
Universiteit Leiden
Opleiding Informatica

Quantum-assisted machine learning and
optimisation in an industrial context

Name: Dyon van Vreumingen
Date: 10/05/2019
1st supervisor: Dr. F. Neukart
2nd supervisor: Prof. Dr. T.H.W. Bäck

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Quantum-assisted machine learning and
optimisation in an industrial context

Dyon van Vreumingen

Leiden institute of advanced computer science
Niels Bohrweg 1, 2300 CA Leiden, The Netherlands

May 10, 2019

ABSTRACT

We discuss state-of-the-art quantum computing in an industrial
context at Volkswagen. Our work, a contribution to this endeavour,
consists of to main parts, which are preceded by an extensive
background on the theory of quantum computation. First, we
present a hybrid quantum-classical method for finite-element design
optimisation, which is driven by the D-Wave 2000Q quantum an-
nealer. We show that, through repeated application of the annealing
cycle, this algorithm is capable of optimising the shape of a 3D rigid
finite-element object, such as an external vehicle mirror, subject to
simplified aeroacoustic conditions. Second, we apply evolutionary
computation as an alternative to gradient-based methods for the
purpose of training in quantum machine learning. We construct a
genetic algorithm which is able to find quantum circuit architectures
to solve simple machine learning tasks. Furthermore, we apply a
CMA-ES to the problem of training parameters in a parametrised
learning quantum circuit. We show that for deep learning circuits,
CMA-ES outperforms a generic gradient descent method in terms of
convergence time.

Keywords Quantum computing, optimisation, finite-element
methods, quantum machine learning, evolutionary algorithms

Contents

1 Introduction 7

2 Quantum mechanics 11
2.1 Notions from classical mechanics 11
2.2 Dynamics of quantum states 14
2.3 Measurements 18
2.4 Composite systems 24

3 Quantum computing 27
3.1 Gate-model quantum computing 27
3.2 Adiabatic quantum computing 34
3.3 Quantum annealing 37

4 Quantum-assisted finite-element design optimisation 41
4.1 Introduction: finite-element methods 42
4.2 Quantum-assisted design optimisation 42
4.3 Related work 44
4.4 Approach 45

4.4.1 QUBO problem formulation 46
4.4.2 Algorithm 49

4.5 Experimental results 51
4.6 Conclusions 54
4.7 Future work 54

5 Evolutionary quantum circuit learning 57
5.1 Introduction: quantum circuit learning 58
5.2 Related work 61
5.3 Evolutionary algorithms 62

5

6 CONTENTS

5.4 Genetic design of quantum circuits 64
5.4.1 Genetic algorithm 65
5.4.2 Experiments 68
5.4.3 Discussion 77

5.5 An evolution strategy for parameter optimisation 77
5.5.1 Covariance matrix adaptation evolution strategy 78
5.5.2 Experiment and discussion 81

5.6 Conclusion 84

6 Final conclusion and outlook 87

References 89

Acknowledgments 95

6

Chapter 1
Introduction

Where research has hit the walls of classical computing on a quest to produce
smaller and faster processors, finding the way impeded by quantum effects
occurring at the atomic level, scientists fascinated by this obscure world of
quantum mechanics have sought for ways to exploit these different laws in
order to establish a novel theory of computation. The result is the field of
quantum computing, initiated around 1980 [1, 2], which is nowadays a rapidly
expanding field of research. While the foundations of quantum computational
theory and quantum algorithmics were laid quickly, the physical realisation
of a device abiding by the rules of this theory has remained out of reach
for years. Over the past decades, research has focussed on paving the way
for the invention of such a machine, both from the computational and the
physical point of view. In the latter context, a great number of pioneering
endeavours have been made lately by IT companies such as D-Wave, Google,
IBM, Rigetti and Intel [3–7].
In this research, which was done at the Code:Lab R&D department of Volk-
swagen Group in San Francisco, we are interested in the possible benefits
of quantum computing in the automotive industry. As of this writing, Volk-
swagen is leading the research in quantum computing for the purpose of
developing automotive applications, while other large vehicle manufacturers,
such as Toyota, Daimler and BMW, have only recently shown interest in
the topic [8–10]. The relevance of quantum computing for automotive ap-
plications stems from the ever growing complexity of the problems arising
in the field. Be it traffic flow optimisation, vehicle body design, simulation
of battery materials for electric vehicles or more general machine learning
and artificial intelligence tasks [11–13], all problems suffer from a very high
dimensionality and an inherent high demand for computational power. For
this reason, quantum computation may soon prove to become a big player in

7

8 Introduction

high-performance computing, utilising its promised parallelising power from
superposition and entanglement, as shown among others by Shor’s prime
factorisation quantum algorithm [14].
Now, the limitations on accessible large-scale quantum hardware admittedly
restricts the scope of possible research in this direction. After all, we currently
have no way to apply any found techniques to real-size problems and properly
benchmark them against classical methods. Nonetheless, at this stage it is
valuable to conduct exploratory research into the capabilities of currently
available quantum computational methods, in order to build knowledge and
prepare for the swift exploitation of future developments in the area. It is
with this mindset that we present this master’s thesis research work.
In our research, we focus on two subtopics. The first revolves around the em-
ployment of a hybrid method combining a quantum annealing scheme and
classical computation for the purpose of optimising rigid 3D shape design
under external physical conditions. We apply this scheme to a simplified ver-
sion of the problem regarding the search for an external car mirror shape
that minimises the acoustic noise from aerodynamic effects to the driver. We
do this by supplying an initial, finite-element shape together with an acous-
tic source, and iteratively adjusting the shape depending on the perceived
sound pressure, with the aid of a quantum annealer. The hardware for this
application, a 2048-qubit annealer, is provided by D-Wave, inc. [3].
The second topic is more fundamental research into quantum machine learn-
ing. More specifically, we focus on the applicability of evolutionary algorithms
for quantum circuit learning. Here, quantum circuit learning refers to the
practice of finding good parameters in a parametrised gate-model quantum
circuit for a given machine learning task. In this sense, the parametrised
quantum circuit mimics the operation of an artificial neural network, be it
with a different architecture. We consider both a genetic algorithm for the
automatic generation of such circuits, and an evolutionary strategy as an
alternative to currently prevalent gradient descent methods for parameter
learning of fixed circuits. The experiments were carried out with a classical
simulation of the given quantum circuits.
This thesis is structured as follows. In chapter 2, we discuss quantum me-
chanics as the foundation of quantum computing, including a description of
quantum dynamics and measurements. In chapter 3, we move to quantum
computing, explaining the two currently most popular paradigms for quan-
tum computing as well as the inner workings of quantum annealing and the
D-Wave quantum annealer. Next, we move to quantum-assisted design opti-
misation in chapter 4, where we explain the problem, the annealing scheme
and the complete algorithm in more detail. In chapter 5, we discuss our evo-
lutionary quantum circuit learning research, including the results obtained

8

9

from employing the algorithms and a comparison with a gradient descent ap-
proach. Lastly, we present our overall conclusions and suggestions for future
work in chapter 6.

9

Chapter 2
Quantum mechanics

In this chapter, we delve into the theory of nonrelativistic quantum mechan-
ics in order to establish a theory of quantum computation upon which we
will build the algorithms and results in the following chapters. We will set
off with a couple of notions from classical dynamics leading to the founda-
tions of quantum theory. Then, from an elaborate introduction to quantum
theory, we will extract a number of postulates that together will comprise
a computational model. We will consider so-called quantum states that de-
scribe a quantum system and discuss their evolution in time. We touch on
the theory of quantum measurements and how they differ from classical mea-
surements. Lastly, we give a mathematical formulation for joining multiple
quantum systems together, and conclude the chapter with a description of
quantum entanglement. This discussion of quantum mechanics will lay the
groundwork for understanding quantum computing, which we will cover in
the following chapter.

2.1 Notions from classical mechanics
In classical, Newtonian mechanics, any macro- or microscopic object under
consideration, such as a rigid ball or particle, is described by a collection of
mechanical variables. Some of these are fixed for this particular object, such
as mass m or charge q, while others may take on any value in real continuous
space. The most important of these continuous values are position x, velocity
v (and its closely related cousin, momentum p = mv), acceleration a and
energy E. The famous law that dictates the dynamics of such objects in
terms of these variables is Newton’s second law, which states that a force of
magnitude F acting on an object accelerates this object in the same direction

11

12 Quantum mechanics

as given by

F = ma. (2.1)

Now, what exactly is meant by force? For this we need to define the potential
energy V , or potential for short. This quantity describes the energy stored
in the object which is capable of evoking acceleration—through a force. An
example of potential energy is gravitational energy stored in an object when it
is lifted off the ground: when the object is released, this gravitational energy
will induce accelerated motion towards the ground—through gravitational
force—a phenomenon we perceive as falling.
In general, the relationship between a potential V , which is a function of
position (and other variables such as time if need be) and the induced force
is as follows:

F = − ∂

∂x
V. (2.2)

We can combine eqs. 2.1 and 2.2 to obtain

m
d2

dt2x(t) = − d
dxV (x), (2.3)

where we have expressed the acceleration a(t) as the second-order derivative
of x(t), and we have stressed the sole dependency of V on x by inserting
an ordinary derivative d/dx in place of a partial derivative ∂/∂x. This is a
so-called equation of motion, whose purpose is to predict the evolution of
x in time as given by the potential energy function. In the aforementioned
example, we can subtitute the expression V (x) = mgx, where x now stands
for the height(!) to which the object was lifted, and g is the gravtitational
constant. Taking the positional derivative of this V (x), substituting this in
eq. 2.3 and omitting m on both sides of the equation leaves us with

d2

dt2x(t) = −g. (2.4)

Assuming that the object was released at height x0 with zero velocity, the
evolution of x in time is easily found to be

x(t) = x0 −
1
2gt

2. (2.5)

12

2.1 Notions from classical mechanics 13

Of course, this only holds as long as the object is falling freely, as any inter-
actions with other objects, such as the ground itself, would render it subject
to other mechanical laws.
Now, what does all of this have to do with quantum mechanics? The point
here is that the dynamics of a physical system can be described by an equa-
tion of motion (or, more generally, by a multitude of such equations) with
an appropriately chosen potential. After all, by substituting the example po-
tential with other functions, we can describe other phenomena such as the
swinging motion of a pendula, oscillation of a spring-mass system, and decel-
eration from friction. This is a key idea that applies to quantum mechanics
just as much as it does to classical mechanics, as we will see in due course.
But before we move on, we need to talk a bit more about energy. We men-
tioned V as an energy quantity, but this is not in general equal to the total
energy E of the system. To complete the picture, we need to introduce a
free energy term T , which quantifies the energy carried by the object if no
potential were present (V = 0), i.e. the object were moving freely. In classical
mechanics, this term is better known as kinetic energy. It turns out that this
energy takes the form

T = 1
2mv

2 = p2

2m. (2.6)

The total energy, then, is given by the hamiltonian H of the system, which
is simply the addition of T and V :

H(x, p) = p2

2m + V (x). (2.7)

Now, one may be wondering why we need a special symbol H for the total
energy even though we previously called it E. There is a subtle reason for this.
While E is indeed a numerical quantity of the total energy, the hamiltonian
is not: it is the map that provides E, given the state of the system (i.e. the
collection of relevant variables, in this case x and p). This difference may
seem marginal in a classical context, but H and E turn out to be different
in character when we discuss quantum mechanics.
With the foundations laid using elements from classical mechanics, it is now
time to make the leap to the quantum realm. To do so, we need to make
a shift in the way we want to view the world. For in quantum mechanics,
a system is not described by a collection of variables, but by a single wave
function Ψ(x, t). Unlike our collection of classical variables, this wave function
cannot be measured directly—but it does contain all the information needed

13

14 Quantum mechanics

to describe the system. As such, a wave function is often simply referred
to as a state. Whenever we want to learn about the system, we need to
extract relevant information from this wave function, a process known as
measurement; how this is done will be discussed in section 2.3. Furthermore,
information about the structure behind the forms that this function can take
is vital in understanding quantum mechanical processes.

2.2 Dynamics of quantum states
Just like we constructed an equation of motion for a basic classical system
expressed using the variables x and p (eq. 2.3), we have one for a quantum
mechanical system described by the wave function Ψ as well. It is the well-
known Schrödinger equation:

i~
∂

∂t
Ψ(x, t) = − ~2

2m
∂2

∂x2 Ψ(x, t) + V (x, t)Ψ(x, t). (2.8)

To make sense of this somewhat overwhelming equation, we have to fiddle
around a little with it. To make our lives easier, let us assume now that the
potential V is independent on time (i.e. V = V (x)), and that Ψ(x, t) can be
separated into a time-dependent part and a position-dependent part:

Ψ(x, t) = φ(t)ψ(x). (2.9)

This turns the Schrödinger equation into

i~
∂φ(t)
∂t

ψ(x) = − ~2

2mφ(t)∂
2ψ(x)
∂x2 + V (x)φ(t)ψ(x). (2.10)

Dividing through both sides by φ(t)ψ(x) yields [15]

i~
∂φ(t)
∂t

1
φ(t) = − ~2

2m
1

ψ(x)
∂2ψ(x)
∂x2 + V (x). (2.11)

Now there is something very special about this equation: as we can see, the
left hand side is a function of t alone, while the right hand side is a function
of x. Let us take a moment to think what this really means. Imagine that
for some t = t∗ and x = x∗, both the left and right hand sides (which must
be equal) take on the value E (why we choose this symbol in particular will
become clear in a moment):

[
i~
∂φ(t)
∂t

1
φ(t)

]
t=t∗

= E =
[
− ~2

2m
1

ψ(x)
∂2ψ(x)
∂x2 + V (x)

]
x=x∗

. (2.12)

14

2.2 Dynamics of quantum states 15

If we vary t by any amount, i.e. t = t∗ → t = t∗ + ∆t, the left hand side
must remain the same, since the right hand side doesn’t change (as it is
independent of t). As such, the left hand side can never change; in other
words, it is constant! (And so is E.) Of course, the same holds for the right
hand side, and this allows us to split eq. 2.11 in two separate (but related)
equations:

i~
∂φ(t)
∂t

= Eφ(t) (2.13)

and

− ~2

2m
∂2ψ(x)
∂x2 + V (x)ψ(x) = Eψ(x). (2.14)

Let us concern ourselves with the second equation first. This is the so-called
time-independent Schrödinger equation. For reasons we will not discuss here,
one can in fact identify the operator −i~ ∂

∂x
as a quantum momentum p

associated with ψ. Substituting this in the expression above, we obtain

[p2

2m + V (x)
]
ψ = Eψ. (2.15)

This seems familiar: what we see between square brackets is now the same
as what we found to be an expression for a hamiltonian H describing a
classical system (eq. 2.7). Clearly, E is then the energy associated with this
hamiltonian. But there is something fishy going on: p is not a number, as it
was in the classical case, but an operator : something that takes the function
ψ(x) and transforms it into another function, through differentiation and
multiplication by −i~. Similarly, we can consider V(x) to be an operator as
well, since it takes ψ(x) and transforms it into V (x)ψ(x). It is easy to prove
that these operators are linear maps1. In quantum mechanics, everything
revolves around the action of these operators on quantum states. We will
denote them by upright typeset symbols, while scalars (numbers) remain in
italics (notice V(x) vs. V (x)).
Since p2 and V are linear operators, H itself is also a linear operator. As
such, Hψ = Eψ is a linear equation. What’s even more interesting is that
(depending on V), generally, this equation has a multitude of solutions (with

1Linearity of an operator O is found from O(ψ + χ) = Oψ + Oχ and O(cψ) = cOψ,
with c a constant. These two requirements are trivially satisfied for V, while for p, they
follow immediately from the additive and multiplicative properties of the derivative ∂/∂x.

15

16 Quantum mechanics

possibly different energy values); and since it is linear, any linear combination
of solutions is a solution as well. In other words, the solutions to the time-
independent Schrödinger equation form a vector space, with the stationary
states (those solutions which are not by themselves a linear combination)
as basis states. This gives rise to a linear algebraic description of quantum
mechanics. In this context, Hψ = Eψ is nothing but an eigenvalue equation
for H with ψ as the eigenvector.
Now that we have established that quantum states are vectors, we can at-
tribute all usual vector properties to quantum states as well. To this end, we
adopt the Dirac notation, writing |ψ〉 for a state vector. Given a basis {|ψi〉}
for the solution space, a general solution |ψ〉 can be expressed as

|ψ〉 =
∑
i

ai|ψi〉 (2.16)

where the coefficients ai are complex scalars. An inner product 〈·, ·〉 between
two vectors |ψ〉 = ∑

i ai|ψi〉 and |χ〉 = ∑
i bi|ψi〉, then, is naturally defined as

〈|ψ〉, |χ〉〉 =
∑
i

a∗i bi, (2.17)

with ∗ standing for complex conjugation. This can be expressed differently
by introducing the dual vector or conjugate transpose 〈ψ| := |ψ〉† of a state
|ψ〉 = ∑

i ai|ψi〉 as

〈ψ| =
∑
i

a∗i 〈ψi| (2.18)

such that2 〈ψi||ψj〉 = δij. The inner product between |ψ〉 and |χ〉, which for
ease of notation is written 〈ψ|χ〉, can then be seen to take the same form
as in eq. 2.17. In the same sense that states are vectors, operators are now
matrices: they map vectors in the solution space to other vectors in this space,
via a linear transformation. Similar notions are thus appropriate: given an
operator O, one can introduce its transpose O>, its conjugate transpose O†,
a trace tr[O] and so on. In particular, the conjugate transpose of O is defined
as the operator O† such that 〈ψ|O† = (O|ψ〉)† for any |ψ〉.
But are all elements in the solution space actually physically sensible? The
answer is no. As we will show in the next section, we must restrict ourselves
to solutions |ψ〉 that satisfy

〈ψ|ψ〉 =
∑
i

|ai|2 = 1. (2.19)

2The symbol δij denotes the Kronecker delta which takes on the value 1 if i = j and 0
otherwise.

16

2.2 Dynamics of quantum states 17

The subset of the solution space that complies with this requirement is called
a Hilbert space. It is this space that we work in when we we are doing quantum
mechanics.
We can summarise all this in the following postulate.

Postulate 1. A quantum mechanical system is described by a quantum state,
which is an element of a Hilbert space that satisfies the Schrödinger equation.

Now, let us go back and consider a basis state |ψ〉 that satisfies eq. 2.14 for
a certain energy value E. Eq. 2.13 then demands that

∂φ(t)
∂t

= −iE
~
φ(t) (2.20)

which is fulfilled by

φ(t) = e−iEt/~φ(0) (2.21)

for some initial condition φ(0). Evidently,

Ψ(x, t) = φ(t)|ψ(x)〉 = e−iEt/~φ(0)|ψ(x)〉 = e−iEt/~Ψ(x, 0). (2.22)

Now, since φ(0) is a constant, we might as well absorb it into ψ(x). To make
sure then, that ψ(x) remains in the Hilbert space, we must require |φ(0)|2 = 1,
implying that φ(0) = eiθ for some θ ∈ [0, 2π). Such a scalar of modulus 1 is
called a phase, which we will see more of later on. In any case, we now have

Ψ(x, t) = e−iEt/~|ψ(x)〉. (2.23)

What we see here is the time evolution principle: if the state of a quantum
system is an eigenstate (or basis state) |ψ〉 of the hamiltonian with eigenen-
ergy E at time T = 0, then at a later time T = t the state will have evolved
into e−iEt/~|ψ(x)〉. But what if |ψ〉 is a mixture, or superposition, of eigen-
states a1|ψ1〉 + . . . + aN |ψN〉 with eigenenergies E1, . . . , EN? Eq. 2.20 holds
for each basis state separately, so at time T = t we will find

Ψ(x, t) = a1e
−iE1t/~|ψ1〉+ . . .+ aNe

−iEN t/~|ψN〉. (2.24)

Since H|ψi〉 = Ei|ψi〉 for all eigenstates |ψi〉, we can also write this as

Ψ(x, t) = e−iHt/~|ψ〉. (2.25)

As H is hermitian3, we have

[e−iHt/~]† = eiH
†t/~ = eiHt/~ (2.26)

3This can be proven by introducing an inner product on the continuous x space as
〈χ|ψ〉 =

∫∞
−∞ χ∗(x)ψ(x)dx and verifying that 〈χ|Hψ〉 = 〈Hχ|ψ〉.

