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Abstract 

Nowadays RNA-seq is a widely-used technique being applied in an extensive variety of 

sequence-based research. RNA-seq facilitates the analysis and discovery of novel genes and 

transcripts. Most notably RNA-seq can be used to identify differentially expressed genes or 

transcripts by differential statistical analysis. For example, RNA-seq used in a study done on 

Chinese hamster ovary all lines identified several differentially expressed genes. The 

experiment outputs show a total of 572 upregulated and 924 downregulated protein-coding 

genes in CHO-K1 cells when comparing with CCL39 cells [15]. RNA-seq has been used in 

many cancer researches [14], hereby RNA-seq shows a higher throughput than classical 

microarray analysis [16]. As RNA-seq does not rely on pre-designed complement probes, a 

significant advantage of RNA-seq is avoidance of technical issues existing in Microarray-

technique such as cross-hybridization [18]. RNA-seq data sets can be very extensive leading 

to several challenges w.r.t. performance. For example, read-alignment, a preprocessing stage 

of RNA-seq, requires a lot of memory and computations. Pertea et al. proposed an efficient 

and effective protocol for analyzing RNA-seq data using HISAT2, StringTie and Ballgown 

[1]. In their study and evaluations, they used down-sampled data. In this work, we aim to re-

evaluate the whole pipeline of Pertea et al. on the same down-sampled data as well as the full 

set of data to study the scalability of their protocol. Furthermore, a comparison of the impact 

of the aligners HISAT2 and STAR on performance, quality and scalability in the protocol 

proposed by Pertea et al. is presented. 
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1. Introduction 

DNA sequencing (DNA-Seq) plays an essential role in mapping out the human genome. In 

DNA-Seq it is possible to determine the complete DNA sequence of an organism’s genome. 

DNA sequencing is also the most efficient way to determine the sequence at RNA or proteins. 

However, the transcriptome specifically holds what genes are expressed at a certain moment 

in time. Thus RNA-seq, sequencing the transcriptome, allows us to analyze various important 

aspects such as alternative gene splicing, gene fusion and changes in gene expression leading 

to more detailed insights in all kinds of processes in the cells. 

The RNA-seq technique is applied to many different experimental designs for instance, 

experiments done under different biological conditions, as well as experiments periodically 

during a period of time (time-series data). For example, in [3] dynamic biological processes on 

gene expression data is studied and modelled. In [4] several methods that can be applied to 

model time-course RNA-seq data are discussed. One of the popular approaches in RNA-seq is 

differential expression analysis [1,14,15]. Differential expression analysis can be used to study 

stages of which genes or transcripts are expressed at a significantly higher or lower number in 

different tumor tissues versus healthy tissues. 

In RNA-seq studies typically many reads of the transcriptome are used. The RNA-seq 

processing pipeline for analyzing the data consists of aligning these reads to the genome, 

assembling the transcripts and merging them to cover the unknown parts of the reads mapped 

on the genome by those already discovered. The output data is used as input for further 

downstream analysis. 

Next Generation Sequencing technique produces millions of small segments called reads to 

map them throughout the whole reference genome using different bioinformatic tools. Two of 

well-known and mostly used transcriptomic aligners are HISAT and STAR. The goals of the 

current work is to firstly validate Pertea et al’s work as well as performing comparisons 

between HISAT2 and STAR. We do this since it is essential to find a suitable aligner among 

many by considering the characteristics of the data we intend to analyze (for example paired-

end reads/single end reads, the length of the reads, etc.). In [1] it is emphasized that HISAT is 

the fastest aligner among the rest. This encourages us to find out if HISAT2 gives still better 

performance rather than STAR (STAR is a popular aligner with a relatively high rate of 

accuracy, however it is memory-intensive). STAR is an ultrafast two-step alignment that first 

splice junctions are detected then they are used to further map the reads. it helps in increasing 

the alignment accuracy. 

Pertea et al. [1] proposed a so-called “New Tuxedo” RNA-seq analysis pipeline consisting of 

transcriptomic analysis of reads I) using HISAT to map the reads,II) StringTie, to count the 

abundances and III) Ballgown to find differentially expressed genes and transcripts. In [1] the 
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reads are mapped against only chromosome X to make the protocol faster and simpler. It is 

notable that StringTie is also used to cover the unknown information of reads by those of 

known reads and. As a result of all these steps, genes and transcripts lowly or highly expressed 

are discovered. 

In the proposed New Tuxedo pipeline HISAT2 is applied to map RNA-seq paired-end samples 

to the given genome. STAR is studied as an alternative aligner in the New Tuxedo protocol by 

Pertea et al. The STAR aligner is compared on performance, scalability and accuracy. We also 

choose STAR (as one of the well-known spliced transcripts aligners) to work with since it 

outperforms many other aligners, such as GSNAP, in speed on human samples while it 

preserves sensitivity and precision [2]. Another advantage of STAR is that non-contiguous 

reads are directly mapped to the genome with the help of a read-clipping technique called soft-

clipping. Soft clipping helps to improve the accuracy of the mapping. Furthermore, STAR uses 

the Maximal Mappable Prefix (MMP) search algorithm and uncompressed Suffix Arrays (SA) 

rather than compressed SA (as many short-read aligners use) to increase the accuracy rate [2]. 

Also, STAR alignments are deterministic. However, it is changed to a non-deterministic 

aligner if for example multiple threads are used. In that case different executions of the same 

data may lead to different orderings of the reads. Alternative aligners such as GSNAP are much 

faster than many other aligners but still slower than STAR. The Tophat aligner is also much 

slower than STAR and does not apply read clipping for partial reads (reads which are not 

completely matched with a section/sections on the reference genome) leading to increase of 

the   unmapped reads rates (the percentage of reads which are unmapped). 

The STAR aligner shows a competitive run in comparison with HISAT2 in some studies. For 

instance, Baruzzo et al. [9] observed in an experiment they performed that STAR outperforms 

HISAT2 when working on human data set samples with a recall of >=97%. Compared to the 

observed recall of HISAT2 in Baruzzo et al.’s [8] STAR gives a better performance than 

HISAT2 on human data sets. The better performance consists of both a higher percentage of 

reads aligned correctly, as well as a higher precision and recall rate on a simulated human data 

set. Although there is an exception on one set of human data showing no significant difference 

between the results for both mappers. This inspired us to process the data used in Pertea’s paper  

by STAR and see if this re-map leads to with respect to any advancements in the results with 

respect to alignment accuracy performance.  

 

The goal of our study is to critically evaluate the proposed Pertea’s New Tuxedo RNA-seq 

pipeline (PNT). Pertea et al. [1] use Hisat2, StringTie and Ballgown in their suggested 

processing pipeline. The goals of our study is to evaluate the performance of STAR in PNT as 

well as to optimize STAR parameters, Alexander Dobin et al. [2] imply, when aligning to 

genomes other than those containing smaller introns, STAR’s default parameters seem to 

operate well, but when this is not the case, we need to change parameters to obtain the optimal 
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state for a specific data set. Additionally, the RNA-seq design is limited by the budget 

dedicated to the analysis. To achieve the highest power by choosing the optimal parameters 

and still being under the defined budget is also one of the goals. Here we investigate several 

parameters to evaluate any improvements in the mapping results. We change the parameters 

depending on the structure of data sets being studied, different parameter optimization is 

needed as explained above. For example, if the genome to be mapped to has a small size, then 

the appropriate parameter will be scaled similarly if we process data with smaller intron sizes.  

Pertea et al. [1] suggest that Hisat2, StringTie and Ballgown is the optimal software packages 

to be used to analyze the human transcriptomic paired-end data. Specifically, in contrast to 

other mapping software packages, their proposed protocol pipeline decreases the calculation 

time a lot while maintaining a good level of quality of the alignment and hence results.  

