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Abstract

RNA is a biopolymer that plays an essential role in all biological systems by reg-
ulating various vital processes. Research in recent years has shown the applicability
of synthetic RNA structures in the fields of of nanomaterial engineering and gene
therapeutics. The specific function of an RNA molecule depends on its structural el-
ements which is in turn is determined by the string of nucleotides that it is made of.
Therefore the prediction of nucleotide sequences that will fold into a specific shape,
called RNA inverse folding is gaining more interest. In this thesis we introduce a
new algorithm for the problem - RLIF - a reinforcement learning based method that
produces state-of-the-art results on various benchmarks both in terms of speed and
accuracy. A comparison between six other RNA inverse folding methods on several
benchmark RNA structure datasets illustrates these performance gains. We also
introduce a custom graphical interface for designing RNA molecules, that extends
the functionality of RLIF algorithm and integrates it with various RNA sequence
analysis tools.

Keywords— RNA Inverse Folding, Reinforcement Learning, RNA Design.
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1 Introduction
RNA is a biopolymer that plays an essential role in all biological systems. By acting

as a transmitter of information between the genome and the proteome, RNA mediates
the vast majority of main functions within cells. Advances in next generation sequencing
technologies are uncovering even more roles that RNA has. A subset of RNA sequences
called long non-coding RNAs (lncRNAs) seem to be significant importance for a diverse
range of cellular regulation processes. Based on conservative estimates at least 7% of all
transcripts from human genome are non-protein coding, they seem to be regulated devel-
opmentally and their loci are distant from protein-coding regions within the genome. [1]
This indicates that these sequences are being intentionally transcribed and are respon-
sible for specific important functions within cells. So far lncRNAs have been identified
as key components in transcription regulation, messenger RNA processing, translation
mediation, protein activity regulation and various other signalling functions. [2]

Since the functions that RNA sequences can perform are based mainly on their struc-
tural conformation, a lot of research effort is going into uncovering more details about
RNA structure.

1.1 RNA Structure
RNA primary structure consists of a chain of nucleotide bases that are linked by a

phosphate backbone. Due to thermodynamic and electrostatic interactions, the strand of
RNA folds itself and forms a complicated three dimensional structure. Hydrogen bonds
form between G-C, A-U, which are called Watson-Crick pairs and slightly less stable
wobble pairs between G-U and U-G. Stacks of paired nucleotides form helices or stems
while unpaired nucleotides form various loop structures that are categorized based on
the shapes or motifs that they create. A large variety of tertiary structural motifs are
also categorized, however tertiary RNA structure prediction still remains a very hard
computational problem. Therefore a lot of effort in the field focuses on predicting the
secondary RNA structure as accurately as possible instead. Figure 1 summarizes the
most frequent structural motifs found in secondary RNA structures.

Dot-bracket notation

RNA structure is made from two main elements: base pairs and unpaired bases. There-
fore the secondary RNA structure can be translated to a string format using these two
distinct element types. Nucleotides that form pairs are denoted as brackets - ” ( ” or ”
) ” which indicate an openings and closings of stems/helices respectively, while unpaired
nucleotides are denoted as dots - ” . ” and are used to represent various other structural
motifs - interior loops, hairpin loops, multi-loops and dangling ends. The figure 2 below
illustrates this conversion. This format is called the dot-bracket notation and it is the most
simple and compressed way of writing down the secondary structure of RNA. Extended
formats of this notation also exist that denote each structural element type using a unique
symbol and can include tertiary structural elements such as pseudoknots.

This simple string-based structure representation using dots and brackets is suitable for
various computational methods and is therefore widely used in key problems concerning
the structure of RNA. One of these problems is the secondary structure prediction or
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Figure 1: The most common RNA secondary structure motifs.

Figure 2: Illustration of converting a RNA secondary structure into dot-bracket notation. Paired
nucleotides are denoted as opening and closing brackets, while unpaired nucleotides are repre-
sented as dots.

RNA folding problem which tries to predict the shape of an RNA molecule based on its
nucleotide sequence. The main focus of this thesis project is an reverted variant of this
problem, called RNA inverse folding.
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1.2 RNA Inverse folding
RNA inverse folding (RNAIF) is concerned with correctly predicting a nucleotide

sequence that will generate a desired target secondary structure when folded into its
minimal free energy (MFE) structure.

Most RNA inverse folding algorithms share the same processing steps in order to
generate nucleotide sequences for the target secondary structures:

1. Extract the features relevant for your model from the target secondary RNA struc-
ture.

2. Generate a prediction of the string of nucleotides that will fold into the target shape
using the extracted features.

3. Find the minimum free energy (MFE) structure of the generated nucleotide sequence
by using an RNA secondary structure prediction algorithm such as Zuker’s algorithm
[3].

4. Compare the resulting structure in dot-bracket format to the target structure using
distance measures.

5. If the structures do not match, optimize the model based on its objective function.
If they do match the problem is considered to be solved.

Figure 3: The logic of RNA inverse folding illustrated in 5 main steps.

Since there are four nucleotides that comprise RNA molecules as the length |l| of the
molecule increases, the number of possible sequence arrangements grows exponentially as
4l. The search space is reduced when considering the fact that nucleotides that create base
pairs can only have six different types of couplings: A-U, G-C, G-U and their inverted
variants. With this constraint in mind, the number of possible sequences that any sec-
ondary structure can have when p is the number of nucleotide pairs and u is the number



1.2. RNA INVERSE FOLDING 8

of unpaired nucleotides can be expressed with the following equation:

Nsequences = 6p/24u (1)

Applications and significance
Since RNA is such a multipurpose molecule that can interact with a wide range of

other ligands, a lot of potential for nano scale engineering applications are possible using
RNA as a substrate. Here is a list of applications that have utilized the predictions of
RNA inverse folding for various purposes:

• Search of alternative natural RNAs - RNA inverse folding can be used a pre-
cursor for non-coding RNA (ncRNA) sequence search within genomes. Since the
function of ncRNAs is largely determined by their structure inverse RNA folding
algorithms provide a solution for generating many alternative sequences that can
then be identified within genome databases [4]. RNA inverse folding has also been
applied to the search of other naturally occuring RNAs, such as ribozymes [5].

• Riboswitch design - many bistable RNA nucleotide sequences exist that can
change their structural conformation based on a stimulus from its surroundings
- light, temperature or ligand binding. Using RNA inverse folding approach, func-
tional hammerhead ribozymes sequences have been successfully generated purely in
silico that were then used as functional signalling molecules. [6] Publication by Win
et al. [7] showed applied inverse RNA folding for designing molecular logic gates out
of several RNA components involving multiple ligand binding.

• Nanomaterial design - multiple publications have shown the applicability of RNA as
a material for modular structure design at nano scales. Various modular polyhedral
structures have been succesfully generated using predictions of RNAIF algorithms
[8].