17

18 Quantum mechanics

and therefore

[e−iHt/~]†e−iHt/~ = eiHt/~e−iHt/~ = I, (2.27)

with I the identity operator, which implies that eiHt/~ is a unitary operator.
This is good news, as it guarantees that 〈ψ|ψ〉 is conserved in time, and as
such, |ψ〉 will remain in the Hilbert space. Furthermore, since the evolution
process depends on a hamiltonian we’re free to choose4, we can generalise
this finding to all unitaries. This will be our second postulate.

Postulate 2. The state |ψ〉 of a quantum mechanical system can be manip-
ulated by applying a unitary operation U:

|ψ〉 7→ U|ψ〉. (2.28)

In case the hamiltonian itself is dependent on time, we need a slightly altered
definition of our unitary:

U = T e−
i
~

∫ T

0 H(t) dt. (2.29)

Here, T is the time-ordering symbol5. This expression takes on a more
tractable form when we approximate the integral in the exponent as a Rie-
mann sum:

U ≈ e−
i
~
∑T

t=0 H(t) ∆t =
T∏
t=0

e−
i
~H(t)∆t. (2.30)

Since each factor in the product is by itself a unitary, we have expressed U
as a chain of unitaries, which by itself is also unitary. This step is known
as trotterisation. It will prove useful in the explanation of certain quantum
algorithms in later sections.

2.3 Measurements
Just like in the classical case, when examining the world around us, we cannot
live with laws of nature alone; at some point we will want to know the actual

4At least in a theoretical context—actually realising it in the laboratory is a completely
different story.

5This symbol was written for correctness, but won’t be relevant as we’re not expanding
the exponential as a Taylor series of integrals. See Weinberg [16], pp. 143–144 for more
information.

18

2.3 Measurements 19

situation of some object or system—or, worded better, we will try to retrieve
some attributes of the system that give us an idea, to some extent, about
its state. This process is commonly known as measurement. We can say that
measurements are just as essential in quantum mechanics as they are in
classical mechanics; it just turns out that quantum measurements behave in
a different way from classical ones.
We can understand this by looking once more at the time-independent Schrö-
dinger equation (eq. 2.14). If we measure the hamiltonian H of a system, we
expect to obtain some energy value in return, depending on the specification
of H and the state |ψ〉 that the system is in, such that the Schrödinger
equation is satisfied. Clearly, the measured energy E must be an eigenvalue
of H, and therefore |ψ〉 is necessarily an eigenstate. However, as we noted in
the first section of this chapter, states may be in superposition: any linear
combination of eigenstates of H also solves the equation. Does this mean
that we will measure a superposition of energies from such a state? Seeing
as any single measurement should only produce one value, that seems like a
contradiction!
In reality, this is not what happens; we still measure single energy values,
no matter the extent of superposition in the system state. The only way
out of this apparent paradox is to postulate that measurements change the
state of the system: by measuring we not only obtain information about the
system, but we alter it in the process. This is known as collapsing the wave
function, and has been subject to many philosophical discussions, as is still
the case today. Naturally, the state resulting from the change should still
obey H|ψ〉 = E|ψ〉 for our quantum theory to make sense. Since we measure
a single eigenvalue each time, this means that the state after measurement
must be an eigenstate.
Until now, we have only looked at the hamiltonian as the observable of in-
terest for our system. However, just like in the classical case, there is more
to know than energy alone; for example position, momentum and angular
momentum, to name just a few, may be of interest. To all of these quantities
we can assign an operator whose eigenvalues are the possible outcomes when
the object in question is measured. For momentum, we have already seen
the operator p = −i~ ∂/∂x. Since we expect our measurement results to be
real—after all, there is little meaning to something like imaginary position, as
far as we know—these operators must be hermitian, as hermitian operators
have real eigenvalue spectra. This comes with another advantage: hermitian
operators always have a complete set of eigenstates, which are orthogonal for
distinct eigenvalues. This is of great mathematical convenience as we will see
later.
For concreteness, let us take a system A in some state |ψ〉, and an observable

19

20 Quantum mechanics

O with an eigenbasis {|i〉} and a corresponding set of eigenvalues {λi}. We
assume these eigenvalues to be distinct for simplicity. Suppose we measure
A and obtain the value λm. The new state |ψ′〉 is now eiθ|m〉 for some θ, the
eigenstate belonging to this eigenvalue (the phase eiθ is of little relevance).
We can also say that |ψ〉 was acted upon by the projector |m〉〈m|, and then
normalised, since it must remain a valid quantum state. That is:

|ψ′〉 = |m〉〈m|ψ〉
|〈m|ψ〉|

= |m〉〈m|ψ〉√
〈ψ|m〉〈m|ψ〉

. (2.31)

The squared norm 〈ψ|m〉〈m|ψ〉 is interpreted as the probability P (m | |ψ〉) of
finding outcome m given the state |ψ〉. Intuitively, |〈ψ|m〉| can be viewed as
the extent to which |ψ〉 is contained in |m〉. But do these probabilities add
up to 1? Let’s check this:∑

m

P (m) =
∑
m

〈ψ|m〉〈m|ψ〉 = 〈ψ|
[∑
m

|m〉〈m|
]
|ψ〉 = 〈ψ|ψ〉, (2.32)

where we used that the complete sum of orthogonal projectors equals the
identity operator. As we can see, measurement probabilities sum to 1 if and
only if |ψ〉 is in a Hilbert space, in which case 〈ψ|ψ〉 equals 1. It is for
this reason that we consider only elements of a Hilbert space as physically
sensible solutions to the Schrödinger equation. Furthermore, notice that a
phase factor can never be observed: since probabilities are always expressed
as absolute values of inner products, any phase factor cancels out and has no
influence on the probability values. Hence, as we mentioned, any global phase
factor |ψ〉 carries is of little (or no) relevance when we want to investigate
the behaviour of the underlying system.
When we make a measurement, we know that, as long as we don’t wait
long enough for the system to evolve away from |ψ′〉 under the influence of
the system hamiltonian, our next measurement will also yield λm with high
probability. However, if we measure a different observable Q, that will shift
|ψ′〉 into the eigenbasis {|j〉} of Q, which may not be aligned with that of O.
For instance, let us say that a measurement of Q, after a measurement of O,
brought the system into eigenstate |n〉 of Q, with |〈n|m〉| = |〈n|m′〉| = 1/

√
2

for two eigenstates |m〉 6= |m′〉 of O. Before we measured Q, we knew that
another measurement of O would most likely return λm; however, as the
coefficients of the system state with respect to the eigenbasis of O have
changed after measurement of Q, we now find that

P (m) = |〈n|m〉|2 = 1
2 , P (m′) = |〈n|m′〉|2 = 1

2 . (2.33)

20

2.3 Measurements 21

In other words, the information we gained about Q in the system introduced
uncertainty about O, and thus destroyed some of the knowledge we had of O.
This strange phenomenon is known as observable imcompatibility: depending
on the observables under consideration, it may not be possible to possess
complete information about both of them. This is the same as saying that
the two observables cannot be measured simultaneously. A famous example
is that of the observables position x and momentum p, as worded in the
Heisenberg uncertainty principle:

∆x∆p ≥ ~
2 . (2.34)

Clearly, position and momentum are incompatible observables: measurement
of one leads to uncertainty in the other.
Now, what exactly determines if two observables O and Q are compatible
or incompatible? The most straightforward answer is: whenever they share
an eigenbasis. After all, whenever we bring a system into an eigenstate of O,
this requirement then guarantees that the system is in an eigenstate of Q as
well, even though the eigenvalues may differ. This means that no information
about either observables is lost, as all inner products between eigenstates of
O and Q—and therefore all concerned probabilities—are either 0 or 1. This
condition it a little clumsy to work with, though. Fortunately, hermitian op-
erators have the property of sharing an eigenbasis if and only if they commute
with one another; that is,

[O,Q] := OQ−QO = 0. (2.35)

It is not surprising to see that x and p do not commute:

[x, p] = i~ 6= 0. (2.36)

This relation has a great number of implications in quantum theory; for us,
it is enough as a confirmation of the incompatibility between position and
momentum.
Considering the probabilistic nature of quantum measurements, it is useful
to have a way of calculating the expectation value of some observable, given a
state of the system. For this, we have the following, quite simple, expression:

〈O〉 := 〈ψ|O|ψ〉. (2.37)

To see that this is indeed a valid expectation value, we expand the observable

21

22 Quantum mechanics

in its eigenstates:

〈O〉 = 〈ψ|
[∑
m

λm|m〉〈m|
]
|ψ〉

=
∑
m

λm〈ψ|m〉〈m|ψ〉 =
∑
m

λmP (m). (2.38)

Now, in quantum computation, we are usually less concerned about the ob-
servables themselves than about the effect that measuring them has on the
system. As such, we are generally most interested in the measurement op-
erators when we define a measurement procedure. Eq. 2.31 was deliberately
written in a suggestive way: measuring our observable has the effect of pro-
jecting |ψ〉 onto |m〉, and the accompanying measurement operator is |m〉〈m|.
Now assume that the system state |ψ〉 is preferably expressed in some basis
{|k〉}. The bases {|m〉} and {|k〉} are connected via a unitary transforma-
tion U (representing a basis rotation in Cn), which means that |m〉 = U|k〉.
Furthermore, define the projector Pk = |k〉〈k|. We can now write the mea-
surement operator as follows:

|m〉〈m| = U|k〉〈k|U† = U|k〉〈k|k〉〈k|U†

= UPkPkU† = (PkU†)†PkU† =: M†kMk (2.39)

where we have defined Mk := PkU†. We can easily verify that the probabilities
as defined earlier sum to 1:∑

m

P (m) =
∑
k

〈ψ|M†kMk|ψ〉 = 〈ψ|U
[∑

k

|k〉〈k|
]
U†|ψ〉

= 〈ψ|UIU†|ψ〉 = 〈ψ|ψ〉 = 1. (2.40)

Since the basis vectors are related one-to-one to eachother via a basis trans-
formation, we may as well talk about P (k) in place of P (m). In this light,
we can forget about the observable eigenbasis completely, and consider mea-
surements as probabilistic mappings, described merely by a set of abstract
measurement operators [17] such that

|ψ〉 7→ Mk|ψ〉√
〈ψ|M†kMk|ψ〉

, (2.41)

where

P (k) = 〈ψ|M†kMk|ψ〉 (2.42)

22

2.3 Measurements 23

is the probability of finding “outcome” k, and where {Mk} must satisfy∑
k

M†kMk = I. (2.43)

With this in mind, we can formulate our third postulate.

Postulate 3. Quantum measurements are described by a set of measurement
operators {Mk} obeying eq. 2.43 and their associated (real-valued) measure-
ment outcomes {λk}. When a quantum system in state |ψ〉 is measured, out-
come λk is found with probability P (k) = 〈ψ|M†kMk|ψ〉, and the state |ψ〉 is
changed, or “collapsed”, according to eq. 2.41.

So far, we have only considered complete sets of orthogonal projectors as
measurement operators. Such operators are often called projective measure-
ments for short. But the constraint in eq. 2.43 allows for a broader class of
measurements. Consider, for example, two non-orthogonal states |ψ〉 and |φ〉
which we wish to discriminate. That is, we are given either |ψ〉 or |φ〉 and
asked to determine which of the two we have. To do so, we could employ the
measurement operators Mψ = |ψ⊥〉〈ψ⊥| with outcome λ⊥ψ and Mφ = |φ⊥〉〈φ⊥|
with outcome λ⊥φ , where |ψ⊥〉 and |φ⊥〉 are vectors orthogonal to |ψ〉 and |φ〉
respectively. The idea is that if we measure the given state and find, say, λ⊥ψ ,
we know that our state must be |φ〉 as the probability of measuring λ⊥ψ in
the state |ψ〉 is 0. The same argument goes for measuring λ⊥φ . But there’s a
problem: these two measurement operators do not sum to 1, since |ψ〉 and |φ〉
are not orthogonal. To account for this, we need to add a third measurement
operator M:

M = I− |ψ⊥〉〈ψ⊥| − |φ⊥〉〈φ⊥|. (2.44)

Notice that this third operator is not a projector. Nonetheless, the probability
of finding the third outcome is nonzero for both |ψ〉 and |φ〉:

〈ψ|M†M|ψ〉 = 〈ψ| (I− |φ⊥〉〈φ⊥|) |ψ〉 = 1− |〈φ⊥|ψ〉|2, (2.45)

〈φ|M†M|φ〉 = 〈φ| (I− |ψ⊥〉〈ψ⊥|) |φ〉 = 1− |〈ψ⊥|φ〉|2. (2.46)

As such, we can regard M as an inconclusive outcome. When we find the
inconclusive outcome, the state we were given could have been either |ψ〉 or
|φ〉; we don’t know. This lack of information is inherent to the fact that |ψ〉
and |φ〉 are nonorthogonal: quantum mechanics strictly forbids determinate
discrinimation of nonorthogonal states through a single measurement. (Any
ability to do so would lead to other contradictions such as the possibility to
travel faster than the speed of light [18].)

23

24 Quantum mechanics

Measurement operator sets of this nature, containing non-projector oper-
ators, are called positive operator-valued measures for historic reasons, or
POVMs for short. We will encounter POVMs in the discussion of one of the
quantum machine learning algorithms in chapter 5.

2.4 Composite systems
Generally, one may want to consider multiple quantum systems simultane-
ously. Especially when there is some form of interaction between two or
more quantum systems, we need a way to describe such composite systems
and their behaviour. The mathematical tool used for this is the tensor prod-
uct, for which we will first give some definitions in terms of ordinary vector
spaces.

Definition 1 (tensor product of vector spaces). Let V and W be vector spaces
with bases B(V) = {ei}dim V

i=1 and B(W) = {f j}dim W
j=1 respectively. Then, the

tensor product space V ⊗W is a vector space with basis

B(V ⊗W) = {ei ⊗ f j}dim V×dim W
ij (2.47)

containing vectors x of the form

x =
dim V∑
i=1

dim W∑
j=1

aij ei ⊗ f j. (2.48)

Definition 2 (tensor product of vectors). Let V and W be vector spaces
as in the previous definition with dim V = m and dim W = n. Further, let
v = ∑

i ai ei ∈ V and let w = ∑
j bj f j ∈ W. Then, the tensor product

v⊗w ∈ V ⊗W is an mn-vector given by

v⊗w =
∑
i

∑
j

aibj ei ⊗ f j. (2.49)

Definition 3 (tensor product of matrices). Let A : V → X and B : W → Y
be linear maps. Then, the tensor product A⊗B : V⊗W→ X⊗Y is a linear
map defined by

(A⊗ B)(v⊗w) = A(v)⊗ B(w), (2.50)

for any v ∈ V and w ∈ W.

24

2.4 Composite systems 25

In matrix notation, vectors and matrices are composed with the Kronecker
product:

[
a1
a2

]
⊗
[
b1
b2

]
=

a1

[
b1
b2

]

a2

[
b1
b2

]
 =

a1b1
a1b2
a2b1
a2b2

 (2.51)

and

[
a11 a12
a21 a22

]
⊗
[
b11 b12
b21 b22

]
=

a11

[
b11 b12
b21 b22

]
a12

[
b11 b12
b21 b22

]

a21

[
b11 b12
b21 b22

]
a22

[
b11 b12
b21 b22

]

=

a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

 . (2.52)

Now we shall return to quantum states. Similarly to how we defined tensor
products of vectors, we can write down a composed state |ψA〉⊗|ψB〉 with the
association |ψA〉∼v, |ψB〉∼w. Inner products of tensor states and composed
operators acting on composed states are evaluated separately:

(〈φA| ⊗ 〈φB|)(|ψA〉 ⊗ |ψB〉) = 〈φA|ψA〉〈φB|ψB〉, (2.53)

and

(UA ⊗ UB)(|ψA〉 ⊗ |ψB〉) = (UA|ψA〉)⊗ (UB|ψB〉). (2.54)

For notational convenience, we often write simply |ψA〉|ψB〉 instead of |ψA〉⊗
|ψB〉.
Composite systems play an important role in the theory of quantum com-
putation. First of all, the mathematical formulation of tensor product states
allows us to reason about multiple quantum systems together. But there is
more to it than just that. Consider two identical quantum systems A and
B with two available eigenstates, |ψ1〉 and |ψ2〉. Now assume that at some
point, the composite system AB is in the state

|Ψ〉 = 1√
2
(
|ψ1〉A|ψ2〉B + |ψ2〉A|ψ1〉B

)
. (2.55)

25

26 Quantum mechanics

What happens if we measure system A (through a projective measurement)?
Suppose we find λ1, the outcome associated with |ψ1〉. This measurement
collapses the state to

|Ψ〉 = |ψ1〉A|ψ2〉B. (2.56)

If we now measure system B immediately afterwards, we are guaranteed to
obtain λ2 as the second outcome. Conversely, if we measured system A in the
state |ψ2〉 (thus observing λ2), an immediate measurement of B would find
it in state |ψ1〉. Clearly, the measurement outcome of B is dependent on that
of A! (And vice versa.) This peculiar phenomenon, where multiple quantum
systems appear to be coupled into one, is known as quantum entanglement.
Entanglement forces us to view multiple coupled systems as one: in our case,
the entangled system is either in the state |ψ1〉A|ψ2〉B or |ψ2〉A|ψ1〉B. One can
not reason about entangled systems separately. This follows from the fact
that the total state |Ψ〉 cannot be written as a product of individual states;
if this were the case, we could regard the systems as separate, and they would
no longer be entangled. Entanglement is an interesting but crucial feature of
quantum mechanics, and does not appear in classical mechanics6. It lies at
the heart of quantum algorithmics, and together with the ability to produce
superposition states, it is what makes quantum computing fundamentally
different from classical computing.

6Surely, classical objects can be coupled as well—one could for example tie two balls
together, and their motion would be like that of a single object—but the physical properties
of the coupled system will be different. Also, their behaviour is deterministic, while that
of entangled quantum systems is nondeterministic, yet in a coupled fashion.

26

Chapter 3
Quantum computing

Now that we have built a framework of quantum mechanics, we can build
upon this and approach the theory of quantum computation. In this context,
we will discuss two methods of quantum computation: gate-model and adia-
batic computing. These are of most interest today, and find most applications
in contemporary quantum algorithms. The two are theoretically equivalent
[19], but start from a different point of view, each with their own implications
for physical realisation.
The remainder of this thesis will revolve around two quantum algorithms,
based on these two methods, that we have developed. This necessitates a
thorough description of the theory behind them. Since our adiabatic algo-
rithm was implemented as a quantum annealing algorithm, which is an algo-
rithmic subclass of adiabatic computing, we will devote additional discussion
to this computation scheme.

