
Opleiding Informatica

Image Compression

with Neural Networks

Orson R. L. Peters

Supervisors:

Dr. Wojtek Kowalczyk & Dr. Lu Cao

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 12/08/2019

Abstract

In this bachelor thesis we describe methods for compressing computer images with traditional neural networks.

Two entirely separate methods are discussed, one lossy and the other lossless. The lossy compression uses

a neural network to approximate an image after which the network weights are stored as the compressed

image. The lossless method improves upon the FLIF image format, replacing a simple prediction with a neural

network. Neither approach immediately leads to state-of-the art performance, but could be used as a basis for

future research.

Contents

1 Introduction 1

2 Related work 3

3 Methodology 4

3.1 Multilayer perceptrons . 4

3.2 Lossy compression . 6

3.2.1 Interpreting images as [0, 1]2 → [0, 1]3 functions . 6

3.2.2 Storing neural networks . 7

3.2.3 Auxiliary input encoding . 8

3.3 Lossless compression . 9

3.3.1 FLIF . 9

3.3.2 Predicting based on context . 11

3.3.3 Deterministic cross-platform neural network evaluation 12

4 Experimental setup 15

4.1 Lossy compression . 15

4.1.1 A distribution for weights and biases . 16

4.1.2 Auxiliary input encoding . 16

4.1.3 Network shape and evaluation . 17

4.2 Lossless compression . 17

5 Results 20

5.1 A distribution for weights and biases . 20

5.2 Auxiliary input encoding . 21

5.3 Lossy compression topology and evaluation . 23

5.4 Lossless compression . 24

6 Conclusion and future research 27

Bibliography 28

A Comparison between our lossy method and JPEG at 4 KiB 30

Chapter 1

Introduction

Image compression is a technique with which we can reduce the amount of data required to store an image in

a file. This is possible as images interesting to humans are not random - they contain various patterns. These

patterns can be very high-level such as subject matter (e.g. ‘human faces’) or very low-level patterns such as

gradients or lines. An image compressor can take advantage of these patterns.

Image compression is an important backbone of our digital society. On the HTTP archive [HTT19] we find that

on average roughly half of the data by a web page from 2016 through 2018 consists of image data. And this is

already compressed with current mainstream algorithms such as PNG or JPEG. If this data were sent in a raw

uncompressed pixel grid form it would be orders of magnitude bigger.

Similarly image compression is vital for data archival. In a modern world where archival happens digitally the

limit of storage is not real estate but the price of storage hardware. A better compression ratio directly leads to

cost savings or an increase in archival capacity.

Neural networks are a hot topic in machine learning, rapidly finding applications left and right, especially

in computer vision. This thesis is no exception, and in it we will explore two methods of applying neural

networks to the problem of image compression. While there are many powerful methods all falling under the

umbrella of neural networks, in this thesis we will be restricting our scope to only multilayer perceptrons (see

Section 3.1) for simplicity.

There are two possible approaches to image compression: lossy and lossless. Lossless methods are objective

methods that retain full information of the original image, and merely compress it. After decompressing, the

resulting image must be pixel-by-pixel entirely identical to the original. These methods are most important for

archival. Not only because any errors in the data are unwanted, but as you re-encode images over the years

these errors would compound until the result is unrecognizable if you were to use lossy methods.

Lossy methods are subjective methods that do not have to exactly reproduce the original image. Instead they

aim to encode the image in such a way that when decoded it is as ’similar’ as possible to the original image.

This invariably introduces some error, but the advantage is often a vastly improved compression rate which

1

can go up to several orders of magnitude. With a carefully tweaked algorithm the error can be imperceivable

to humans while maintaining significant file size savings. While image quality is inherently subjective, there

exist objective metrics that aim to encapsulate perceptual image quality. See Section 4.1 for more details.

Our lossless method builds on the work of FLIF [SW16]. In the core workings of FLIF’s algorithm it encodes the

differences of pixel values from a weak predictor. We replace this weak predictor with a multilayer perceptron

for marginal improvements.

Our lossy compression method was inspired by CocoNet [BI18], which transforms pixel coordinates into colors

to approximate a picture. Our method goes beyond that, and chooses to interpret the learned network weights

as a compressed image file, an approach that to our knowledge has not been seen before.

In Chapter 2 we discuss related work. In Chapter 3 we explain the methods we use, firstly multilayer

perceptrons (Section 3.1) followed by methods for lossy compression (Section 3.2) and lossless compression

(Section 3.3). In Chapter 4 we discuss the metric we use for perceptual image quality as well as our experiments.

Finally, in Chapter 5 we discuss our results and in Chapter 6 our conclusions and avenues for future research.

2

Chapter 2

Related work

While technically our methods compete with any other image compression method, the field of image

compression is old and large, and citing all possible methods is an exercise in futility. Therefore we limit

ourselves to specifically to the algorithms we chose to compare ourselves with (PNG, JPEG and FLIF)

and methods specifically using neural networks to compress images. FLIF [SW16] is discussed in detail in

Section 3.3.1.

PNG [ISO04] is a ubiquitous lossless image format that is very general and thus has various implementations

with varying quality of compression. All share a common core which uses the DEFLATE algorithm on rows of

pixels with a simple filter applied per row that allows it to encode the differences of adjacent pixels instead of

absolute values if this is beneficial.

JPEG [Wal91] is a similarly ubiquitous lossy image format. The algorithm transforms the pixels into a color

space that separates brightness and color. Then each 8× 8 block of pixels is transformed to a frequency

domain using a Discrete Cosine Transform [Str99] (DCT). These frequencies are then quantized, with higher

frequencies receiving less precision, with the idea that human perception is less sensitive to high frequency

changes in an image and more focused on large-scale changes to color or brightness. Finally these quantized

blocks are compressed further using a lossless algorithm and stored.

In [TVJ+16] Google research uses a full neural network architecture to beat JPEG, as a first. They separate

the problem in two neural networks, an encoder that generates codes from an image and a decoder that

turns codes back into an image. They iteratively improve the quality of an image by encoding residuals of the

previous iteration’s encoded image subtracted from the original, facilitated by the network’s internal memory

due to recurrent nodes.

A different approach is used in [JTL+
17]. Two convolutional neural networks are used: the first downsamples

the image and a traditional lossy method is used to compress the downsampled image. The decompressed

image is then upscaled again and the second network is used on it to predict a residual which corrects some

of the compression artifacts.

3

Chapter 3

Methodology

3.1 Multilayer perceptrons

The multilayer perceptron (MLP, also known as multilayer feedforward network) is one of the oldest and

simplest of neural network architectures. It consists of one layer of input nodes, one or more hidden layers

of neurons and one layer of output neurons. It maps the inputs to the outputs in such a way that we can

automatically learn the mapping based on example input/output pairs.

Each neuron nl
i in layer l is connected to all nodes in the previous layer, with a distinct weight wl

i,k for each

connection k. The value of a neuron can be computed by the weighted sum of its connections plus a bias value

bl
i as an added constant.

However, this would simply form a linear relationship between the input nodes and output nodes. There

would be no additional benefit of introducing hidden layers at all (compositions of linear maps stay linear).