In this study we conducted several experiments to evaluate the performance of HISAT2 in 

PNT compared to the STAR aligner used in PNT instead. We found that HISAT2 is still more 

rapid than STAR. However, the difference is small for data sets indicating they work well for 

smaller data sets, but the time spent to map increases as data grows. We also tested this on two 

different comparing systems of 8GByte (intel core i7) and 64GByte (intel core i7).  main 

memory respectively. It is clear that more available main memory plays a positive role in 

decreasing the mapping time for STAR, but HISAT2 is still aligning the reads faster than 

STAR. Although HISAT2 is faster, we observed that STAR represents higher rates of correctly 

aligned reads. This encourages us to remove false positive rates out of the results. So, parameter 

optimization could be done to get true positive rates. Finally, we conclude that STAR is better 

choice to work with in this specific protocol PNT. Since by tuning parameters correctly 

mapped reads rates as well as mismatch rates are respectively higher and lower than when we 

use HISAT2 in PNT, executed on full data. 

In our study, we take the same pipeline of Pertea et al., PNT to work with. The software 

packages used work well without any restrictions. The pipeline is applied on the same data as 

they used in their work to verify their findings. Furthermore, as mentioned above, we increased 

the volume of data by using the full data sets in order to analyze and evaluate the scaling of 

the pipeline in various settings. 

The rest of the paper is organized as follows. In Section 2, we describe the new tuxedo pipeline 

and explain each software’s function used in the pipeline as well as its strategy to work. In 

Section 3 the experimental setup of Pertea’s work [1] as well as of our experiment are 

explained. Notably, there are two different phases in our experiment. In the first phase PNT 

(Pertea’s New Tuxedo) is implemented. In the second phase, the alternative STAR aligner is 

used in PNT as well as parameter optimization for both aligners. It should be mentioned that 

during the first phase the data are the same as used by Pertea [1] however in the second phase 

we use the same down-sampled data as well as down-sampled data with different sizes of 
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20%,40%,80% of full data, and the full data. In the next section hardware specifications are 

mentioned. Both phases of the experiment are explained in Sections 5 and 6. In Section 7, 

parameters influencing the alignment results of HISAT2 and STAR are studied. The results 

are given in Section 8. Finally, CPU and memory usage are investigated for both the aligners. 

 

 

 

 

 

 

 

 

Figure 1 Overview of PNT pipeline 

 

 

 

 

Before we start to explain two phases of our experiment, it is required to describe some some 

statistical terms and definitions used in the current work: 

- Fold-change: in order to discover how a quantity changes from an initial value to a final 

value the fold-change is analyzed. For instance, if a gene is upregulated by 2 fold change, 

it means that the final value is two times bigger than the initial value.   

- p-value: the probability value for a given statistical model (in case of true null hypothesis) 

is equal or greater than the actual observed results. For example, p-val 0.05 means a strong 

evidence against the null hypothesis. So, we may reject the null hypothesis. 

- q-value the minimum False Discovery Rate at which a test may be called significant. In q-

value the traditional threshold is 0.01-0.05. 0.01 indicates that 1% of the significant results 

is null. 

 
 

Figure 1 Overview of PNT pipeline. 
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2. Overview of the “New Tuxedo” Pipeline using HISAT, StringTie and Ballgown 

In [1] the new tuxedo for the processing pipeline PNT for RNA-seq data is proposed. PNT 

consists of the following processing steps: 

 

0) The sample reads, RNA-seq data, given as a GTF file, are inputs of PNT. 

1) Hisat2 aligns the reads in order to map them on the genome. 

2) The mapped reads are counted by StringTie to have an insight on the abundances of mapped 

reads. Subsequently, merging function is applied for covering the reads.  

     merging function is also applied for covering the reads.  

3) Gffcompare in PNT is used to determine how many assembled transcripts match 

     annotated genes as well as discovering entirely novel transcripts.  

4) The Ballgown analysis software is used to find which genes and transcripts are up 

     and downregulated.  

5) The results are given as tables of up and downregulated genes and transcriptomes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2   An overview of PNT, the "new tuxedo" protocol [1]. Sample reads and GTF files enter to the process. 
Mapping the reads against a genome is the first step in the processing pipeline. In the following, StringTie 
calculates the abundances of reads. In the end, Ballgown performs the statistical analysis and gives the lists of 
down and up regulated genes and transcripts. 
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2.1 Mapping Reads: HISAT 

HISAT2 performs the method of exon-first (such as Mapsplice [6]) on samples reads. The 

exon-first method consists of two steps. First, it applies the unspliced method to map all the 

reads to the whole genome, next, it splits the remaining reads to shorter ones and align them 

again to the genome [7]. 

Indexing techniques in HISAT2: Before starting to map the reads to reference genome, it is 

required to have genome indices beforehand (Each index contains a genomic region). HISAT2 

uses two kinds of indexing for aligning, Burrows-Wheeler transform (BWT) and the Ferragina-

Manzini (FM) index. Global and local FM indexing strategies help anchoring and extending 

of the alignments faster. However, to speed up the execution, HISAT2 uses a multi-threading 

model that helps the package accomplish the job within a short time [17]. In FM index-based 

aligners, the exact matches are found and then the exact alignment are created from the exact 

matches. The FM indices cover the whole genome to improve mapping to the reference 

genome.  

Locations of annotated genes: PNT uses HISAT2 for mapping of the RNA reads from the 

transcriptome to the genome. HISAT2 has two inputs the reference annotation and the RNA 

reads (see Appendix A). Notably, to speed up the mapping time, positions of known 

genes/transcripts annotations can also enter the procedure as an extra input leading to a speedy 

mapping process by skipping to find the locations of annotated genes as they are already 

included in the third input (also available for STAR). If those locations are not already offered 

to HISAT2, then HISAT2 will find them by itself. Although it will take longer time to map the 

reads. 

2.2  Transcript Assembly: StringTie 

Generally, power of StringTie in accurate reconstruction of genes is already tested [8]. Level 

of estimation of StringTie in comparison with Cufflinks, IsoLasso, Scripture and Traph is 

higher in both real and simulated data sets.  

After aligning reads to the genome, StringTie program is used to I) assemble the transcripts 

mapped on the genome. Similarly, in this step reference annotation is required. The GTF file 

and mapped RNA reads as inputs are entered to StringTie. Then StringTie assembles 

transcripts from mapped RNA-Seq reads. II) Estimating the expression level of each gene is 

also done by StringTie. After the assembly process III) the --merge function merges all the 

gene structures in each of the samples to create a unifies set of transcripts across different 

samples. In other words, we may use this feature to create a consensus transcriptome reference 

GTF from multiple samples. The StringTie’s merge function finds and fixes those transcripts 

which are not well-covered in the previous performance. So, this function merges all transcripts 

of all the samples together. Since the covered transcripts may improve the results. The result 
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is again fed to the StringTie to IV) re-estimate abundances of transcripts once again. Finally, 

it passes transcripts and abundances to Ballgown for statistical analysis. 

StringTie takes the advantages of the network (see Figure 3) to assemble and quantify the reads 

by building graphs. The paths of the graph represent the weights of coverages. It consists of 

amounts of abundances for the reads. In other words, reads including more repeat times in the 

samples are heavier in the network of StringTie as well (see Figure 3) [8]. Next, the assembled 

reads are counted by FPKM. The FPKM counts the total number of fragments instead of 

number of reads (RPKM). Subsequently, the results are entered to StringTie’s merge function 

to merge all data. It is notable that gffcompare serves to compare the GTF file and transcript 

query obtained from the previous step of the experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3   an overview of StringTie works, picture from [8] 
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2.3  Differential expression of genes and transcripts: Ballgown 

In this step, read-counts and transcripts are both fed to the Ballgown. Default parameters are 

used in this study. After grouping data to two different conditions, Ballgown outputs the 

differentially expressed genes as tables (Table1 and Table2). As mentioned, the Ballgown the 

R package takes the output of StringTie (abundance of transcripts) as inputs. It performs some 

statistical analysis on them such as flexible differential expression analysis, visualization of 

transcript structures, and matching of assembled transcripts to annotation. The results are 

summarized and visualized in downstream analysis. As shown in Tables, 9 transcripts are 

differentially expressed on chromosome X between two sexes (q-val threshold 0.05) as well as 

10 genes at the gene level with the same cut-off of 0.05.  