3.1 Gate-model quantum computing
The most straightforward and intuitive (as well as most popular) way for
formulating quantum computing is the formalism of gate-model computing.
This formalism follows naturally from the three postulates of quantum me-
chanics, and also has a strong analogy with classical computing. Let us com-
mence with the first postulate, which states that a quantum system can be
described in terms of state vectors in a state space (being a Hilbert space).
To make sense of this postulate, we need to define our state space. We choose
a two-level system, with the following orthogonal basis:

B = {|0〉, |1〉}, (3.1)

27

28 Quantum computing

which by its looks suggests a correspondence to classical bits. This basis is
commonly called the computational basis. A quantum system in this Hilbert
space is called a quantum bit, or qubit. Well that’s nice, but do such systems
actually exist? The fortunate answer is yes, and we can give quite a simple
example.
Most particles, for instance electrons, carry a quantum mechanical property
known as spin. Classically, spin can be seen as intrinsic rotary motion of an
object, such as the rotation of the earth about its axis. Now since quantum
particles are waves (that is, they are described by a wave function), the term
intrinsic rotation does not make much sense here. Nonetheless, its character-
istics were derived by inserting the classical theory of rotation into quantum
mechanics, and some of them are in line with classical dynamics.
But let us get back to the matter. For our particles, spin is quantised, which is
to say that only certain modes occur, in contrast to classical mechanics where
any magnitude of spin is allowed. Consider now a spin about the z axis. For an
electron, the only modes are spin up, described by a state denoted as |↑〉, and
spin down, written |↓〉. Intuitively one can view these states, respectively, as
a rotation about the z axis pointing up, and an (inherently opposite) rotation
about the z axis pointing down. These states are eigenstates of the spin-z
operator Sz, which in the {|↑〉, |↓〉} basis takes the form

Sz = ~
2

[
1 0
0 −1

]
. (3.2)

One can influence the spins of these particles, for example by placing the par-
ticles in a magnetic field pointing in the positive z direction. The hamiltonian
of this configuration for a single particle, in terms of its spin, is described as

H = −γB Sz (3.3)

with B the strength of the magnetic field, and γ a constant. The eigenstates
are the same, but now spin up will have a negative eigenenergy and spin
up will have a positive eigenenergy (of the same magnitude). As the system
tends towards the lowest energy state (or ground state), the particle’s spin
will align with that of the magnetic field—just as it would classically. But
remember this is quantum mechanics: until measurement, the particle could
at any moment be in a superposition of the spin up and spin down state,
creating uncertainty about its actual behaviour.
Now, what about the other two directions, x and y? Surely, the particle
should be able to spin about the other axes, too. This is indeed the case:
spin operators exist for the x and y axes as well. They have been defined as

28

3.1 Gate-model quantum computing 29

follows:

Sx = ~
2

[
0 1
1 0

]
, Sy = ~

2

[
0 −i
i 0

]
. (3.4)

Sx has the following eigenstates:

|+〉 = 1√
2

(|↑〉+ |↓〉), |−〉 = 1√
2

(|↑〉 − |↓〉), (3.5)

and for Sy we have

|	〉 = 1√
2

(|↑〉+ i|↓〉), |�〉 = 1√
2

(|↑〉 − i|↓〉). (3.6)

Clearly, the three spin operators are incompatible: when we measure a par-
ticle in the x basis {|+〉, |−〉}, for example, we collapse its state onto a state
that is not an eigenstate of Sz, but is a superposition in the {|↑〉, |↓〉} basis.
We could have guessed this incompatibility from the fact that two different
spin operators do not commute.
But enough about spin. The point made is that we can proceed with this
two-level system, and be assured that it will be physically realisable1. One
may be wondering then: of what use is a single qubit really? After all, single
classical bit is rather useless, too. But now we can make use of our theory of
composite systems to join multiple qubits together. For instance:

|Ψ〉 = |0〉 ⊗ |0〉 ⊗ . . .⊗ |0〉 ⊗ |0〉 (3.7)

or

|Ψ〉 = |0〉|0〉 . . . |0〉|0〉 (3.8)

or simply

|Ψ〉 = |00 . . . 00〉. (3.9)

We have now created a qubit string, quite similar to that of a Turing machine
tape2.

1Most of today’s quantum hardware actually employs a setup that is different from
simple spin dynamics [20], but from an abstract point of view, we can still use the same
theory.

2The theory of quantum Turing machines is in fact the third main method to express
quantum computation [21, 22], but we will not discuss it here because of its limited prac-
tical use.

29

30 Quantum computing

To perform actual calculations with our qubits, we will invoke postulate
2, which says that we can manipulate our qubits using unitary operators.
Most unitaries we will use act on a single qubit. For example the Pauli x
gate, written X and equal to 2/~ Sx, is a single qubit unitary (as it satisfies
X†X = I). When given an initial state |0〉 = [1 0]>, we can use X to turn it
into the state |1〉 = [0 1]>:

X|0〉 =
[
0 1
1 0

] [
1
0

]
=
[
0
1

]
= |1〉, (3.10)

and conversely:

X|1〉 = |0〉. (3.11)

This can also be expressed as a diagram, or quantum circuit:

|ψ〉 X |¬ψ〉 (3.12)

where we used |¬ψ〉 to denote the logical negation of |ψ〉, in analogy to logical
negation of classical bits. Of course, this analogy is only correct when |ψ〉 is
not in superposition; nevertheless, we can regard X as a quantum version
of a NOT gate, since it flips the coefficients a0 and a1 in a general single
qubit state a0|0〉 + a1|1〉. From this point of view, every unitary operation
can be considered a gate, mapping an input state to an output state; hence
the name gate-model quantum computing.
Besides X, there are a few single qubit quantum gates that appear frequently
in the literature: the Pauli y gate Y = 2/~ Sy, the Pauli z gate Z = 2/~ Sz
and the Hamadard gate, confusingly denoted H:

H = 1√
2

[
1 1
1 −1

]
. (3.13)

This gate, which is hermitian, is convenient because it produces all orthogo-
nal, uniform3 superposition states with real-valued coefficients, from the com-
putational basis states. This holds true also when multiple Hadamard gates
are joined together by a tensor product and applied to a non-superimposed
qubit string. For one qubit, there are exactly two such states (up to a phase
factor of −1), and they can be found by applying H to |0〉 and |1〉:

H|0〉 = 1√
2

(|0〉+ |1〉), H|1〉 = 1√
2

(|0〉 − |1〉). (3.14)

3A uniform superposition is a linear combination of all (computational) basis states
with coefficients of equal absolute value.

30

3.1 Gate-model quantum computing 31

Notice that these states are eigenstates of the X gate, with eigenvalues +1
and −1. As such, H diagonalises X:

X = HZH. (3.15)

Besides these fixed gates, we will often work with continuous generalisations
of the Pauli gates. They are the Pauli rotation gates:

RX(θ) := e−iθ/2 X = cos θ2 I− i sin θ2 X =
[

cos θ
2 −i sin θ

2
−i sin θ

2 cos θ
2

]
, (3.16)

RY(θ) := e−iθ/2 Y = cos θ2 I− i sin θ2 Y =
[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
, (3.17)

RZ(θ) := e−iθ/2 Z = cos θ2 I− i sin θ2 Z =
[
e−iθ/2 0

0 eiθ/2

]
, (3.18)

which carry the interesting and useful property that

Σk = eiπk/2 RΣ(πk) (3.19)

for Σ ∈ {X,Y,Z} and k ∈ R. These matrices are called rotation matrices
because they generate the group SU(2) of rotations in C2. In other words,
any single-qubit unitary can be expressed in terms of an X, Y and Z rotation
up to a phase factor. In fact, one can even use a triple RZ(α)RY(β)RZ(γ)
to represent any unitary up to a phase [23], with properly chosen angles α,
β and γ. We will use these matrices as parametrised gates (since they are
parametrised by an angle), which will be a point of discussion in chapter 5.
Of course, one can define other single qubit matrices and give them a symbol,
but these gates will be enough for us.
Besides single qubit gates, we also need multi-qubit gates. The most impor-
tant of these are the controlled-X (also known as controlled-NOT or CNOT)
and controlled-Z gates, both of which act on two qubits:

CX =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ; CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (3.20)

The intuition behind the CX gate is as follows: when of two qubits, the first
is in state |1〉, a CX gate acting on these two qubits applies an X gate to
the second qubit. If the first qubit is in state |0〉, CX acts as the identity on

31

32 Quantum computing

the second qubit. In this scenario, the first qubit controls the X operation on
the second, and is hence regarded as the control qubit. The second qubit is
accordingly called the target qubit. These two rules are applied linearly when
the control qubit is itself in superposition. That is:

CX (a0|0〉+ a1|1〉)(b0|0〉+ b1|1〉)
= a0|0〉(b0|0〉+ b1|1〉) + a1|1〉(b1|0〉+ b0|1〉)
= a0b0|00〉+ a0b1|01〉+ a1b1|10〉+ a1b0|11〉. (3.21)

This is precisely in line with the matrix formulation of CX in eq. 3.20. The
CX gate is so ubiquitously used in quantum computing that it has been given
its own circuit symbol:

|1〉 • |1〉

|0〉 |1〉
(3.22)

Now what’s so special about this gate? It is the most straightforward way to
entangle two qubits through a single coupling gate. Consider the following
circuit:

|0〉 H •

|0〉 X
(3.23)

What is the output of this circuit given the initial state |ψ〉 = |00〉? After
the H and X gates, we have

|ψ〉 = 1√
2

(|0〉+ |1〉)|1〉 (3.24)

and the CX gate transforms this into

|ψ〉 = 1√
2

(|01〉+ |10〉). (3.25)

If we look closely, we see that this is a state of the same form as that in
eq. 2.55, except we are now using |0〉 and |1〉 instead of |ψ1〉 and |ψ2〉. As
such, we observe that a CX gate can create an entangled pair from two
separate qubits in superposition, turning them into a de facto single object
until measurement.
The controlled-Z gate also creates entanglement, but acts in a different fash-
ion: when the control qubit is in state |1〉, a Z gate is applied to the target

32

3.1 Gate-model quantum computing 33

qubit. Effectively, this multiplies the coefficient of the |11〉 portion of a two-
qubit state by −1:

CZ (a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉) (3.26)
= a00|00〉+ a01|01〉+ a10|10〉 − a11|11〉. (3.27)

Since this state cannot be expressed as a product of two individual states, it
is indeed entangled, as implicit as it may seem. To convince ourselves that
CZ is in fact as much an entangling gate as CX is, let us look at a uniform
state |ψ〉 with all coefficients equal to 1/2. After action of the CZ gate, we
have

|ψ〉 = 1
2(|00〉+ |01〉+ |10〉 − |11〉)

= 1√
2

(|0〉|+〉+ |1〉|−〉), (3.28)

where {|+〉, |−〉} are defined in accordance4 with eq. 3.5. Suppose we measure
the first qubit: if we find |0〉, the second qubit has collapsed to |+〉; and if
we observe |1〉, the second qubit is now |−〉. It is really the same story, but
viewed from a different basis.
Now that we have briefly touched on measurements, we should better look
at the third posulate of quantum mechanics before proceeding any further.
According to this postulate, quantum measurements are described by a set
of measurement operators with their associated measurement outcomes, and
the probability P (k) of finding outcome k when the system is in state |ψ〉
is given by eq. 2.42. In the case of gate-model quantum computing, these
measurement operators are mostly computational basis projectors, i.e. prod-
ucts of |0〉〈0| and |1〉〈1|, depending on the number of qubits to be measured.
Logically, the measurement outcome associated with the |0〉〈0| projector is
commonly chosen to be 0 and that of |1〉〈1| is taken to be 1. This allows for
a convenient one-to-one correspondence between states and outcomes that
follows the paradigms of classical binary computing. Naturally, this can be
generalised to multiple qubits: a measurement on n qubits that collapses the
state to |x〉, where x is the binary representation of a number between 0
and 2n − 1, then yields the outcome x, which can be converted to decimal if
preferred.

4Identify |↑〉 ↔ |0〉 and |↓〉 ↔ |1〉.

33

34 Quantum computing

3.2 Adiabatic quantum computing
Adiabatic quantum computing was proposed as an alternative to gate-model
quantum computing by Farhi et al. in 2000 [24]. It approaches quantum com-
puting quite differently from the gate-model formalism, in that no unitary
operators are explicitly applied to prepared quantum states, and no circuit
is built to solve a problem. Instead, one seeks to perform a computation by
preparing an initial state of the system, and evolving the state towards the
desired output state through a smooth, adiabatic transition of the hamilto-
nian.
To understand what an adiabatic transition means, let us look at a classical
example. Consider a ball rolling at a constant velocity on a large, flat friction-
less plane. If we would abruptly lift up the plane, the ball would jump and
bounce a few times before rolling on. However, if we gently raised the plane,
the ball would continue rolling undisrupted, as if nothing had changed at all.
The latter situation is an instance of an adiabatic process, in which the ex-
ternal conditions (the height of the plane) are changed slowly enough for the
internal conditions (the ball rolling on the plane) to remain (approximately)
the same.
In quantum mechanics, we can formulate an adiabatic process by identify-
ing the system state as the internal condition and the hamiltonian as the
external condition. In other words, we claim that, whenever the system is
in some eigenstate |ψi(t)〉 of an hamiltonian H(t), both of which depend on
time, the system will (approximately) remain in the same state if H(t) varies
sufficiently slowly in time. To back this claim though, we need to state ex-
plicitly what “sufficiently slowly” means. Such a definition is given by the
following theorem [25].

Theorem 1. A quantum mechanical system described by a hamiltonian H(t)
with eigenstates |ψ1(t)〉, . . . , |ψN(t)〉 and eigenenergies E1(t), . . . , EN(t), which
is in eigenstate |ψi(t)〉 of H(t) at t = 0, will (approximately) remain in the
same state at t = T , up to a global phase, as long as

|〈ψj(t)|∂tH(t)|ψi(t)〉|
|Ei − Ej|2

� 1 ∀j 6= i (3.29)

at any time t ∈ [0, T]. Here, ∂t is shorthand notation for ∂/∂t.

Note that |ψi(t)〉 as well as Ei(t) do change as time passes; but the point here
is that, as long as H(t) does not change too fast, and the energy difference,
also known as the gap, between two states is small enough, |ψi(t)〉 will remain
the i-th state in the list ranked by energies.

34

3.2 Adiabatic quantum computing 35

In practice, we do not need all eigenstates of the hamiltonian; the ground
state will be sufficient. After all, the ground state is the easiest to prepare:
as we drain energy from the system, it will reach the lowest energy state by
itself. So the procedure for adiabatic computing is as follows: take some initial
hamiltonian HI and prepare its ground state, then adiabatically transition
it into a different hamiltonian, the problem hamiltonian HP , whose ground
state encodes the solution to some problem we wish to solve. To guarantee a
smooth transition, we ensure that the total hamiltonian H is of the form

H(s) = A(s)HI +B(s)HP (3.30)

where s := t/T (with T the total transition time), so that the evolution
progress is expressed by a parameter in the interval [0, 1] instead of one that
depends on an arbitrary evolution time T . The coefficients A(s) and B(s),
then, are smooth functions such that A(s)+B(s) = 1 ∀s subject to H(0) = HI

and H(1) = HP . In this context, we can adjust the adiabatic condition from
eq. 3.29 to the following requirement [26]:

1
T

max
s∈[0,1]

|〈ψ1(s)|∂sH(s)|ψ0(s)〉|
|E1(s)− E0(s)|2 � 1. (3.31)

This form of the adiabatic condition imposes a lower bound on the complexity
of any method following this procedure, for the total evolution time T is
constrained by the inverse square of the gap between the ground state and the
first excited state. The simplest choice of A(s) and B(s), which is employed
by many adiabatic quantum algorithms, is

A(s) = 1− s, B(s) = s, (3.32)

though this choice is not guaranteed to be optimal in terms of complexity,
and may be superseded by other problem-specific choices for A(s) and B(s)
[27].
Adiabatic quantum computing has been shown to be equivalent in comput-
ing power to gate-model quantum computing [19]. That is, any gate-model
computation can be performed by an adiabatic algorithm with at most poly-
nomial overhead, and vice versa. The core of the proof lies in a trotterisation
of the adiabatic hamiltonian, but that is only part of the story—the details
are beyond the scope of this thesis, and can be found in the paper. In any
case, the equivalence allows us to put both methods on the same footing. As
such, it is convenient to express adiabatic quantum computing in terms of
the computational basis we defined earlier, so as to perform computations
directly similar to gate-model circuits.

35

36 Quantum computing

Let us consider a simple example of adiabatic computation following the
paper by Farhi et al. [24]. Say we have a qubit which we want to be in the
state |1〉 at the end of the adiabatic evolution. For this we should take a
problem hamiltonian with a high eigenenergy for the |0〉 state and a low
eigenenergy for the |1〉 state, so that the ground state will be |1〉. An option
is

HP = 1
2 + 1

2Z, (3.33)

with Z the Pauli z matrix, as usual. How about the initial hamiltonian?
We cannot choose a hamiltonian that commutes with HP , as the two would
share an eigenbasis. Because of this, we would not be guaranteed to find the
ground state of HP at the end of the transition, as the energy levels may
cross rendering the gap zero. Instead, we shall take

HI = 1
2 −

1
2X, (3.34)

whose ground state is the uniform superposition 1√
2(|0〉 + |1〉). Intuitively,

from this initial state the system can “go anywhere”, and is likely to reach
the ground state of HP . Lastly, we take the interpolation coefficients from
eq. 3.32. The eigenenergies, as functions of s, can be found to be E±(s) =
1
2(1 ±

√
1− 2s+ 2s2), and are shown in fig. 3.1. As we can see, the gap

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

E−

E+

s

E

Figure 3.1. The two eigenenergy levels of H(s) = (1 − s)(1
2 −

1
2X) + s(1

2 + 1
2Z),

with the ground state energy trajectory shown in blue.

36

3.3 Quantum annealing 37

between the two energy trajectories is reasonably large, so we can expect a
system prepared in the initial ground state to follow the blue line towards
the problem ground state, being |1〉. This precisely produces the answer we
were looking for.
Now, one may be wondering why we need an adiabatic algorithm if we could
prepare the ground state of HP directly. In the trivial example, this is indeed
the case: preparing a system in a Pauli z ground state is no more difficult
than preparing it in a Pauli x state. However, most problem hamiltonians,
even though they may be realisable in a laboratory setup, have hard to pre-
pare ground states and small energy gaps. This is the case also for quantum
annealing, which we will discuss in the next section. As such, it is more
practical to start in with an eaay-to-prepare initial ground state, such as the
ground state of the initial hamiltonian in eq. 3.34, and let quantum dynamics
take care of the rest through adiabatic evolution.

3.3 Quantum annealing
Quantum annealing is a special case of adiabatic quantum computing. In
quantum annealing, computation is performed on a collection of qubits be-
having as quantum spin particles, which are connected as a graph. Each
connection in the graph between a pair of qubits represents an interaction
though which the pair contributes to the total energy of the system. In ad-
dition, each qubit carries its own energy, through a constant magnetic field
(refer to eq. 3.3). This arrangement is known as the Ising model, named after
the physicist Ernst Ising. The hamiltonian of an Ising system is given by

H = −
∑
i

hiZi −
∑
〈i,j〉

JijZiZj (3.35)

where hi are the single qubit energies, Jij is the interaction energy between
qubits i and j, and the sum in the second term runs over all connected pairs
(i.e. not necessarily all possible pairs). With this formulation, it is natural to
express the qubits in the computational basis, as we have done before. Since
the computational basis is the eigenbasis of Z, we see that qubit i in state |0〉
contributes a value of −hi to the total energy, and a qubit in state |1〉 adds
an energy +hi. The couplings work similarly: if two connected qubits 〈i, j〉
are in the same state, they will produce an energy −Jij, and if they are in
opposite states, they will contribute +Jij to the total energy.
The presence of the linear energies hi and the interaction energies Jij allow
for a great deal of flexibility in this system. Indeed, the ground state is
completely determined by the energy values, which are up to us to choose.

37

38 Quantum computing

Finding this ground state however, is not generally easy. For certain artificial
configurations, for example where the interacting energy is zero, or where
the linear and interacting energies carry the same sign, we can immediately
give an answer as to what each qubit will be in the ground state. But for an
arbitrary configuration, this is not a simple question. In fact, solving an Ising
spin system has been shown to be NP-hard [28, 29], and as such one cannot
expect the task of preparing a system in an Ising ground state to be easy.
For this reason, the method of quantum annealing employs adiabatic com-
putation to reach Ising ground states, using the hamiltonian in eq. 3.35 as
the problem hamiltonian. In line with what we discussed earlier, the initial
hamiltonian, or driver hamiltonian, is taken to be the sum of all individual
Pauli x operators, whose ground state is the uniform superposition over all
qubits. That is:

HI = −
∑
i

∆iXi (3.36)

where ∆i is some energy coefficient that is not particularly important for us.
Through this procedure, we have now constructed a quantum model of com-
putation: a user supplies a problem casted in an Ising form, though careful
selection of the linear and interacting energies, whose solution is the ground
state which is found through adiabatic quantum computation. Unfortunately,
this is not a universal quantum computational model, since the reduction of
certain problems to an Ising form (and vice versa) requires exponential re-
sources [30]. As such, quantum annealing should be regarded as a subclass of
adiabatic quantum computation. Nonetheless, it is still a very useful model
for attacking specific combinatorial optimisation problems.
Sometimes, it may be useful to formulate problems that fit an Ising model in
a binary (0, 1) fashion instead of a spin (1,−1) representation. For this one
needs to define a binary variable for each qubit as bi = 1

2(1− si), where si is
the spin (written as being the positive-energy or negative-energy eigenstate of
Zi) of the qubit in question. As one can show through some simple algebraic
manipulations, this representation shift transforms the Ising problem into
the minimisation of the objective function

Obj(b,Q) = b>Qb

=
∑
ij

Qijbibj, (3.37)

where b is the vector of all binary variables bi, and Q is an upper triangular
matrix. This formulation is known as a quadratic unconstrained binary op-
timisation problem, or QUBO for short. “Quadratic” refers to the fact that

38

3.3 Quantum annealing 39

only second-order products of binary variables bibj appear in the objective
function. The advantage of a QUBO form is that one can abstract away the
physics of Ising spins and energies, and simply define an optimisation prob-
lem by penalising certain binary variable combinations through a numerically
large entry in the matrix Q for the corresponding pair, and rewarding others
with a small (or negative) entry.
A quantum annealing device which implements Ising model computation as a
means for problem solving was developed by D-Wave systems, inc. [3]. As of
this writing, the newest generation of this quantum annealer is the D-Wave
2000Q featuring 2048 qubits, which we have at our disposal for research
at Volkswagen through a cloud-based service. On the annleaing chip, these
qubits are laid out in an arrangement that was named the Chimera graph.
A subset of this graph is shown in fig. 3.2 [31, 32]. As we can see, not all

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Unit cell

Figure 3.2. The D-Wave Chimera architecture as implemented on the 2000Q
chip. The graph consists of 8-qubit unit cells (blue connections), which are linked
to other unit cells (red connections).