Therefore, each neuron applies a non-linear activation f to its weighted sum:

nl
i = f

(
bl

i + ∑
k

wl
i,knl−1

k

)

The last layer (output layer) may or may not have an activation function applied depending on the desired

output. Then it is a well-known result [Hor91] that with a continuous, bounded and non-constant activation

function such a network can arbitrarily approximate continuous mappings over compact input sets, assuming

you find the right weights and biases. This is where two very powerful tools come into play: automatic differentia-

tion and backpropagation. They allow us to automatically approximate good weights/biases using gradient

descent based on some set of example inputs X with known correct values y.

Automatic differentiation allows us to exactly and quickly compute the derivative of an arbitrarily complex

function with respect to any of its variables, with one condition: the function consists strictly of the composition

of simple functions for which we know the derivative. Assuming we choose f as a simple to differentiate

function, then our entire network qualifies.

4

At its core automatic differentiation (AD) is the repeated application of the chain rule dz
dx = dz

dy ·
dy
dx where y, z

are dependent variables on x. Since our complex function consists of only the composition of functions, we

can write it as a series of steps, each step applying a function on temporaries we’ve previously computed. E.g.

for y = f (g(x)):

t0 = x

t1 = g(t0)

t2 = f (t1)

y = t2

There are two main modes of operation in AD. In forward mode AD we use the chain rule to recursively

compute dti
dx , and in backwards mode AD we recursively compute dy

dti
. Backwards mode is more efficient

if you wish to know the derivative of each internal expression in the function with respect of the output.

Backpropagation wishes to exactly know that, so we’ll stick with backwards mode AD. We can repeatedly use

the following identity:
dy
dti

=
dy

dti+1
· dti+1

dti

With as base case dy
dy = 1. To apply this, we first do a forward pass, and keep the value of each temporary

in memory. Then we can go backwards and fill out t′i =
dy
dti

for each i. As an example, let f (x) = x2 and

g(x) = sin(x) and x = 1
3 π:

t0 = x =
1
3

π

t1 = sin(t0) =
1
2

√
3

t2 = (t1)
2 =

3
4

y = t2 =
3
4

t′2 =
dy
dy

= 1

t′1 = t′2 ·
dt2

dt1
= 1 · 2t1 =

√
3

t′0 = t′1 ·
dt1

dt0
=
√

3 · cos(t0) =
1
2

√
3

dy
dx

= t′0 =
1
2

√
3

Then, backpropagation can use this information to learn our weights and biases (and any other parameters

for more advanced neural networks). If we let T be our network, and ŷi = T(xi) be the output(s) of our

network applied to xi. Then if we define an error metric E(ŷ, y) again as a composition of simple differentiable

functions, we can apply automatic differentiation to the entire construction, allowing us to efficiently and

accurately compute
d

dwl
i,k

E(ŷ, y) and
d

dbl
i
E(ŷ, y)

and similar for each other parameter in the neural network. In plain words, we can compute exactly how steep

the gradient of each parameter is with respect to the error, and in what direction it points. There are various

optimizers that can be considered backpropagation, but they all perform some form of gradient descent, using

the above gradients to nudge parameters against the gradient such that the total error is reduced.

After the parameters have been updated the whole process repeats again, with a forwards step followed by

5

a backpropagation step, iteratively improving parameters. In each iteration the parameters are updated in

proportion with a learning rate. It is common for optimizers to not use a fixed learning rate, but slowly decrease

it over the iterations to balance early exploration v.s. late exploitation. A solution may get stuck in a local

optimum, although various optimizers employ techniques to deal with those as well.

3.2 Lossy compression

3.2.1 Interpreting images as [0, 1]2 → [0, 1]3 functions

A traditional computer image is formed by pixels arranged in a w× h grid, each pixel being a color in an RGB

(red, green, blue) color space. However this is a very limited interpretation of an image. Instead, let’s consider

that there exists a true image, which has no concept of pixels and instead has a color defined at every point of

its domain. A grid of pixels is then only a collection of (evenly spaced) point samples of the true image.

If we normalize the domain (ignoring aspect ratio and stretching the image) and color space to [0, 1], we can

view an image as a [0, 1]2 → [0, 1]3 function:

f (x, y) = (r, g, b)

If function f returns the (r, g, b) color at coordinates x, y, we can say that f is the image itself. Now except for

digital vector art or other mathematical descriptions of images, we never truly know f , we only know f at

certain points (the samples). However this is exactly what neural networks are good at: given samples to learn

an underlying function.

And that’s exactly what we do: we learn the image. We consider a computer image not as a grid of pixels,

instead we consider each pixel as a (x, y)→ (r, g, b) training sample where x, y are the coordinates of the pixel

and r, g, b are the color components of the pixel, both normalized to [0, 1]. Then we train a neural network T

on these samples, and after it (hopefully) learns from these samples, we have T ≈ f . At this point the trained

neural network represents the image, with a quality depending on how well T approximates f .

Now that we have T we can use it as our image format. If we save T to a file and send it to someone they can

load T, and turn it back into a grid of pixels by calculating the coordinates (x, y) of each pixel and evaluating

T with those coordinates to retrieve the color of that pixel.

If we choose a very complex network for T with many weights, we will likely very closely approximate f .

But our original goal isn’t to learn f , it is to compress our original image! The main idea is to intentionally

limit the number of neurons and connections in T to a small amount such that it selectively learns the most

important patterns in f while foregoing small details. Since the number of neurons and connections in T will

be small, it also should not take a lot of storage space to store T. In other words, we have lossy compression.

This is a fairly non-traditional use of neural networks and can be confusing, so let’s reiterate. For each image

we wish to compress we train a neural network to approximate that image. Our trained neural network then

6

represents the compressed image, and can be saved and/or transported. To decompress we load the neural

network and evaluate it for each pixel location to deduce the color of that pixel.

Compression: Image as pixel grid
decompose−−−−−−→ (x, y, r, g, b)w×h train−−→ network T

Decompression: (x, y)w×h evaluate with network T−−−−−−−−−−−−−→ (x, y, r, g, b)w×h compose−−−−→ Image as pixel grid

Note that this approach of viewing images as functions isn’t new within the context of neural networks.

CocoNet [BI18] also views an image as a [0, 1]k → [0, 1]3 function and uses neural networks to learn this

mapping. The focus in their paper is on the applications of this technique regarding up/downscaling and

inpainting, although they do mention the uses for compression. The uses mentioned are different than the

ones we explore here though, as the related work they cite is all based on pre- or post-processing of other

lossy compression algorithms using neural networks, instead of using the actual trained network itself as the

compressed format. To our knowledge that approach is novel.

As a final note, due to the activation function we use (tanh) the neural network prefers if all input and output

is in [−1, 1] rather than [0, 1] so we normalize the input and output domain as such.

3.2.2 Storing neural networks

In order for us to be able to use the neural network as an image file we must be able to store the neural

network in some sort of file format. We could simply use our neural network library of choice to export our

model, but the resulting file would be relatively large. It would store each weight with 32-bit (or even 64-bit)

floating point, contain all the network metadata, connections, etc.