Since the functional properties of RNA molecules are so reliant on its structure, be-
ing able to generate nucleotide sequences that fold into specific shapes is likely to gain
more importance in the future as more roles that RNA plays within living systems are
discovered.



2. RELATED WORK 9

2 Related Work
There have been many implementations of RNA inverse folding algorithms over the

years which utilize a diverse range of computational strategies to generate nucleotide
sequence solutions for target structures. These methods can be classified into local and
global search methods. The majority of algorithms start with a random nucleotide string
and gradually permute one or more nucleotides at a time and by repeatedly recomputing
the resulting RNA secondary structure while being guided by their objective functions.
Some of the methods try to optimize the matches between the target and folded nucleotide
sequence in small local windows before reassembling them into a full sequence [9]. Other
methods rely on a more globally oriented approach and work on multiple nucleotide
sequences at once between the target and predicted structure. [10]

A survey by Churkin et al. (2017)[9] identified 20 algorithms that have been used to
solve RNA inverse folding problem. Since then, at least four more algorithms have been
designed [11, 12, 13, 14] that have improved upon many of existing algorithms by us-
ing neural network based design. Among other machine learning methods Reinforcement
Learning (RL) appears to be an applicable approach for various problems in biology. Since
a lot of RNA or DNA sequence-related problems are combinatorial in their nature, uti-
lizing the ability of an algorithm that can be trained for an extended periods of time has
produced successful results. RL has already been used for multiple sequence alignment
[15], outperforming well established methods such as ClustalW in multiple scenarios. In
the domain of RNA inverse folding, a reinforcement learning-based method LEARNA[12]
has produced state-of-the-art results both in terms of speed as well as design accuracy. Re-
inforcement learning has also been successfully applied to other molecule design problems
such as de novo chemical compound design [16] and protein folding problem. [17]

2.1 Vienna RNA Package
ViennaRNA package is a library written in C that contains various algorithms and

programs relating to RNA secondary structure. This package includes RNAfold [18] which
uses Zuker’s dynamic programming algorithm to predict RNA secondary structures. Vien-
naRNA also provides efficient SWIG bindings for Python, therefore it can be used within
our model training pipeline directly without needing to generate command line calls to
its interface.

It also includes the first algorithm designed for RNA inverse folding - RNAinverse
(1994) [19] which is going to be covered in more detail in the following section.

ViennaRNA is used in many various other RNA structure-related programs due to
its multi-core implementations of the main RNA folding, alignment, pseudoknot predic-
tion and sequence analysis algorithms as well as an accessible Application Programming
Interface (API).

RNAfold has been widely used by a majority of RNA inverse folding methods as a
means to compare the secondary structure of the target RNA and the structure of the
generated nucleotide solution. It also allows various configuration options such as setting
the thermodynamic energy parameters or temperature, allowing or disallowing wobble (G-
U) nucleotide pairs within the folded structure and various parameters regarding the free
energies of the respective structural motifs.
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2.2 Other RNA Inverse folding methods
In this section we are going to cover several inverse RNA folding algorithms. All six of

these algorithms were used to evaluate the performance of our model in the later sections.
Even though many more RNAIF algorithms are available, only this subset of algorithms
could be reliably run and tested.

These methods utilize different computational methods in order to generate nuleotide
sequences, therefore each has its strenghts and weaknesses. Some of these algorithms offer
a lot of options for setting various nucleotide sequence and structure constraints while
others are able to take pseudoknotted RNA structures as input. Other algorithms are
better suited for rapid sequence design or providing solutions to more complex or longer
target structures. Below we briefly summarize each of these methods:

• RNAinverse - Hofacker et al. intoduced the problem of RNA inverse folding in
their paper in 1994, introducing the first algorithm for solving it - RNAinverse.
[20] This algorithm uses adaptive random walks to minimize base pair distances
between the MFE structure (or alternatively the ensemble centroid) of the pre-
dicted nucleotide sequence and the target secondary RNA structure. The algorithm
works in small local windows that try optimizing RNA stuctural motifs first and
then assembling them into the final solution. It is available both as a part of the
ViennaRNA package [21] and as a webserver.

• MODENA - by Taneda et al. [10][22] is a method based on multi-objective evolu-
tionary algorithms. This algorithm can generate solutions for bistable RNA struc-
tures that can change shape based on variables such as temperature or concentration
of various compounds within the surroundings of an RNA molecule. It is also able of
handling pseudoknotted structures as input as well as various sequence constraints
[23].
A dataset from the publication of this algorithm is going to be used as one of the
benchmarks for the comparison of RNA inverse folding algorithms as it has been
used in several other papers in the past [11, 12]. The source code and documentation
of this package can be found here [23].

• antaRNA - this method is based on an ant colony optimization algorithm. [24] It
has various customization options such as the usage of pseudoknotted structures,
specification of sequence constraints, and target GC content. This model also can
be used as a webservice and its source code is available in the following repository
[25].

• NUPACK - [26] uses ensemble defect minimization as it’s main objective to design
the nucleotide sequences for pseudoknot-free target RNA structures. Optionally the
user can specify sequence motifs that cannot be used within the solution sequences.
It is one of the few methods that does not rely on third party algorithms for vali-
dating predictions and uses its own implementation of the Zuker [3] RNA structure
prediction algorithm. It also has an option to use various sets of energy parameters
and allows designing several designs in parallel. Source code of this method can be
found on the following website. [27]
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• LEARNA - by Runge et al. (2018)[12] is an RNA inverse folding method based on
reinforcement learning. The model sequentially generates the nucleotide sequence,
by converting the target secondary RNA structure (dot-bracket notation) into a
binary format (0 for unpaired nucleotides, and 1 for base pairs). Models trained
by reinforcement learning that this simple target representation produced the best
results to date on several benchmarks. The authors also used a sophisticated hyper-
parameter optimization pipeline that has not been used in a similar fashion before
in the context of reinforcement learning. The authors also provided the data that
they used for training their learning models and have also conducted an in depth
analysis and comparison between various RNA inverse folding methods.
This algorithm was the first RNA inverse folding algorithm based neural networks
and a lot of ideas on which the RLIF model is based on were inspired by this
publication. [28]

• RNA-MCTS - [11] uses Monte-Carlo tree search as its main computational method.
It performs a guided tree search which allows it to regulate the GC content within its
nucleotide sequence designs. This model has great efficiency and low computational
overhead and an ability to backtrack through the search tree, once undesirable parts
of the search space are reached, it is faster than most other RNA inverse folding
methods. The source code and documentation of this algorithm can be found here.
[29]

Method Based on Folding algorithm

RNAInverse (1994) Adaptive walks RNAfold
NUPACK (2011) Ensemble defect minimization Zuker
MODENA (2015) Evolutionary algorithm RNAfold
antaRNA (2015) Ant colony optimization RNAfold
RNA-MCTS (2017) Monte-Carlo tree search RNAfold
LEARNA (2018) Reinforcement learning RNAfold

Table 1: Summary of the RNA inverse folding methods that are going to be used for compari-
son. All of them use Vienna RNAfold as the means of confirming their predictions, except for
NUPACK which uses it’s own implementation of the Zuker algorithm.