39

40 Quantum computing

qubits are connected; the Chimera architecture consists of several 8-qubit
bipartitely interconnected unit cells, which are themselves sparsely connected
and laid out in a 16×16 grid to form a structure of 2048 qubits. For problems
that require more connections than the chip can offer, the D-Wave software
will use additional qubits to make up the deficit. In the next chapter, we will
show how to construct an algorithm for solving a finite-element problem from
the field of automotive design, that recently became a point of interest for
Volkswagen, which is a hybrid approach employing both classical processing
and quantum annealing.

40

Chapter 4
Quantum-assisted finite-element design
optimisation

In this chapter, we discuss a hybrid quantum-classical algorithm for shape
optimisation of finite-element 3D objects against given physical conditions.
Our work was inspired by research at Volkswagen into acoustic scattering of
sound pressure by an external vehicle mirror, caused by air resistance when
the vehicle is driving. Since such noise can be a nuisance for the driver, there
is a need for optimised mirror design that generates less noise for the driver.
We present an algorithmic solution to a simplified version to this problem,
modelling sound waves as rays, similarly to lighting algorithms in computer
graphics, and the mirror shape as a low-resolution sphere.
The algorithm iteratively adjusts the shape of the object through a quan-
tum annealing subroutine. We thoroughly discuss the quantum part of the
algorithm, which is expressed as a QUBO problem, allowing a quantum an-
nealing device to find the minimum-energy configuration corresponding to a
(sub)optimal shape. Tests were performed on the D-Wave quantum anneal-
ing chip; we report and discuss the results of the tests showing success of the
algorithm in finding an optimised shape.
This chapter is structured as follows. Sections 4.1 and 4.2 briefly discuss
the research field of finite-element methods, the problem we address and its
context in vehicle engineering, and how the two relate in our work. Other
scientific publications relevant to this work, is mentioned in section 4.3. Sec-
tion 4.4 outlines our method for solving the problem, including a detailed
description of the QUBO formulation and the procedure that our proposed
algorithm follows. Section 4.5 showcases the results in terms of shape optimi-
sation that we obtained by executing the algorithm, and examines a number
of features and limitations of the algorithm that appear from these results.

41

42 Quantum-assisted finite-element design optimisation

Lastly, we present our conclusions in section 4.6 and give an outlook on
possible future work in section 4.7.

4.1 Introduction: finite-element methods
Finite-element methods (FEM) are a general group of numerical methods
used in various tasks that revolve around the analysis of solid 3D objects
subject to physical conditions. Most well-known is the application of FEM
in the investigation of the strength and deformation of solids with a geomet-
rically complex shape, because here the use of classical methods, e.g. beam
theory, proves to be too time-consuming or intractable. Logically, the FEM is
based on the numerical solution of a complex system of differential equations.
The computation domain, e.g. the solid, is divided into finitely many subdi-
visions of simple form, or ‘elements’, whose physical behaviour can be well
calculated due to their simple geometry with well-known elementary func-
tions. The physical behaviour of the whole body is modelled in the transition
from one element to the next, through very specific problem-dependent con-
tinuity conditions that must be fulfilled by the elementary functions. These
functions contain parameters that usually have a physical meaning, such as
the shift of a certain point in the component at a given time. The search for
the motion function is thus returned to the search for the values functions’
parameters. By using more and more parameters such as more and/or smaller
elements and higher order functions, the accuracy of the approximate solu-
tion can be improved. The development of the FEM was possible in essential
stages only by the development of powerful computers, since it requires con-
siderable computing power. Therefore, this method was formulated from the
outset to be processed on computers. Further information can be found in
the work by Pepper et al. [33].

4.2 Quantum-assisted design optimisation
In this research, we are not so much interested in the precise physical mod-
elling of solid object through finite-element methods. Instead, focus on op-
timising the design of such a solid object, modelled as a finite collection of
small elements, in the context of physical criteria. With the algorithm we
introduce in the following sections, we are able to find designs based on a
quantity that we wish to minimise. One practical example, which we have
considered for this research, concerns minimising the wind noises on an ex-
ternal mirror of a vehicle. Another instance concerns minimising the noises

42

4.2 Quantum-assisted design optimisation 43

Figure 4.1. Simulation [38] of sound waves scattered by an external vehicle mirror.

through vibrations caused by the engine or different road conditions in a
vehicle. The areas to optimise are commonly obtained with a complex finite-
element simulation (fig. 4.1), and evolutionary algorithms have proven to be
very valuable for searching the design space [34–37]. As one part of the wind
noise prediction simulation chain, we can compute acoustic sources on the
mirror surface. This is an instance of a so-called acoustic scattering prob-
lem, which has to be solved in order to extract only those sources which are
most relevant (noise-causing) at the position of the passengers. Solving the
scattering problem is very time-consuming, especially in real vehicle appli-
cations, where the number of elements can be in the order of millions. Even
for relatively few, a direct solver implementing straightforward matrix inver-
sion quickly runs into memory and computation time limits. Thus, we are
after finding an algorithm that scales better with an increasing number of
elements.
To this end, we employ quantum annealing for performing design space
search. Now, the present state of quantum computing does not allow us to
compete with classical algorithms in terms of number of elements or speed, as
the currently newest version of the D-Wave quantum annealing unit (QAU),
containing approximately 2048 qubits which are not fully interconnected,
can only reliably find minor embeddings for shapes with up to 50 surface
elements, as appeared from our experiments. Of course, for treating a shape
with more than 50 elements, we could split the problem and separately submit
the chunks to the QAU. However, this comes with an unpleasant overhead
barring serious attempts for scaling up the computation to larger shapes.
In the proposed algorithm, we start with an initial shape and intend to find a
new shape that deflects sound waves emitted by an acoustic monopole source
such that the sound pressure within an area at another position around the
shape is minimised. In the same instance, our algorithm must be approx-
imately form-preserving, as in the end the shape should still resemble the

43

44 Quantum-assisted finite-element design optimisation

Figure 4.2. Acoustic monopole emitting a spherical wave scattered by a rigid
sphere.

initial design. In the scenario we describe, the initial shape is a sphere con-
sisting of N surface elements, which is hit by sound waves emitted from an
acoustic monopole. Fig. 4.2 shows microphones positioned around the shape,
and at any position of choice the sound pressure must be minimised by chang-
ing the sphere’s shape. As the size of the current D-Wave QAU is limited to
2048 qubits and each qubit bears only six connections to neighboring qubits,
we make a number of assumptions and approximations in order to make this
problem feasible for submission to the QAU with a reasonable number of
elements. More complex formulations however are possible, but adding more
interactions would require use of more qubits, which would force a decrease
in the number of elements.

4.3 Related work
Before we move on to the description of the quantum-assisted algorithm, we
would like to mention two papers that we deemed especially relevant to our
work.
The first of these is an article proposing a gate-model quantum algorithm for
simulation-focussed finite-element analysis (FEA) [39]. As solving linear sys-
tems of equations is the key as well as the most computationally demanding
step in FEA, the quantum part which is claimed to accelerate the process in-
deed aims at solving these linear equations. It does so through application of

44

4.4 Approach 45

the HHL algorithm [40], which was introduced as a quantum linear solving
method with polylogarithmic complexity. The authors show that the pro-
posed quantum algorithm, when tasked to produce a solution to a boundary
value problem (BVP) within a reasonable margin of error, exhibits a poly-
nomial speedup as compared to standard classical methods, provided that
the dimension of the BVP is large enough. This is a striking result, seeing
as the HHL algorithm itself displays exponential speedup. According to the
authors, the discrepancy arises from the necessity to measure and extract
information from the quantum state returned by the linear equation solver,
in order to deliver a solution to the BVP that may be fairly compared to
that of a classical algorithm. While the problem discussed in this paper is
of a different calibre than what we are eyeing here, it is still a very interest-
ing result, and may give an indication as to what speedup one could expect
for a problem related to ours, if one were to approach it with a quantum
computational method.
Another paper that touches our research more closely discusses redistribution
of traffic flow through a hybrid-classical approach with the aid of an E-Wave
QAU [11]. In this paper, congestion on city roads as caused by traffic travel-
ling through this city is modelled through occupancy values of road segments,
from which an objective function is defined. The authors show that this ob-
jective function can be expressed as a QUBO problem, and demonstrate that
submission of this QUBO to the E-Wave QAU rendered a better distribu-
tion of traffic and a congestion decrease in the test cases. The optimisation
problem is constructed so that each vehicle is assigned a number of different
alternative routes, creating a combinatorial problem. In this context, vehi-
cles occupying the same road segment, which is what needs to be avoided
in the solution, contibute a positive off-diagonal entry in the QUBO matrix;
the QAU then solves the matrix and assigns a route choice to each vehicle.
Iterative execution of this routine eventually alleviates the traffic congestion.
In the development of our algorithm for finite-element shape optimisation,
the expression of the QUBO matrix was inspired by this work. In particular,
we incorporate a penalising term for infeasible solutions into the matrix, in
the same fashion as shown by the authors of this paper.

4.4 Approach
In the definition of the sound scattering problem, the major simplification
we make, to ensure that the resulting formulation is a finite-element method
that is well-suited for the QAU, is to approximate sound waves as rays. That
is, propagation of sound waves is treated similarly to the propagation of

45

46 Quantum-assisted finite-element design optimisation

light as done in graphical raytracing [41, 42]. The most important reason for
this approximation is that it allows us to consider each element separately
in terms of its contribution to the measured sound pressure, as it avoids
the necessity to construct a wave-based model harbouring high degrees of
interaction between elements through sound wave interference. After all, the
multitude of incident and scattered sound waves creates a highly complex
situation that cannot be described without distant (i.e. non-neighbouring)
element-element coupling. Since we seek to devise a QAU-assisted finite-
element method for optimising a shape, finding a way to describe a ‘first-
order approximation’ with only neighbour couplings is more important than
figuring out a very accurate scattering solution. Since we know that sound
waves in reality reflect linearly off a surface identically to light rays, we use
this as the approximation to base our quantum-assisted algorithm on.
The algorithm is a 3D search routine, which iteratively considers different
candidate positions for each vertex in the shape, and then lets the QAU decide
which vertex arrangement causes the least number of rays to be reflected
towards a microphone. This microphone is represented by a rectangularly
bounded plane positioned next to the shape (see fig. 4.3). In each iteration,
the routine assigns to each vertex K ‘mutations’, which are small random
deviations from the original vertex position; that is, for each vertex vi in
the set V of vertices, it considers vi + dvi1, . . . ,vi + dviK with dvij small. For
each triangle (otherwise known as simplex), the partial loss, denoted by the
symbol `, and being the amount of pressure received from this simplex, is
computed separately for each of the K3 triangle configurations created from
the vertex mutations (i.e. three vertices per triangle, and K mutations for
each vertex). The QUBO matrix Q is then constructed so that it contains, for
each vertex, the loss information associated with the simplices neighbouring
the vertex. Based on this information, the QAU will choose the least-loss
vertex configuration among the ones supplied, and use these as the input for
the next iteration. This continues until convergence or for a given number of
iterations.
A more detailed description of the QUBO formulation is provided in the next
section.

4.4.1 QUBO problem formulation
Define S as the set of all simplices s determining the shape, N = |V | and C
as the set of all configurations c over the entire shape, where c is a list of ver-
tex mutation assignments {(i, j)}, with i ∈ {1, . . . , N} and j ∈ {1, . . . , K},
indicating assignment of mutation j to vertex i (i.e. vi 7→ vi + dvij). Each
configuration is a complete list, in that every vertex is assigned a mutation.

46

4.4 Approach 47

Figure 4.3. A rigid sphere, which serves as the initial shape, and a rectangular
area at which the sound pressure must be minimised. The mere purpose of the
colour scheme is visual aid.

Define a loss function L(S, c), which maps a configuration c to a loss value,
to be the total of the partial losses `(s, c) of simplices s ∈ S for configuration
c,

L(S, c) =
∑
s∈S

`(s, c), (4.1)

and a loss partition function Z(S,C), the sum of the loss function over all
configurations:

Z(S,C) =
∑
c∈C
L(S, c) =

∑
c∈C

∑
s∈S

`(s, c). (4.2)

In this form, Z is a function of KN configurations. Now, we observe that
this sum can be rewritten by visiting all edges (v,w) in the edge set E, and
considering for each edge the two simplices adjacent to that edge. Since each
simplex has three edges, this means each simplex is counted thrice, so we
divide this new total by 3, to obtain:

Z(S,C) = 1
3
∑
c∈C

∑
(v,w)∈E

∑
s∈S(v,w)

`(s, c), (4.3)

47

48 Quantum-assisted finite-element design optimisation

where S(v,w) is the set of the two simplices adjacent to edge (v,w).
Now notice that there are KN−3 configurations which fix a triple of muta-
tions for three vertices of a simplex s, and are thus equivalent for this partic-
ular simplex. As such, instead of counting each configuration separately, we
consider only K3 configurations that are nonequivalent with respect to this
simplex to sum over (represented by the set Cs), and multiply the result by
KN−3:

Z(S,C) = KN−3

3
∑

(v,w)∈E

∑
s∈S(v,w)

∑
c∈Cs

`(s, c). (4.4)

This representation of the partition function now gives us an intuitive way
to define a QUBO matrix Q for this problem, which is to be minimised by
some binary vector x which represents a configuration c(x). The edge pairs
naturally correspond to the off-diagonal terms of this matrix: for any edge
pair (vi1 ,vi2) with mutations (i1, j1) and (i2, j2) respectively, we only need to
sum over the partial loss values for all possible configurations regarding the
two neighbouring simplices. If we define ˆ̀(s, j1, j2, k) to be the partial loss
from a simplex s adjacent to edge (vi1 ,vi2) (that is, s ∈ S(vi1 ,vi2)) when its
third, off-edge vertex is assigned mutation k (while vi1 is assigned mutation
j1 and vi2 is assigned mutation j2), we thus obtain the following matrix form:

Qi1j1
i2j2 = α

∑
s∈S(vi1 ,vi2)

K∑
k=1

ˆ̀(s, j1, j2, k). (4.5)

Here, α is an energy scaling factor that absorbs the KN−3/3 in front of the
sum in eq. 4.5 (in practice, this KN−3 will turn out to be huge, so adjustment
is necessary). In this form of Q, each entry fixes an edge, and a configuration
for both vertices of this edge. Since Q contains K rows and K columns for
each vertex, it is an NK × NK matrix. In this description, we view each
binary entry xij of x as representing whether mutation (i, j) is included in
the configuration list of c(x) (in which case xij = 1) or not (implying xij = 0).
Lastly, it is important to make sure the QAU returns a result vector x such
that each vertex is being assigned only one mutation in the corresponding
configuration c(x). Since x is binary, this is equivalent to requiring

∀i : 0 =
(

K∑
j=1

xij − 1
)2

= −
K∑
j=1

xij + 2
K∑
j=1

K∑
j′>j

xijxij′ + 1. (4.6)

48

4.4 Approach 49

A straightforward way to enforce this requirement is by adding it as a penalty
term to the loss function with some large constant penalty coefficient λ, as
proposed in the paper on QAU traffic flow optimisation [11]:

L̃(S,x) = L(S, c(x)) + λ
∑
i

(
K∑
j=1

xij − 1
)2

. (4.7)

In the QUBO matrix, this directly translates to adding −λ to the diago-
nal elements Qij

ij and adding 2λ to the off-diagonal elements Qij
ij′ (j′ > j)

corresponding to vertex vi. Provided λ is large enough, this measure guaran-
tees the QAU sets exactly one of the bits xi1, . . . , xiK to 1, as any infeasible
assignment would cause an increase in loss that would be higher than any
possible gain from selecting a different configuration.

4.4.2 Algorithm
With an overview of the procedure in our approach, and an explanation of the
QUBO formulation, we can now turn to the algorithm itself. This iterative
algorithm executes the following steps.

1. First, we generate the low-resolution mesh of an initial spherical shape.
The vertices of this shape are conveniently represented as rectangular lat-
tice points in the (θ, φ) space of spherical coordinates (the radius r may be
chosen equal to unity without loss of generality). The edges of the mesh
can then by found by Delaunay tessellation of this lattice. With the method
of Delaunay triangulation, points in the R2 plane are transformed into tri-
angles so that there are no other points within the circumscribed circle of
each triangle. The method is used, for example, to optimize calculation net-
works for many finite-element methods. As a result, the triangles of the edge
set have the largest possible internal angles; mathematically speaking, the
smallest interior angle over all triangles is maximized. This feature is very
desirable in computer graphics because it minimizes rounding errors. The
algorithm responsible for computing Delaunay tessellations is explained in
detail by Dobkin et al. [43]. Given the vertices and edges in spherical co-
ordinate space, a 3D spherical shape is constructed by the coordinate map
xi = sin θi cosφi, yi = sin θi sinφi, zi = cos θi. The convex hull of this shape
is created around these 3D dots by drawing a face for all triangles, and the
outward normal for each triangle is calculated. After this initial setup, the
sequence of iterations starts.

2. As the first step in each iteration, K vertex mutations are computed for each
vertex. The mutations are chosen probabilistically such that dvij is within a

49

50 Quantum-assisted finite-element design optimisation

sphere of decreasing radius ρi = βRit
−µ, with t the current iteration and µ a

constant. That is, each dvij is picked with (uniformly) random tangential and
azimuthal angles, and uniformly random radius in the interval [0, ρi). Here,
β acts as a control parameter setting the step size of the algorithm, and Ri

is a shape-dependent bound for each vertex, whose purpose is to prevent the
shape from becoming chaotic.
By chaotic we mean the shape having too sharp corners, vertices extruding
too far from the shape, edges intersecting other simplices etc., as well as the
shape generally containing too many or too deep concavities. In practice, Ri

is determined by a soft convexity constraint which ensures that, as long as
β ≤ 1, moving a vertex vi by a distance ρi in any direction will approxi-
mately retain the convexity of the shape. In a two-dimensional case, such a
convexity constraint can be made exact by introducing bounding lines that
restrict mutations to certain areas in 2D space, as shown in fig. ??. However,
this is not directly translatable to our 3D structure. One needs to introduce
bounding planes in place of the bounding lanes, but since each vertex neces-
sarily has more than three neighbours (from four to eight, to be precise), no
such planes can be unambiguously defined. For this reason, we use a plane
for each vertex with least square distances to its neighbours as an alternative
bounding plane, which softens the convexity constraint. Since preserval of
the convexity from the viewpoint of one vertex depends only on its neigh-
bour vertices (and itself), Ri is defined precisely by the position of vi and
the position of its neighbours.
Furthermore, in addition to this (1, K)-like search method (in analogy to
(1, λ) search in evolutionary strategies, with selection occurring in step 5),
we implemented an option for (1 + [K − 1]) search by allowing dvi1 = 0 for
all vertices i.

3. For each simplex s, we compute the K3 partial loss values ˆ̀(s, i, j, k). These
are determined by casting a set number of rays towards that simplex when its
first vertex is in mutation i, its second in mutation j and its third in mutation
k, and counting the fraction of rays that hits the rectangular microphone
plane.

4. From these partial loss values, the NK ×NK-size QUBO matrix Q is com-
puted as defined in the previous section. This matrix is then submitted to
the QAU.

