is
that it has three relevant documents in the top-5, where the other queries had one and in one case
two. This could have led to a relatively high explainability score in the regular interface (highest
of all five queries in the regular interface). On the other hand, assessability is judged higher for all
queries in the explainable interface than in the regular interface. This supports the anova analysis
results which show that the query variable does not significantly affect the assessability score and
also reflects the preference of the users towards the explainable interface.

Figure 5.3: Average explainability (left) and assessability (right) scores per query, in both interfaces.
Each colored line denotes one query, with on the left side its mean score in the regular interface
and on the right side its mean score in the explainable interface.

Relevance assessments. We compared the participants’ relevance assessments (based on the
result page only) to the ground truth relevance assessments in the Robust04 data, and measured
precision and recall per query, participant and interface type. The mean precision and recall scores
per interface are in Table 5.4. Although the scores seem higher for the explainable interface than
for the regular interface, the deviation is large. Analysis on the participant level with the Wilcoxon
Signed-ranks Test (dependent samples with n = 22) indicates that the differences between the two
interfaces in terms of precision and recall of the relevance assessments are not significant (p = 0.82
and p = 0.50, respectively).
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Table 5.4: Mean precision and recall scores (standard deviation between brackets) that the partic-
ipants obtain by selecting snippets compared to the ground truth document relevance assessments
in Robust04.

Precision Recall
Regular Interface 53% (0.42) 62% (0.45)
Explainable Interface 59% (0.40) 75% (0.41)

From another perspective the relevance assessments of the participants can be seen as an
evaluation form for the documents’ snippets. In order for a user to judge if a document is relevant
to the query by solely looking at the result page one has to read each document’s snippet. The
results in Table 5.4 show that using the most relevant passages of the documents as snippets helped
the users to identify the relevant documents in both interfaces.
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Chapter 6

Conclusion

6.1 Conclusions

In this thesis, we work on the explainability potentials of neural ranking models for ad-hoc
retrieval and propose an explainable interface for the search engine result page. The explainable
interface integrated the visualization of the query term importance and the passage relevance into
the result page. Furthermore, we evaluate our interface in a small-scale user study. The conclusions
to the research questions that we address are the following:

RQ1. What is the ranking effectiveness of DRMM when selecting the most relevant passage of
each document?

We found that in terms of Precision@20 and nDCG@20 our passage-level ranking model is less
effective than BM25 and document-level DRMM, but it is a bit better in terms of MAP. Overall
the ranking effectiveness of DRMM when selecting the most relevant passage of each document is
lower than the baselines. However, the nDCG@20 score of DRMM-maxP (0.3177) shows that we
can use the model for the evaluation of the explainable features developed.

RQ2. How do users judge the explainability and assessability of our explainable search engine
result page compared to a regular result page?

We found that users judge our proposed interface significantly more explainable and easier to
assess than a regular search engine result page. This indicates that the explainability of the search
engine result page leads to a better user experience.

RQ3. How well can users select the relevant documents based on only the snippets on the result
page, in the explainable interface compared to the regular interface?

We cannot prove that the users are better in selecting the relevant documents from the top-5;
there is a large deviation in the precision and recall scores that the users obtain.

Overall, we conclude that the proposed explainable elements are promising as visualization for
search engine users, based on their subjective experience.

6.2 Future Work

We are interested in investigating the possibility of adding explainable elements to state-of-the-
art neural ranking models for information retrieval. Neural ranking models like CEDR-DRMM [21]
and POSIT-DRMM [30] are built on top of DRMM’s architecture but improve its performance on
ad-hoc retrieval tasks significantly. We believe that our methods can be modified accordingly in
order to build explainable search engines that achieve performance comparable to the latest neural
models.

22



Furthermore, we would like to address explainable search in two research directions: professional
search contexts, and personalized search contexts. We think that explainable search is particularly
relevant for professional search contexts, where users are critical towards search results and have
the need to be in control [32, 33]. In these contexts, trust is even more important than in generic
web search. In the case of personalized search, it is essential that the search engine is sufficiently
transparent for two reasons: (1) to gain trust from the user that the personalization does not lead
to loss in quality, even though other users get different results; (2) to be able to show the user
which personal information is used in the result ranking, and make it explicit when documents are
considered relevant because of matches to the users personal preferences.
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