Having introduced the RNA inverse folding problem, its applicability and existing
solutions, in the next sections we will describe the details of the implementation of RLIF
algorithm.
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3 Implementation
This section will cover the details of how RNA inverse folding problem was adapted to

be used with reinforcement learning. The neural network architectures and the datasets
used to train, test and compare the method will be described in detail along with the
implementation of user intefaces.

Our goal is: generate a nucleotide sequence whose minimum free energy secondary
structure matches the target RNA structure in dot-bracket format. If we want to apply
reinforcement learning to this problem we need a way to represent our sequence - we
need a representation of its current state along with actions with which the agent can
interact with the solution. The following sections will describe the design choices of this
formulation. We want to generate the nucleotide sequence sequentially by observing the
sequence generated by the model so far along with our target secondary structure.

3.1 Reinforcement learning
Markov Decision Processes

Markov Decision Process (MDP) is a Markov Chain that describes a semi-stochastic
transitions between pairs of environment states (s → s′) ∈ S. This concept is at the
core of all reinforcement learning algorithms and it enables the formalization of various
different kinds of goals and tasks that involve decision making and utility maximization.

We will briefly describe the terminology of reinforcement learning by relating it to the
RNA inverse folding problem. In the later sections, each of these components as well as
their implementations will be described in detail.

Agent: the learning and acting part of the model that can perform actions in order
to change the state of the environment and learn based on the reward it receives.

Environment: is everything that is not the agent itself. Everytime the state of the
environment changes the agent receives a reward. In the case of RNA inverse folding the
nucleotide sequence that is being generated is the part of the environment that the agent
can directly modify through actions.

State sn ∈ S: is the descriptor of the current configuration of the environment which
includes all the relevant attributes for the problem that is being modelled. In our case
we want our state to be representative of the target RNA secondary structure and the
nucleotide sequence generated so far.

Actions an ∈ A: is a finite set of distinct methods that the agent can use to interact
with the environment. In this case the agent can perform an action to insert a nucleotide
or a base pair into the sequence that is being generated.

Reward function R: maps particular environment states s′ to scalar values that
indicate how good they are in terms of achieving the intended goal. For RNA inverse
folding the reward corresponds to how close the fully generated nucleotide sequence is to
the target when folded into its minimal free energy (MFE) structure.

Discount factor γ: regulates the extent to which the agent prioritizes immediate
rewards versus long term rewards. By backtracking through the history of the rewards
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that the agent has received so far we can apply the discount factor to obtain Return Gt

from timestep t.

Gt = γRt+1 + γ2Rt+2 + ... =
∞∑
k=0

γkRt+k+1 (2)

The return Gt is a more accurate estimate of how good particular actions are when
compared to just a single reward as it accounts for all the future rewards as well. In the
case of MDP for RNA inverse folding, the discount factor is set to one, therefore it is
an undiscounted Markov Decision Process. This is done because the agent receives the
reward only once - when the full nucleotide sequence is generated and its structure is
compared to the target, therefore each action that led to that solution is retroactively
assigned an identical reward.

Policy π: The policy function describes a probabilistic mapping of environment states
that the agent observes into actions. In the case of RNA inverse folding, π describes the
probabilities of inserting a certain nucleotide or a base pair into the solution sequence
given a particular state of the environment.

π(a|s) = P [At = a|St = s] (3)

Policy function is the main function that defines our agent and determines what kind
of nucleotide sequence solutions get generated. It is parameterized using neural networks
and its training procedure is covered in detail in later sections.

Value function V (s): the value function is the part of the reinforcement learning
model that outputs the expected return G that is going to be obtained given a particular
state s.

V (s) = E[Gt|St = s] (4)

Value function V is very important in all reinforcement learning algorithms as it measures
how well a model can understand the relevant features of the problem that it is trying to
solve. Like the policy function π, value function V is also approximated using a neural
network, training it in a supervised manner - use each state st in a batch as an input for
the neural network and the the return Gt obtained from that state as an target label and
use gradient descent to minimize the loss between the output of the network V (st):

LV t = (Gt − V (st))
2 (5)

Episode In the case of RNA inverse folding, an episode is defined as all the 〈St, At, Rt〉
tuples obtained for each time step t while sequentially generating a nucleotide sequence
from 5’ to the terminal 3’ nucleotide. The agents in reinforcement learning are usually
trained on an episodic basis - state, action and reward tuples obtained during the whole
episode are aggregated into batches that are then used to train the models.

These concepts will be used frequently in the upcoming sections along with the details
of implementation of each of these components within the Markov Decision Process for
inverse RNA folding. Additional terms will be described in section 3.6 that covers the
learning algorithm and the training of policy neural network πθ.
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3.2 State Representation
To represent the state of our target structure and the current design we need to encode

both the structural information as well as what nucleotides have been generated so far.
In order to make informed decisions/actions the RL agent has to have access to all the
relevant local information of the RNA structure.

First we need to find an efficient way of numerically representing the target struc-
ture. Therefore we need to convert our dot-bracket annotated structure into a vectorized
numerical form. As mentioned in the introduction, there are six main distinct structural
motifs that we care about in the secondary RNA structure: stems/helices that consist of
opening O (1) and closing C(2) pairs, internal loops I(3), hairpin loops H(4), multibranch
loops M(5) and dangling ends E(6). After decomposing the dot-bracket structure into these
particular structural elements we can assign each element e to a unique index by using a
mapping:

M(e) = {O,C, I,H,M,E} := {1, 2, 3, 4, 5, 6} (6)

A dot-bracket secondary structure can then be represented by a binary 6 x L matrix,
where L is the length of a target and each row corresponds to one of the six unique
structural elements.

The nucleotide sequence generated so far is also encoded in a similar fashion - the four
nucleotides are first encoded numerically and turned into a one-hot binary matrix of size
6 x L.

These two representations of our current solution S are then concatenated into solution
encoding ES, where each column indicates the structural element and the nucleotide at
index i of the current solution.

Figure 4: The state representation of the current solution. An encoding of secondary structure
(A) and the encoding of current nucleotide sequence (B) are concatenated to generate a combined
representation (C) that captures the local features of the sequence.

Since we want to be able to handle target sequences of any length, we need to constrain
the number of columns of encoding ES that are used as a state representation at any given
point. Therefore a window size k is used as an extra parameter that regulates the size of
the state input. Therefore the environment state at a given for index i is represented as:

si = ES[i-k : i+k] (7)
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The size of the window k acts as means of regulating the importance of local versus
global structure of the current solution.

