
Leiden Universiteit

Bachelor’s Thesis

to achieve the university degree of
Bachelor Computer Science

Petri nets & Property Directed
Reachability

Olaf Randel

Supervisors:

Dr. A.W. Laarman
Dr. L. Cao

August 16, 2019

Abstract

Model checking is the practice of automatically deciding whether a system
adheres to a certain specification, in order to prevent bugs. Model checking
is therefore more rigorous than testing, since it also proves the absence of
bugs.
Property Directed Reachability (PDR) is a method for model checking, in
which the model is represented as propositional logic and the reachability
of a state within that model is derived through incrementally constituting
an invariant using satisfyability solvers.
Petri nets are a modeling language for describing parallel systems, which
are systems in which different processes can progress concurrently. The PDR
method has not yet been tried for Petri nets. The challenge in implementing
this lies in the representation of Petri nets in symbolic logic.
In this thesis we illustrate how to use the PDR algorithm to check Petri net
models. We do this by encoding the Petri net as a Boolean function, which
serves as input for the symbolic PDR algorithm.
We implemented this encoder in Java, allowing us to test the efficiency of
the method against competing model checking tools. Initial experimentation
shows that the PDR method is comparatively inefficient.

iii

Contents

Abstract ii

1 Introduction 1
1.1 Relevance . 1

1.2 Research question . 1

1.3 Approach . 2

1.3.1 Example . 2

1.3.2 Solution . 3

1.4 Overview . 4

2 Background 5
2.1 Petri nets . 5

2.2 Symbolic Reasoning . 7

2.3 PDR . 8

2.4 A Petri net example . 8

3 Encoding 11
3.1 Initial Position . 11

3.2 Transition Relation . 11

3.3 Property . 13

3.3.1 1-safety . 13

4 Experimentation 15

5 Conclusion 17

Bibliography 19

v

1 Introduction

1.1 Relevance

Model checking is a form of system verification. A way to confirm whether
a system conforms to certain design specifications. This is done in order to
prove the design has no bugs.

Christel Baier and Joost-Poeter Katoen describe model checking as

” an automated technique that, given a finite-state model of a
system and a formal property, systematically checks whether
this property holds for (a given state in) that model.”

in their book ’principles of model checking’, [1].

A Petri net is a mathematical modeling language, which have become
a prominent model for expressing parallel systems.
With the Petri net model being so prominent, and model checking being
so vital, push-button verification is in high demand. The Model Checking
competition, which posits a large set of Petri net problems for competing
model checking tools, is founded on this demand. Before this research, a
tool based on the Property Directed Reachability method had not yet been
developed.

1.2 Research question

Property Directed Reachability could prove to be a method highly suitable
to the analysis of Petri nets, due to the locality of the changes they undergo.

1

1 Introduction

Since the method derives the reachability of a state from induction over
possible changes, the fact that the transitions in a Petri net affect only a
select group of connected elements could indicate the this method is highly
suitable for application on Petri nets. The combination of the two is thus a
worthwhile avenue to explore for possible innovation. However, the way to
implement this method is not self-evident. The research question is therefore:

How can we prove the correctness of a Petri net using property directed
reachability?

1.3 Approach

In order to simplify the problem to the scope of the project, we have to
find a way to encode Petri nets as logical propositions. In this work we
constrain ourselves only to something called ”1-safe Petri nets”. This term
is explained in Chapter 2. To explain our method for encoding any 1-safe
Petri net as a logical proposition, we first use an example Petri net to go by.
This example has a known solution, allowing us to validate our encoding
by running the Z3 PDR implementation [4].

1.3.1 Example

The example Petri net models the following scenario: A ferryman intends to
transport a wolf, a goat and a cabbage over a river. His vessel can contain
himself and up to 1 of these items at a time. The ferryman is incapable of
leaving the goat alone with either of the other items on the shore while the
he is on the river, since the goat would eat the cabbage, or the wolf would
eat the goat. The only way for the ferryman to complete his assignment is
by taking the goat back with him after transporting the second item to the
opposing shore and then shipping the goat towards the destination again as
his last action. The entities and possible actions are illustrated in Figure 1.1.
The four entities all start on the left shore. They can take up one position at

2

1.3 Approach

Figure 1.1: The ferryman scenario.

a time, either on the left shore or on the right. The ferryman can complete
one of eight possible actions at a time, crossing the river with one of the
other entities that is on the same shore. How this example can be encoded
as a Petri net is further elaborated in Chapter 2.

1.3.2 Solution

We by creating an encoding of this example we obtain a template to model
an encoding algorithm by.
The java method ”test” in the github repository https://github.com/

OlafRandel/Z3_petrinet is the encoding of this example. It does indeed
give the solution to the riddle.