3. Experimental Setup 

As already mentioned, the goal of our study is to validate the PNT as well as to compare 

HISAT2 and STAR. The study is done in two different phases. In the first phase, PNT is run 

and the same results as [1] output. However, in the second phase a comparison is performed 

on HISAT2 and STAR performances considering different factors such as speed, memory 

usage, accuracy of mapping (percentage of uniquely mapped reads). 

Pertea et al. [1] used 12 RNA-seq transcriptomic paired-end human samples. They are all 

obtained from Illumina hiseq 2000 including two sets of British from England (GBR) and 

Yoruba from Ibadan in Nigeria (YRI). Each group consists of 6 samples to be assessed in 

which half is male. Notably, in the library preparation, the experiment is done on 465 

lymphoblastoid cell lines from the 1000 Genomes for the certain sample of ERR188337. All 

the samples are human samples (organism, homo sapiens). Both the forward and reverse reads 

lengths are 75 base pairs each (for example in ERR188337). The reads worked on in this study 

are of modest sizes. However shorter reads can save the resources, the longer reads improve 

splicing detection. Thus, a suitable read-length depends on the ultimate goal of the study. 

Similarly, in PNT a modest size of data is used to save time and resources as well as to provide 

scalable read-alignment. Moreover, to generate robust results, the number of biological 

replicates should not be less than 3 [5]. Considering these factors, the ultimate results is more 

reliable helping to get more real output. 

The first part of our analysis (re-doing the pipeline exactly as the Pertea’s paper) showed the 

same results as [1]. Similarly, the number and name of the genes and transcripts differentially 

expressed are the same as the paper (see Tables 1 and Table 2). 

In our experiments the data is used in the two different phases of the experimental setup. The 

first sets of data are those used in Pertea et al.’s work [1]. In the second phase we test 10 percent 

of full data set and we increase the amount of reads by 20, 40, 80 to finally 100 percent of the 

full data set. It is done for all the 12 samples using both HISAT2 and STAR.  
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3.1  Phase I: Experimental Setup 

In PNT [1] the sub-samples are tested using HISAT2, StringTie and Ballgown (their suggested 

protocol pipeline). Mapping process is done by HISAT2. StringTie calculates the abundances 

of reads mapped on the reference genome. Then it passes the results of analysis to Ballgown. 

Ballgown statistically investigate the results and highlights those genes and transcripts which 

are up and downregulated. Our experiment starts with re-performing the whole pipeline of 

PNT on the same data as Pertea et al. used. In the end, the same differentially expressed genes 

and transcripts are reported.  

4. Hardware 

Pertea et al. [1] recommend using a machine with the following hardware specifications: 

• Hardware: 64-bit computer running either Linux or Mac OS X (10.7 Lion or later); 4 

GB of RAM (8GByte preferred). 

In our experiment, the evaluation and experiments are performed on two machines with the 

following specifications (see Appendix D): 

• Intel(R) Core (TM) i7-7700HQ CPU, 4 Cores, 2.80GHz 8GByte of main memory 

and Ubuntu 17.04 64-bit  

• Intel Core i7-5820K 3.3 GHz, 12 Cores, 64GByte main memory and Ubuntu 16.04 

LTS 64-bit.  

5. Experimental Results of Phase I: Evaluating the Performance of STAR vs HISAT2 in 

(PNT) 

As mentioned earlier, our experiment consists of two phases. In the first phase the work of 

Pertea et al. [1] is performed and evaluated. In this phase, exactly the same set of data they 

used is being tested in our experiment.  

5.1 Mapping 

 

We implemented the PNT pipeline of [1] in the first phase of our experiment. Similar to PNT, 

HISAT2 aligns the reads of 12 subsamples (two groups of GBR and YRI already mentioned) 

against the reference genome (chromosome X). Data are paired-end reads with 75 bp long. All 

are obtained from 465 lymphoblastoid cell lines from the 1000 Genomes.). After aligning the 

reads, StringTie calculates the abundances and finally Ballgown statistically investigate the 

results of the last step to find which genes and transcripts are highly or lowly expressed 

between two groups. Like PNT, the results we obtained shows that among 9 differentially 

expressed transcripts 3 of which (XIST, TSIX, PNPLA4) correspond to isoform of known 

genes. Notably, like PNT, we also use the 8 processors of our system to run the HISAT2 for 
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each of the sub-samples as [1]. We used the measure Fold-change to describe how much a 

quantity of expression changes.  

There are several important factors influencing the results of RNA-seq techniques. The two 

features of sensitivity and precision of an aligner play an important role in the quality of the 

true positive results of the final step. Sensitivity or recall means for instance the percentage of 

genes which are correctly identified as highly-expressed as having the condition. Additionally, 

precision is the proportion of positive results. There are several factors that lead to bad 

alignments of the reads: for example, there is a false positive rate factor that should be 

controlled by aligner. It is claimed that HISAT2 is able to cope with such an issue. 

Furthermore, if a bad aligner is chosen for mapping to the genome, the unaligned significant 

percentage of reads will lead to fake outcome when it consumes more time to map on the 

genome as well.  

Clearly, multimapped reads affect the mapping results. In HISAT2 as well as in many other 

aligners, they are ignored to map on the reference genome. Solving this issue will highly 

increase the final rate of mapped reads leading to have a better understanding from data [1]. 

Based on what we observe from samples report using HISAT2, the overall mapping rates are 

above 95% in which the rates of uniquely mapped alignments are between 70 and 80 percent 

(see Figure 4). Moreover, the multi-mapped (see Figure 5) and unmapped (see Figure 6) reads 

rates except two samples which exceed 20 % are between 10 and 20 percent.  

 

5.2  Assembly  

 

PNT uses an annotation file to do the assembly of reads. The annotation file is in HISAT2. 

Notably, it is recommended that the user takes this file in the analysis if it is available. Since it 

will improve the assembly process and leads to better accuracy. It contains the locations of all 

known genes with their introns and exons boundaries and splicing events. It clearly also 

improves the speed of mapping, since the known genes will not again be sought. The 

annotation file is also used in the merge function of the protocol. In PNT the annotation file 

contains 2098 transcripts from 1086 genes on chromosome X. Similar to PNT, in our 

experiment, the transcriptome assembly statistics represent 908 assembled genes when it is 

used without annotation. However, it is 1258 when supplying the annotation file. The statistics 

of transcripts matching annotation also show 661 transcripts while it is 1408 transcripts when 

it is merged with annotation.  

To observe how the assembled transcripts, differ from the given GTF file, gffcompare is used 

in PNT [1]. The Gffcompare compares the genome annotation file using the result of StringTie. 

Such options can assess the accuracy of pipelines by comparing the results with the known 

reference annotation.  
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5.3  DE analysis  

 

To find out how much of each transcript is expressed we can use the FPKM factor. As 

mentioned earlier, the assembled reads are counted by FPKM. The FPKM counts the total 

number of fragments in genes instead of number of reads (RPKM) by using log2 of the values. 

As a result, to stabilize the variance, log 2 transformation is applied to FPKM results. There is 

only one difference between RPKM and FPKM that is FPKM considers that two reads can 

map to one fragment. As a result, a fragment is not counted twice. After transformation we see 

that there are a very few fractions of genes that are highly expressed. We already know that, 

generally genes with lower level of expression will be challenging to be reconstructed. Since 

such reads are not well-covered and as a result are not informative to study. 