3.3 Action Space
After observing the current state of the environment/solution the RL agent then

chooses an action based on its current policy function π. At any point the agent can
insert one of the 4 nucleotides into the current solution ST . The set of available actions
depends on the structural element ei at current index i of the target sequence T (either
a dot or a bracket). If the current structural element is a base pair (inside a stem/helix),
a nucleotide is inserted both at the current index i along with a complementary base at
index j. Therefore the action space of the MDP can be described as:

A =

{
ai ∈ {Ai, Ui, Gi, Ci}, if ei = ”.” (dot)
aij ∈ {AiUj , UiAj , UiGj , GiUj , GiCj , CiGj}, otherwise (8)

After an action gets chosen from either of these sets, we can represent the nucleotide(s)
in a numerical form by mapping them as M(a) = {A,U,G,C} := {1, 2, 3, 4}. Relating
back to our solution encoding ES, the nucleotide that is chosen according to the policy πθ
gets inserted into our binary solution encoding at the row corresponds to n1 = M(ai) and
column i that corresponds to the current index or timestep. In case the action contains
two nucleotides, the encoding ES is also modified at row n2 = M(aj), and base pair index
j, forming a complementary base pair.

n1, n2 = M(aij)
ES[n1, i] = 1
ES[n2, j] = 1, if ∃n2

(9)

3.4 Rewards and optimization
Reward functions play an essential role in reinforcement learning. A well formulated

reward function is the main factor that enables efficient learning and the ability to produce
actions that generate better solutions for a specific problem by gathering more experience
from the environment.

For the inverse RNA folding problem our objective is to generate a nucleotide sequence
whose MFE secondary structure matches the target structure. After we generate a full
string of nucleotides, we then use an RNA secondary structure prediction algorithm, to
obtain its secondary structure in dot-bracket format. We can then compare it to the
target dot-bracket sequence by using various string comparison measures. One of them
is Hamming distance, which simply counts the number of mismatches between the same
indices of two strings of the same length.

Given our target structure T and structure F resulting from the folded nucleotide
sequence that was generated by our model we can calculate the Hamming distance between
them by:

H(T, F ) =
n−1∑
i=0

Ti 6= Fi (10)
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Using Hamming distance between the target dot-bracket sequence T and our solution
D as our main objective to minimize, we then normalize it by the length of the target |T|
and scale it using an exponentiation factor ε:

RS = (1− HT,D

|T |
)ε (11)

The exponentiation factor ε ensures that only solutions with Hamming distance close
to 0 get high rewards, while others remain relatively close to zero.

The reward is obtained only at the end of each episode - after the full sequence has
been generated and the distances between the target and the designed sequence have been
obtained. There is no real way of estimating which actions were the main contributors to
the correct/incorrect folding, therefore we simply assign the same reward to each individ-
ual action. This is done by using a discount factor γ = 1 meaning that our formulation is
an undiscounted Markov decision process.

This reward formulation has been used in the publication by Runge et al. [12], therefore
it can be used reliably for training well performing models. Other more RNA-related
distance measures were tried out during the research project, such as moutain distance
and base pair distance [30]. However, Hamming distance alone seemed to be sufficient to
produce efficient learning without overcomplicating the model. By using more distance
measures we introduce additional tunable hyperparameters into the model as each of
these distance measures has to be scaled by their corresponding coefficients if they are
to be used within the same reward function. During previous research projects involving
reinforcement learning we have found that keeping the reward functions as simple as
possible makes model training a lot more and reliable and efficient.

However, other methods that are not directly related to distance measures or directly
modifying the reward function were tried out and have proven to be very useful for training
the models.

Reward ranking
A vast majority of recent breakthrough applications of reinforcement learning involve

two-player games (chess, Go, strategy games). A huge advantage of training agents in
two-player scenarios is the fact that we can find better policies by making the agent face
the previous iterations of itself [31]. This way we can clearly tell which policy is best one
and by repeating this process iteratively we can generate better agents without explicitly
specifying the reward function. RNA inverse folding cannot directly be reformulated into
a two player game, however we can approximate this process by enabling reward ranking
[32]. The solution for a target structure T gets non-zero reward only if its reward belongs
in the 90th percentile of the rewards obtained so far when trying to solve that target.
Therefore the full reward logic of our RNA inverse folding formulation is:

RS =


2, if RS = 1 (when H(T, D) = 0)

1, if RS > RT90%

0, otherwise.
(12)

One of the advantages of this formulation is that it enables the use of diverse target
RNA structures among the same training dataset. Each target secondary structure has
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different difficulty level, associated with the number of unstable motifs it contains, making
other alternative conformations more energetically favorable. The alternative conforma-
tions can also possibly be very distinct from the target structure as well, therefore the
reward landscape for such difficult sequences is relatively discontinuous - several changes
in the nucleotide sequence can produce a completely different secondary structure. There-
fore even though in actuality the nucleotide sequence of the solution was relatively close to
producing the correct structure, the resulting reward indicates otherwise as the Hamming
distance between the target and the alternative conformation is very large. Therefore
sequence in the training dataset obtains diverse range of rewards while using the same
policy π based on their difficulty. What we really care about is not the maximization of the
overall reward but whether the model becomes better at solving all targets. To overcome
this we keep track of the rewards received for each target sequence T and only scoring a
solution positively with a fixed reward of RS = 1 if it exceeds at least 90% of the solutions
generated for that specific target so far. It gets double the reward if it generates a valid
solution. By doing this we make sure that the model prioritizes a policy that generalizes
over all targets in the training data and their difficulties are therefore normalized.

This reward ranking formulation has proved to be useful and improved the training
speed as well as the overall performance of the models.

3.5 Neural Networks and function approximation
To approximate the policy and value functions various neural network architectures

were tried out. The architectures that produced the best results had the following structure
- the input layer consists of our state representation (the solution encoding ES), followed
by feature extraction layers - using a combination of 2D and 1D convolutional layers and
fully connected layers. The last part of the networks splits into two separate heads - one
for value function V and the other one for policy function π and this architecture is called
the Actor-Critic network. To reiterate, the output of the value head V is the estimate of
the discounted future reward that the network approximates it is going to obtain, given a
certain state s. The output of our policy π head consists of 6 nodes that correspond the
action space described in section 3.3.

Convolutional Neural Networks
Convolutional neural networks were successfully used to process the state represen-

tation of the nucleotide sequence. We can treat our state representation ES as a single
channel image that is filtered by applying learned convolutions. This process continues for
multiple stages, and the multiple filterings produce a different kind of state representation
that then gets fed into the fully connected layers that follow the convolutional feature ex-
traction part. The best neural architectures are going to be covered in more detail in the
Methods section below.