There are pre-built solutions for network compression and quantization such as TensorFlow [ABC+
16] Lite,

however those (and most existing literature, e.g. Hubara and Courbariaux et. al. [HCS+17]) focus on reducing

the precision and size of the network to increase prediction runtime performance or energy consumption.

While we certainly would enjoy the benefits of those in this project as well, our main focus is to reduce the size

of the stored neural network, so their solutions are not directly applicable. However they do show that neural

networks are resilient to small errors introduced by quantization.

We quantize all weights and biases in our neural network to 8 bits per parameter. To minimize the loss of

precision from quantization we use equal frequency binning, with the idea that less-frequently occurring values

have a relatively larger error than common values, minimizing quantization error across all values.

In Section 4.1.1 we set up an experiment to find an approximate distribution of weights/biases so we can

apply equal frequency binning. The result of this is a single table of 28 = 256 values used for all images. Each

parameter we save is rounded to its closest value in this table and the index saved instead. To load a weight

back up we load the value at the index specified.

We did not train any models to specifically cope with quantization, except we put a constraint using Keras’

7

[C+
15] max_norm such that no bias or weight had an absolute value greater than the maximal value in our

table to prevent the model from acquiring weights that could not be reasonably quantized.

With the parameters saved in a file, only one more thing is necessary, the topology of the network. How

many layers does it have, how many neurons in each layer? Instead of encoding this, we assume that both the

encoder and decoder would have a couple of known good configurations, and an index into this list would be

saved instead.

3.2.3 Auxiliary input encoding

While in principle with enough neurons a neural network can learn to approximate any function, having

appropriate features is a very important aspect of machine learning, even with neural networks. Already in

the CocoNet [BI18] paper they noticed an improvement in performance if they primed the neural network by

synthesizing additional features beyond simply the (x, y) coordinates. They added polar coordinates and the

(x, y) coordinates with a different origin as extra features and found increased performance of the network.

In addition to this we wish to test three additional ideas. The first two are very similar in nature, and are

known as thermometer encoding [YC99]. The idea is to split the input encoding of x up into n inputs (the

granularity), where each input is responsible for a portion of the domain of x. The kth input has a minimal

value when x is below its portion, linearly interpolates between its minimum value and maximum value

when x is inside it, and maintains its maximum value when x is greater than it. This looks very similar to a

thermometer when visualized:

0 0.2 0.4 0.6 0.8 1

We chose n evenly spaced portions for the domains of x, y with the minimum and maximum values of each

input set to −1 and 1 respectively. This gives the following formula for the kth input (for x, analogous for y),

assuming x ∈ [0, 1] and k ∈ {0, 1, . . . , n− 1}:

xk = clip(2(xn− k)− 1,−1, 1)

where

clip(x, a, b) =


a x < a

x a ≤ x ≤ b

b x > b

This however creates discontinuities in the derivative of the network, which can lead to visual artifacts as we’ll

see later. For that reason we also explore soft thermometer encoding, which has a very similar formula but

uses the tanh function instead of the clip function to limit the range of each input to [−1, 1]:

xk = tanh(2(xn− k)− 1)

8

x

ik 0.72

[0.426,−0.969, 0.809,−0.063,−0.729]

Figure 3.1: An example auxiliary encoding of x = 0.72 with granularity n = 5 using the DCT method.

For a similar reason we do not use regular polar coordinates, but ones that go from 0 to π in the positive

quadrants and then back down from π to 0 in the negative quadrants to prevent a discontinuous jump from

2π to 0. At least this is the case conceptually, these have been normalized to go from −1 to 1 like everything

else. Unfortunately this still creates a point discontinuity at the origin.

Finally we use an input coding technique that is inspired by JPEG [Wal91]. A fundamental theorem of signal

processing is that all signals can be expressed as an (infinite) sum of sinusoidal functions, found by the Fourier

transform. Interestingly, there are also discrete versions of this theorem one of which is known as the Discrete

Cosine Transform [Str99] (DCT). It transforms n evenly spaced real samples into a series of n coefficients of

cosine functions with different periods such that their sum reconstructs the original signal.

JPEG uses the DCT to reduce the amount of information needed to encode the image while accepting some

loss. The main idea is that human perception is focused on low-frequency signals and does not notice noise in

the high frequency domain. Roughly speaking, JPEG stores the image in the frequency domain, keeping only

values up to a certain frequency while leaving out anything higher. With that in mind the idea is to provide a

neural network with n additional inputs that form the first n cosine functions of a DCT:

xk = cos((k +
1
2
)πx)

3.3 Lossless compression

3.3.1 FLIF

FLIF [SW16] is a recent new image format that provides state-of-the art lossless compression rates. Our lossless

compression method modifies the internals of FLIF to create a variant that improves compression rates further.

We will not go through the exact mechanics of how FLIF works, but provide a quick overview.

Firstly, FLIF encodes one pixel at a time in a serial manner. To be more precise, it encodes one pixel component

at a time. Each component lives in a plane. Most image formats in use work with the RGB color space, but

9

1 8 6 8 4 8 6 8 2 8 6 8 4 8

7 8 7 8 7 8 7 8 7 8 7 8 7 8

5 8 6 8 5 8 6 ? 5 6 5

7 7 7 7 7 7 7

3 6 4 6 3 6 4

Figure 3.2: A partial decoding of a 14× 10 picture, illustrating the order in which pixels get decoded. Highlighted in bold
is a small context example of pixels that could be used to predict the unknown pixel indicated by the question mark.
Figure from the FLIF author’s slides from their talk at ICIP 2016.

FLIF does a lossless conversion from that to the YCoCg [MS03] color space, which consist of three components

Y, Co and Cg corresponding to brightness, chrominance orange and chrominance green. Doing this conversion

reduces the correlation between the channels leading to better compression.

The order in which FLIF encodes pixels is not a simple top-to-bottom left-to-right order. Instead, it encodes the

image in progressive layers, called zoomlevels. The first layer contains a single pixel: the top left pixel. Then each

layer after that either the number rows doubles or the number of columns doubles. In Figure 3.2 we show an

example where it also becomes clear what benefit this method has: when predicting a pixel’s value we can use

context on all sides of the pixel rather than only to the top and left. More on this in Section 3.3.2.

After we have a prediction of our current pixel based on previously decoded pixel values FLIF encodes

x = e− p, the difference between the predicted value and the actual value. The way this is done is what

the authors claim is the main novel portion of FLIF: Meta-Adaptive Near-zero Integer Arithmetic Coding

(MANIAC). If the predictions of pixel values are good, we’d expect their differences to be near zero or zero

most of the time.

MANIAC is based on arithmetic binary coding, which we won’t explore further here. We’ll view it as a black

box that you can repeatedly feed a data bit to encode plus an expected probability that bit is 1 and it will

output a (near) optimal compressed bitstream with maximal entropy (each bit has a 50% chance of being 0 or

1). As long as the probabilities FLIF provides for each bit are close to the true probabilities for each bit to be 1,

compression will be effective.

When encoding an integer x = e− p, FLIF first outputs a bit indicating whether x is 0. If it is not, then it

outputs a bit indicating whether x is positive or negative, followed by the number of bits are needed to encode

the value of |x|, n = dlog2 |x|e. n is encoded in unary, by outputting n 1 bits followed by a 0 bit. Finally |x|

itself is encoded, omitting its leading 1 bit (as its implied).