5. The QAU returns an NK-size bitstring x containing the preferred mutations
of each vertex that yield minimal loss among all configurations. As mentioned
in section 4.4.1, this bitstring is of the form [x11, x12, . . . , x1K |x21, . . . , x2K |
. . . |xN1, . . . , xNK], where for each vertex i, only one of the bits xi1, . . . , xiK
is 1, indicating the chosen preferred mutation for this vertex, and the others

50

4.5 Experimental results 51

are 0. The shape is subsequently adapted according to this bitstring.

6. Steps 2–5 are repeated as often as necessary.

In the following, we show and discuss some of the resulting shapes that we
have obtained from running this algorithm.

4.5 Experimental results
In our first experiment, we consider the situation with the monopole source
sitting at (2.5, 0, 0). The microphone is at x ≈ 2 and is approximately
bounded by y ∈ [−2, 2], z ∈ [−1.15, 1.15]. See fig. 4.4. We run the algo-
rithm with K = 3, β = 0.7 and µ = 0.18. We choose K = 3 in accordance
with the traffic flow optimisation paper [11], and to ensure that the prob-
lem can be run by the QAU (as a higher value for K requires more qubits).
At this point, we conduct (1, K) search by having the routine choose dvi0
randomly, as described in section 4.4.2. For the computation of the partial
loss values associated with the triangles, we sample 50 rays casted toward
each triangle. It must be noted that often either all or none of the rays end
up intersecting the microphone plane; however sampling more rays reduces

(a) (b)

Figure 4.4. Initial setup for the first experiment with the monopole at (2.5, 0, 0).
(a) Scattering of 300 incoming rays, casted from the monopole, off the spheri-
cal surface. (b) A significant number of rays is reflected backwards, intersecting
the microphone. The rays crossing the microphone in the centre are considered
incoming rays and are not counted towards the recorded sound pressure.

51

52 Quantum-assisted finite-element design optimisation

(a) (b)

Figure 4.5. Result after running the algorithm with the monopole at (2.5, 0, 0)
(see fig. 4.4). (a) The resulting shape. Again, rainbow colours are used for visual
support. The shape displays a sharp edge at the front, giving it a streamlined
structure. (b) Rays scattering off the new shape. All rays are directed around the
microphone plane in one way or another, as can be seen from the fact that no
outgoing ray intersects the microphone plane.

potential variance in the partial loss calculations, making the algorithm more
robust.
The resulting shape as determined by the algorithm is shown in fig. 4.5. As
one can see, the algorithm is successful in achieving its goal of minimizing the
sound pressure, expressed in the amount of sound rays, at the microphone.
It has found a way to adjust the front triangles such that each ray will either
scatter in the negative x direction or, if scattered backwards in the positive x
direction, travels around the microphone plane. This is clearly a consequence
of the sharp tip the shape has obtained, which was absent in the case of the
sphere.
It is worth noting that the rear of the sphere, at the far away end from
the microphone, was deformed into a seemingly random structure. This is
caused by the fact that no rays would hit this side in the first place; as such
the quantum algorithm has no information about it (meaning the quadratic
QUBO entries corresponding to those triangles are zero) and will choose a
random vertex in each iteration. As such, it would make sense, in a further
version of this algorithm, to prune these triangles in order to allow processing
of more detailed shapes (containing more elements) on the QAU. In this
work, however, we chose not to do this as our wish was to investigate the
effect of the algorithm on the entire shape. After all, our problem was inspired

52

4.5 Experimental results 53

(a) (b)

(c)

} Flattened

Extruding

(d)

Figure 4.6. Results and comparison after executing the algorithm with the
monopole at (0, 3, 2) with a lower step size. (a) At first, before shape adjustment,
rays intersect the microphone at three positions: at the upper left, at the upper
right and slightly to the left of the centre. (b) The shape returned by the opti-
misation algorithm now reflects the rays, which would initially hit the corners of
the microphone, away from it. However, the centre rays seem to remain in place.
(c) Partial loss shading of the initial sphere. Dark green triangles reflect no rays
towards the microphone, while a darker shade of red indicates higher partial loss.
Shade is normalised to the maximum partial loss of any triangle. (d) The final
shape. One can see that the right side of the shape has been flattened, having an
extruded point, which contributes to reflection away from the microphone.

by external vehicle mirror design, which does not allow for cut shapes. The
values for β and µ were chosen by trial-and-error search, by testing a small set
of combinations covering β ∈ [0.3, 1.0] and µ ∈ [0.15, 0.20]. We noticed that
a too low step size renders the algorithm incapable of sufficiently adapting
the shape within the given number of iterations, as it usually gets stuck in a

53

54 Quantum-assisted finite-element design optimisation

local, suboptimal point, which cannot be optimised any further. This seems
to occur in particular with (1 + [K − 1]) search. On the other hand, a too
high step size usually (especially in the case of (1, K) search) produces a
too irregular shape. A good example showing the consequence of choosing a
too low step size can be seen in fig. 4.6. Here, we moved the monopole to
(0, 3, 2) and chose a step size control β = 0.3. We observe that although two
sources of loss have been eliminated, one seems to be persistent. The result
in fig. 4.6(d) with only two triangles having nonzero partial loss (which, even
though not shown in the figure, is lower than that of the sphere in fig. 4.6(c))
is most likely considered as a local optimum by the algorithm, meaning it
chooses not to depart from there.

4.6 Conclusions
In this work, we have presented a finite-element method for optimizing a
three-dimensional shape under given physical criteria. By formulating an
approximation of this finite-element problem in a QUBO form, and by em-
bedding the corresponding matrix on the QAU as specified, we have been
able to show that it is possible to successfully carry out finite-element design
optimisation on a D-Wave QAU. We have shown that by supplying an initial
shape we can optimise the geometry to minimise a specified quantity, such as
sound pressure, at a target area around the shape or the vibration of single
elements, and in the same instance partially preserve the geometry. This is
important, as if we supply the design of an outside mirror of a vehicle and
intend to minimise the noise at the passenger’s positions, we still want to
end up with a design that captures all the properties a mirror must have.
Furthermore, we have demonstrated how to usefully combine the computing
power of a classical computer with that of a quantum computer. That is,
we calculate the sound pressure on an initial geometry classically and have
the QAU solve the problem prepared on the classical computer. It is this
combination of CPU and QAU efforts that in the end yields the desired
solution.

4.7 Future work
For the next version of the algorithm, we intend to find a formulation that
will incorporate additional constraints on the final shape. In addition, we
would like to add wave behaviour corrections to increase the degree of realism
in the model, or alternatively, discard the ray-casting approximation and

54

4.7 Future work 55

find a way to model sound waves directly. Additionally, we wish to explore
scalability of the algorithm, as we should be able to process shapes with more
elements by splitting the QUBO matrix with the qbsolv decomposing solver
tool [44], instead of having the D-Wave software find minor embeddings for
shapes with few elements. This will be of use in the future, when we expect
new D-Wave QAU generations. With these new chips having more couplers
between the qubits, we will be able to embed shapes with more elements
and hopefully determine smoother geometries. We will continue to focus on
laying the foundation for solving practically relevant problems by means of
quantum computing, quantum simulation, and quantum optimisation [45?
–50].

55

Chapter 5
Evolutionary quantum circuit learning

In this chapter, we investigate evolutionary algorithms as an approach for
learning quantum circuits for the purpose of doing classification tasks. We
consider two classes of such algorithms: a genetic algorithm (GA) and an
evolutionary strategy (ES). The GA is employed to find complete circuit
architectures that maximise fidelity based on the classification task we want it
to carry out; on the other hand, we use ES only to learn parameters in a given
quantum circuit, as it is a continuous optimisation method. Both approaches
are novel and diverge from the currently most popular methods for quantum
machine learning which apply gradient descent methods to known quantum
circuits (for example Farhi and Neven [51]). As such, this is exploratory work
which seeks to provide insight into the performance of these methods. To this
end, we conduct a number of experiments for both approaches, and report
on the quality of the results.

This chapter is structured as follows. In section 5.1 we give an introduction
to quantum circuit learning, which is the subcategory of quantum machine
learning which our methods fall into. This research field and the purpose of
evolutionary algorithms in its context are illustrated with a number of related
papers in section 5.2. A brief discussion of evolutionary algorithms is given
in section 5.3. In section 5.4, we present the genetic algorithm and a number
of machine learning experiments, which are discussed accordingly. The evo-
lutionary strategy is presented and discussed in section 5.5. We conclude the
chapter with a final discussion on evolutionary methods for quantum circuit
learning in section 5.6.

57

58 Evolutionary quantum circuit learning

5.1 Introduction: quantum circuit learning
For decades, neural networks have proven to be exceptionally useful in per-
forming essential artificial intelligence tasks, such as image recognition [52],
solving differential equations [53, 54] and natural language processing [55].
As quantum computing is making its way to the stage, interest in quantum
counterparts of these powerful networks is growing. First mentions of quan-
tum neural learning schemes were made in 1995 [56, 57], but few proposals
for concrete implementations were published until the late 2000s [58, 59].
Now, with prospects of high-fidelity quantum hardware [60, 61], quantum
machine learning has again become a hot topic [62]. It is in this light that
we present our work on quantum circuit learning, which can be considered a
subset of the quantum machine learning research area.
Quantum circuit learning is a gate-model scheme characterised by the use of
parametrised gates such as those in eqs. 3.16–3.18. Each gate angle becomes
a tunable parameter, and the parameter vector may be trained to obtain
a quantum circuit that acts as a classifier for some—either classically or
quantumly prepared—input data. This similarity to classical artificial neural
networks has led many to regard these as quantum neural networks, despite
the limited architecture and thus connectedness of quantum circuits1 [51].
In quantum circuit learning, the performance of a circuit described by a pa-
rameter vector can generally be expressed as the expectation value of some
appropriately chosen operator which represents the machine learning prob-
lem to be solved. Indeed, because of the probabilistic nature of quantum
mechanics, we cannot work with determinate circuit outputs, and must re-
sort to expectation values. Clearly, these expectation values must be evalu-
ated relative to the output state. Now, since a quantum circuit consists of
a sequence of parametrised unitary operations U(θ1)U(θ2) . . .U(θN), which
together form one big unitary2 U(θ), the expectation value of some operator
O relative to the output state can be written as

〈O〉(θ) = 〈0|U†(θ)OU(θ)|0〉 (5.1)

where we assume that the system starts in the initial state |0〉 := |0 . . . 0〉3,
1That is, in a quantum circuit, the number of output qubits always equals the number

of input qubits; and while one can ‘introduce’ ancilla qubits and ‘discard’ them afterwards,
connectivity is still different and less arbitrary as compared to standard artificial neural
networks.

2If U and V are unitary, then UV is unitary since (UV)†UV = V†U†UV = V†V = I.
3This can be assumed without loss of generality: we must choose some initial state, so

we might as well pick |0〉 for convenience, following the analogy to classical computing.
Moreover, this state is relatively easy to prepare as the ground state of the hamiltonian
−Z⊗ . . .⊗ Z.

58

5.1 Introduction: quantum circuit learning 59

which we will simply write as |0〉 from now on. The operator O may be a
hamiltonian, which carries a high eigenenergy for a bad candidate solution
to the problem and a low eigenenergy for a good solution. The goal in such
a scenario is then to optimise θ such that the energy is minimised, which
implies that U(θ) is a sufficiently good candidate solution. Another option
is to take for O a computational basis measurement of one or more qubits4.
This is a feasible approach if we know what the desired output states look
like, for example predicted labels in a supervised classification setting. In this
case, we can base a cost function directly on the expectation of the predicted
labels, and adjust θ based on the evaluation of this cost function, in the
same fashion as classical learning. This is indeed the approach we take in our
investigation of quantum circuit learning.
For a typical classification task, then, one needs to provide some input state
for each data instance vector φi. Such an input state may be prepared by the
action of a unitary operator V(φi) on |0〉. Definition of this unitary is not
trivial, and particular choices for V turn out to have significant consequences
on the learning behaviour. We will touch on this in later sections. In any
case, a typical cost function for a supervised quantum classifier, whose task
is to correctly classify a dataset {(φi, yi)} with yi being the class labels, may
take the following form:

L(θ) = 1
D

D∑
i=1

(
〈0|V†(φi)U†(θ)OU(θ)V(φi)|0〉 − yi

)2
(5.2)

with D the number of data instances. A straightforward way to optimise θ
against such a loss function is to perform a (stochastic) gradient descent, by
repeatedly evaluating the derivative ∇L(θ) and updating θ through the rule

θ(t+ 1) = θ(t)− η∇L(θ(t)) (5.3)

with η a learning rate. In some cases, the derivative ∇L(θ) can be com-
puted exactly with relative ease; in other cases, it may be more convenient
to estimate it as a finite difference. That is:

df
dx (x) ≈ f(x+ ε)− f(x)

ε
(5.4)

for ε small.
Naturally, as promising as quantum circuit learning may seem, it is not with-
out its own challenges. One major point of question is which circuit archi-
tecture to use for optimal learning. While this problem is also present in

4I.e. O =
∑2n−1

x=0 x|x〉〈x|, as mentioned in section 3.1.

59

60 Evolutionary quantum circuit learning

classical neural network learning, quantum circuits exhibit more degrees of
freedom than classical networks in terms of architecture. This arises from the
multitude of gates available for use in a quantum circuit in comparison to
neural networks which usually consist of only one node type5. Furthermore,
the performance of a circuit is very dependent on the placement and order of
its gates. After all, most of the commonly used quantum gates, such as the
Pauli gates, do not commute. Furthermore, the use of controlled gates (such
as CX and CZ) impacts the degree of entanglement of the quantum states
as they propagate through the circuit, which may significantly influence the
quality of the measurement outcomes as well as training speed. As such,
which circuit architecture to use is a highly nontrivial question, which has
no clear answer up to this day. Yet, many proposals for performant quantum
learning algorithms have been made, and we will have a look at a few of these
in the next section as we discuss a number of related papers.
Another issue inherent to these and comparable gradient descent quantum
circuit learning methods was addressed by McClean et al. [63]. In their pa-
per, Lévy’s lemma [64] is harnessed to prove that for parametrised quantum
circuits, the gradients for any expectation value of an operator tend to zero
as the number of qubits grows. More precisely, it is shown that the gradients
∂L/∂θi are Lipschitz continuous and their averages over all unitaries equal
zero. Then, from Lévy’s lemma it can be inferred that the variances of these
gradients approach zero exponentially as well, as the number of qubits in-
creases. That is, the gradients concentrate on their average values and vanish
for large qubit numbers. Now, given a parametrised N -qubit quantum circuit,
one cannot guarantee that the space of all parametrisations (i.e. all circuits
with all angles set) covers the entire group U(N) of all unitary transforma-
tions on N qubits. In such a case, the result is indeed invalidated. However,
the authors show that for typical circuits of sufficient depth, the conditions
for convergence are satisfied, and the gradients do vanish.
The quest for the optimal quantum learning circuit architecture, as well as the
result by McClean et al, are our main motivations to investigate evolution-
ary algorithms for finding optimal parametrised quantum circuits for classi-
fication. First, evolution as a black-box method seems a valuable approach
for finding quantum circuits that we as humans would not have thought
of through theory and reasoning. Secondly, evolutionary algorithms can be
employed as an alternative to gradient-based methods for searching the pa-
rameter space of a fixed parametrised circuit. After all, the performance of
evolutionary algorithms does not depend on the calculation of any gradients,

5That is, per layer; of course, multiple different neural network layers are often com-
bined, but this may be done with quantum circuits too.

60

5.2 Related work 61

and may therefore circumvent the problem of vanishing gradients. Lastly, few
reports have been published on the combination of evolutionary algorithms
with quantum circuits, and the use of an evolutionary routine as a training
scheme for quantum circuits is a novel approach.

5.2 Related work
In this section, we discuss a number of papers which we consider to be re-
lated to our research subject of evolutionary quantum circuit learning. The
first two papers present a number of quantum learning algorithms and ar-
chitectures which have yielded positive results, and have inspired our work.
The remaining papers examine the method of using evolutionary algorithms
for reproducing given quantum circuits, an idea which we have extended to
quantum machine learning.
Firstly, we would like to mention a paper by Chen et al. [65], in which a ma-
chine learning approach is presented for optimal discrimination of nonorthog-
onal pairs of quantum states. As we mentioned in section 2.3, nonorthogonal
quantum states can never be distinguished with complete certainty. How-
ever, one can implement a POVM measurement strategy which minimises
the discrimination uncertainty, i.e. the probability that an inconclusive mea-
surement outcome is found. This is precisely the task of the proposed learning
algorithm. The authors show that a POVM on a state |ψ〉 can be implemented
by coupling it to an ancilla state |φ〉 initialised to |0〉 through a general uni-
tary acting on both states, and then applying a projective measurement on
the qubits of |φ〉. Since the general unitary can be parametrised, this gives
rise to a parametrised circuit whose optimal angles for a family of nonorthog-
onal states may be found by a continuous optimiser. The layout of this circuit
is covered in more detail in the paper. All in all, this approach serves as a
good example to show how architectures for quantum learning circuits can
emerge from the analysis of problems in quantum information theory (in this
case the discrimination of nonorthogonal states).
Grant et al. [66] address the problem of choosing a circuit layout quite differ-
ently. They base their circuits on experiments in simulating quantum many-
body systems through hierarchically structured tensor networks [67, 68]. The
authors note that such tensor networks are suitable for representing both
quantum circuits and neural networks, which hints at a possibly intricate
connection between the two. Combining this observation with the results
from refs. [67] and [68], they present a tree-like layout as a candidate for a
quantum classifier. In this setup, branches are formed by two-qubit unitaries
which discard one of their qubits, and the root of the tree is a projective mea-

61

62 Evolutionary quantum circuit learning

surement at the end of the circuit. In later sections, we implement a simplified
version of such a network for testing the evolution of circuit parameters.
Lastly, we would like to mention a number of publications [69–73] that discuss
the technique of producing quantum circuits through genetic evolution. Since
quantum circuits can be regarded as programs running on a quantum com-
puter, this task is well suited for genetic programming. On the other hand,
since a quantum circuit is represented as a collection of quantum gates, ge-
netic algorithms which encode gate sequences as genes are suitable methods
as well. In the published papers, both paths are followed, for the purpose of
reproducing existing circuits that implement known quantum algorithms, as
well as creating new quantum circuits. For our work, we take the genetic al-
gorithm standpoint. Our implementation of a genetic algorithm for quantum
circuit search was inspired by ref. [73].

5.3 Evolutionary algorithms
Evolutionary algorithms form a class of single- and multi-criterion optimi-
sation algorithms inspired by the phenomenon of biological evolution. In or-
ganic lifeforms, populations are shaped through selection and reproduction:
individuals that are not well fit to their environment are eliminated from the
population, while those which do get the opportunity to reproduce and give
birth to the next generation of offspring. In optimisation, one can apply the
same principle, by generating an initial ‘population’ P (0) of candidate solu-
tions and ‘evolving’ the set of candidates in a semi-controlled way so as to
end up with a candidate that satisfies the optimisation objective. In order to
do so, one needs to define a means of selection to distinguish well fit and less
fit individuals. In other words, one needs to define a fitness measure for each
individual, which can be used to rank individuals in a population so that the
fittest can be selected for reproduction. Usually this fitness value is directly
related to the solution quality with regards to the optimisation task. Note
that such a fitness definition is fixed, i.e. there is no changing ‘environment’
as is the case in biological evolution.
Besides selection, one must specify what the procedure of reproduction en-
tails. The idea of reproduction is to create new individuals (‘offspring’) from
those individuals in the population P (t) at time t which were selected for
reproduction (the ‘parents’), such that both the features which contribute to
the parental fitness are preserved (or ‘exploited’), and the candidate space is
searched (‘explored’) for possibly valuable new features. Of course, there are
a multitude of ways to go about this, but in general, production of offspring
from a number of parents consists of two parts: recombination and muta-

62

5.3 Evolutionary algorithms 63

select for
reproduction

recombine

mutate

select for next
generation

evaluate

initialise &
evaluateterminate

t ← t + 1

Figure 5.1. The evolution cycle, which starts with initialisation and fitness eval-
uation of the solution population, and ends when the termination condition has
been met.

tion. The generated offspring is then evaluated, and the fittest are chosen to
continue as the next population P (t+ 1). This cycle is shown in fig. 5.1.
In recombination, the descriptions of the parental solution candidates are
mixed together to form a new candidate. This part of the process is mainly
responsible for the exploitation aspect of the algorithm. Recombination can
be done, for example, by copying some features from the first parent, some
others from the second parent, and combining these, in such a way that the
offspring is well-formed. This is in analogy to genetic crossing over as it occurs
in biological reproduction, where parts of each parent’s gene are exchanged
to form a new gene. Another option, when each candidate is expressed as a
set of continuous values, is to generate the child as a (weighted) average of its
parents. Mutation, then, is achieved by randomly making small alterations to
the offspring candidates which are a result of parental recombination. In this
way, yet uncovered areas of the solution space, where better solutions could
be present than those witnessed in the population so far, are explored. In
this respect, mutation is a key part of the algorithm, as it is the driving force
behind progressive improvement of the population. However, one should be
careful not to rely on mutation too much, as otherwise the procedure may
become too chaotic or even turn into random search.
In the last decades, as evolutionary algorithms were developed, two main

63

64 Evolutionary quantum circuit learning

branches emerged: genetic algorithms and evolutionary strategies (as well
as their derivatives). Genetic algorithms more closely follow the biological
evolution of gene pools by encoding each solution candidate as a gene-like
string of information, using appropriate encoding and decoding functions.
The decoded form of the candidate is then used for fitness evaluation. By
representing each candidate as a gene, one can straightforwardly implement
crossover and mutation operators in accordance to biological genetics. In evo-
lutionary strategies, on the other hand, each individual is a vector in Rn, and
the reproduction operators act in continuous space. That is, recombination
is performed by computation of weighted means of high-ranking individuals,
while mutation is achieved through random sampling about those means.
In our research on the feasibility of evolutionary algorithms for quantum
circuit learning, we look at both the genetic algorithm (GA) and the evo-
lutionary strategy (ES) perspective for evolving quantum circuits. In this
framework, an individual may be either a (description for a) quantum cir-
cuit, or a parameter vector for a given circuit architecture. In the following
sections, we discuss our implementation of the recombination and mutation
operators, as well as a genetic representation for quantum circuits. We present
a number of experiments testing the performance of our evolutionary learn-
ing schemes, whose results are critically reviewed. For our ES-based learning
algorithm, we present a comparison to a basic gradient descent algorithm.