LSTM
Long short term memory (LSTM) networks are a type of recurrent neural networks

that can be successfully applied to process various time-series data. It has also been
successfully used in reinforcement learning and since the task of RNA inverse folding
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Figure 5: Depiction of the neural network architecture used in RLIF. The encoding of the solution
ES bounded by the state window k is used as input to the convolutional neural network. 2D
convolutions are followed by 1D convolutions which are then in turn fed into a set of fully
connected layers. The output layer is the function policy π that parametrizes the probability
distribution over actions for a given state and determines which nucleotide or nucleotide pair
gets inserted into the solution. After an insertion the state window moves to the next unfilled
nucleotide of the solution and the process is repeated until a full sequence is generated.

involves a long sequence of actions, making use of the capabilities of LSTMs appears to
be reasonable. Since the state window of our RNA sequence is of limited size (generally
encompassing around 40-100 nucleotides) our network is only aware of the local and not
global structure. Keeping track of the nucleotides that were generated previously expands
this window and should provide more context for generating better actions. Therefore
during this project we tried combining the LSTM networks with all of the architectures
above but generally it failed to produce any considerable improvements. In addition the
processing time increases drastically when incorporating LSTMs into the the architectures,
therefore there were not enough incentives to warrant the usage of LSTM architecture in
the final models.
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3.6 Algorithm
Having described all of the elements of the Markov Decision Process formulation for the

RNA inverse folding problem and the neural networks that are used to approximate the
functions, we continue by describing how they are used within the context of reinforcement
learning.

First, we combine all the sections above to formalize the algorithm of RLIF which takes
a target sequence T in dot-bracket notation as input and returns a nucleotide sequence
string ST.

Algorithm 1: RLIF(target structure T)

Result: Nucleotide string ST

1 Initialize;
2 Target structure in dot-bracket notation T;
3 Sequence length l = |T|;
4 Solution encoding matrix ES = [10× l] (described in figure 4);
5 Empty nucleotide string ST of length l;
6 Action-nucleotide mapping M(a) = {1, 2, 3, 4} := {A,U,G,C};
7 Policy function π;
8 State window size k;
9 Current nucleotide index i ← 0;

10 while i < l do
11 State si = ES[i− k : i+ k];
12 Action aij = π(si), ai, aj ∈ {1, 2, 3, 4};
13 Modify encoding ES and string ST based on action aij;
14 ES[ai, i] = 1;
15 ST[i] = M(ai);
16 if Ti 6= ”.” then
17 j ← index of complementary pair of Ti;
18 ES[aj, j] = 1;
19 ST[j] = M(aj);
20 i ← go to next unfilled nucleotide index in ST;
21 end;
22 Return ST;

In order to train the policy function that is used in the RLIF algorithm, we use
Proximal Policy Optimization (PPO)[33] reinforcement learning algorithm. It is one of
the most widely used algorithms due to its training stability, ability to handle a very
diverse range of problems and action/state spaces as well as compatibility with all neural
network architectures. PPO belongs to the class of policy gradient methods within the
classification of RL methods which directly compute the gradient for the policy function
parametrers (in our case the weights of the neural network) by using the concept of
Advantage At(ai, si) and Action-Value function Q(ai, si). We will cover these concepts in
a similar manner as in section 3.1.
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Action-Value function (or Q-Function) Q(a, s): action-value function Q(a, s) is
similar to the value function V (s) and in addition to the state s it also takes the action
a as input and estimates the expected return that would result from taking a particular
action given a particular environment state.

Q(a, s) = E[Gt|At = a, St = s] (13)

The Q function underlies one of the most known RL algorithms - Q-Learning.[34] The
main idea behind this algorithm is that by sampling a diverse range of state and action
pairs by interacting with the environment using random actions (exploring) and receiving
rewards, we can update the Q-Function to give a more and more accurate prediction of
the future reward. Therefore as the training progresses we can start relying upon this
Q-function to choose actions instead of sampling randomly. By repeating this process of
gathering experiences and gradually decreasing the probability of choosing random actions
the model converges to a policy that maximizes the overall expected return. Assuming
that the reward function is well formulated this often results in a policy that is achieves
the intended task.

In the context of Proximal Policy Optimization, the Q-function is used to obtain the
advantage function At which combines the Value function V (s) and Action-Value function
Q(a, s).

Advantage A(a, s): measures how good a particular action a is given a certain state
s. It is obtained by comparing the output of Value and Action-Value functions.

A(a, s) = Q(a, s)− V (s) (14)

In very general terms, a positive A(a, s) value indicates that a particular action a is better
than the action that would be selected by the current policy πθ given a state s in terms
of expected return G (discounted future reward). The opposite holds for negative A(a, s)
values.

Therefore the general training pipeline for policy gradient methods is as as follows: run
a Markov Decision Process for one episode for n timesteps and collect all the state, action
and reward tuples (〈St, At, Rt〉1...n) for each timestep t. We can then calculate the return
(discounted future reward) Gt for each timestep based on all the rewards in timesteps
{t + 1....n}. We then obtain the advantage for each timestep t by using our model’s
estimates for Q(a, s) and V (s) functions and comparing it to the actual return Gt. Each
action will therefore have either a positive or negative advantage value which indicates
whether it should be more or less probable after the next network update. The advantage
values are then used obtain the gradient for network parameters θ by differentiating the
following loss function: [33]

LPG(θ) = Ê
[
logπθ(at|st)Ât

]
(15)

which would adjust the expectation of an action at given a state st under current
policy πθ by scaling its log probability based on the associated advantage value.

Since our Value function V (s) is also parameterized by the same neural network (sep-
arate head) we can obtain additional gradient for the network updates using a secondary
loss term:

LV (θ) = (Gt − V (st))
2 (16)
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which is the Mean Square Error between the actual return Gt and the prediction of
the Value function V (s)t. Our final loss function is then the sum of these two terms:

LPPO(θ) = Ê
[
logπθ(at|st)Ât

]
+ (Gt − V (st))

2 (17)

Using the terms described above we can now formalize the learning algorithm that
was used to train the RLIF policy πθ.

Algorithm 2: PPO Training algorithm

1 Load dataset of target sequences D;
2 Initialize policy neural network πθ;
3 while time < limit do
4 for episode E = 1 to N do
5 Select random sequence T of length l = |T| from dataset D;
6 Nucleotide string ST = RLIF(T), using policy πθ;
7 MFE structure DS = RNAfold(S) (Lorenz et al. [18]);
8 Episode reward RE = RS(T, DS) based on equation 12;
9 Compute advantage estimates A1...Al based on state, action, reward

tuples (〈si, ai, Ri〉1...l) generated during an episode of RLIF ;
10 Optimize policy parameters θ based on loss L (equation 17) with gradient

descent;

In this section the final iteration of the this reinforcement learning model for RNA
inverse folding was covered. In the following section we cover the software and hardware
setup used for training the models and the implementation of user interfaces that extend
the functionality of this model to be used for interactive RNA sequence design.
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4 Methods

4.1 Software
The RLIF model was implemented in Python [35], utilizing Tensorflow [36] for de-

signing the neural networks. The graphical interface was implemented using the Python
bindings for the Qt [37] interface design library. The library used for rendering the RNA
secondary structure within the graphical interface can be found in a github repository
[38] by Michelle Wu.