For each of those bits outputted, FLIF uses tree learning based on pixel context features (using features similar

but not identical to the predictors) to dynamically learn the probabilities for each bit to be 1 as the image is

encoded or decoded. Both encoder and decoder dynamically construct the same decision tree in the same

10

manner as the image is decoded/encoded, so it does not have to be encoded itself into the image file.

3.3.2 Predicting based on context

In Figure 3.2 we can see that during decoding we can have a ‘context’ of previously decoded pixels around the

current pixel we’re trying to predict. We can use this information to build a model to predict it. In default

FLIF this is done by an ensemble of three weak predictors:

avg = (top + bottom) >> 1;

topleftgradient = left + top - topleft;

median = median3(avg, topleftgradient, left + bottom - bottomleft);

if (predictor == 0) guess = avg;

else if (predictor == 1) guess = median;

else guess = median3(top,bottom,left);

Here top, bottom, etc, are the values surrounding the current pixel.

The FLIF encoder actually uses each predictor to predict a full plane for a zoomlevel before deciding which

predictor to use. The predictor with the lowest expected total bit cost for predicting the pixels in this plane

(∑idlog2 |xi − pi|e) is chosen.

The core of our lossless method is adding a new predictor to FLIF that uses a neural network to generate

a prediction based on the context. Unlike our lossy compression method, this uses a single neural network

trained on various images that is considered part of the file format. The size of the neural network is thus not

included in the file size of the image, as it’s assumed the user has received a copy of the neural network when

they installed the image compression software.

For our experiments we used a 5× 5 grid centered on the pixel to be predicted in the current plane and

zoomlevel as our context. However not all pixels in this 5× 5 grid might be available. Initially we also had a

secondary boolean feature that indicates whether this pixel exists for each pixel, but this solution ended up

performing worse than simply assigning zero to these inputs.

In addition to this, we have a feature indicating whether this layer is a horizontal or vertical expanding layer

and one feature each indicating the zoomlevel and plane. All features are normalized to a [−1, 1] range, and

the output labels are normalized to a [0, 1] range.

In order to appropriately learn our task we want our optimization metric to match (as closely as possible) our

evaluation metric. While we obviously can not possibly include the entire image compression algorithm in our

metric, in this case we can optimize exactly for what FLIF uses to determine the best predictor: the binary

logarithm of the difference between the predicted and actual value.

Now the issue with this is that this loss metric can be negative, and infinitely negative when xi = xp, so what

gives? The crucial missing piece of information is that FLIF always works with integer samples xi, xp rather

11

than real values. The prediction range never exceeds 29 samples, so a prediction error of less than 2−9 is

effectively a perfect prediction after rounding to an integer sample. With that in mind we can construct our

loss function, the mean b-bit log loss, using our continuous output domain of [0, 1]:

MLLb = b +
1
n

n

∑
i=1

log2

(
max(2−b, |yi − ŷi|)

)
It expresses on average how many bits it would take to encode the difference between a prediction and its

actual value, assuming that the output domain consists of 2b discrete samples.

3.3.3 Deterministic cross-platform neural network evaluation

In lossless (de)compression the accuracy of the employed method must be perfect, down to the last bit. Any

form of loss will eventually compound as files get re-encoded to new formats (for space but also compatibility

reasons) over the years, defeating the purpose of lossless methods. For archiving purposes it is critical that

lossless methods really preserve all data.

This may seem simple at first, however it is not trivial to make numerical methods 100% bit for bit reproducible

across platforms and architectures. In particular floating point operations are essentially off the table. Not only

do standard implementations vary for more involved operations such as trigonometry functions, even basic

operations such as a summation are so hard to make consistent a numerical method achieving such a feat is a

publishable effort [DN13].

This is an issue, as virtually all neural network libraries and methods use floating point arithmetic throughout.

To solve this we implemented a custom neural network evaluator in C++ using Q10.22 [Obe07] fixed-point

arithmetic. This means we have 10 bits of integer data and 22 fractional bits. This exactly fits in a signed 32-bit

integer.

To convert a floating point number into Q10.22 you simply multiply it by 222 and truncate to a 32-bit signed

integer. To convert back you simply convert back to floating point and divide by 222.

Once a number is in Q10.22 fixed-point format we can approximate real number arithmetic using integer

operations. Addition and subtraction directly map to their integer counterparts. To see that this works, let us

generalize for a fractional bit size m, here we have m = 222:

bmxc+ bmyc
m

≈ x + y

with a maximum error e:

e =
∣∣∣∣x + y− bmxc+ bmyc

m

∣∣∣∣
me = |mx− bmxc+ my− bmyc|

12

Since f (x) = x− bxc has a maximum value of 1, we can conclude:

me ≤ |1 + 1|

e ≤ 2
m

Thus in our case each addition can introduce an absolute error of at most 2−21, which is more than acceptable

precision. The proof for subtraction is analogous.

Multiplication is a bit more complicated, but not overly so. If we were to multiply x and y in Q10.22 form

directly, the end result would approximate bmxc · bmyc ≈ m2xy. But since our numbers should have the form

mx we need to correct this extra m factor by doing an integer division. Since our m is a power of two, this

can be done very quickly using a bit shift. To prevent overflow of the intermediate product we do require a

32× 32→ 64 bit multiplication operator. We have:

1
m

⌊
bmxc · bmyc

m

⌋
≈ x · y

with a maximum error e and WLOG assuming x, y > 0:

me = mxy−
⌊
bmxc · bmyc

m

⌋
me ≤ 1 + mxy− bmxc · bmyc

m

me ≤ 1 +
1
m

(mx ·my− bmxc · bmyc)

me ≤ 1 +
1
m

(mx ·my− (mx− 1) · (my− 1))

me ≤ x + y + 1− 1
m

e ≤ x + y + 1
m

Which means for reasonable weights and values (an absolute value of less than 10) we can expect in our

networks the absolute error to be no worse than 5× 10−6. Of course errors propagate and accumulate, so a

more detailed analysis would be preferable, but we have found that the network’s performance in practice is

not significantly impacted by performing inference using fixed-point arithmetic.

There is still the issue of overflow which we’ve been ignoring in the entire above analysis, but we simply

assume with 10 bits of integer data (giving a domain of approximately [−512, 512]) that an overflow will never

occur during the evaluation of our neural networks. If this assumption is violated and an overflow does occur

nothing goes terribly wrong though - we just output a poor prediction for that pixel.

Finally, while doing other common mathematical operations in fixed point is all possible (e.g. trigonometry,

logarithms, square roots, etc), the algorithms are slow and involved. For this reason, and to reduce implementa-

tion effort (as every operation must be programmed from scratch in C++), we have chosen to keep the features

used in the neural network simple. Our activation function of choice is therefore the leaky ReLU [XWCL15]

13

with α = 0.125 which can be implemented in fixed-point arithmetic as such:

int32_t fp_lrelu(int32_t x) {

if (x > 0) return x;

return x / 8; // Compiles down to arithmetic shift.

}

The reason this ends up being so simple is that zero remains zero in fixed-point arithmetic and that multiplying

or dividing by a constant also remains that way (since bmxc · c · 1
m ≈ cx).