The result tables of differentially expressed genes and Transcripts (see Tables 1 and 2 

respectively) are the same as PNT. It shows that three known genes (XIST, TSIX and 

PNPLA4) are existed in both the males and females. Although the expression level of PNPLA4 

is higher in females than males. In the biology of genes, TSIX is a non-coding gene that 

attaches to XIST to inactivate chromosome X [1]. In our experiment, we can decide which 

threshold to be used to extract differentially expressed genes and transcripts. Here the q-value 

of 0.05 is chosen as the threshold. Notably, the tables show that there are no large differences 

between sexes. If there would large differences, then we witnessed many p-values near zero. 

Table 1   Differentially expressed transcripts between sexes. The table below represents the lists of up or down 
regulated transcripts. Chromosome X has 9 differentially expressed transcripts between the two groups. By 
considering a q-val of 0.05. three of them are isoforms of the known genes which are XIST, TSIX and PNPLA4 as 
well. The fold change of each of them is also shown. P-values are representing the significance level of them as 
well. The structure of the table is exactly the same as [1] reported. Likewise, the precision of the values is the 
same as well. the fold change under 1 means that transcripts are expressed at lower levels in males. Notably, in 
geneIDs column, the transcripts and gene identifier assigned by StringTie are generated in order of the bundle 
of reads that are processed. So, in different runs different results may output.  
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Table 2   Differentially expressed genes between sexes. The table below represents differentially expressed genes 
between two conditions being studied. Statistical measures of significance are also included in the table. Genes 
ID, fold change, p-value and q-value are represented as well. Chromosome X has 10 differentially expressed genes 
at the q-val of 0.05. gene-level p-values seem better than transcript-level. This means better statistical power to 
detect differential expression of genes rather than transcripts. Notably, in geneIDs column, the transcripts and 
gene identifier assigned by StringTie are generated in order of the bundle of reads that are processed. So, in 
different runs different results may output.  

 

 

 

 

 

 

 

 

 

6. Phase II : STAR vs HISAT Performances Analysis 

In the second phase our main goal of study is examined: a comparison of the performance of 

HISAT2 vs STAR in the PNT pipeline. We analyze the running time scalability of the accuracy 

of the aligners. Furthermore, we will study of the impact of the different parameters and try to 

establish an optimal set.  

Besides we specifically switch the mapping software used in the protocol with STAR and 

analyze performances. We re-do mapping with HISAT2 and STAR once again on a machine 

including higher RAM capacity. Furthermore, we do the mapping process on different sub-sets 

of the full data as well as full data to see if it affects the performance and time of aligning. It 

should be mentioned that all the sub-samples are mapped in both the machines to see how 

RAM capacity influences the mapping speed in both the aligners. In the end, parameter 

optimization of aligner with the worse results will be optimized to observe any improvement 

in the final output. Here the Uniquely mapped reads rates and time efficiency will be 

investigated. 

The experiment is done on two different machines since the STAR aligner is memory intensive 

the available memory is expected to have an impact on the speed of mapping the reads to the 

reference genome. In order to evaluate them we use machines with 8GB and 64GB main 

memory and use data sets of increasing sizes. 
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6.1 Performances of Aligners: Alignment Accuracy 
 

The accuracy of an aligner is one of the most important factors when choosing an aligner to 

map. A suitable aligner is the one with higher accuracy and lower running time. However, as 

to be expected, it is often a trade-off between the two. In our experiment, the parameters of  

uniquely mapped reads and multimapped reads rates define how accurate both aligners 

perform. The accuracy of an aligner is defined by a higher rate of uniquely mapped reads as 

well as lower multimapped reads.  

6.1.1 Alignment Performance on Machine with 8GByte RAM 
 

After running the protocol with reference file on the machine with 8GByte RAM, we replaced 

HISAT2 for STAR. Results show that STAR shows more uniquely mapped and less multi-

mapped reads rates (see Figures 4 and 5). The percentage of reads that do not align is less than 

for HISAT2 (see Figure 6). The percentages of reads which are aligned exactly one time for 

STAR differs between 96.15 and 97.75 % While in HISAT2 bars roughly hit 80%. They differ 

between 71.85 and 80.77 %. The average rates of the uniquely aligned reads are 76.5 and 97.10 

in HISAT2 and STAR respectively. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4   Uniquely mapped reads between STAR and HISAT2. STAR outperforms by longer bars showing improved 
percentages of uniquely aligned reads in down-sampled data of [1]. This criterion represents a read which 
mapped only once in the genome. In all the samples STAR outperforms than HISAT2 in the percentage rates of 
uniquely mapped reads. 
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Figure 5 The percentages of multi-mapped reads using STAR and HISAT2 are depicted. An extra analysis of multi-
map rates investigation is also done in our experiment with the use of reference file for both the aligners. The 
percentages of reads for STAR are much smaller than for HISAT2.  
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Figure 6 The percentage of reads which STAR and HISAT2 did not map to the genome. The extra analysis of 

unmapped are also depicted. Percentages of reads that fail to map to known exons are smaller for STAR than 

for HISAT2. 

 

 

6.1.2 Alignment Performance on Machine with 64GByte RAM: 

In the performance analysis, we observe lower percentages of uniquely mapped read rates for 

HISAT2 than those for STAR (Tables 3 and 4). Running HISAT2 on the full data represents 

the mapping rates approximately less than 4% of the whole data mapping on only chromosome 

X but this measure is above 12% in STAR. However, the results imply there are higher rates 

of mismatches included in the uniquely mapped reads rates. 
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Table 3 Uniquely mapped reads rates for HISAT2 on machine with 64 GB of 
RAM memory. The second column indicates 12 samples names tested during 
the experiment. They are from two groups of YRI and GBR. They are included 
both males and females equally in each group. 

 

Table 4 Uniquely mapped reads rates for STAR on machine with 64GB of 
RAM memory. The second column indicates 12 samples names tested 
during the experiment. They are from two groups of YRI and GBR. They are 
included both males and females equally in each group. 
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6.1.3 Data Growth Effects on Aligners Accuracies 

In the following Figures the effects of data growth are investigated in both the aligners. The 

Figures represent the aligners uniquely mapped reads rates are affected by increasing the 

samples sizes. In STAR aligner we observe improvements rather than HISAT2. It implies that 

the accuracy of HISAT2 very slightly decreases as the size of samples increases. In HISAT2 

uniquely mapped reads rates drop down while for STAR they remain virtually stable. It means 

as data grow, the accuracy decreases very slightly for HISAT2 and remains stable for STAR.  

 

 

 

 

 

 

 
 
 
 
 

Figure 7 Depiction of data growth affects HISAT2 uniquely mapped rates. The percentages represent very small 
changes as the data increases. Without parameter optimization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 Depiction of percentages of uniquely mapped reads when using STAR. The percentages remain stable 

on bigger data sets. Without parameter optimization. 
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6.2  Comparative Time Efficiency of HISAT2 vs STAR 

In the following, time efficiency of each of the aligners in our experiment is tested. The same 

data (12 sub-samples) analyzed in PNT is examined here to observe if HISAT2 is still timely-

efficient. The analysis id performed on two machines with 8 and 64GB of main memories 

(Figure 10). 

Note that only some small differences between the execution time of HISAT2 and STAR is 

observed on machine with 8GB memory. 

 

 

 

 

 

 

Figure 9 the average of uniquely mapped reads HISAT2 vs STAR on a machine 
with 64GB main memory. 
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Figure 10 Comparison of time performance between STAR & HISAT2. HISAT2 shows a slightly better performance 
when running on a system with 8GByte of RAM. It should be mentioned that this Figure belongs to the data of 
PNT aligned with HISAT2 and STAR as well. Among the samples above, the sample of ERR188273 shows a bigger 
difference between two.   

 

 

6.2.1 RunTime of STAR vs HISAT2 on Machine with 8GB RAM vs 64GB: 

By running the STAR aligner on our machine with 8GB vs 64 GB RAM we find out that the 

STAR aligner tends to run faster when RAM memory capacity increases, whereas the 

availability of more memory has almost no impact on the runtime of HISAT2. 