Reinforcement learning
For the first iterations of the model a custom implementation of Proximal Policy Opti-

mization (PPO [33]) was used that helped developing the proof of concept for of the RNA
inverse folding environment. However having to tune the implementation of the learning
algorithm along with the learning environment has proven to be difficult to debug. There-
fore for the later stages of the project a switch to using a RL library stable-baselines [39]
was made which simplified a lot of the development progress and allowed to focus specif-
ically on optimizing the performance of the model. The functionality of this library was
extended to include custom neural net architectures, environment configuration, scripts
for training and testing saved models as well as running the benchmarks covered in the
later sections.

4.2 Model training
During the course of developing the RLIF method, 84 different models with different

configurations were trained. The majority of the models were trained on LIACS Tritanium
cluster, a machine with a 20-core CPU and 8 NVIDIA K-80 GPUs. The models were
trained by running up to 40 workers threads in parallel, each having a separate instance
of the RNA inverse folding environment and solving a random target RNA secondary
structure. Each of the workers communicates with the global policy network π to obtain
actions based on the current state of their environments. Training in this fashion allows
the pooling of all worker experiences into a main buffer that is then used to train the
main policy network. This increases the training speed considerably and combined with
a high memory GPU allows the usage of larger batches for gradient descent updates that
make the training process more stable.

The final model of RLIF is a combination of 4 models with different hyperparameters
that run in parallel and produce slightly different sets of sequences for a given target
RNA secondary structure. Combining several models has proved to be the best approach
as it increases the search space that the model is capable of covering. We describe the
hyperparameters of each of these models in table 2.
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Figure 6: Parallel training pipeline. Each worker has a separate instance of an RNA design
environment and produces actions based on the global policy network π.

Figure 7: Training curves of the 4 best performing models of RLIF. Y axis displays the percentage
of solved sequences in a single prediction, X axis denotes the number of total nucleotides. Models
were trained for 15M, 30M, 30M and 40M steps respectively.

Parameter M1 M2 M3 M4

Learning rate 9× 10−5 2× 10−4 5× 10−5 3× 10−4

Batch size 8192 4096 8192 4096
# Convolutional layers 4 4 4 3
Convolutional filters 32, 256,

128, 16
64, 256,
128, 16

32, 256,
128, 32

32, 256,
16

Kernel sizes (10,3),
(1,5),
(1,5),
(1,5)

(10,5),
(1,10),
(1,10),
(1,3)

(10,1),
(1,10),
(1,10),
(1,3)

(10,1),
(1,10),
(1,3)

Nodes / hidden layer 256,
128, 64

256,
256, 128

128, 64 128, 64

Nodes / hidden layer π 64 64 64 16

Table 2: Neural network hyperparameter configurations of the 4 models used in RLIF.
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4.3 User Interfaces
One of the things noticed during the project was that most of the available programs

for RNA inverse folding have interfaces that are hard to use or interpret. This issue
was also raised in the survey by Churkin et al. (2018) that reviewed these programs.[9]
Therefore designing a good user interface became a goal of this thesis project which also
allowed to extend the functionality of the RLIF algorithm. Two different user interfaces
were created: command line interface and a graphical user interface the details of which
are explained below.

4.3.1 Command Line Interface

Figure 8: Command line interface (CLI) of RLIF.

The command line interface of RLIF can be used for calling the model to generate
multiple solutions for a target RNA secondary structure. The number of result solutions
and attempts can be specified along with the energy parameters used. After entering a
target structure, the number of structural motifs it contains is displayed. The generated
valid nucleotide sequence solutions are then sorted by their free energy and various statis-
tics regarding the structure ensemble of that sequence are displayed. Optionally the failed
solutions can also be displayed and they are sorted based on their Hamming and mountain
distances.
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4.3.2 Graphical Interface
The graphical user interface of RLIF contains various elements that enable the user to

specify the desired RNA secondary structure and generate the valid nucleotide sequence
solutions for it. ViennaRNA[18] Python bindings are used extensively in this program
both for validating the MFE structure of each nucleotide sequence using RNAfold and
other statistics relating to RNA structures. Therefore controls for configuring various
parameters of ViennaRNA are included, allowing the user to inspect how the energy
parameters for the folding algorithm or other parameters such as temperature influence
the predicted shape of RNA secondary structures in real time. Most of the secondary
RNA structures have multiple nucleotide sequences that fold into that shape, therefore
the interface includes various graphical elements that separate each generated solution
based on their characteristics.

Figure 9: Graphical user interface (GUI) of RLIF.

Below the main interface elements and their uses are summarized:

1. Sequence input: the target sequence can either be a nucleotide sequence or a
secondary RNA structure in dot-bracket format. The sequences can be inputted
either one symbol at a time (hitting Enter will create an entry in the target selection
table). A button for generating random secondary structures is located on the right
hand side from the input box.

2. Structure display: is used to display either dot-bracket annotated RNA structures,
or the MFE structure of a selected nucleotide sequence. Additional tab for displaying
the structure of the ensemble centroid is available as well.

3. Button controls: Contains buttons for:
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• Run: runs the RLIF algorithm to produce nucleotide sequences for the cur-
rently selected RNA secondary structure.
• Test: runs RLIF in a sequential mode, where nucleotides are generated one at

a time. The progress box shows the current state representation ES that the
neural network receives as an input in order to generate the next nucleotide.
• Save: saves all the current failed and valid solutions into a log file that can be

restored later.
• Load: load RNA secondary structures from log files previously saved using this

interface. Fasta or .fa file extensions are also supported for loading nucleotide
sequences that can then be converted into target sequences for inverse RNA
folding.
• Clear: clears all the current solutions and targets.
• RNAinverse: runs RNAinverse folding algorithm from ViennaRNA package,

mostly implemented for comparison reasons. Not advised to be used with se-
quences longer than 100bp.

4. Target selection: all of the valid target structures loaded or generated from either
source are shown in the target selection table on the right side of the interface.

5. Solution tab: contains plots for centroid distance, ensemble defect and the proba-
bility of the minimum free energy structure within the ensemble for each generated
nucleotide sequence. The points on all of the plots can be individually selected to
highlight the statistics of each solution. The table below also contains all the solu-
tions along with their nucleotide sequences.

6. Failed solution tab: shows all nucleotide sequences whose minimum free energy
(MFE) structure does not match the target secondary structure. The tab also has
a visual display of the MFE secondary structure of each solution along with plots
for hamming and mountain distances.