14

Chapter 4

Experimental setup

We have trained (and where relevant, evaluated) all neural networks using the Keras library version 2.2.4 with

the Tensorflow backend. If some hyperparameter for training was not mentioned we have left this settting on

the default of Keras.

Early on in the project we chose the optimizer ADADELTA [Zei12] and a minibatch size of 2048 with

some simple experiments and we found that these choices were adequate for all network shapes for lossy

compression, thus we kept these options constant.

For our lossless compression method ADADELTA often diverged resulting in no training at all, probably

due to issues with our unorthodox loss function. The simpler ADAGRAD [DHS11] did not have this issue.

Additionally we found a smaller batch size of 128 compared to our previous 2048 to be critical for sustained

learning, as the bigger batch sizes started hitting a noise floor way earlier in training.

4.1 Lossy compression

With lossy compression we wish to minimize the amount of data needed to store an image as much as possible,

while accepting a loss of image quality. This means that unlike in lossless compression, our optimization

domain is two-dimensional, and no single optimal solution exists. Instead, there is a spectrum of solutions

forming a Pareto front of solutions that can all be considered optimal depending on how you value the

quality/space trade-off.

To limit the scope and to simplify our optimization we focus our final evaluation and optimization on images

that are 4 KiB in size, aiming to achieve the highest quality possible at that size. However a big question

remains: what is ‘image quality’?

Image quality is not an inherent property of an image, even if we sometimes describe it that way. When we say

that an image is ‘low quality’ we are implicitly referring to a reference image which would have no artifacts or

distortions at all, even if that reference image may not exist (such as a camera directly converting an image into

15

a lossy format). However because we are evaluating a compression method we always have an unambiguous

and available reference image: the original image before compression, thus we can use full reference methods.

Fundamentally image quality is a subjective metric and is in the eye of the beholder. Thus for a true evaluation

we must survey our target audience for each pair of images to determine which is preferred. Needless to say

this is impractical.

Instead we use an automated metric to evaluate image quality. We chose the structural similarity index

[WBSS04] (SSIM) as it is a respected and commonly used metric, with the original paper having over 20,000

citations as of 2019. We chose an implementation by Kornel Lesiński [Les19].

It uses the SSIM algorithm at multiple weighted resolutions in the CIE L*a*b* color space and returns 1
SSIM − 1

as a score (also known as DSSIM for dissimilarity), meaning 0 is a perfect score (no difference between

reference and target) and any positive score is progressively worse without bound.

Unfortunately, our training metric and evaluation metric are not the same. During the training of the neural

networks for the lossy compression method we used the mean sum of squared errors (MSE) along all three

color channels as our metric. DSSIM is a global metric across all pixels (or all training samples in this case)

and thus does not work with mini-batch learning, which would make training impractically slow. DSSIM is

also relatively complex and it’s unclear if it would be differentiable. Fortunately low loss in the MSE error

generally correlates with a lower DSSIM score in our experiments.

4.1.1 A distribution for weights and biases

As a final step to finish encoding an image to a file we need to quantize the network parameters (see

Section 3.2.2). As we wish to use equal frequency binning, we want to know the distribution of the parameters

in our trained neural networks.

To that end we trained a network for each image in the True Color Kodak image test set [Cor19]. We used a

simple configuration of four hidden layers of size 12 using the DCT method with a granularity of n = 27 that

was found as working reasonably well using ad-hoc preliminary optimization without applying quantization.

After training each network we extracted all parameters from the network and saved them. Then these

parameters were plotted and a distribution manually fitted to them, see Section 5.1. After this experiment the

resulting quantization table was used for all other experiments.

4.1.2 Auxiliary input encoding

We performed an experiment how well each auxiliary input encoding method from Section 3.2.3 learned to

approximate a 386× 320 image of van Gogh’s Starry Night. All tests were done using the same small (sum of

weights ≈ 1 KiB) neural network configuration of Section 4.1.1, with the exception of the control (no auxiliary

input encoding) which received an additional layer of neurons to make up for the lost extra connections for

having less inputs.

16

4.1.3 Network shape and evaluation

We compare our method against MozJPEG 3.3 [Moz19] using the Kodak image test set. We target the 4 KiB

file size for our optimization, and for that reason we scale the entire test set down 50% to 384× 256 pixels

thumbnails (all images in the test set have the same dimensions, although some are vertical), as JPEG does not

perform well for larger images at tiny file sizes.

But before we can compare we must find a neural network configuration that performs well at this file size.

There are two parameters to tune, the granularity n of the auxiliary inputs and shape of the neural network.

To find the best performing network we focused on the same single image (as training takes a long time) as in

the last section and did a grid search for the above parameters. We picked the granularity as a value out of

n ∈ {10, 30, 50, 70, 90}, the number of hidden layers out of {1, 3, 5} and the distribution of neurons per layer

as one out of ‘flat’ (all hidden layers have the same number of neurons) or ‘tapered‘ (each hidden layer has

2/3rd of the neurons as the one before it). Since the number of bytes for the image is fixed, the number of

neurons we can store is also fixed. We have 2n + 2 (the original x, y and n auxiliary inputs for each) inputs

and 3 outputs, a relation between the number of neurons in each layer and the total number of layers. This is

enough information to fully deduce the network shape assuming we always want to use as many neurons as

we’re allowed to. Each configuration got 200 epochs of training after which it must output an image. After this

grid search we did a second grid search to fine-tune the network shape and granularity with 500 epochs of

training.

In our final evaluation we upped the training time to 1000 epochs and compressed each image in the test

set using our method. We also repeatedly encoded each image using MozJPEG’s quality parameter until the

output image was just at or under our target file size of 4 KiB. We then computed the DSSIM score compared

to the original reference image for both and compared them.

4.2 Lossless compression

Unlike lossy compression, lossless compression has a very simple, single dimensional goal: lower the com-

pressed file size as much as possible while being able to recover the original data with perfect accuracy. The

only metric is file size, and the lower the better.

However, there is still one extra hidden dimension of optimization: which images you are compressing. It is

trivial to make an optimal compressor which only compresses fully red images - just encoding the width and

height would be enough.

While a silly example, fundamentally it is an issue. Compression is all about recognizing patterns in your data

and encoding those patterns rather than the original data. But every form of image might contain different

patterns. Consider the following list of image subjects: human portraits, company logos, animals in fields,

legal contract texts, Super Mario Brothers gameplay, paintings by Piet Mondriaan, Dutch passports, lakes. For

every single one of these subjects you could make a dedicated compressor that vastly outperforms a generic

17

compressor. A perfect image compressor would essentially contain a model of the entirety of human culture

and behavior, with specialized routines for every plausible image subject.

While worrying about a full model of the world is vastly exaggerated, it is not a stretch that any neural

network solution trained on images of text might pick up patterns such letter shapes, words or even inter-word

connections. Or that an algorithm optimized for artificially created company logos will not perform as well on

generic nature photos and vice versa.

With that in mind we limit our training and testing data to the same Kodak image data set used in the lossy

experiments, knowing full well that any model generated on it is incomplete compared to a more large-scale

varied data set including text, digital art, etc.