The results of mapping for each of the down-sampled data sets as well as full data sets show 

that although the STAR requires more time to map bigger data sets, we observe improvement 

in runtime of STAR when running on machine with 64GB of RAM memory rather than 8GB 

of memory (see Figure 11). Thus, we confirm that with a larger RAM memory, we can speed 

up STAR performances when aligning the human paired-end transcriptomic samples.  
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Figure 11 Influences of RAM capacities on aligning speed in STAR. Running STAR aligner on two different 
machines with 8 and 64GByte RAM memory is tested. The Figure above represents improvements in mapping 
speed when the RAM capacity is 64GByte. 

We run the HISAT2 on our machine with 64GByte RAM to map the different sub-samples on 

the reference genome of chromosome X (see Table 5). The results of read mapping for each of 

the down-sampled data show that while data grows, run time increases almost linearly (see 

Figure 11). It means that HISAT2 is still far more timely-efficient than STAR even if the 

mapped data is large. It verifies that HISAT2 is a fast method to map reads on the genome. 

The indexing technique is the reference set used in HISAT2 plays a great role to get HISAT2 

run faster. 

Table 5 Runtime of HISAT2 vs STAR on machine with 64GB of RAM memory 
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7. Parameter Optimization in STAR and HISAT2 

As Dobin et al. [10] showed that utilizing different parameters depending on the type of 

experiments result in improvement in aligning. Similarly, we tune the parameters of STAR to 

observe if we can obtain any improvements. Parameters tested in the current experiment are 

selected based on their effects on the mapping performance. In STAR aligner the effects of the 

following parameters are studied: 

 

• The most influential parameter on data using STAR is --outFilterMismatchNmax. It 

controls the maximum number of mismatches allowed per alignment. Since it 

depends on data structure to optimize parameters, we need to change the default value 

to fit the situation of data sets.  

• Another important parameter for STAR mapping optimization is sjdbOverhang. It 

influences sensitivity of junction detection. This value (default:100) is generally used 

for the reads longer than 50 bp. In our experiment, we strictly change the default 

value to readlength-1 which is the 74 bp in our study (readlength is 75bp). 

• SeedsearchstartLmax is one of the parameters to tune the mapping sensitivity. As our 

data set is modest (not very short or very long lengths of reads analysis). The 

parameter determines the length of blocks a read can be split in (the parameters list 

tested in our experiments are in the Appendix B).  

7.1  Parameter optimizations  

As already mentioned in the introduction section, one of the goals is by considering the 

financial limitation of the analysis a researcher gets the optimal results out of the experiment. 

In our experiment, tuning the parameters is recommended to get the maximum accuracy and 

speed from the mapper’s performance. In the following, the parameters of HISAT2 and STAR 

is tuned to achieve any improvement in mapping process. Notable, there is always a trade-off 

between accuracy, sensitivity and precision. On one hand the rates might be improved by 

tuning the parameters, on the other hand it may negatively affect other rates such as 

multimapped reads rates. Additionally, in human sample analysis, a modest mismatch rate 

between samples is natural due to naturally occurring SNPs. However, the more mismatches 

are allowed, the more spurious the alignments will become. So, by estimation of the rate of 

mismatches on the sequence of the length of the read we may find the optimal choice for 

mismatch rate.  

7.1.1 Parameter optimization in STAR 

Parameter optimization is performed for the 12 samples (samples which Pertea et al. studied 

on) of Human data. Adjusting parameters are done when mapping paired-end reads using 

STAR aligner.  (see Appendix B). The results are illustrated in Figure 12. The chart shows that 

uniquely mapped alignments rates are increased in comparison with those without changes in 
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parameter values. All the rates are well higher than 98 percent while without parameter 

optimization, they are less than 98 percent. As an example of the parameter that we adjust in 

our experiment, outfiltermismatchNmax controls the number of Mismatches. The mismatches 

include RNA-editing, SNPs and sequencing errors. It is notable that, beside these values 

changes, the no-mapped rates are all decreased as well.  Most of them decreased to 0.01 while 

a couple of samples results show even the rate of 0. Furthermore, to increase overall mapping 

sensitivity we applied seedsearchstartlmax to limit the length of reads to map on the reference 

genome. This leads to define the number of reads to consider as too short reads. The aim of 

parameter optimization is to tailor the reads as best as possible based on the sample’s 

specifications. Otherwise the results are skewed leading to unreal information of transcripts. 

Finally, after applying parameter optimization on sub-samples, we tweak the parameters of 

HISAT2 and STAR for the full data. 

The parameters are selected based on their influences on the outputs. Although rates in STAR 

hit higher points than HISAT2, we should not rely on these rates without optimization of 

parameters. By looking at the results we see mismatch rates are not trivial in STAR. So, there 

should be reduced to make sense. However, it is not true to get a mismatch rate of zero. Since 

we have at least some SNPs affecting the mismatch rates. As our analysis of the STAR and 

HISAT2 aligners maps only on chromosome X and the volume of data is gradually increased 

in the sample sorts, so we expect fewer but not no-mismatches. Keeping this in mind, the values 

with higher rates of uniquely mapped as well as lower mismatch rates are considered as the 

best option. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 STAR with/without parameter optimization” on machine with 8GByte RAM done on PNT 
data 
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Figure 13 the test is done on a very small portion of the reads to show how the parameter affects the rate 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 the test is done on a very small portion of the reads to show how the parameter affects the rate 
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By considering two measures of mismatch rates and uniquely mapped reads rate, tuning the 

parameters is performed on the full samples. The only parameter affecting the results is 

outFilterMismatchNmax. By decreasing the default number of the parameter from 10 to 1, we 

see that the mismatch rats go significantly down. It is also important to know that result of 

parameter optimization is data structure dependent. As an example, the paired-end read 

optimization is different than single end reads. similarly, length of the read also has a strong 

role in selection of the parameters to tweak (Appendix B). The two figures below represent 

how the parameter leads to decrease in both graphs of mapped and mismatch reads rates. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 Rates differ between 11.50 to 14 before tweaking the parameters. While, after performing the STAR 
with new values for parameters, they are decreased a lot. Rates are now between 5.5 to about 6.80. There is a 
huge gap between two sets as shown. One of the reasons might be that there is a huge room for improvement 
on the data. It should also be considered that parameter tuning must be done cautiously. In some cases, as the 
percentage of mapped reads increases, on the other hand the rate of multimapped reads increases as well. 
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7.1.2 Parameter optimization in HISAT2 

The HISAT2 default parameters are also switched with different values. However, it is notable 

that default values are the suitable values as the authors of both aligners have mentioned in the 

manuals. The Figure below represents a trivial change in the values of uniquely mapped reads 

rates. For example, using default parameters in HISAT2, when aligning the sample 

ERR188044, 3.94% of the reads are uniquely mapped to the reference genome. However, an 

improvement is observed when we optimize the parameters in HISAT2. It implies how 

optimization of parameters affect the mapping results.  

HISAT2 parameters affecting uniquely mapped reads rates are two parameters of –pen-

noncansplice & --pen-cansplice among the variety of parameters we test. These parameters set 

the penalties for each pair of canonical and non-canonical splice sites (see Appendix B). 

Generally, it is observed that practically all introns contain regions of two highly conserved 

dinucleotides, GT at donor and AG at acceptor regions. Canonical splice sites are considered 

GT, AG and non-canonical are non-GT, AG splice sites. We consider penalties in case non-

canonical splice sites are observed in the mapping process [19]. By default, the non-canonical 

splice sites value is 3. By increasing the penalty of this option, we observe that the uniquely 

mapped reads rates are all increased in all the sample. We increase the accuracy of samples by 

Figure 16 Comparison of mismatch rates before and after optimization of parameters in STAR. 
Mismatches are hugely decreased when parameter of -outFilterMismatchNmax is set to 1 
(default=10) 
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strictly setting the non-cansplice sites option. For instance, the first sample as ERR188044 is 

optimized from 3.94 to 4.01 % of full data. Notably, in some versions of HISAT we see that 

non-cansplice value is even 12.  