3

https://github.com/OlafRandel/Z3_petrinet
https://github.com/OlafRandel/Z3_petrinet

1 Introduction

1.4 Overview

Chapter 2 explains terms used in this thesis, and lists information on
both Petri nets and the Property Directed Reachability method for model
checking. Chapter 3 outlines the method used to state Petri nets in predicate
logic. And finally, chapter 4 will show the outcome of the experiments using
the developed encoder, and how they compare to those of other another
method.

4

2 Background

2.1 Petri nets

A Petri net is a triple. N = (P, T, A), P is the set of places, T of transitions,
and A of arcs. Places and Transitions are disjoint, meaning there is no element
that is both. Arcs are defined as A ⊆ (P × T) ∪ (T × P). Meaning as an
arrow that either points from a place to a transition, or from a transition to
a place [2]. A Petri net models a concurrent system. Places contain ’tokens’,
representing resources in the system that is being modeled. Any transition
can be ’fired’, if the places with arcs pointing from them to it contain a
token. When a transition ’fires’ it uses up the tokens in each of these places,
and depositing a token in the places its outgoing arcs point to. The “firing”
of a transition is an atomic step, evolving the system from one discrete state
to the next. See Figure 2.1 for an example of a Petri net transition.

5

2 Background

Figure 2.1: A transition firing.

The ”marking” of a Petri net is the current distribution of tokens in each of
the places. Each marking is a unique state. A 1-safe Petri net is one in which
there’s no marking where there are multiple tokens in one place. For each
Petri net a graph can be drawn representing what markings are reachable
from what markings through transitions. An example is given in Figure
2.2.

6

2.2 Symbolic Reasoning

Figure 2.2: A reachability graph.

Semantically, a Petri net (P,T,A) is interpreted as a graph (m0,M,E). The set
of all possible markings is denoted with the capital letter M. The individual
possible markings are number lower case m’s, m0 to mn, such that mi ∈ M.
The first marking is m0, the initial state. The set of possible changes in the
markings can be represented as E, such that E ⊆ M×M.
A popular format for Petri nets is the Petri net markup language (pnml), a
program that uses Petri nets is best designed utilizing this language for it.

2.2 Symbolic Reasoning

Symbolic reasoning is a way to handle broad meanings in short sentences.
For example, when a model contains two Boolean variables, equation 2.1
stands for a single valuation.

(p1 ∧ ¬p2) (2.1)

But a broader set of satisfying solutions is shown by equation 2.2.

(p1) (2.2)

7

2 Background

By not assigning a value to p2 we define the formula as correct for both the
valuation (p1∧ p2) and the valuation (p1 ∧¬p2). It stands for two satisfying
valuations. This allows for the reasoning over sets of valuations at once,
rather than over each valuation individually. This allows fast computation
over systems where changes happen mostly locally, between just a few
variables, since much of the formula stays unchanged.

2.3 PDR

Model checking is any automated technique that checks whether a formal
property always holds in a finite-state model. In other words, this property
must be proven to be invariant. PDR is an algorithm that uses symbolic
reasoning for model checking. In this algorithm the property (φ) that must
be proven invariant is strengthened until it is inductive. This means that
E(ψ) ⊆ ψ, where ψ ⇔ φ ∩ X for some X ⊆ M and E equals the image
function of the transition relation. In other words, there is a set of states (ψ)
for the model that are acceptable, and once the model is in a state in this
set, it can not change to a state that is not in this set.
What’s relevant for this project is that PDR can only work on a predefined
model, encoded in symbolic logic. It requires an initial state (I), a transition
relation (TR) and the supposed invariant (φ).

2.4 A Petri net example

A Petri net such as shown in Figure 2.3 could represent our ferryman
scenario.

For every entity in the scenario two places in the Petri net are modeled,
one for each possible location that entity can be in. In the initial position,
the odd-numbered place in each pair of places is filled, denoting the fact
that all entities are on the left shore. Every transition stands for an action
the ferryman can take, T1 can fire if the ferryman is on the left shore and
will take him from there and deposit him in the right shore, T2 does the
opposite. Encoding this example into Boolean expressions to be used by the

8

2.4 A Petri net example

Figure 2.3: The ferryman scenario as a Petri net.

9

2 Background

Z3 PDR implementation [4], should give a guideline to how such encoding
can be done automatically. The example is demonstrated as correct when it
returns the answer to the riddle. When applying the PDR method to this
model, we must define the initial state (I) by given exact values for each of
the eight places.