To evaluate our changes to FLIF we compare it to unmodified FLIF using both with default settings. Addition-

ally we also compare it to PNG compressed using Ken Silverman’s PNGOUT utility which is very slow but

gets much smaller files than an ordinary PNG compressor.

Unlike the lossy compression, the lossless compression trains a single model for all images. Thus if we trained

on the same images we use to evaluate our model we can not extrapolate this data to other images, as the

neural net might remember the original data rather than learn generalized patterns. For that reason we split

the Kodak test images into two equally sized sets: one for training and one for evaluation.

Using quick ad-hoc testing of various combinations as a starting point we settled on two hidden layers with

200 and 50 neurons. We let it train for as long as the validation loss improved, however it didn’t seem like

there was an end in sight as the validation loss closely followed the training loss, despite splitting our available

training data into disjoint training and validation samples as seen in Figure 4.1.

0 25 50 75 100 125 150 175 200
1.45

1.50

1.55

1.60

1.65

1.70

1.75

loss
val_loss

(a) Validation set from disjoint samples from same images as
training set.

0 25 50 75 100 125 150 175 200
1.45

1.50

1.55

1.60

1.65

1.70

1.75 loss
val_loss

(b) Validation set strictly from different images than training
set.

Figure 4.1: The difference between using the same images and different images for training and validation datasets, even
when the used samples from the images are disjoint.

The issue is that from the same image many similar or even identical sample contexts plus labels will be

extracted. If you then shuffle and split that training data as usual in machine learning you will still end up

with very similar distributions in the training and validation data. To combat this we used samples from the

18

Kodak evaluation images as our validation data. This does mean that we can no longer ethically use the Kodak

image set for evaluation, as doing hyperparameter optimization for our validation loss would cause indirect

fitting on the evaluation data set. So instead our final evaluation will be done on an entirely unrelated corpus

from the FLIF authors they call wikipedia-photos [Pho15] which consists of 49 downsampled images of very

high resolution redistributable photographs from Wikipedia Commons.

Knowing that overfitting could be an issue, with the same network shape we tested if we could combat

it using the regularization methods dropout and batch normalization. Then, with the basic methods and

hyperparameters figured out, we found the optimal network shape by testing various shapes in a hand-guided

search. Each tested shape was trained for 200 epochs and evaluated.

Finally the best network shape was selected (taking into account prediction runtime performance) and used in

our final evaluation.

19

Chapter 5

Results

5.1 A distribution for weights and biases

For our lossy compression method our input and output nodes have a domain of [−1, 1] and we use tanh as

our activation function, which also has an output domain of [−1, 1]. This appears to have a side effect that the

trained neural networks tend to be ‘well-behaved’. After performing the experiment from Section 4.1.1 we

ended up with Figure 5.1. The values are centered around 0, and rarely have a magnitude greater than 1.

1.0 0.5 0.0 0.5 1.0

Figure 5.1: Distribution of network weights and biases.

It’s a bit awkward that there’s an even amount of 8-bit unsigned integers, meaning we either don’t have an

20

exact representation of zero (unacceptable), accept two representations of zero (wasted information) or have a

slightly different ranges for negative and positive values. We chose the latter option.

After some rough fitting we chose the Gaussian distribution with µ = 0, σ = 1
2 and spread the 8-bit unsigned

integers such that integer i ∈ {0, . . . , 255} corresponds to value CDF−1
(

i+1
258

)
. This gives the following possible

quantized values:

[−1.33134 −1.21019 −1.13460 −1.07849 −1.03336 −0.99536

. . . −0.00972 −0.00486 0.00000 0.00486 0.00972 . . .

0.96236 0.99536 1.03336 1.07849 1.13460 1.21019]

This is exactly what we want - an exact zero representation, more precision around zero and a range slightly

bigger than one.

5.2 Auxiliary input encoding

It is evident from Figure 5.3 that providing auxiliary inputs greatly speeds up learning and leads to a much

better end result. The DCT method was by far the best performing method, so our later experiments all used it.

Interestingly the soft thermometer method performed ever so slightly worse than the hard clipping one,

although the performance difference is minimal. To our human eyes however the soft thermometer method is

a clear winner however, as it causes less jarring artifacts as seen in Figure 5.4. In our eyes this reasserts caution

against blind reliance on a metric for computer vision comparison.

We also tested using polar coordinates in addition to the four methods above, however found that it never

significantly improved performance, but did create a visual artifact due to its point discontinuity, as seen in

Figure 5.2.

Figure 5.2: Close-up of the control method trained for 1000 epochs respectively without and with polar coordinates as
auxiliary inputs.

21

Epochs Control Thermometer Soft thermo DCT

0

1

10

100

1000

DSSIM 1.7512 0.9954 0.9979 0.7693

Figure 5.3: Auxiliary input encodings compared. The images listed at zero epochs of training were generated right after
the networks were initialized with random weights. They provide an insight in the way the network outputs an image. The
listed DSSIM scores are for the final model trained for 1000 epochs.

Figure 5.4: Close-up of the final iteration of the (soft) thermometer methods from Figure 5.3.

22

n Tapered Layers DSSIM
10 No 1 0.6224

10 No 3 0.4879

10 No 5 0.4442

30 No 1 0.3076

30 No 3 0.3019

30 No 5 0.3001

50 No 1 0.2852

50 No 3 0.2637

50 No 5 0.2803

70 No 1 0.3093

70 No 3 0.2807

70 No 5 0.2904

90 No 1 0.3516

90 No 3 0.2881

90 No 5 0.3048

10 Yes 3 0.4784

10 Yes 5 0.4082

30 Yes 3 0.2784

30 Yes 5 0.2662

50 Yes 3 0.2399
50 Yes 5 0.2537

70 Yes 3 0.2624

70 Yes 5 0.2471

90 Yes 3 0.2828

90 Yes 5 0.2808

n Tapering Layers DSSIM
50 1/2 3 0.2264

50 1/2 4 0.2336

50 1/2 5 0.2243
50 2/3 3 0.2263

50 2/3 4 0.2284

50 2/3 5 0.2247

50 3/4 3 0.2317

50 3/4 4 0.2318

50 3/4 5 0.2248

60 1/2 3 0.2355

60 1/2 4 0.2251

60 1/2 5 0.2301

60 2/3 3 0.2346

60 2/3 4 0.2329

60 2/3 5 0.2250

60 3/4 3 0.2337

60 3/4 4 0.2254

60 3/4 5 0.2332

70 1/2 3 0.2385

70 1/2 4 0.2456

70 1/2 5 0.2382

70 2/3 3 0.2341

70 2/3 4 0.2324

70 2/3 5 0.2564

70 3/4 3 0.2390

70 3/4 4 0.2318

70 3/4 5 0.2385

Table 5.1: Grid searches to find a good neural network configuration for 4 KiB images.

5.3 Lossy compression topology and evaluation

From the grid search as described in Section 4.1.3 it has become clear that tapering with a granularity of 50 to

70 is desirable as seen in Table 5.1. To do the final fine-tuning we did a second grid search this time limiting

the granularity to [50, 60, 70], number of hidden layers to [3, 4, 5] and adding a new parameter, the tapering

factor. With possible values [1/2, 2/3, 3/4] it determines how much smaller each hidden layer is compared to

the previous one. We also upped the training time to 500 epochs.