7. ViennaRNA controls: in this part of the interface the set of energy parameters
can be chosen. The default settings for ViennaRNA 2.0+ are the Turner et al.
(2004)[40]. The alternative folding parameters include Turner et al. (1999) [41],
Andronescu et al. 2007 [42] and Langdon et al. (2018) [43], and changing these
parameters can substantially alter the MFE structures of nucleotide sequences. This
control section also includes the temperature dial, and checkboxes for disabling
wobble G-U pairs either completely or at the endings of stems.

8. Dataset selection: this part of the interface contains allows testing secondary
RNA structures from three of the benchmark datasets that are covered in the fol-
lowing section.

This graphical user interface is suitable not only for RNA inverse folding but for other
purposes as well. The .fasta file support makes it possible to analizing batches of RNA
sequences as it provides various useful metrics as well as real-time editing and visualization
of resulting RNA secondary structures.
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5 Results

5.1 Comparison to existing methods
Six other RNA inverse folding methods that were covered in the related work section

were compared alongside RLIF : RNAinverse, NUPACK, MODENA, antaRNA, rnaM-
CTS and LEARNA. The Python-based methods (RNAinverse, antaRNA, rnaMCTS,
LEARNA) were integrated into the benchmark scripts directly while others (’NUPACK,
MODENA’) were called by communicating to their command line interface binaries. The
exact commands that were used to call them are listed in the appendix 6.1.

5.1.1 Benchmark performance
Several benchmarks for testing RNA have been developed and used in various pub-

lications in recent years. These datasets of secondary RNA structures contain sequences
that are usually hard to solve because of the unusual structural motif combinations that
they contain. These structures often have low energetic stability and have only a lim-
ited number of possible nucleotide sequences whose minimum free energy structure their
structure.

All of the benchmarks were run on a computer with Intel-i7 4700HQ Quad-Core CPU
and 16GB RAM. No GPU-support was used for the models utilizing neural networks. The
table 3 summarizes all various attributes of the benchmark datasets. We cover each one
of them in more detail along with their results in the following sections.

Dataset # of Sequences Sequence lengths Time (s) / Sequence # of runs

EteRNA100 100 12-400 300 3
Rfam-Modena 29 54-451 300 3
Rfam-Runge 100 50-446 120 3
Rfam-Test 7500 50-452 30 1

Table 3: Benchmark dataset summary.

The tests were carried out using the energy parameters from Zuker, Turner et. al. 1999
[3] which were the default parameters for ViennaRNA < 2.0. The reason for choosing this
parameter set is that the all the sequences for the EteRNA100 benchmark were designed
under these parameters. In order to maintain consistency the same parameters were used
for other benchmarks as well.

Each of the benchmarks were run for a different timeout given for solving each se-
quence, averaged over 3 runs. In the case when either of the algorithms did not provide
a result before the time limit, the process was terminated and the run was counted as
unsuccessful.

EteRNA100
One of the benchmarks used is the EteRNA100 dataset [44]. The EteRNA project is

an online collaborative game where players compete against each other to generate valid
nucleotide sequences for various RNA structures. Even though the players of this game
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are non-experts in the field, this experiment has produced very interesting results and the
combined knowledge of the community has provided many insights for the inverse RNA
folding problem. [44] Currently expert players of the EteRNA project are the best solvers
for multiple difficult RNA design problems, outperforming all algorithms to date. [45]

This dataset consists of 100 sequences that were created by the best performing Eterna
players based on their assessment of how difficult certain structural motifs and their com-
binations are. This dataset includes a lot of symmetrical structures, fractal-like patterns
and various artificial structures that resemble ones generated in the RNA nano-engineering
experiments. The secondary structures in the dataset are ordered based on their rated
difficulty, with sequence #100 being the hardest to solve. This dataset is notoriously dif-
ficult for all of the existing RNA inverse folding methods and most of them can only solve
about half of the secondary structures, mostly from the first half of the dataset.

Figure 10: Results on the EteRNA100 benchmark. Rows represent different methods and columns
correspond to each sequence in the dataset. Colors indicate the time taken for obtaining a valid
solution.

Figure 11: Number of sequences solved at spe-
cific points of the time limit.

Figure 12: Total number of sequences solved
on EteRNA100 with 300s time limit per se-
quence.
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Figures (10-12) summarize the results on the EteRNA100 benchmark for the 7 meth-
ods. Based on these results we can tell that RLIF model achieves the best performance
both in terms of speed and accuracy. Given 5 minutes per sequence the model solves
73/100 sequences of the EteRNA100 benchmark. The previous best reported score on
this benchmark was in the publication of LEARNA which reported 68/100 sequences
with a 24h timeout for each target sequence. Furthermore, 53 sequences take less than 10
seconds to solve which is also a marked improvement over other methods.

RFAM-Runge benchmark
This benchmark was introduced by Runge et al. [12] and it consists of 100 sequences

from RFAM [46] database that range from 50-446 in length and contain a diverse range
of structural motifs and shapes. The sequences in this dataset are ordered based on their
length.

Figure 13: Results on the Rfam-Runge benchmark. Rows represent different methods and
columns correspond to each sequence in the dataset. Rectangle colors indicate the time taken
for obtaining a valid solution, white color indicates no solution.

Figure 14: Number of sequences solved at spe-
cific points of the time limit.

Figure 15: Total number of sequences solved
on Rfam-Runge benchmark with 120s time
limit per sequence.

A similar trend is seen for this benchmark as well. RLIF model generates the most
solutions in the lowest amount of time.
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RFAM-Modena benchmark
The last benchmark used for comparison was first introduced by authors of the MOD-

ENA inverse RNA folding algorithm. [10] It has been used in other research papers [12]
and it consists of 29 difficult natural RNA secondary structure sequences from the R-Fam
database.

Figure 16: Results RFAM-Modena benchmark. Rows represent different methods and columns
correspond to each sequence in the dataset. Rectangle colors indicate the time taken for obtaining
a valid solution, white color indicates no solution.

Figure 17: Results on the EteRNA100 benchmark.

For this dataset both LEARNA and RLIF generated the same number of valid so-
lutions. Additional extended runs for this dataset have shown that he five remaining
sequences in the dataset are really difficult to generate solutions for and it seems that the
current methods for RNA inverse folding are not capable of solving them as of yet.
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5.1.2 Test set
The test set for evaluating RLIF algorithm consisted of 7500 sequences varying from

50-446 in length. These sequences were obtained from the R-Fam database and it contains
various families of RNA structures. For solving each sequence the model was given 30
seconds.

Figure 18: The percentage of solved target
structures based on their lenght.

Figure 19: Relation of the length of the se-
quence to the average time taken to produce
a solution.