5.4 Genetic design of quantum circuits
In our investigation of evolutionary quantum circuit design we consider cir-
cuits built from a small gate set. The gate set G we use consists of the Pauli
rotation matrices RX, RY and RZ, as well as the controlled gates CX and
CZ. This set can be shown to be a universal gate set; i.e. all N -qubit uni-
tary transformations can be implemented as a sequence of these gates, up
to a global phase [74]. We do not use the Hamadard gate H, since it can be
expressed as the product of two gates in G:

H = iRY(π/2)RZ(π). (5.5)

Due to our lack of access to a universal gate-model quantum chip, which
could be used for evaluation of each quantum circuit, we simulate all quantum
circuits using the Cirq API by Google [75]. Cirq is an easily interfaced Python
API for programming quantum circuits, whose action on the initial state is
simulated through matrix operations. Although Cirq does not offer support
for the Pauli rotation gates, one can use the Pauli spin gates X, Y and Z
raised to a continuous power k ∈ [−1, 1], which are related to the Pauli

64

5.4 Genetic design of quantum circuits 65

rotation gates by eq. 3.19. From now on, we will use the term “rotation
gates” for these continuously exponentiated Pauli spin gates, and will use
the symbols RΣ and Σ (for Σ ∈ {X,Y,Z}) interchangeably. Now, given the
exponential increase of demanded computational power with the number of
qubits, this classical simulation method is only suitable for circuits of up
to 20–32 qubits, depending on the machine specifications and the circuit
complexity. For example, a machine with 16GiB RAM, which we use for our
experiments, runs into a memory error when trying to simulate a 30-qubit
circuit.

5.4.1 Genetic algorithm
With this simulation tool, we can straightforwardly implement the evalua-
tion part of the genetic algorithm, by decoding a gene into a circuit into a
circuit and simulating it with Cirq, while the rest of the algorithm deals with
the evolution of the gene pool. The genes that encode a quantum circuit are
conveniently expressed as a sequence of gate codes, or codons, each consisting
of three numbers, or “bases”, c1, c2 and c3 which together describe the quan-
tum gate. The first number c1 ∈ {0, 1, 2, 3, 4} represents the gate, being one
of the X, Y or Z rotation gates, CX or CZ respectively. The second number

X0.7

• Y0.6

• •

4 1 0.3 0 0 0.7 3 2 0.2 1 1 0.6

Figure 5.2. An example circuit encoding. The first gate is a CZ (c1 = 4) with
the second qubit (indexed by c2 = 1) as the control qubit, and the first next qubit
(being the third qubit) as the target qubit since c3 = 0.3 ∈ [0, 1

2). The second is
an X gate (c1 = 0) acting on the first qubit (c2 = 0) with angle k = c3 = 0.7. Next
we have a CX gate (c1 = 3) with the third qubit as the control (c2 = 2) and its
first next qubit (c3 = 0.2 ∈ [0, 1

2)) which, modulo three, is the first qubit, as the
target qubit. Lastly we have a Y gate (c1 = 1) on the second qubit (c2 = 1) with
angle k = c3 = 0.6.

65

66 Evolutionary quantum circuit learning

c2 ∈ {0, 1, . . . , N − 1} represents the qubit that the gate acts on. The last
number c3 ∈ [0, 1) is a continuous parameter. For RX, RY and RZ this repre-
sents the rotation exponent k (henceforth called angle) through k = 2c3− 1,
while for CX and CZ it represents the target qubit (with the qubit referenced
by c2 being the control qubit). In the latter case, if c3 ∈ [0, 1

N−1), the target
qubit is the first next qubit relative to the control qubit, wrapping around
to the very first qubit if necessary; if c3 ∈ [1

N−1 ,
2

N−1) it is the second next
qubit; and so on, until the last qubit, which is represented by the condition
c3 ∈ [N−2

N−1 , 1). An example of a circuit encoding is shown in fig 5.2.
In the reproduction phase, we repeatedly select two individuals to produce
one offspring, in a stochastic manner, such that the reproduction probability
πr(i) for individual i to be selected is proportional to its fitness f(i). Another
option is to relate πr(i) to the rank of i in the fitness-ranked population list.
We chose the first option, as we observed a notable fitness gap between the
elite (i.e. the fittest few individuals) and the lower ranked candidates in most
of our test runs. As such, we deemed it appropriate to lay more focus on
the elite through a fitness-proportional selection strategy, instead of using a
more balanced probability distribution based on the candidate ranking.
Recombination is done through multicut crossover with a randomly chosen
number of cuts, and is applied with probability pr. An illustration of this can
be seen in fig. 5.3. The number of cuts is determined by taking a uniformly
random number x ∈ [0, 1) and evaluating the expression

n(x) =
⌈
− 1

0.7 ln(0.97x+ 0.03)
⌉

(5.6)

where n(x) is the number of cuts to be made. A plot of this function is

Figure 5.3. An example of three-point crossover between two parental genes.
Between the cutpoints, codon sequences are exchanged so as to produce the two
bottom genes. In the algorithm, we only accept the first child and discard the
second.

66

5.4 Genetic design of quantum circuits 67

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

x

no
.o
fc
ut
s

Figure 5.4. Plot of n(x) (blue line) as well as its unrounded cousin (dashed line).
A single cut is most likely, followed by two cuts, and so on. The maximum number
of cuts with this definition of n(x) is six.

shown in fig. 5.4. The idea of this function is to allow for multiple cuts, while
keeping the actual number of cuts low. Since we typically encounter rela-
tively small circuits (∼6–20 gates), making many cuts splits up the circuit
in too many small pieces rendering the recombination process unpredictable
which hampers population advancement. In addition, certain gate combina-
tions may prove beneficial to the fitness of a solution candidate, and a high
number of cuts bears a high risk of separating the pieces of such a valuable
combination. With this function, a single cut occurs with 51.9% probability,
two cuts happen with 25.8% chance and three cuts are seen in 12.8% of the
cases. The average number of cuts is 1.831. These cuts are made (uniformly)
randomly between two codons (i.e. codons themselves are never split), as
long as the gene contains enough codons. In addition to crossover, we ap-
ply uniform recombination to the continuous parameters in the genes. This
assures that the angle space is searched as the routine is running, without
relying on mutations only.
Mutation happens in two ways: as a point mutation and as a codon mutation.
A point mutation changes a single base (c1, c2 or c3) in a codon to a uniformly
random number in its according domain. A codon mutation replaces an entire
codon with a randomly drawn new codon. The probabilities for point and
codon mutation are chosen such that the expected number of mutated bases

67

68 Evolutionary quantum circuit learning

in each gene lies between 0.8 and 1.4. Additionally, with small probability,
we insert and delete codon strings of random length into and from the genes
after mutation.
Evaluation of each quantum circuit is done in line with eqs. 5.1–5.2, with
U(θ) representing the circuit. Precise definitions are given in the following
subsection, where we give more elaborate descriptions of the learning tasks.
Selection of candidates for the next generation is done by (µ, λ) selection.
The main reason for this choice, as opposed to (µ + λ) selection, is that in
our test runs with the latter option, the algorithm would very frequently
get stuck in a local optimum with a lower maximum fitness than with the
former option. Lastly, we apply a catastrophe technique to prevent variation
in the population from dropping too far. When the standard deviation of
the fitness values of all candidates, which is a sufficiently accurate measure
of the variation, reaches a lower bound, all but the 10% fittest individuals
are discarded from the population and are replaced by randomly generated
new candidates. Since these new candidates have the opportunity to mate
with the elite candidates, new valuable features can thus be found that may
improve the quality of the population and that of the fittest individual. The
termination condition is determined by the fitness of the highest ranked can-
didate: if this surpasses a given threshold, the algorithm halts and returns
the best few circuits that were found.

5.4.2 Experiments
In order to assess the performance of the genetic quantum circuit learning
algorithm, we conduct a number of experiments using Cirq for simulation.
In the first of these experiments, the task of the genetic algorithm is to find
a circuit that preserves the input state, i.e. circuit whose operation is the
identity. This is a fairly simple task, since we already know the solution (the
empty circuit) which has a non-complex formulation. As such, it serves as a
good starting point for performance investigation. The circuit setup we use
for this experiment is the following:

|0〉

W(φ) U W′(φ)... ...

|0〉

(5.7)

Here, W(φ) creates a random quantum state from Pauli rotation and CX
gates, with the rotation angles given by the vector φ, U is the operation to

68

5.4 Genetic design of quantum circuits 69

be optimised (i.e. which, in the optimal case, is the empty operation) and W′

initially reverses the action of W (that is, W′(φ) = W†(φ)). The inclusion of
W′ makes it easy to verify whether the input state has been preserved, since
if U = I, we have W′UW = W′W = I, and a computational measurement will
yield |0 . . . 0〉. In this context, we define the fitness function as the average
probabilities P (0i) of the qubits i being measured in the |0〉 state:

f(U) = 1
N

N∑
i=1

P (0i |U)

= 1
N

N∑
i=1
|〈0i|W′(φ)UW(φ)|0 . . . 0〉|2, (5.8)

where 〈0i| denotes (the dual of) a state where the i-th qubit is in state
〈0|6. The random state producing operator W(φ), then, is composed from a
rotation part R(φ) and a non-parametrised entangling part C. The rotation
part consists of three Pauli rotation gates Xφ1Zφ2Xφ3 which together form
a general single-qubit unitary. The entangling part is inserted to make the
qubits inseparable7, and consists of a ladder of CX gates. That is:

|0〉

W(φ)

|0〉
...
|0〉

|0〉

=

|0〉 RX RZ RX •

|0〉 RX RZ RX •
... •

|0〉 RX RZ RX •

|0〉 RX RZ RX

(5.9)

where we have written RX and RZ in place of Xφ and Zφ for notational
convenience. The operator W′ reversing the action of W then consists of C†,
a reversed CX ladder, and R′(φ) = R†(φ) = R(−φ).
We first execute this algorithm for a varying number of qubits, in order to
see how quickly the empty circuit is found depending on the circuit size. The
population size µ and the offspring size λ were chosen based on manual search.
We noticed that population sizes above 9 did not produce significantly faster
convergence, while a smaller population resulted in longer execution times. As
such, µ = 9 seemed to be a suitable choice. As similar convergence optimum

6For the calculation of f(U), 〈0i| may be written as I1⊗· · ·⊗Ii−1⊗〈0|i⊗Ii+1⊗· · ·⊗IN .
7Otherwise, we could solve the problem for each qubit individually, which means that

devising a routine for finding a single-qubit empty circuit would suffice.

69

70 Evolutionary quantum circuit learning

0

2

4

6

8

10

3 4 5 6 7 8 10 12

ge
ne
ra
ti
on
s

qubits

Figure 5.5. Number of generations needed by the genetic algorithm with µ = 9
and λ = 36 to find the empty circuit on a varying number of qubits. All data
points are averages over multiple runs with the error bars showing the standard
deviation from the average.

was observed for a selection pressure of approximately 1/4, corresponding to
λ = 36. The result of the experiment with these values for µ and λ is shown
in fig. 5.5.
The most notable observation that can be made from this plot is the fact
that the empty circuit is found very quickly, i.e. in 4–6 generations on av-
erage, even for a higher number of qubits. More precisely, we notice a very
slightly negative trend in the number of required generations in relation to
the number of qubits, which is almost negligible. Next, we see that the stan-
dard deviation decreases at a higher number of qubits, with the deviation
for 3–6 qubits being clearly higher than for 8–12 qubits. This confirms that
the genetic algorithm is a highly random process. As apparent from the mea-
surements, the high standard deviation in the low qubit regime is due to a
higher number of outliers as compared to the higher qubit region. This is
most likely caused by the fact that a single-qubit error (e.g. the presence of
a rotation gate with small but nonzero angle) contributes less to the fitness
when the number of qubits is high (as the fitness is a kind of average over all
qubits). Therefore the algorithm should be able to reach the threshold fitness
more reliably.
Now, this setup can be generalised by adding an angle perturbation ξ to R′,
such that R′(φ) = R(−φ+ ξ). In this case, the circuit U that minimises f(U)
from eq. 5.8 is no longer the empty circuit, since R′ 6= R†, unless ξ = 0.

70

5.4 Genetic design of quantum circuits 71

This turns the task into a nontrivial problem, which is a harder challenge
for our genetic algorithm. For this experiment, we choose multiple ξ with
all ξi equal to the same value ξ, which we vary throughout the experiment.
Now, in the previous experiment, we could set a target fitness value close to
1 as a termination condition, since we knew the optimal result beforehand.
However, this is not the case for varying ξ, and yet, we need to be able to
make a fair comparison between different values of ξ. As such, for each ξ con-
sidered, we check the maximum fitness value the genetic algorithm is able to
reach within a set number of generations. The parameters µ and λ remain
unchanged. Since the search is bound to take a longer time (as the problem
is now significantly more difficult), we keep the number of qubits low, con-
sidering that the simulation time for a quantum circuit scales exponentially
in the number of qubits. The result of this experiment is shown in fig. 5.6,
for 3 to 6 qubits.
As we can see in the plot, the problem becomes more difficult as ξ is in-
creased. This is not surprising, as the inner products between the sampled
input and output states, which serves as a measure of nonorthogonality, is di-
rectly increased, making it harder to distinguish the two states. As such, the
maximum fidelity circuit grows more complex. What is especially interesting
to note here is that the effect is stronger for higher numbers of qubits. For

0.05 0.15 0.25 0.5
0.76

0.84

0.88

0.92

0.96

1

0.80

3 qubits
4 qubits
5 qubits
6 qubitsm

ax
 fi

tn
es

s,
 5

0
ge

ns

Figure 5.6. Maximum fitness reached by the genetic algorithm with µ = 9 and
λ = 36 after 50 generations, tasked to find an optimal-fidelity non-empty circuit
with varying angle offsets ξ, for 3 to 6 qubits. We see a negative trend as the
difficulty of the problem grows with increasing ξ, which appears more amplified
for higher qubit numbers.

71

72 Evolutionary quantum circuit learning

example, where we see that in the 3-qubit case, the algorithm finds a maxi-
mum fitness of 0.91 at ξ = 0.5, in the 6-qubit case this has dropped to 0.80.
To understand why this is the case, it is important to note that the space
of circuits grows exponentially both in the number of qubits and the depth
of the circuit (i.e. the number of gates per qubit). In this space, high-fidelity
circuits may be ever more sparsely distributed at higher qubit numbers. This
suggestion, though, yet requires a theoretical verification. Nonetheless, the
genetic algorithm is capable of finding a relatively high fitness up to ξ = 0.5.
In order to improve the performance further at even higher qubit numbers,
µ and λ could be increased; however, exponential growth of µ and λ may be
needed due to the nature of the search space.
Now that we have seen how the genetic algorithm performs on a toy problem,
we turn to an actual classification task: that of classifying the Iris dataset
[76]. Iris is a small set that describes three species of the plant genus Iris by
the length and width of the petals and sepals of the flower. As such, each row
is a combination of four continuous numbers and one of three class labels. The
objective of the genetic algorithm is then to find a quantum circuit which,
given these four numbers, can predict the correct class label.
We mentioned quantum circuit classification in section 5.1, and presented a
loss function approach in eq. 5.2. We follow this method for the evaluation
of quantum circuits generated by our genetic algorithm. Now, eq. 5.2 allows
much freedom in choosing the operator O, so we need to define it accordingly.
In our case, O is given by the measurement operator on the first qubit. As
such, the expectation value 〈O〉 is equal to the probability P (11) of measuring
the first qubit in the state |1〉. This yields a convenient way to do binary
classification, as the performance of a circuit relative to a single data instance
is determined by the probability of measuring its correct label. Now, since a
data instance needs to be encoded into the quantum state before the classifier
operation U is applied, these probabilities are generally different for each
instance, so we add a subscript to P to account for this. The fitness function
may then be defined as

f(U) = 1− L(U)

= 1− 1
D

D∑
i=1

(
Pi(11 |U)− yi

)2

= 1− 1
D

D∑
i=1

(
|〈11|UV(φi)|0〉|2 − yi

)2
(5.10)

with V(φi) the encoding unitary for instance i. If D is large, one may restrict

72

5.4 Genetic design of quantum circuits 73

each fitness evaluation to a subset of samples, similarly to stochastic gradient
descent.
Now, there are multiple ways to define te encoding unitary V. Grant et al.
[66] propose encoding a single element φji of an instance vector φi per qubit
with an X rotation gate. To this end, all vector elements must be rescaled
to new ones φ̃ji which lie in the interval [−1, 1). Then, the j-th gate which

encodes φ̃ji writes as Xφ̃j
i . While this is a straightforward and time-efficient

encoding scheme, it faces the problem of needing many qubits for encoding
large data instances. One can somewhat mitigate this problem by using a
second Pauli rotation gate, so that two elements are encoded per qubit. The
general expression for a two-level quantum state,

|ψ〉 = cos θ |0〉+ eiφ sin θ |1〉, (5.11)

suggests the use of a Z rotation gate after the X rotation. We will indeed
use this for the classification of Iris, which implies that our circuits will act
on two qubits, since each Iris data instance contains four elements. Besides a
linear encoding, which requires a number of qubits that is linearly related to
the number of instance elements, one can also opt for a logarithmic encoding,
where N qubits encode O(2N) elements. An example of this is an encoding
where each element, except one, corresponds to the phase of a computational
basis state:

V(φi)|0〉 = 2 1−L
2
(
|0 . . . 0〉+

L∑
j=1

ei φ̃
j
i |j〉

)
, (5.12)

where L is the length of each data vector8. The reason one basis state has no
encoded phase is that a degree of freedom is lost from the global phase, which
carries no measurable information. The unitary V producing this encoding
can be decomposed as a sequence of single Z rotations and multi-qubit con-
trolled Z rotations (i.e. Z rotations with multiple qubits together controlling
the rotation). Since L elements have to be encoded, one needs L such gates;
however, the decomposition of multi-qubit controlled gates into basic gates,
such as CX/CZ and single-qubit rotations (which is necessary for running cir-
cuits on current quantum hardware) requires an exponential amount of such
gates in the number of qubits [74]. Since the number of qubits is logarithmic
in L, we again end up with an encoding that uses polynomially many gates in
L. Furthermore, as we noticed in our initial tests, this “logarithmic” encod-
ing actually exhibits worse training behaviour, in that the maximum fitness

8In this case, it is required that L = 2k − 1 with k ∈ N.