From that we find that the best performing configuration is a granularity of n = 50 with a tapering factor of

1/2 and 5 hidden layers. This results in a neural network with hidden layer sizes of [32, 16, 8, 4, 3], with a total

number of 4023 network weights/biases. Using this network we evaluated our method, giving Table 5.2.

Unfortunately, our lossy compression method gets beaten across the board by JPEG at a target file size of 4

KiB. On a positive note we do notice that our method has roughly twice the DSSIM score as JPEG, trailing it as

JPEG’s score goes up and down for various different images, with a correlation coefficient of R2 = 0.918. This

means that when JPEG finds it easy to accurately encode an image, our method also has an easier time. In

other words, it’s on the right track. Perhaps with future research and other techniques the gap could be closed.

For a visual inspection most images used in our comparison can be found in Appendix A along with the 4 KiB

JPEG competitors and the lossless reference images.

23

Image Our method JPEG
1 0.1851 0.1292

2 0.0610 0.0420

3 0.1012 0.0400

4 0.1042 0.0585

5 0.3551 0.1810

6 0.1426 0.0773

7 0.2043 0.0767

8 0.2844 0.1350

9 0.0941 0.0427

10 0.1199 0.0540

11 0.1259 0.0704

12 0.0693 0.0363

Image Our method JPEG
13 0.2910 0.1521

14 0.2120 0.1169

15 0.1094 0.0548

16 0.0786 0.0497

17 0.1194 0.0667

18 0.2541 0.1195

19 0.1566 0.0674

20 0.0740 0.0310

21 0.1196 0.0625

22 0.1575 0.0745

23 0.1025 0.0459

24 0.2194 0.1026

Table 5.2: DSSIM scores on compressing the Kodak test set images to 4 KiB using our lossy compression method and
MozJPEG.

5.4 Lossless compression

0 25 50 75 100 125 150 175 200
1.6

1.8

2.0

2.2

2.4

2.6 loss
val_loss

(a) Training with dropout.

0 25 50 75 100 125 150 175 200

1.8

2.0

2.2

2.4

2.6

2.8

3.0
loss
val_loss

(b) Training with batch normalization.

Figure 5.5: Both dropout and batch normalization increased noise in the validation metric and overall reduced performance.

We have tried to use regularization methods such as dropout and batch normalization after our ReLU (except

in the final layer) to reduce the amount of overfitting a network might do, however both methods did more

harm than good (see Figure 5.5). They added a lot of noise to the training process and trained substantially

slower. The training speed was so slow that an acceptable training time (less than 3 hours for the 12 images in

our training set) could not be achieved such that the final model would be an improvement over one without

these regularization methods. We conjecture that their questionable benefit in this case is due to our input size

(≈ 5.6 million samples from the 12 images) vastly outmatching our network size although it’s possible batch

normalization doesn’t play nice with our loss function.

We found that two hidden layers was optimal (adding more barely increased performance and made training

a lot slower), and kept increasing the size of the network until the network started overfitting and validation

performance started reducing. However that never happened with the sizes we tested, instead we hit another

soft limit: processing speed. The amount of training time becomes worse, but more importantly the inference

speed also becomes linearly worse as the number of weights in the neural network increases. Since this

neural network has to be evaluated for every single pixel in the decompressor if it is prohibitively slow the

compression method is not practical. Considering the results we got we decided that the neural network with

24

Layers Weights (×1000) Loss Val. loss
[50] 1 1.5949 1.6705

[50, 50] 4 1.5190 1.6146

[50, 50, 50] 7 1.5014 1.6023

[50, 50, 50, 50] 9 1.4937 1.6007

[50, 50, 50, 50, 50] 12 1.4878 1.5967

[100] 3 1.5380 1.6250

[200] 6 1.5070 1.6008

[400] 12 1.7133 1.6161

[100, 50] 8 1.4912 1.5902

[200, 50] 16 1.4636 1.5699

[400, 50] 31 1.4254 1.5422

[100, 100] 13 1.4759 1.5805

[200, 100] 26 1.4510 1.5640

[400, 100] 51 1.4127 1.5384

[800, 100] 103 1.3827 1.5190

[200, 200] 46 1.4290 1.5507

[400, 200] 92 1.3988 1.5322

[800, 200] 183 1.3704 1.5149

∗[800, 400, 200] 423 1.3523 1.5150

∗[800, 400, 200, 100] 443 1.3332 1.5104

Table 5.3: Differences between various neural network layouts after training 200 epochs. Entries marked with an asterisk
were too slow at training and only received 100 epochs of training. The best iteration based on validation loss was chosen
for each entry, although this iteration was universally found in the last handful of iterations.

two hidden layers of respectively 400 and 50 neurons was a good trade-off between speed and space savings.

The final benchmark as seen in Table 5.4 shows that our method does compress better than unmodified FLIF.

It is never significantly bigger and often a bit smaller for a total 1.24% reduction in file size across the entire

corpus. However our method is also roughly 20 times slower than unmodified FLIF, meaning that for most

real-world scenarios our method is impractical.

25

Image Our FLIF PNG Our FLIF PNG
01 1067006 1067006 1537493 100.0% 100.0% 144.1%
02 1216150 1239658 1701731 100.0% 101.9% 139.9%
03 1138620 1143021 1494379 100.0% 100.4% 131.2%
04 1743966 1743965 2256292 100.0% 100.0% 129.4%
05 1726238 1752268 2117213 100.0% 101.5% 122.6%
06 1555800 1568842 2175386 100.0% 100.8% 139.8%
07 1177434 1215689 1917308 100.0% 103.2% 162.8%
08 938693 938692 1311191 100.0% 100.0% 139.7%
09 1161001 1195283 1659647 100.0% 103.0% 142.9%
10 1485529 1485528 1795603 100.0% 100.0% 120.9%
11 1474418 1515417 1819304 100.0% 102.8% 123.4%
12 1647736 1694280 2160786 100.0% 102.8% 131.1%
13 1849817 1849816 2344318 100.0% 100.0% 126.7%
14 1402084 1457176 1752873 100.0% 103.9% 125.0%
15 1302361 1302360 1844464 100.0% 100.0% 141.6%
16 767176 767175 980767 100.0% 100.0% 127.8%
17 1314957 1314956 1663182 100.0% 100.0% 126.5%
18 1688409 1688409 2127549 100.0% 100.0% 126.0%
19 1621096 1619987 1743628 100.1% 100.0% 107.6%
20 1473365 1484647 1926133 100.0% 100.8% 130.7%
21 1788741 1797573 2213937 100.0% 100.5% 123.8%
22 1615206 1623320 1998054 100.0% 100.5% 123.7%
23 1181203 1192436 1521455 100.0% 101.0% 128.8%
24 1324802 1345501 1903409 100.0% 101.6% 143.7%
25 1577536 1641609 2171838 100.0% 104.1% 137.7%
26 1624055 1655052 2102574 100.0% 101.9% 129.5%
27 1600418 1600417 2015306 100.0% 100.0% 125.9%
28 1413228 1431549 1644849 100.0% 101.3% 116.4%
29 1719861 1724670 2057595 100.0% 100.3% 119.6%
30 1486281 1522494 1859526 100.0% 102.4% 125.1%
31 1415198 1415198 1886674 100.0% 100.0% 133.3%
32 1020982 1024288 1327392 100.0% 100.3% 130.0%
33 1242026 1242026 1570824 100.0% 100.0% 126.5%
34 1113707 1132659 1502611 100.0% 101.7% 134.9%
35 1201545 1229893 1612342 100.0% 102.4% 134.2%
36 1441092 1470970 1812512 100.0% 102.1% 125.8%
37 1476776 1480975 1810568 100.0% 100.3% 122.6%
38 807867 807866 1086308 100.0% 100.0% 134.5%
39 1447202 1483288 1943348 100.0% 102.5% 134.3%
40 1245195 1256812 1619469 100.0% 100.9% 130.1%
41 931839 952387 1277331 100.0% 102.2% 137.1%
42 1261508 1288795 1793853 100.0% 102.2% 142.2%
43 1452183 1543604 1959903 100.0% 106.3% 135.0%
44 1258308 1286309 1803513 100.0% 102.2% 143.3%
45 1011012 1011011 1300872 100.0% 100.0% 128.7%
46 1380139 1396750 1684127 100.0% 101.2% 122.0%
47 1355655 1355655 1706395 100.0% 100.0% 125.9%
48 1277410 1291214 1787373 100.0% 101.1% 139.9%
49 1809431 1830284 1903025 100.0% 101.2% 105.2%