 

 

 

 

 

 

 

 

 

 

Figure 17 HISAT2 uniquely mapped reads rates is improved when parameters are optimized 

 

8. Results 

In PNT [1], the experiment is done on the sub-samples of full-data. Pertea et al. [1] confirms 

that the process of mapping is extremely fast by HISAT2. However, they have also tested the 

full-data set of the same sub-samples and mapped the reads with HISAT2. In their experiment 

multi-mapped reads can severely affect the expression levels of genes implying that a 

significant percentage of reads are mapped to more than one place in the reference genome. 

The result of their analysis represents that multi-mapped reads rates in different samples are 

changing between 20.9 and 33.2% except one sample that is 57.7%. The rates of uniquely 

aligned reads are also between 65.2 and 75.8% except one rate showing 39.7% in 12 full human 

samples. Similarly, in the first phase of our experiment, we perform the same analysis as [1] 

and observe the same results (see Tables 1&2) as Pertea et al. [1] observed (the same genes 

and transcripts names with p-value, q-value). In the second phase of our experiment, we test 

data with different sizes. In below, results are investigated based on two factors of uniquely 

mapped reads rates as well as the time both aligners need to map.  
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9. CPU & Memory Usage in STAR & HISAT2 

Running a HISAT2 command in terminal requires almost the same CPU usage as STAR (using 

top command to check) when using optimized parameters. However, memory usage differs a 

lot as expected. Since STAR consumes more memory capacity to run a command. The memory 

usage in STAR is 6.4. although HISAT2 requires 0.5 percent of memory. STAR needs almost 

the same percent of CPU as HISAT2. Based on what we observe, this rate differs between 700 

to 800 for STAR and 680 to less than 800 for HISAT2 (only a trivial difference, it means 

HISAT2 performs a command with a bit less CPU usage). Similarly, when the parameters are 

not optimized, the required CPU usage by STAR is the same as when it is optimized. In HISAT 

however there is some trivial changes when we use the parameters with default values. It differs 

between 700 and 800. Parameter optimization has no effects on memory usage when using 

HISAT. Although in STAR it increases by 6.5.  

It should also be mentioned that -p parameter with the value of 8 is included in all the HISAT2 

commands in this work. Using multi-threading option is also a help for the speed of the process. 

However, in this case the order of the runs is not deterministic anymore.  

 

10. Discussion 

We have run the “New Tuxedo” pipeline [1] in the first phase of our experiment and switched 

HISAT2 with STAR to evaluate their performances in the second phase. We focus on HISAT2 

performance by running HISAT2 and STAR on the full and sub-sampled data. The results of 

running the pipeline in the first phase are the same as Pertea’s [1]. In the second phase we 

specifically focus on aligners performances as well as tuning their parameters.  

We used STAR since we find it suitable to switch with HISAT2. Soft-clipping technique is 

one of the advantages of STAR aligner. Since it leads to higher accuracy of aligning. 

Furthermore, STAR analyses draft genes leading to increase the accuracy. Additionally, it has 

verified its ability in mapping human data in many other experiments already done (refer to 

introduction for more details). Hence, it is investigated in our experiment if STAR outperforms 

HISAT2 as expected. 

We observe improvements in mapping performance when using STAR, however the outcome 

shows HISAT2 is far faster than STAR in running the human (RNA-seq paired-end reads, 

75bp) samples used in this work. One reason is that HISAT2 is not resource demanding. The 

other would be indexing technique HISAT2 applies. 

Here, we try tuning the parameters of both HISAT2 and STAR to remove unreal large uniquely 

mapped reads rates of STAR as well as improvement in HISAT2 mapping performance. It is 
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obvious that larger rates do not necessarily mean that they are aligned correctly. The uniquely 

mapped reads rate is the common objective measure in the both aligners. However, we consider 

the mismatch rates to decrease in STAR as well. 

Considering that the performance is tightly dependent on the data and requirements, the results 

imply that STAR represents an improved mapping accuracy rather than HISAT2. Since it still 

shows higher rates of mapped reads. However, we can take more factors to be changed in 

optimization process. For instance, depending on the research goals, multi-mapped reads can 

also be decreased as well. However, in our work this rate was moderate. Mainly, there are 

factors influencing the STAR performance such as the technique used in STAR to map the 

unaligned reads. STAR performs read-clipping while trying to re-align unmapped reads. Soft-

clipping technique improves the robustness of the STAR aligner as well as maximizing the 

alignment score. If we decrease the mismatch penalty, we may end up with less soft clipping.  

Additionally, in some cases, the genomes contain gap or ambiguity symbols leading to poor or 

low mapping rates. However, using STAR in such cases seems to be a good option. Since it 

applies soft-clipping and increases the mapping rate. Hence, it seems STAR suits much better 

to low-quality genomes.  

 

11. Conclusion 

We perform our experiment in two different phases with two sets of data. In the first phase as 

PNT [1] we implement the pipeline on 12 down-sampled data. The 5% of data which map to 

the chromosome X are analyzed. In the second phase however, we do the experiment by 

20,40,80 and 100% of full data for each of the samples. Notably, in parameter optimization 

only the full samples are optimized. The process is run on two different machines. When 

performing the first phase, the machine with 8GByte of RAM (core i7 (7th Gen, Intel), 

windows 10, 64 bits) is used. However, in the second phase both the machines with 8 and 

64GBytes of RAM (Intel Core i7-5820K 3.3 GHz 12 cores, Ubuntu 16.04 LTS 64-bit) are 

employed.  

In the current experiment we have analyzed different aspects of the experiments. We have 

investigated data growth effects, accuracy of the aligners, the influence of RAM capacity, the 

run time of the aligning process, the effects of parameter optimization on aligners 

performances for both HISAT2 and STAR aligners and finally CPU and memory usages of 

both. We observe that RAM capacity plays an important role when applying STAR to map to 

the reference genome, it is very trivial in HISAT2 though. Another observation is that as data 

grows STAR puts an improved performance on view by specifically considering the uniquely 

mapped reads rates. Accuracy in STAR depends on three factors in our experiment. We have 

observed the roles of RAM capacity, the sizes of samples and finally parameter optimization 
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on transcriptomic paired-end human samples with different sizes. Furthermore, we have also 

noticed the parameter optimization affect the mappers performance when aligning with STAR. 

It is the same for HISAT2, it is very trivial though. For example, STAR maps the full sample 

of ERR188044 with 5.89 % of uniquely mapped reads rates with default parameters while it is 

12.47 when we optimize the parameters. These values are respectively 3.94 and 4.01 using 

HISAT2. Finally, CPU and memory usages of both the aligners are investigated showing that 

CPU usages are the same for both however STAR consumes more memory usage to map.  

Depending on the data structure optimization of parameters is done. it is very important to not 

skew the results. There are some trade-offs that should be considered before tuning the 

parameters. Sensitivity and precision of the aligners should both be considered as well. The 

aim is to get reliable and the optimal or near optimal results representing and conserving the 

biological features of the samples.  

 

12. Future Work 

Sequencing technology is growing fast. Similarly, the need for parallel improvement of the 

mappers is growing as well. Hence, different new strategies for aligning the reads is also 

required. As [2] implies, the same framework of STAR can be used as a basic guidance. 

Additionally, as an example in presence of pseudogenes HISAT maps a portion of the reads in 

these regions on the reference genome. To build well-developed mappers, the researchers can 

specifically strengthen the well-performing aligners algorithms by improving the weaknesses 

for aligning.  
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Appendix A 

In the Appendix A we include the codes we run in the Ubuntu script. In the first phase of our 

experiment we use the same option as PNT did. The following is the list of topics run and explained 

in appendix A:  

1. Mapping the reads  

2. Sort and convert the SAM files to BAM 

3. Genes and transcripts assembling and quantification  

4. Comparison of StringTie’s outputs with GTF file  

5. Creation of table of counts and investigate transcript abundance  

6. Differential expression analysis  

7. Data visualization  

8. Mapping with STAR: 

9. STAR parameters tested on Pertea et al.’s data 

 

1) Mapping the reads  

 

Here we map the reads for each sample to the reference genome. The codes below in the 

Table map the reads of the samples to the reference genome. The options used here are 

explained in the help section of the software.  