73

74 Evolutionary quantum circuit learning

0 or 1 0 or 2 1 or 2
test fidelity 0.936± 0.026 0.939± 0.016 0.794± 0.043

test accuracy 0.990± 0.021 1.000± 0.000 0.913± 0.062
generations 15.5± 14.2 25.0± 24.5 70.9± 65.1

Table 5.1. Results of the Iris classification experiments. The test fidelity and test
accuracy of the found classification circuits, as well as the generations required
to find these circuits, averaged over multiple runs, are shown. Again, the error
margins are given by the standard deviation.

of the circuits found by the genetic algorithm was approximately 25% lower
as compared to the XZ encoding. We expect that this is caused by the high
level of entanglement in the logarithmically encoded states, which makes the
task of finding the appropriate gates for classification more complex to the
genetic algorithm. For these reasons, we chose to opt for the latter strategy.
We set up our classification routine by splitting the three-label dataset into
three two-label sets, so that we can perform binary classification, and ran-
domly dividing the dataset into a training set (80% of all samples) and a test
set (20%). After the genetic algorithm has terminated by reaching a thresh-
old fitness, the best circuit is tested against the test set. Now, since the
encoded states are generally nonorthogonal, and, as we discussed in section
2.3, nonorthogonal states cannot be distinguished by a single measurement,
there is no way to reach 100% test accuracy if we adhere to the accuracy
measure of eq. 5.10. However, we can slightly alter our definition of accu-
racy: instead of taking the bare measurement probabilities, we can use the
rounded probabilities; and since our classes are 0 and 1, these rounded prob-
abilities correspond exactly to the class that we are most likely to measure.
Under this accuracy metric, we can indeed reach 100%. In the following, we
refer to the fig. obtained from rounded probabilities, with respect to the test
set, as the test accuracy, while that from the bare probabilities is called test
fidelity.
We use the same µ and λ setting as in the self-preserving circuit experiment.
The results of the Iris classification experiment are summarised in table 5.1.
As we can see, the algorithm performs very well for the “0 or 1” and “0 or 2”
classification tasks: circuits with 100% test accuracy are found in relatively
few generations. In the “1 or 2” case, however, the algorithm performs no-
tably worse, achieving only 91.3% test accuracy in many more generations.
This suggests that class 1 and 2 are more difficult to distinguish. Similarly
to the first experiment, we notice a high standard deviation in the number
of generations: apparently, the high degree of randomness inherent to the ge-

74

5.4 Genetic design of quantum circuits 75

netic algorithm is present to the same degree in a real classification problem.
This also manifests itself in the architecture of the circuits returned: while
the best circuit (of all runs) found for the “0 or 1” task is the following, rather
complicated circuit,

X−0.838 Y0.799 X0.863 • Y−0.001

Y−0.931 X0.649 Z0.663 Y−0.886 Z−0.996 X−0.307 Y0.776 • Z0.415

(5.13)
(with test fidelity 0.990), in the “0 or 2” case the following very simple circuit
was found:

•

•
(5.14)

(with test fidelity 0.976).
Now that we have seen the results from classification of Iris, we have a look
at MNIST handwritten digits classification. We apply the same procedure,
where we supply a collection of n-dimensional data points encoded in n/2
qubits, and task the genetic algorithm to find a circuit on n/2 qubits that can
generate prediction labels with maximum test set accuracy. Now, in its raw
form, the MNIST data set contains 28× 28 pixel greyscale images, i.e. 784-
dimensional vectors where each entry takes on an integer value between 0 and
255. Since we are working with few qubits, this vector length is far too high,
and dimensionality needs to be reduced. For this, we use principal component
analysis (PCA), which can shrink all vectors to any desirable size, while still
preserving the majority of information. If D is the data matrix where each
row vector is a data instance, such that D is normalised to have zero mean,
the PCA routine computes the eigendecomposition of D>D,

D>D =
∑
i

λic>
i ci, (5.15)

where the eigenvector-eigenvalue pairs are sorted by the magnitude of the
eigenvalues, in descending order. In this sense, c1 is found to be the “main
component”, since it has the highest eigenvalue (or bears the highest weight in
D>D, so to say), followed by the vector v2 with the second-highest eigenvalue,
and so on. Dimensionality reduction is done by selecting the first n vectors
c1, . . . , cn, and discarding the rest. Denote the matrix Cn as the matrix with
the eigenvectors c>

i as its row vectors. A new data vector φ∗ is then computed
by expressing φ in terms of the principal components, i.e. by evaluating the

75

76 Evolutionary quantum circuit learning

inner product between c>
i and φ for each component. In other words,

φ∗ = Cφ. (5.16)

Naturally, PCA is applied only to the training set, since including the test set
would alter the eigenvectors and eigenvalues, adding a bias to the training
set and rendering the test results invalid. Afterwards, the newly generated
dataset is rescaled so that all entries lie in [−1, 1), identically to the Iris case.
We study the (binary) discrimination of digits 0 and 7, and investigate the
performance for varying numbers n of principal components. The reason for
choosing these digits is that they are relatively simple glyphs (as compared
to, say, 5 or 8), and yet look distinct. In any case, the first qubit is taken to be
the readout qubit. As we expect the classification of MNIST digits to be more
difficult than the Iris problem (except for low n), we increase the population
parameters to µ = 12, λ = 48. As with the ξ-nonempty circuits, in order to
make a fair comparison under changing conditions, we look at the maximum
accuracy found within a fixed number of generations (averaged over multiple
runs, as usual). The test accuracy in relation to the n is plotted in fig. 5.7.
There are two main observations to be made here. First, we notice that an
optimum is reached at 4 principal components, or two qubits. This suggests
that the increased difficulty of the problem at higher qubit numbers, which
we discussed in the ξ-nonempty circuit experiment, outweighs the supply of
additional information provided by the extra principal components. Secondly,
we see that the maximum accuracies differ very little from one another, which
hints at the presence of a strong local optimum. In fact, we observed this local

0.920

0.916

0.918

0.922

0.924

0.926

0.928

2 4 6 8 10

sneg 001 ,ssentif xa
m

principal components

Figure 5.7. Maximum accuracy found by the genetic algorithm with µ = 12 and
λ = 48 on the MNIST 0/7 classification problem for a varying number of principal
components and corresponding qubit number.

76

5.5 An evolution strategy for parameter optimisation 77

optimum, while investigating the returned circuits, as a single Y rotation gate
applied to the first qubit (with angles varying between 0.95 and 1.05, modulo
1). In addition, these circuits sometimes showed an absence of entanglement
of the first qubit with any of the other qubits, resulting in a de facto single-
qubit circuit as the first qubit was used for readout. The strength of this local
optimum is most likely due to the fact that it consists of a single gate, and
is therefore very simple as compared to multi-gate subcircuits. As such, the
single gate is usually found quicker than such a multi-gate subcircuit, and
the algorithm ends up struggling to find anything better in its vicinity.

5.4.3 Discussion
We have implemented a basic and straightforward genetic algorithm for find-
ing quantum circuits in a machine learning context. We have noticed that on
the provided test cases, the algorithm performs quite well, yielding between
91% and 100% accuracy on the tasks of classifying Iris instances as well as
distinguishing MNIST 0 and 7 digits. This shows that a genetic algorithm
is indeed a viable approach for quantum machine learning. We must note
though, that all objectives were applied to up to 6 qubits (besides the base
case of the empty circuit, which we tested up to 12 qubits). As such, it may
prove to be a challenge to scale up this approach to higher qubit numbers. As
we showed with the ξ-nonempty circuit and the MNIST 0/7 tasks, the per-
formance of the genetic algorithm tends to decrease as the number of qubits
grows. Now, this is in part because kept µ and λ constant for fair comparison;
hence, further research into the relation between the population size and the
performance in the quantum machine learning case could be very fruitful.
For now, we can conclude that the GA is suitable for small machine learning
tasks; besides that, given the simple circuits it has been able to come up with,
it could also be employed as a means to simplify quantum circuits within a
small error. This could open up possibilities for quantum boosting, where
multiple small circuits, provided by the genetic algorithm and combined into
a strong quantum classifier, could be employed for more complex classifying
tasks involving higher numbers of qubits.

5.5 An evolution strategy for parameter op-
timisation

We now turn to the investigation of ES as a method for quantum circuit
learning. Since ES evolves a population of vectors in Rn, we are concerned
with the capabilities of ES to train the parameters of a given parametrised

77

78 Evolutionary quantum circuit learning

quantum circuit. We are especially interested in its relation to the barren
plateau phenomenon we mentioned in section 5.1. As such, we subject an
ES algorithm to the experimental setup described in the paper by McClean
et al. [63], who presented a simple and general quantum circuit learning
arrangement with a single-qubit readout observable:

O = I0 ⊗ . . .⊗ Zj ⊗ . . .⊗ IN−1 (5.17)

where j is the readout qubit. The circuit itself is composed of L learning
layers:

|0〉

U(θ)...

|0〉

=

|0〉

V1(θ1) W

· · ·

VL(θL) W...
...

|0〉 · · ·

(5.18)

where Vi consists of one gate per qubit, randomly drawn from {RX,RY,RZ},
θi is randomly initialised, and W is a CZ ladder, similar to the CX ladder in
circuit 5.9.
In the experiment, we make a comparison between the evolution strategy
described in the next section and a basic gradient descent (GD) algorithm
based on eqs. 5.1–5.4. As a measure of required computational complexity,
we use the number of circuit evaluations (CEs) carried out. In one circuit
evaluation, the initial state |0〉 is propagated through the circuit, and the ex-
pectation value of the readout operator is measured. Since both algorithms
need to evaluate each circuit associated with a parameter set in order to cal-
culate the loss function and direction of improvement, this is an appropriate
measure of complexity. In all of the following, we set y, the target of O (cf.
eq. 5.2) to 0, meaning that we wish to measure 0 on the readout qubit.

5.5.1 Covariance matrix adaptation evolution strategy
In essence, ES is a sophisticated iterative sampling method which moves the
region where it samples candidate solution vectors in a clever way based on
the quality of the recent samples. In every iteration at time t, a candidate
population of µ individuals is kept, and λ ≥ µ n-dimensional points are
sampled. This sampling fulfils the same role as the phases of reproduction,
crossover and mutation in GAs. It occurs with a multivariate Gaussian dis-
tribution about the mean mt of the µ individuals, with an adaptable variance
σt:

xkt+1 ∼mt +N (0, σ2
t) for k = 1, . . . , λ (5.19)

78

5.5 An evolution strategy for parameter optimisation 79

where ∼ denotes being drawn from said distribution. In this context, σ may
be regarded as the mutation rate. Using only a variance in the Gaussian,
the method draws points spherically about its mean. However, this search
sphere can be generalised to a search ellipsoid by adding a covariance matrix,
which can be adapted in order to extend to search directions of interest. This
is called a covariance matrix adaptation evolution strategy (CMA-ES), and
uses the sampling rule

xit+1 ∼mt + σtN (0,Ct) (5.20)

where Ct is the covariance matrix at time t.
After sampling, the best µ out of the λ samples, sorted by fitness value, are
selected for the next iteration, and the mean is shifted accordingly:

mt+1 =
µ∑
i=1

wi xit+1 (5.21)

where we have introduced the selection weights

w1 ≥ w2 ≥ . . . ≥ wµ ≥ 0,
µ∑
i=1

wi = 1. (5.22)

This forms the basis of any CMA-ES, with ample room for interpretation
regarding a good adaptation strategy for σ and C. In this research, we use
the CMA-ES algorithm as described by Hansen [77], which we shall briefly
discuss now. For further details, we refer the reader to the paper.
We concern ourselves with the adaptation of C first. As mentioned before,
it is vital that C is adapted such that the search ellipsoid points into the
direction of interesting candidates. This can be done by looking at the steps
which were found from the sampling:

yit+1 = (xit+1 −mt)/σt. (5.23)

Since we know which of the λ offspring points scored best with respect to
the fitness function, we also know which steps were most valuable. As such,
we can use these steps as an estimate of the most interesting direction. We
can use this to guess a “good” covariance matrix:

Ct+1 = (1− cµ) Ct + cµ

µ∑
i=1

wi yit yit>, (5.24)

79

80 Evolutionary quantum circuit learning

where again we assume that the yit are sorted by fitness in descending order.
Here, cµ is an adaptation rate: if cµ = 1, the previous covariance matrix
is forgotten in each iteration; if cµ = 0, no adaptation occurs at all. Note
that this adaptation scheme follows the natural construction of an empirical
covariance matrix from the definition of the steps yi. Also, the adaptation
part (containing the outer products of the steps) is a matrix of rank µ,
assuming the steps are linearly independent; hence, it is referred to as the
rank-µ update.
In addition, the algorithm includes a method for cumulation. This means that
previous directions of motion (or, to stay in the context of ES, evolution)
are also taken into account for the update of sampling rule. Cumulation
is a widely used technique, and also finds applications in gradient descent
methods such as momentum gradient descent and Adam. In CMA-ES, the
history of evolution is represented by the evolution path vector pC, which is
initialised to 0. Naturally, pC is updated in every iteration as well. Its update
rule, for reasons not discussed here, is given by

pC ← (1− cC) pC +
√

1− (1− cC)2µw yw (5.25)

where µw = 1/∑µ
i=1w

2
i , yw = ∑µ

i=1wi yi with yi sorted, and cC is again
an adaptation parameter similar to cµ. Note also that we switched from
time notation to left arrow assignment notation in order to aid readability.
From pC, a rank-1 matrix can be constructed as pCp>

C , which forms the so-
called rank-1 contribution to the update rule of C. Putting both contributions
together, we have the final covariance matrix update rule

C← (1− c1 − cµ) C + c1 pCp>
C + cµ

µ∑
i=1

wi yi yi> (5.26)

where c1 determines the degree of covariance matrix cumulation.
Next, we consider the update of σ. In analogy to the covariance matrix adap-
tation, a notion of cumulation, with its corresponding evolution path, is em-
ployed here as well. This path, pσ, which is also initialised to 0, is given a
very similar update rule:

pσ ← (1− cσ) pσ +
√

1− (1− cσ)2µw C−1/2 yw. (5.27)

Here, the factor C−1/2 introduced to ensure that the euclidian length of the
evolution path is independent of its direction as dictated by the covariance
matrix.

80

5.5 An evolution strategy for parameter optimisation 81

The idea of the evolution path is as follows: if, over a multitude of steps, the
length of the evolution path (i.e. the achieved progress towards the optimum)
is small, the steps cancel out and σ should be decreased so as to achieve higher
precision. Conversly, if the evolution path is large, there is room for a larger
step size and σ should be increased accordingly. Somewhere in the middle
lies a sweet spot where the steps are uncorrelated. In this situation, it turns
out that pσ ∼ N (0, I) [78]. As such, it makes sense to compare the evolution
path length |pσ| to its expectation,

〈|N (0, I|)〉 =
√

2 Γ
(
n+ 1

2

)
/Γ
(
n

2

)
, (5.28)

which, for large n, may be approximated using Sterling’s formula:

〈|N (0, I|)〉 ≈
√
n

(
1− 1

4n + 1
21n2

)
. (5.29)

In the end, σ is updated by casting the evolution path comparison into the
following convenient expression:

σ ← σ exp
[
cσ
dσ

(
|pσ|

〈|N (0, I|)〉 − 1
)]

(5.30)

where dσ is yet another parameter controlling the adaptation speed. Note
that, if the evolution path length is larger than its expectation, the exponent
is larger than zero, and σ is increased; on the other hand, if it is smaller than
expected, σ is decreased.
In his paper, Hansen gives explicit suggestions for cµ, c1, cC, cσ and dσ as well
as the weights wi, which we adopt in our implementation, up to one change:
we multiply dσ by a manually tuned factor of 0.12 so as to speed up the step
size adaptation, since it showed to be too slow in our first test runs. Lastly,
we follow the recommendation of setting λ = 4/µw, based on our manual
choice of µ. This leaves us with two tunable parameters: the population size
µ and the initial step size σ0, both of which appear to have a considerable
impact on the performance of the algorithm.

5.5.2 Experiment and discussion
Through the following experiment, we compare the performance of CMA-ES
and GD in the learning scenario described above. That is, we measure the

81

82 Evolutionary quantum circuit learning

number of CEs required by both algorithms to reach a low target loss value,
which we set to 0.02, averaged over multiple runs. For CMA-ES, the number
of CEs is given by µ plus λ times the number of generations, as the initial
population (of size µ) is evaluated once and all offspring are evaluated in each
generation. For GD, the number of CEs is the number of learnable parameters
times the number of iterations, since GD must calculate the ε-derivative in
the direction of each parameter.
We use the same random seeds for the two algorithms to prevent one of the
two algorithms suffering from an unfortunately drawn initial circuit. Since,
according to the referenced paper by McClean et al., the variance of the
gradient decreases exponentially with an increasing number of qubits N , it
makes sense to make the comparison for a varying number of qubits. As such,
we run the experiment with even N ranging from 2 to 10, and a fixed circuit
depth. The depth is given by the minimum number of layers, as shown in fig.
4 of the paper, at which the variance of the gradient stabilises and no longer
decays exponentially. For 10 qubits, this occurs at approximately 130 layers.
To prevent having to make any more arbitrary choices for the experimental
setup, we use L = 130 for all qubit numbers throughout the experiment. For
eachN , we provide both algorithms with input hyperparameters (µ and σ0 for
CMA-ES, η for GD) that were manually tuned for near-optimal performance.
These near-optimal hyperparameters appear to depend on N , and are shown
in table 5.2.
The results of the experiment are presented in fig. 5.8. Firstly, we notice that
both algorithms display exponential behaviour, judging from the somewhat
linear curve in the semilog plot. For GD, this shows again that the gradients
decay exponentially, as the number of steps needed to converge is directly
dependent on the magnitude of the gradient. However, this is not the only

CMA-ES GD
N µ λ σ0 η
2 2 7 0.070 0.015
4 4 13 0.031 0.025
6 7 22 0.028 0.100
8 9 28 0.025 0.300

10 11 34 0.019 0.400

Table 5.2. Manually tuned near-optimal hyperparameters given to the CMA-ES
and GD algorithms in the comparison experiment, for different qubit numbers N .
Note that the chosen population size µ and GD learning rate η increase with N ,
while σ0 decreases with N .

82

5.5 An evolution strategy for parameter optimisation 83

101

102

103

104

105

2 4 6 8 10

ecnegrevnoc litnu s
E

C

GD
CMA-ES

Figure 5.8. Semilog plot of the number of circuit evaluations for CMA-ES and
gradient descent needed to reach an expectation value of 0.02 on the readout qubit,
in circuit 5.18 with 130 layers, for varying qubit numbers N .

contributor: as the number of gates increases with N , so does the number of
gate angles and thus the number of directions in which GD must evaluate
the finite-difference derivative.
CMA-ES follows a similar trend. Even though the number of CEs is not
directly dependent on the number of angles since µ and λ are given input pa-
rameters, it appears to be that the optimal µ and λ depend linearly on N fol-
lowing roughly the same ratio (λ/N ≈ 3.5). And despite being a gradient-free
algorithm, its convergence time increases exponentially in a fashion very sim-
ilar to GD. This implies that the reason of exponentially slower convergence
from randomly initialised circuits is not a fault of the gradient descent algo-
rithm itself, but lies deeper within the problem of finding the optimal angles
of a parametrised quantum circuit. Seemingly the flatness of the landscape
that increases with growing N hinders progress of sampling-based methods
such as CMA-ES as well. This is also apparent from the decreasing initial
step size σ0 as shown in table 5.2, as well as the increasingly small value the
self-adapted σ reaches close to convergence (which is not shown in the plot).
There is however an interesting difference in the scaling factor: CMA-ES
requires between 3 (N = 10) and 80 (N = 2) times fewer CEs as compared
to GD. This is because GD, despite converging in a low number of iterations,
requires many CEs each iteration which adds up to a high number. Consider
for example N = 2: where GD evaluates 2 × 130 = 260 circuits in each
iteration, CMA-ES evaluates only λ = 7, so CMA-ES would only perform as

83

84 Evolutionary quantum circuit learning

poorly as GD if it needed roughly 37 generations per GD iteration. In reality,
both algorithms converge in two iterations in this case.
To understand why this difference occurs, we need to look at the structure
of U(θ), which consists only of SU(2) gates and controlled-Z gates (these are
again linear combinations of tensor-coupled SU(2) gates). The special unitary
group SU(2) is generated by the set of Pauli gates {X,Y,Z}. Labelling Σ1 :=
X, Σ2 := Y and Σ3 := Z, this set obeys the algebraic relations

ΣiΣj =

I if i = j,

iεijkΣk if i 6= j
(5.31)

with εijk the Levi-Cività symbol. Because the generator gates are so closely
related, a large collection of SU(2) gates on the same qubit (as defined by a
high number of layers) is very likely to contain some gates that cancel out.
As such, the number of degrees of freedom is decreased, and ends up being
lower than the number of angles. In other words, the optimisation landscape
consists of many accessible minima. CMA-ES is able to exploit this through
sparse sampling with low λ, which shows to be sufficient judging the quick
convergence in figure 5.8. However, because of the presence of entangling CZ
gates, this effect diminishes at higher qubit numbers, and the performance
of CMA-ES approaches that of GD. This can be seen in the plot as well.
Now, one may question the practice of comparing a sophisticated evolution-
ary algorithm that includes cumulation and automatic step size control to a
basic version of gradient descent. This is a valid point, and a GD algorithm
employing these techniques would undoubtedly perform better than our basic
GD, bringing the performances of the two closer together. Nonetheless, any
gradient-based method suffers from the necessity to calculate a vector com-
ponent in every angle direction (unless it would use some clever method to
exclude or combine certain components), which nets CMA-ES an advantage
for certain learning circuit setups.