Total 67232262 68078780 87206230 100.0% 101.3% 129.7%

Table 5.4: Final lossless benchmark on the FLIF Wikipedia photo corpus [Pho15]. Size given in bytes and relative to best for
each image.

26

Chapter 6

Conclusion and future research

From our lossy method we’ve seen that a neural network itself can be considered a compressed approximation

of data by storing its weights, which is a technique that we have not seen before in the context of data

compression. While in of itself this technique does not beat JPEG for image compression, we do see that just

structure imposed by the neural network manages to compress information at a similar rate of a traditional

algorithm. Perhaps with future research of other neural structures or auxiliary input methods the gap could

be closed or applications could be found in other compression tasks.

Additionally we’ve seen that auxiliary input encoding can make a huge difference in learning rates and final

model quality. This re-asserts the importance of feature engineering, but even feature synthesis that would in

theory not be necessary.

Our lossless work can be considered a proof of concept that FLIF can be improved by introducing a stronger

prediction scheme, however it did not improve as much as we’d hoped. There are three avenues for future

research in our approach that we see.

The first is simply more data from a more varied corpus. Our method only achieved a 1.24% file size reduction

on an entirely unrelated corpus, but on only the validation portion of the Kodak corpus we achieved a 3.13%

file size reduction. And these results are using samples from merely 12 sample images. When trained for a

very long time on a very large corpus we could likely see these numbers improve.

The second avenue is to use a much larger context than 5× 5 and using convolutional neural networks instead

of traditional feedforward networks. We expect this plus a larger corpus combined to have a significant positive

effect.

Finally, FLIF uses not only the pixel prediction but also simple features based on the pixel context to generate

bit probabilities using tree learning. Perhaps these simple features could also be replaced with learned ones

using auto-encoders.

27

Bibliography

[ABC+
16] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat

Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden,

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale machine learning.

In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pages 265–283,

2016.

[BI18] Paul Andrei Bricman and Radu Tudor Ionescu. Coconet: A deep neural network for mapping pixel

coordinates to color values. CoRR, abs/1805.11357, 2018.

[C+
15] François Chollet et al. Keras. https://keras.io, 2015.

[Cor19] Kodak Corporation. Kodak Photo CD Photo Sampler. http://www.cs.albany.edu/~xypan/

research/snr/Kodak.html, 2019. [Online; accessed 01-July-2019].

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and

stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, July 2011.

[DN13] James Demmel and Hong Diep Nguyen. Fast reproducible floating-point summation. In 2013 IEEE

21st Symposium on Computer Arithmetic, pages 163–172. IEEE, 2013.

[HCS+17] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized

neural networks: Training neural networks with low precision weights and activations. J. Mach. Learn.

Res., 18(1):6869–6898, January 2017.

[Hor91] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,

4(2):251–257, 1991.

[HTT19] HTTP Archive. Page weight report. https://httparchive.org/reports/page-weight?start=

2016_01_01&end=2019_01_01, 2019. [Online; accessed 11-August-2019].

[ISO04] ISO/IEC. 15948:2004 – Portable Network Graphics (PNG): Functional specification. Standard,

International Organization for Standardization, Geneva, CH, March 2004.

28

[JTL+
17] Feng Jiang, Wen Tao, Shaohui Liu, Jie Ren, Xun Guo, and Debin Zhao. An end-to-end compression

framework based on convolutional neural networks. CoRR, abs/1708.00838, 2017.

[Les19] Kornel Lesiński. Image similarity comparison simulating human perception (multiscale SSIM in

Rust). https://github.com/kornelski/dssim, 2019. [Online; accessed 26-June-2019].

[Moz19] Mozilla. Mozilla JPEG Encoder Project. https://github.com/mozilla/mozjpeg, 2019. [Online;

accessed 01-July-2019].

[MS03] Henrique Malvar and Gary Sullivan. Ycocg-r: A color space with rgb reversibility and low dynamic

range. ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q, 6, 2003.

[Obe07] Erick L Oberstar. Fixed-point representation & fractional math. Oberstar Consulting, 9, 2007.

[Pho15] Various Photographers. FLIF Wikipedia Commons image corpus. https://github.com/

FLIF-hub/benchmarks/tree/cee4aee713671db085649d3b7c35f391a552c13b/test_images/

wikipedia-photos, 2015. [Online; accessed 10-July-2019].

[Str99] Gilbert Strang. The discrete cosine transform. SIAM Rev., 41(1):135–147, March 1999.

[SW16] Jon Sneyers and Pieter Wuille. Flif: Free lossless image format based on maniac compression. In

2016 IEEE International Conference on Image Processing (ICIP), pages 66–70. IEEE, 2016.

[TVJ+16] George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen, Joel Shor,

and Michele Covell. Full resolution image compression with recurrent neural networks. CoRR,

abs/1608.05148, 2016.

[Wal91] Gregory K. Wallace. The jpeg still picture compression standard. Commun. ACM, 34(4):30–44, April

1991.

[WBSS04] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image Quality Assessment: From Error

Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13:600–612, April 2004.

[XWCL15] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in

convolutional network. CoRR, abs/1505.00853, 2015.

[YC99] Yunho Jeon and Chong-Ho Choi. Thermometer coding for multilayer perceptron learning on contin-

uous mapping problems. In IJCNN’99. International Joint Conference on Neural Networks. Proceedings

(Cat. No.99CH36339), volume 3, pages 1685–1690 vol.3, July 1999.

[Zei12] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701, 2012.

29

Appendix A

Comparison between our lossy method

and JPEG at 4 KiB

These are the images associated with the experiment in Table 5.2. From left to right we see our method, JPEG

and the reference image. For space reasons some images were omitted.

30

31

32