I := P1 ∧ ¬P2 ∧ P3 ∧ ¬P4 ∧ P5 ∧ ¬P6 ∧ P7 ∧ ¬P8 (2.3)

The transition relation is a disjunction of the different changes that are
possible. In a Petri net, each such a possible change is due to a Petri net
transition, and both the pre- and post-conditions are defined by the arcs
that connect to it. For t1 the proposition is given below.

enc(t1) := P1 ∧ ¬P′1 ∧ ¬P2 ∧ P′2 ∧ P3 ⇔ P′3 ∧ P4 ⇔ P′4
∧P5 ⇔ P′5 ∧ P6 ⇔ P′6 ∧ P7 ⇔ P′7 ∧ P8 ⇔ P′8

(2.4)

The proposition for the transitions as a whole is
∨

t∈T enc(t) which combines
each of these steps into one set of mutually exclusive possibilities. In order
to define the fact that no transition can be made that leaves the goat on one
shore with the wolf or cabbage without the ferryman, T is conjoined with
the following rule.

¬(P′5 ∧ ¬P′1 ∧ (P′3 ∨ P′7)) ∨ ¬(P′6 ∧ ¬P′2 ∧ (P′4 ∨ P′8)) (2.5)

The property (φ) for the method to check is the absence of the win condition.
This way, if the T was encoded correctly, the PDR implementation will
return a path towards the win condition. Since the win condition is each
entity being on the right shore, the property the program is asked to check
is the opposite of that.

enc(φ) := ¬(¬P1 ∧ P2 ∧ ¬P3 ∧ P4 ∧ ¬P5 ∧ P6 ∧ ¬P7 ∧ P8) (2.6)

This example does return the right answer to the riddle. It can be found
at https://github.com/OlafRandel/Z3_petrinet as the class ”Test.java”.
From this template, the practice of forming extensive conjunctions in the
encoding of Petri nets is derived.

10

https://github.com/OlafRandel/Z3_petrinet

3 Encoding

For the application of a PDR method for a Petri net (P, T, A), three boolean
expressions need to be generated. These Boolean expressions stand for the
initial position, transition relation, and relevant property respectively.

3.1 Initial Position

The initial position is a list of atomic Boolean values, corresponding to the
initial marking (m0) of the Petri net. There is only one satisfying valuation
of I. In the equation below every individual place is given the same value in
I as it has in m0 ∧

p∈P
p⇔ m0(p) (3.1)

3.2 Transition Relation

The transition relation (TR) is a disjunction of every transition in the Petri net.
For every place in the Petri net, p, we reserve two Boolean variables, (p) and
(p’). In this notation if (a) is true, that means that before the transition place a
contained a token. If (a’) is true, the place contains a token after the transition
has been fired. If place a is not affected by the transition, that would be
denoted as (a)⇔ (a′). In summary, our encoding of the transition relation
for the net is a Boolean formula TR, such that all satisfying assignments
represent the edges in the reachability graph (m0, M, E).

11

3 Encoding

TR(p1, .., pn, p′1, .., p′n) ⇐⇒ 〈〈p1, .., pn, 〉, 〈p1, .., pn, 〉〉 ∈ E (3.2)

To generate such an encoding, we iterate over target and source places
of individual transitions t ∈ T. To do so, we use the notation ◦t and t◦.
◦t := {p ∈ P | (t, p) ∈ A} and t◦ := {p ∈ P | (p, t) ∈ A}. We will now
explain the three main conjuncts for every transition. If a place is a source
place (p ∈ ◦T) the transition can fire when it contains a token and causes it
to become empty. If a place is a target (p ∈ t◦), the transition can fire when
the place is empty and causes it to be gain a token. And for every place
in the net that is unrelated to this transition (p 6∈ (◦T ∪ t◦), the variable
must remain unchanged. In equation 3.3 we give the encoding of a single
transition, here we take every place p of the Petri net, and set the value of
the corresponding Boolean variables (p) and (p’).

enc(t) := (
∧

p∈◦t
p ∧ ¬p′) ∧ (

∧
p∈t◦
¬p ∧ p′) ∧ (

∧
p 6∈(◦t∪t◦)

p⇔ p′) (3.3)

However, this definition is imperfect. In Petri nets a place can be connected
to both an outgoing arc and an incoming arc of the same transition. If this
is the case, the place does not need to be empty as a destination beforehand,
or empty as a source after the fact. The places that appear in both stay full.
Equation 3.4 shows the amended and complete symbolic representation of
a single transition.

enc(t) := ((
∧

p∈◦t\t◦
p∧¬p′)∧ (

∧
p∈t◦\◦t

¬p∧ p′)∧ (
∧

p 6∈(◦t∪t◦)
p⇔ p′)∧ (

∧
p∈◦t∩t◦

p∧ p′))

(3.4)
The transition relation TR is a disjunction of all these transitions. We can
therefore combine all these sub-definitions into one large predicate. In
equation 3.5 the previous equation is given for every transition in the Petri
net.