In total 90.2% (6980/7500) sequences were solved under the 30 second limit per se-
quence. Figures (16-17) show how the RLIF model handles sequences of varying lengths.
We can see that the has a relatively stable time performance curve which results from
the fact that the generates the nucleotide sequence end-to-end only performing an evalu-
ation once. The policy obtained during training generalizes well enough to solve a 41.6%
(3124/7500) of the target sequences from the first attempt.
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6 Conclusion
The RLIF reinforcement learning model for inverse RNA folding has proven to be a

well performing method in terms of speed and the range of RNA secondary structures that
it is capable of solving. Having only local nucleotide sequence and secondary structure
information as a state representation seems to be sufficient to solve large subset of RNA
design problems, specifically for naturally occuring structures. However, benchmarks that
are specifically designed to test the drawbacks of RNA inverse folding methods such
as EteRNA100 do show that there are still many improvements to be made in future
algorithms built for this problem.

The speed of the model introduced in this thesis makes it suitable for real-time ap-
plications. The graphical user interface developed for the usage of this model illustrates
this ability and it can be used to interactively design various RNA structures and find
nucleotide sequences that would fold to that shape.

6.1 Future work
RLIF algorithm can rapidly produce valid sequence solutions for a diverse set of struc-

tures. However, these are not the only criteria which are important when evaluating inverse
folding algorithms. Several other methods that were used for comparison in the bench-
marks offer more options in terms of specifying sequence constraints, regulating the target
GC content, while some of the algorithms can also handle pseudoknot structures. These
attributes are among the main directions in which the RLIF model could be improved in
the future.

The results indicate that sequences for which the model cannot find valid solutions
contain various difficult structural motifs. Most of these motifs require some form of
global sequence and structure knowledge that is not available when using the current
implementation of state representation bounded by the state window. Several more glob-
ally oriented state representations have already been tested during the project but have
not been incorporated into the main model. One of the possible ways to include more
global sequence features is to use a graph-based representation of the surroundings of
the current nucleotide. The subgraph of the surrounding of the current nucleotide can be
vectorized using Word2Vec[47] for creating graph embedding or by directly using graph
convolutional networks within the RL model. The initial tests have shown that learning
with such state representations is possible but is much slower and the results are not yet
competetive when compared to the current implementation.

The interface designed for using RLIF also has many avenues for potential improve-
ments and it could be improved to be a more general RNA analysis tool in the future.



REFERENCES 33

References
[1] John S Mattick. “RNA regulation:

a new genetics?” In: Nature Reviews
Genetics 5.4 (2004), p. 316.

[2] John S Mattick and Igor V Makunin.
“Non-coding RNA”. In: Human
molecular genetics 15.suppl 1 (2006),
R17–R29.

[3] Michael Zuker, David H Mathews,
and Douglas H Turner. “Algorithms
and thermodynamics for RNA sec-
ondary structure prediction: a practi-
cal guide”. In: (1999), pp. 11–43.

[4] Ivan Dotu et al. “Complete RNA
inverse folding: computational de-
sign of functional hammerhead ri-
bozymes”. In: Nucleic acids research
42.18 (2014), pp. 11752–11762.

[5] Matan Drory Retwitzer et al. “An effi-
cient minimum free energy structure-
based search method for riboswitch
identification based on inverse RNA
folding”. In: PloS one 10.7 (2015),
e0134262.

[6] Sven Findeiß et al. “In silico design of
ligand triggered RNA switches”. In:
Methods 143 (Apr. 2018). doi: 10 .
1016/j.ymeth.2018.04.003.

[7] Maung Nyan Win and Christina D
Smolke. “Higher-order cellular in-
formation processing with synthetic
RNA devices”. In: Science 322.5900
(2008), pp. 456–460.

[8] Isil Severcan et al. “A polyhedron
made of tRNAs”. In: Nature chem-
istry 2.9 (2010), p. 772.

[9] Alexander Churkin et al. “Design of
RNAs: comparing programs for in-
verse RNA folding”. In: Briefings in
bioinformatics 19.2 (2017), pp. 350–
358.

[10] Akito Taneda. “MODENA: a multi-
objective RNA inverse folding”. In:
Advances and applications in bioin-
formatics and chemistry: AABC 4
(2011), p. 1.

[11] Xiufeng Yang et al. “RNA in-
verse folding using Monte Carlo tree
search”. In: BMC bioinformatics 18.1
(2017), p. 468.

[12] Frederic Runge et al. “Learning to De-
sign RNA”. In: CoRR abs/1812.11951
(2018). arXiv: 1812.11951. url: http:
//arxiv.org/abs/1812.11951.

[13] Peter Eastman et al. “Solving the
RNA design problem with reinforce-
ment learning”. In: PLoS computa-
tional biology 14.6 (2018), e1006176.

[14] Jade Shi, Rhiju Das, and Vijay S
Pande. “SentRNA: Improving compu-
tational RNA design by incorporating
a prior of human design strategies”.
In: arXiv preprint arXiv:1803.03146
(2018).

[15] Reza Jafari, Mohammad Masoud Ja-
vidi, and Marjan Kuchaki Rafsan-
jani. “Using deep reinforcement learn-
ing approach for solving the multi-
ple sequence alignment problem”. In:
SN Applied Sciences 1.6 (May 2019),
p. 592. issn: 2523-3971. doi: 10.1007/
s42452-019-0611-4. url: https://doi.
org/10.1007/s42452-019-0611-4.

[16] Benjamin Sanchez-Lengeling and
Alán Aspuru-Guzik. “Inverse molec-
ular design using machine learning:
Generative models for matter engi-
neering”. In: Science 361.6400 (2018),
pp. 360–365.

[17] G. Czibula, Maria-Iuliana Bocicor,
and Istvan-Gergely Czibula Babeş-
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Appendix

Usage of other RNA inverse folding algorithms
In order to make fair comparisons, all benchmarks were run using the same energy

parameters. These parameter files are included in the ViennaRNA package and have to
be set for each method individually.

• RNAinverse

./RNAfold -P ../rna_turner1999.par

• NUPACK - the executable takes an input file containing the secondary RNA struc-
ture in dot-bracket notation as input.

./design -T 37 -material rna1999 <name_of_the_input_file>

Input file contents:

---

(((....)))

---

• MODENA - for this algorithm a specially formatted input file with objectives has
to be generated and used as input for the executable.

./modena <input_file>

Input File Formatting:

---

(((....)))

;

-1*((F:CONT-50)^2)^0.5

-1*(C:FE-B:EFE)

;

B RNAfold-p 1 "-d2" "-P" "../rna_turner1999.par"

C RNAeval 1 "-d2" "-P" "../rna_turner1999.par"

---

The following three methods are written in Python, therefore their source code
was modified and integrated directly into the testing pipeline. Instead of using the
ViennaRNA through subprocess module calls, they were modified to use the same
ViennaRNA Python bindings as RLIF. This ensures that exactly the same config-
uration is used for all of the algorithms.
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• antaRNA

• RNA-MCTS

• LEARNA* - for this method a custom Python class was written to obtain the
generated nucleotide sequences as it does not have a direct interface for sequence
input. This custom class is available at in the source code:

rlif/rlif/utils/comparison/learna.py
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