 

 
 

Here is only one example of the codes run in HISAT2: 
 

$ HISAT22 -p 8 -–dta -x chrX_data/indexes/chrX_tran -1 

chrX_data/samples/ERR188044_chrX_1.fastq.gz -2 

chrX_data/samples/ERR188044_chrX_2.fastq.gz -S 

ERR188044_chrX.sam  
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2) Sort and convert the SAM files to BAM 

  

For Samtools older than 1.3 the following two steps are executed (The Samtools version I 

used: older than 1.3):  

Firstly, the SAM files are converted to binary BAM files:  

 

 
 

Here is one example of codes run by samtools: 
 

$ samtools view -bS ERR188044_chrX.sam > 

ERR188044_chrX_unsorted.bam  

 

Now the BAM files should be sorted:  

 

 
 

Here is one example of the code run by samtools: 
 

$ samtools sort -@ 8 ERR188044_chrX_unsorted.bam 

ERR188044_chrX  

 

If your Samtools version is not older than 1.3, you should type the following commands 

to sort and convert in one step:  

 
$ samtools sort -@ 8 -o ERR188044_chrX.bam 

ERR188044_chrX.sam  

 

 

3) Genes and transcripts assembling and quantification  

 

Transcripts assembly  

 

As we have already in the overview mentioned, we do need to assemble transcripts. Since 

they might be covered partially. Like the HISAT22 package, there are options available to 

utilize:  
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Here is one example of the code run by StringTie: 
 

$ stringtie -p 8 -G chrX_data/genes/chrX.gtf -o 

ERR188044_chrX.gtf –l ERR188044 ERR188044_chrX.bam  

 

Transcript merging  

 

we merge the gene and transcript models using the StringTie merge operation by the 

following:  

 
$ stringtie --merge -p 8 -G chrX_data/genes/chrX.gtf -o 

stringtie_merged.gtf chrX_data/mergelist.txt  

 

If you run the stringtie from a different directory, then the clear path should be inserted in 

the function above.  

 

 

4) Comparison of StringTie’s outputs with GTF file  

 

If you wish to compare the outputs of StringTie package with the reference annotation, 

you can use the gffcompare function:  

 

 
 

Here is one example of the code run by gffcompare: 
 

$ gffcompare –r chrX_data/genes/chrX.gtf –G –o merged 

stringtie_merged.gtf 

The reason to this comparison is:  

“This allows the user to quickly check how the predicted transcripts relate to an annotation 

file” [1].  

 

5) Creation of table of counts and investigate transcript abundance  
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Here is an example of codes run by StringTie: 
 

$ stringtie –e –B -p 8 -G stringtie_merged.gtf -o 

ballgown/ERR188044/ERR188044_chrX.gtf ERR188044_chrX.bam  

 

 

 

 

 

 

  

 

6) Differential expression analysis  

 

The packages used in R are Ballgown, RSkittleBrewer, genefilter, dplyr and devtools. 

Download them via the Bioconductor website. After installation all should be called to 

execute.  

 

Needed R packages  

 

After running R, and installation of packages, they load by library command: 

> library(ballgown)  

> library(RSkittleBrewer)  

> library(genefilter)  

> library(dplyr)  

> library(devtools)  

 

Phenotype data file  

 
> pheno_data = read.csv("geuvadis_phenodata.csv")  

 

StringTie’s expression estimation reading  

 
> bg_chrX = ballgown(dataDir = "ballgown", samplePattern = 

"ERR",pData=pheno_data) 

Genes with low abundance are removed  

Here we filter out all the genes that their abundance values are low.  
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> bg_chrX_filt = subset(bg_chrX,"rowVars(texpr(bg_chrX)) 

>1",genomesubset=TRUE)  

 

Differentially expressed transcripts  

 

The following will test each of the gene feature for differential expression.  

 

If n<4 per group, another package called limma should be used.  

 
> results_transcripts = 

stattest(bg_chrX_filt,feature="transcript", 

covariate="sex", adjustvars =c("population"), getFC=TRUE, 

meas="FPKM") 

 

Differentially expressed genes  

 
> results_genes = stattest(bg_chrX_filt, 

feature="gene",covariate="sex", adjustvars = 

c("population"), getFC=TRUE,meas="FPKM") 

 

Gene name, Gene ID feature in the table  

 
> 

results_transcripts=data.frame(geneNames=ballgown::geneName

s (bg_chrX_filt),geneIDs=ballgown::geneIDs(bg_chrX_filt), 

results_transcripts)  

 

From the small to large p-value  

 

We can sort the results based on what we determine to be shown.  

 
> results_transcripts = arrange(results_transcripts,pval)  

> results_genes = arrange(results_genes,pval)  

 

Output file creation  

 
> write.csv(results_transcripts, 

"chrX_transcript_results.csv",row.names=FALSE)  

> write.csv(results_genes, 

"chrX_gene_results.csv",row.names=FALSE) 

 

Q-value<0.05 in both genes and transcripts  
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In the tables below, all differentially expressed transcripts and genes are listed. In transcript 

level (see Table 1) there are 9 transcripts to be shown differentially expressed between 

males and females and 10 genes (see Table 2) are shown so (with the cutoff of 0.05 q-

value). In table 2 the known names of genes are isoforms related to the known genes (see 

Tables 1&2). 

 
> subset(results_transcripts,results_transcripts$qval<0.05)  

 
> subset(results_genes,results_genes$qval<0.05)  

 

7) Data visualization  

 

How to create colorful plots  

 

In order to get better understanding of data, colorful plots can be visualized by the 

following:  

 
> tropical= c(‘darkorange’, ‘dodgerblue’, 

‘hotpink’,‘limegreen’, ‘yellow’)  

> palette(tropical)  

 

FPKM in different sex groups  

 

To evaluate the abundance feature of the genes between females and males, we use FPKM 

measurement in the below commands.  

There are number of options to be compared via Ballgown. Here we only measure the 

FPKM of the transcripts.  

To facilitate the drawing process, we should transform the FPKM to log2 (see Figure 18). 

The second command does so. As there is no log2(0) we add it up with 1.  

 
> fpkm = texpr(bg_chrX,meas="FPKM")  

> fpkm = log2(fpkm+1)  

> 

boxplot(fpkm,col=as.numeric(pheno_data$sex),las=2,ylab=‘log

2(FPKM+1)’) 
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Figure 18 Distribution of FPKM values across the 12 samples 

 

 

How to plot a specific transcript in samples  

 

To plot a specific transcript, we can first get its name and then the gene that contains this 

transcript (see Figure 19). 

 
> ballgown::transcriptNames(bg_chrX)[12]  

> ballgown::geneNames(bg_chrX)[12]  

> plot(fpkm[12,] ~ pheno_data$sex, border=c(1,2),  

main=paste(ballgown::geneNames(bg_chrX)[12],’ : ‘,  

ballgown::transcriptNames(bg_chrX)[12]), pch=19, 

xlab="Sex",  

ylab=‘log2(FPKM+1)’)  

> points(fpkm[12,] ~ jitter(as.numeric(pheno_data$sex)),  

col=as.numeric(pheno_data$sex)) 
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Figure 19 FPKM distributions in males and females for transcript NM_012227 from gene GTPBP6 

 

Transcripts expression with common gene locus appeared in all samples  

The level of expression and the structure of the NR_001564 is depicted by the command 

below. This isoform is grouped as known isoform as I already mentioned above. This is 

highly expressed in females rather than males. The other isoforms related to gene of this 

transcript is listed in the table 2 as the differentially expressed ones (see Figure 20). 