TR :=
∨
t∈T

enc(t) (3.5)

12

3.3 Property

3.3 Property

The property that must be proven invariant (φ) stands for what the model
is being tested for. In the case of Petri nets there are various properties that
a user might want to verify. For the sake of this research we have encoded
one. The 1-safety.

3.3.1 1-safety

A Petri net is 1-safe if a place can not contain more than one token. The
property we define is therefore the quality of no transition being fireable
while one of its targets already contains a token. In other words, the property
means that it is not true that for any of the transitions that all the sources are
true, and one or more of the targets are true. We encode this requirement
for each transition as encsa f e(t) in equation 3.6.

encsa f e(t) := ¬((
∧

p∈◦t
p) ∧ (

∨
p∈t◦

p)) (3.6)

Again, we must account for places that are both sources and targets. These
may be true while keeping the net 1-safe. The amended encoding for each
transition is shown in equation 3.7.

encsa f e(t) := ¬((
∧

p∈◦t
p) ∧ (

∨
p∈t◦\◦t

p)) (3.7)

The 1-safety property is true for the net as a whole if this encoding is true for
all transitions simultaneously. We can therefore encode it as a conjunction
over all transitions.

enc(φ) :=
∧
t∈T

encsa f e(t) (3.8)

13

4 Experimentation

We have implemented the encoding of Petri nets as described in chap-
ter 3 using the java programming language. It can be found at https:

//github.com/OlafRandel/Z3_petrinet as the class ’interpretCheck.java’.
This implementation interprets pnml files to run on the Z3 implementation
of PDR [4].
At first, we had planned to utilize pnml problems from the annual Model
Checking Competition for this experiment. However, it soon became ap-
parent that the method would not be able to complete any of these in a
reasonable time. Smaller custom tests were made, pre-encoded for the PDR
method and in the .lola language for a competing model checking tool. LoLa
is an existing model checking tool that used for Petri nets [5]. Figure 4.1
should show the strong disparity between the two methods. The difference
in calculation time increases exponentially with complexity.

15

https://github.com/OlafRandel/Z3_petrinet
https://github.com/OlafRandel/Z3_petrinet

4 Experimentation

Figure 4.1: Results of the initial experiment.

The tests for lola and PDR can be found here https://github.com/OlafRandel/
lola2.0_customTests, they are direct translations of the ’customTests.java’
unit tests in https://github.com/OlafRandel/Z3_petrinet.

16

https://github.com/OlafRandel/lola2.0_customTests
https://github.com/OlafRandel/lola2.0_customTests
https://github.com/OlafRandel/Z3_petrinet

5 Conclusion

The answer to the research question is: We can prove the correctness of a
Petri nets using property directed reachability by interpreting the initial
state, the transition relation, and the provable property into symbolic logic,
using the distinct transitions as a guide.
The initial experimentation has shown a negative result on the efficiency of
this method. Although not conclusive it suggests the method is inefficient
for these problems.
In Chapter 1 we described how, because of the locality of the changes Petri
nets undergo when a transition fires, they seemed a good subject to use
PDR on. However, it could be that since the firing of any transition in a Petri
net can be followed by the firing of any other transition at any place in the
net the changes it undergoes are not so local over time.
Possible follow-up research could more closely examine the performance of
this method with different kinds of Petri nets.

17

Bibliography

[1] Baier, C., Katoen, J. and Larsen, K. (2008) Principles of Model Checking.
MIT press.

[2] Rozenburg, G.; Engelfriet, J. (1996). Elementary Net Systems In: Reisig
W., Rozenberg G. (eds) Lectures on Petri Nets I: Basic Models. ACPN
1996. Lecture Notes in Computer Science, vol 1491. Springer, Berlin,
Heidelberg.

[3] Günther, H., Laarman, A., Weissenbacher, G. (2016, April). Vienna
verification tool: IC3 for parallel software. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. (pp.
954-957). Springer, Berlin, Heidelberg.

[4] Nikolaj Bjorner, Leonardo de Moura (2008) Z3: An Efficient SMT Solver In:
Ramakrishnan C.R., Rehof J. (eds) Tools and Algorithms for the Construction
and Analysis of Systems. TACAS 2008. Lecture Notes in Computer Science,
vol 4963. Springer, Berlin, Heidelberg.

[5] Schmidt, K. (2000, June). Lola a low level analyser. In International
Conference on Application and Theory of Petri Nets (pp. 465-474). Springer,
Berlin, Heidelberg.

19

	Abstract
	Introduction
	Relevance
	Research question
	Approach
	Example
	Solution

	Overview

	Background
	Petri nets
	Symbolic Reasoning
	PDR
	A Petri net example

	Encoding
	Initial Position
	Transition Relation
	Property
	1-safety

	Experimentation
	Conclusion
	Bibliography