5.6 Conclusion
In this work, we have proposed two approaches for evolutionary quantum cir-
cuit learning. First, we have considered a genetic algorithm approach which
seeks to find entire circuit architectures in order to complete certain machine
learning tasks. By encoding quantum circuits as genes, and evolving a pop-
ulation of quantum circuits through explicit mutation, recombination and
selection, we have been able to find quantum circuits that indeed accomplish
this task. We have applied this procedure to the trivial task of finding an

84

5.6 Conclusion 85

N -qubit empty circuit, its nontrivial generalisation to ξ-nonempty circuits,
as well as basic classification tasks of the Iris dataset and MNIST digits 0
and 7 with aid of PCA. We have seen that the GA excelled at finding empty
circuits as well as good circuits for Iris, but had more difficulties in finding
correct ξ-nonempty circuits (at higher values of ξ) and classifying MNIST
digits. This suggests that this implementation of a quantum circuit learn-
ing GA is mainly a good candidate for simple machine learning tasks. As
such, we may need a more sophisticated algorithm to address the search of
quantum circuits for machine learning, which does more than merely looking
around and selecting the circuits with the best features. After all, the space
of unitary operations is very large, so basic search will not cut it in the end.
Nonetheless, on the tasks provided, the GA has given us insight into feasible
circuit architectures: for example, it has shown us that small 2-qubit circuits
are sufficient to classify Iris, and that a single Y gate applied to the first PCA
component of the MNIST 0 and 7 digits could give rise to 93% test set ac-
curacy. Since this is what we wished to accomplish, we regard our endeavour
as a valuable step towards automated quantum circuit architecture learning.
Secondly, we have investigated the performance of a covariance matrix adap-
tation evolutionary strategy for training quantum circuit angles, in the con-
text of the barren plateau paper by McClean et al. [63]. We have seen that
CMA-ES is indeed a viable and useful method for quantum circuit angle
training, at least for the artificial setup used in the paper. Precisely, we
have seen that CMA-ES outperforms a basic GD method, especially for nar-
row circuits (i.e. circuits with a small ratio between the qubit number and
the depth). In these cases, CMA-ES manages to converge with fewer circuit
evaluations than GD, which is likely due to the existence of less degrees of
freedom in these narrow circuits than the number of angles they have. As
such, CMA-ES could serve as a tool for observing redundancy in a learn-
ing quantum circuit, possibly together with a GA for actually reducing the
circuit size. However, the problem of plateaus in the training landscape of
randomly initialised circuits remains unsolved: the flatness appears to be a
phenomenon more intrinsically connected to the nature of quantum circuits.
In the end, we have shown applications for metaheuristics such as evolution-
ary computing in quantum circuit learning, indicating potential in future
developments. Hence, we believe that metaheuristics, and in particular evo-
lutionary algorithms, deserve more attention in quantum machine learning,
as they could provide valuable contributions to progress in the field.

85

Chapter 6
Final conclusion and outlook

In this thesis, we have presented our work in quantum-assisted optimisation
and machine learning at Volkswagen.
We have shown that a hybrid classical-quantum algorithm, where a quantum
annealing scheme is controlled by a classical routine, is a viable approach
for addressing the complex problem of rigid finite-element shape design op-
timisation under simplified physical conditions, which in our case were of
aeroacoustic nature. We have shown that this can be achieved through a
simple QUBO formulation of the annealing scheme, which employs nearest-
neighbour interactions for iterative adjustment of the shape towards a better
solution. We have seen that this led to results which are indeed improvements
with respect to the initial shape.
Naturally, there are ample directions in which to proceed for continuation of
this work. First, a valuable contribution could consist of execution improve-
ments to the algorithm, so that it can be run with more qubits, more complex
shapes or simply faster. Secondly, it would be very interesting to see in what
other finite-element contexts this algorithm could find an application. After
all, the QUBO is rather general, and could be adapted to physical conditions
which are of similar structure as the approximated aeroacoustic conditions.
The only key requirement is that the loss function be expressible in terms of
nearest-neighbour interactions, which can be achieved by assigning a partial
loss to each simplex that is independent of the other simplices.
Besides that, it could prove worthwhile to investigate the algorithm from a
theoretical point of view. For example: how likely is the algorithm to find the
global optimum, or run into a local minimum? In what way does it outper-
form classical optimisation? A theoretical analysis of the algorithm, delving
deeper into its complexity as well as that of quantum annealing in general,
could provide key insights in quantum-assisted finite-element optimisation

87

88 Final conclusion and outlook

and open up new directions for future development.
Besides quantum-assisted optimisation, we have made efforts to apply evolu-
tionary computation for the purpose of training parametrised quantum cir-
cuits. These efforts have shown to be fruitful: we have been able to construct
an automatic routine for finding quantum classifier architectures through a
genetic algorithm, and we have shown the advantage of a covariance ma-
trix adaptation evolutionary strategy over a gradient-based method in the
training of deep quantum learning circuits.
Again, there are many possible future research directions related to this work.
As for the GA, it would be very valuable to know what would be required to
improve the algorithm, such that it becomes capable of searching through a
larger space of quantum circuits and thus be able to address more complex
machine learning tasks with wider circuits (i.e. using more qubits). Doing
this, it would also need a way to avoid local minima such as the single Y
gate we encountered in the MNIST 0/7 classification problem. In short, this
would amount to more in-depth research into the algebraic structure of the
space of N -qubit unitary operations.
Regarding the CMA-ES, we have seen that, despite its advantage in terms of
performance over the GD algorithm we have considered, the barren plateau
problem as described by McClean et al. [63] is not immediately solved by
application of a gradient-free method. As such, it remains to uncover what
measures can be taken in order to circumvent the phenomenon of vanishing
gradients in learning quantum circuits. Again, this requires more insights in
the algebraic behaviour of the training angles.
From a more algorithmic point of view, another interesting objective could
be to successfully combine an evolutionary strategy and a gradient-based
method for angle learning. Since evolutionary strategies are stochastic sam-
pling methods, they may have more difficulties with very precise convergence
as compared to a gradient-based method. However, as the CMA-ES we have
considered outperformed the GD in the moderate precision regime (with a fi-
delity larger or equal to 0.02), it could be fruitful to link the two, in such a way
that the evolutionary strategy takes responsibility for the low to moderate
precision regime, and a GD method then takes over to finish the convergence.
All in all, we have contributed to the progress of, and have built knowledge
for, industrial quantum computing at Volkswagen, by developing a hands-
on application of quantum-assisted optimisation as well as conducting more
fundamental research in the area of quantum machine learning. We are very
interested to see what other developments will be made in the research field,
so that ever more complex problems may be solved in this upcoming next
generation of computation.

88

References

[1] P. Benioff, The computer as a physical system: a microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing
machines, Journal of Statistical Physics 22, 563 (1980).

[2] R. P. Feynman, Simulating physics with computers, International Jour-
nal of Theoretical Physics 21, 467 (1982).

[3] D-Wave systems, Quantum computing: how D-Wave systems work, 2017.

[4] Google, Google AI: quantum, 2019.

[5] IBM, IBM Q – the future is quantum, 2019.

[6] Rigetti, QCS, the world’s only quantum-first cloud platform, 2019.

[7] Intel, Intel newsroom: quantum computing, 2019.

[8] D-Wave systems, Toyota Tsusho and D-Wave announce quantum com-
puting collaboration, 2017.

[9] Daimler, Pioneering – quantum computing, 2019.

[10] BMW Group, A quantum leap for mobility?, 2019.

[11] F. Neukart, G. Compostella, C. Seidel, D. von Dollen, S. Yarkoni, and
B. Parney, Traffic flow optimization using a quantum annealer, Frontiers
in ICT 4 (2017).

[12] F. Neukart, C. Seidel, G. Compostella, and D. Von Dollen, Quantum-
enhanced reinforcement learning for finite-episode games with discrete
state spaces, Frontiers in physics 5 (2017).

89

90 REFERENCES

[13] Volkswagen AG, Volkswagen tests quantum computing in battery re-
search, 2018.

[14] P. W. Shor, Algorithms for quantum computation: discrete logarithms
and factoring, in Proceedings 35th Annual Symposium on Foundations
of Computer Science, pages 124–134, 1994.

[15] D. J. Griffiths, Introduction to quantum mechanics, Pearson education
international, Upper Saddle River, 2 edition, 2005.

[16] S. Weinberg, The quantum theory of fields, vol. I Foundations, 1995.

[17] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information, 2010.

[18] A. S. Holevo, Bounds for the quantity of information transmitted by a
quantum communication channel, Problems of information transmission
9, 177 (1973).

[19] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and
O. Regev, Adiabatic quantum computation is equivalent to standard
quantum computation, SIAM Journal of Computing 37, 166 (2007).

[20] D. Castelvecchi, Quantum computers ready to leap out of the lab in
2017, 2017.

[21] H. Nishimura and M. Ozawa, Computational complexity of uniform
quantum circuit families and quantum Turing machines, Theoretical
Computer Science 276, 147 (2002).

[22] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM Jour-
nal on Computing 26, 1411 (1997).

[23] V. V. Shende, I. L. Markov, and S. S. Bullock, Smaller two-qubit cir-
cuits for quantum communication and computation, Proceedings - De-
sign, Automation and Test in Europe Conference and Exhibition 2, 980
(2004).

[24] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum computa-
tion by adiabatic evolution, (2000).

[25] A. Messiah, Quantum mechanics, vol. II, North-Holland publishing
company, Amsterdam, 1966.

90

REFERENCES 91

[26] M. H. S. Amin, Consistency of the adiabatic theorem, Physical Review
Letters 102, 220401 (2009).

[27] T. Albash and D. A. Lidar, Adiabatic quantum computing, Reviews of
Modern Physics (2018).

[28] B. A. Cipra, The Ising model is NP-complete, Society for Industrial and
Applied Mathematics 33, 1 (2000).

[29] A. Lucas, Ising formulations of many NP problems, Frontiers in physics
2 (2014).

[30] W. Vinci and D. A. Lidar, Non-stoquastic interactions in quantum an-
nealing via the Aharonov-Anandan phase, npj Quantum Information 3,
1 (2017).

[31] D-Wave systems, Minor-embedding a problem onto the Chimera graph.

[32] S. Xu, X. Sun, J. Wu, W. W. Zhang, N. Arshed, and B. C. Sanders,
Quantum walk on a chimera graph, New Journal of Physics 20, 1 (2018).

[33] D. Pepper and J. Heinrich, The finite element method: basic concepts
and applications with MATLAB, MAPLE and COMSOL, CRC press, 3
edition, 2017.

[34] A. Sanz-Garćıa, A. Perńıa-Espinoza, R. Fernández-Mart́ınez, and
F. Mart́ınez-de Pisón-Ascaćıbar, Combining genetic algorithms and the
finite element method to improve steel industrial processes, Journal of
Applied Logic 10, 298 (2012).

[35] T. Bäck, D. B. Fogel, and Z. Michalewicz, Handbook of Evolutionary
Computation, Evolutionary Computation 2, 1 (1997).

[36] T. Bäck, P. Krause, and C. Foussette, Automatic Metamodelling of CAE
Simulation Models, ATZ worldwide 117, 36 (2015).

[37] F. Duddeck, Multidisciplinary optimization of car bodies, Structural and
Multidisciplinary Optimization 35, 375 (2008).

[38] D. Blanchet and A. Golota, Validation of a wind noise source charac-
terization method for vehicle interior noise prediction, {P}roceedings
of the {I}nternational {C}onference on {N}oise and {V}ibration
{E}ngineering {ISMA 2014} , 241 (2014).

91

92 REFERENCES

[39] A. Montanaro and S. Pallister, Quantum algorithms and the finite ele-
ment method, Physical Review A (2016).

[40] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear
systems of equations, Physical Review Letters (2009).

[41] A. Appel, Some techniques for shading machine renderings of solids, in
Proceedings of the April 30–May 2, 1968, spring joint computer confer-
ence on - AFIPS ’68 (Spring), page 37, 1968.

[42] T. Whitted, An improved illumination model for shaded display, Com-
munications of the ACM 23, 343 (1980).

[43] D. P. Dobkin, C. B. Barber, and H. Huhdanpaa, The quickhull algorithm
for convex hulls, ACM Transactions on Mathematical Software (1996).

[44] D-Wave systems, Qbsolv, a decomposing solver, 2018.

[45] F. Neukart and S. A. Moraru, On quantum computers and artificial
neural networks, Signal Processing Research 2 (2013).

[46] F. Neukart and S. A. Moraru, Operations on quantum physical artificial
neural structures, in Procedia Engineering, volume 69, pages 1509–1517,
2014.

[47] S. Eisenkrämer, Volkswagen trials quantum computers, 2017.

[48] A. Levit, D. Crawford, N. Ghadermarzy, J. S. Oberoi, E. Zahedinejad,
and P. Ronagh, Free energy-based reinforcement learning using a quan-
tum processor, (2017).

[49] D. Crawford, A. Levit, N. Ghadermarzy, J. S. Oberoi, and P. Ronagh,
Reinforcement Learning Using Quantum Boltzmann Machines, arXiv
preprint arXiv:1612.05695v2 , 1 (2016).

[50] F. Neukart, D. Von Dollen, and C. Seidel, Quantum-assisted cluster
analysis, (2018).

[51] E. Farhi and H. Neven, Classification with quantum neural networks on
near term processors, (2018).

[52] M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda, Subject independent
facial expression recognition with robust face detection using a convolu-
tional neural network, in Neural Networks, 2003.

92

REFERENCES 93

[53] I. E. Lagaris, A. Likas, and D. I. Fotiadis, Artificial neural networks for
solving ordinary and partial differential equations, IEEE Transactions
on Neural Networks (1998).

[54] I. G. Tsoulos, D. Gavrilis, and E. Glavas, Solving differential equations
with constructed neural networks, Neurocomputing (2009).

[55] Y. Goldberg, Neural network methods for natural language processing,
2018.

[56] R. Chrisley, Quantum learning, in Proceedings of New Directions in
Cognitive Science, 1995.

[57] S. Kak, On quantum neural computing, Inf. Sci. 83, 143 (1995).

[58] S. Gupta and R. K. P. Zia, Quantum neural networks, Journal of Com-
puter and System Sciences 63, 355 (2001).

[59] M. Schuld, I. Sinayskiy, and F. Petruccione, Simulating a perceptron on
a quantum computer, Physics Letters, Section A: General, Atomic and
Solid State Physics (2015).

[60] G.-A. Yan, J.-X. Chen, H. Lu, and A.-X. Chen, Room temperature high-
fidelity non-adiabatic holonomic quantum computation on solid-state
spins in Nitrogen-Vacancy centers, (2017).

[61] F. Kleissler, A. Lazariev, and S. Arroyo-Camejo, Universal, high-fidelity
quantum gates based on superadiabatic, geometric phases on a solid-state
spin-qubit at room temperature, npj Quantum Information 4, 49 (2018).

[62] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, Quantum machine learning, 2017.

[63] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven,
Barren plateaus in quantum neural network training landscapes, Nature
communications (2018).

[64] M. Ledoux, The concentration of measure phenomenon, Mathematical
surveys and monographs, (2001).

[65] H. Chen, L. Wossnig, S. Severini, H. Neven, and M. Mohseni, Universal
discriminative quantum neural networks, 2018.

[66] E. Grant, M. Benedetti, S. Cao, A. Hallam, J. Lockhart, V. Stojevic,
A. G. Green, and S. Severini, Hierarchical quantum classifiers, npj Quan-
tum Information 4, 65 (2018).

93

94 REFERENCES

[67] Y. Y. Shi, L. M. Duan, and G. Vidal, Classical simulation of quantum
many-body systems with a tree tensor network, Physical Review A -
Atomic, Molecular, and Optical Physics (2006).

[68] G. Vidal, Class of quantum many-body states that can be efficiently sim-
ulated, Physical Review Letters (2008).

[69] C. Ruican, M. Udrescu, L. Prodan, and M. Vladutiu, Automatic synthe-
sis for quantum circuits using genetic algorithms, Adaptive and Natural
Computing Algorithms, Pt 1 (2007).

[70] T. Y. Yabuki, Genetic algorithms for quantum circuit design - evolving
a simpler teleportation circuit, in In Late Breaking Papers at the 2000
Genetic and Evolutionary Computation Conference, 2000.

[71] A. Bautu and E. Bautu, Quantum Circuit Design By Means Of Genetic
Programming, Romanian Journal of Physics (2007).

[72] B. I. P. Rubinstein, Evolving quantum circuits using genetic program-
ming, Proceedings of the 2001 Congress on Evolutionary Computation,
Vols 1 and 2 (2001).

[73] C. P. Williams and A. G. Gray, Automated design of quantum circuits,
in Quantum Computing and Quantum Communications, edited by C. P.
Williams, pages 113–125, Berlin, Heidelberg, 1999, Springer Berlin Hei-
delberg.

[74] V. V. Shende, S. S. Bullock, and I. L. Markov, Synthesis of quantum-logic
circuits, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2006).

[75] Google, Cirq: a Python framefork for creating, editing and invoking
noisy intermediate scale quantum (NISQ) circuits, 2019.

[76] Fisher, R. A., The use of multiple measurements in taxonomic problems,
Annals of Eugenics (1936).

[77] N. Hansen, The CMA evolution strategy: a tutorial, (2016).

[78] N. Hansen, Verallgemeinerte individuelle Schrittweitenregelung in der
Evolutionsstrategie, PhD thesis, 1998.

94

Acknowledgments

First of all, I would like to thank Florian Neukart, Volkswagen Group of
America, Thomas Bäck at Leiden University and the members of the quan-
tum team for granting me this exceptional opportunity to experience state-
of-the-art quantum computing as an intern in the ever fascinating city of San
Francisco. I have learned many interesting and useful things, and have taken
home a lot of valuable memories.
Next, I want to give thanks to my Audi colleagues at the Code:Lab, whose
presence certainly contributed to my enjoyment of the internship.
Last but not least, I want to thank my friends in San Francisco for the
beautiful trips we made and lots of other fun times outside office hours.

Oh, and let’s not forget... Bina and the extraordinary Thanksgiving meal she
prepared. It was delicious!

95

	Introduction
	Quantum mechanics
	Notions from classical mechanics
	Dynamics of quantum states
	Measurements
	Composite systems

	Quantum computing
	Gate-model quantum computing
	Adiabatic quantum computing
	Quantum annealing

	Quantum-assisted finite-element design optimisation
	Introduction: finite-element methods
	Quantum-assisted design optimisation
	Related work
	Approach
	QUBO problem formulation
	Algorithm

	Experimental results
	Conclusions
	Future work

	Evolutionary quantum circuit learning
	Introduction: quantum circuit learning
	Related work
	Evolutionary algorithms
	Genetic design of quantum circuits
	Genetic algorithm
	Experiments
	Discussion

	An evolution strategy for parameter optimisation
	Covariance matrix adaptation evolution strategy
	Experiment and discussion

	Conclusion

	Final conclusion and outlook
	References
	Acknowledgments