 
> plotTranscripts(ballgown::geneIDs(bg_chrX)[1729], 

bg_chrX,main=c(‘Gene XIST in sample ERR188234’), 

sample=c(‘ERR188234’))  
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Figure 20 Structure and expression levels of five distinct isoforms of the XIST gene in sample ERR188234. 

 

Average expression values of all transcripts  

 

Here MSTRG.56 is an example: (see Figure 21) 

 
> 

plotMeans(‘MSTRG.56’,bg_chrX_filt,groupvar="sex",legend=FAL

SE) 
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Figure 21 Average level of expression in gene MSTRG.56 for all transcripts in all groups 

 

8) Mapping with STAR: 

To align the reads the commands below run: 
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All reads are unzipped beforehand, and then called by the command. 

Here is only one example of the code run by STAR: 

STAR --runThreadN 8 --genomeDir /home/mina/genomeDir --

readFilesIn 

/home/mina/UnzippedSamples/ERR188044_chrX_1.fastq 

/home/mina/UnzippedSamples/ERR188044_chrX_2.fastq --

outFileNamePrefix 

/home/mina/my_rnaseq_exp/STAR_Outputs/ERR188044 

9) STAR parameters tested on PNT data 
 

STAR --runThreadN 8 --genomeDir /home/mina/genomeDir --

readFilesIn 

/home/mina/UnzippedSamples/ERR188044_chrX_1.fastq 

/home/mina/UnzippedSamples/ERR188044_chrX_2.fastq --

outFileNamePrefix 

/home/mina/my_rnaseq_exp/STAR_Outputs/ERR188044 --

outFilterMatchNmin 20 --seedSearchStartLmax 30 --

outFilterScoreMinOverLread 0 --outFilterMatchNminOverLread 

0 --outFilterMismatchNoverLmax 9 
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Appendix B 

In Appendix B, we describe the experiments we performed as well as the parameter 

optimization of the mappers. Firstly, we run both the aligners on different machines of 8 

and 64G of RAM to map different sizes of data. We consider the uniquely mapped reads 

rates and running time in the experiment. The following tables represent time, uniquely 

mapped reads rates and the impacts of data growth on the speed of both aligners as well as 

the influence of RAM capacity on running time of aligners, tested on two different 

machines of 8G and 64G RAM. 

1. Tables of results 

2. How parameter optimization affects the mapping rates in STAR 

3. STAR and HISAT2 parameters to optimize the mapping results 

4. Parameters tested in STAR on PNT data  

5. Parameters tested in STAR on full data 

6. Parameters tested in HISAT2 on full data 

7. HISAT2 parameter optimization results 

8. STAR parameter optimization results 

1) Tables of results 

-Uniquely mapped reads rates, HISAT2 vs STAR on a machine with 8G of RAM: 

The numbers are percentage of uniquely mapped reads.  

Table 6 percentage of uniquely mapped reads rates, HISAT2 vs STAR tested on PNT data (8GB RAM) 
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-Uniquely mapped reads rates, HISAT2 vs STAR on a machine with 64GByte of RAM: 

The numbers are percentage of uniquely mapped reads. 

Table 7 percentage of uniquely mapped reads rates, HISAT2 vs STAR (64GB RAM) 

 

-Time, HISAT2 vs STAR on a machine with 8G of RAM: 

The numbers show time spent to map by both the aligners (minutes: seconds in HISAT2, 

minutes in STAR). 

Table 8 running time analysis, HISAT2 vs STAR (on a machine with 8GB RAM) 
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-Time, HISAT2 vs STAR on a machine with 64GByte of RAM: 

The numbers show time spent to map by both the aligners (minutes. Seconds or only 

minutes in HISAT2 and STAR). 

Table 9 running time analysis, HISAT2 vs STAR (on a machine with 64GB RAM) 

 

2) How parameter optimization affects the mapping rates in STAR 

We run the STAR on the PNT RNA-seq data. Then we optimize the parameters used in the 

STAR and compare the results with those of not optimized. The following table and graph 

represent the results of with and without parameter tuning in STAR. 

 

Figure 22 STAR uniquely mapped rates comparison on PNT data 
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--outFilterMismatchNoverLmax which is max number of mismatches per pair 

relative to read length. for 2x100b, max 

number of mismatches is 0.06*200=8 for the 

paired read. So, in our case it is 9 as the 

readlength is 75, 2x75b. 0.06x150=9 [13]. 

--outFilterMatchNmin 20 options that help us to control identity 

between reads and genome. In other words, 

they control the minimum number of bases 

which are matched.Default value is 0. This 

makes stricter decision on the output of 

mapping as it restrict the mapping value to 

those which at least have the number of 

matched bases higher than this value. It 

allows alignment of shorter reads. 
--outFilterMatchNminOverLread 0 Default is :0.66 

It can be used to control min identity (number 

of base/bases normalized to the read length) 
 

-- outFilterScoreMin 0 The absolute value of the score. If it sets 

closer to read length, it may result in reads 

with higher quality. 

--outFilterScoreMinOverLread 0  

 
Default: 0.66 

The score divided by the length of the read 

pair. Although the default value determines 

that only reads with the alignment score more 

than two third of the read length will be output, 

we change it to zero. (closer to 1 means 

selection of reads with higher quality, more 

stringent!) 

However, we may expect that accuracy might 

decrease, this might be a good option being 

used in our case (fewer data).  
 

--seedSearchStartLmax 30 as we have reads of 75 lengths, so we can 

define a new set of this parameter by 30. The 

default one is 50. In our case 30 would be a 

better option to deal with. The starting point 

via the reads. The default value is 50. 
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3) STAR and HISAT2 parameters to optimize the mapping results 

Here, the parameters and their influences on the study is written as well as the tables of 

mapping results representing before and after optimization changes in both aligners. 

4) Parameters tested in STAR on PNT data  

To observe how parameter optimization affects the mapping results, we chose only a small 

portion of the full data for a quick check.  

 

 

  

 

 

 

 

 

 

 

 

 

--outFilterMultimapNmax Multi-mapped reads should be controlled 

well. This is a good help to deal with. There is 

always a trade-off between the values and the 

quality of results. 

--genomeSAindexNbases If you are using a very small genome, it 

should be set in the related parameter 

--alignIntronMin &  

--alignIntronMax 

The allowed minimum and maximum sizes of 

introns. 
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5) Parameters tested in STAR on full data 

STAR tested parameters. Only outFilterMismatchNmax is optimized to 1. 
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52 
 
 

6) Parameters tested in HISAT2 on full data 

The following parameters made no changes on the results except  

--PEN-NONCANSPLICE (default:3) & --PEN-CANSPLICE 

--pen-cansplice 

1,2,3,4,5,6,7 

 

sets the penalty for each of the pair that is 

canonical splice site 

 
--pen-noncansplice 

(default:3)  

 

sets the penalty for each of the pair that is 

not canonical splice sites. 

 
--qc-filter (default:off)  

 
in reads with format of --qseq filters those 

reads with qseq filter field of non-zero. 

 
--no-discordant 

 
by default, concordant reads pairs are 

found by hisat, otherwise discordant ones 

will be found.  

 
--minins  

 

--maxins 0,100 0,200

      0,800    0,1000

  

 

minimum and maxmum fragment length 

(default0 and 500 resp.)  

 

--no-mixed 

 
if no concordant or discordant reads are 

found then hisat looks for individual 

mates. 

 
--sp MX,MN  

1,2 2,1 3,2 4,3 5,4 

 

maximum and minimum soft-clipping per 

base 

 
--min-intronlen

 15,20,25,30 

 

--max-intronlen  

100,000 200,000  

700,000 800,000 

 

minimum and maximum intron length 

 

--seed 1,3,5,10,15,20 

 

number of seeds to be used for pseudo-

random number generator 

 
--non-deterministic 

 

two identical reads may not be reported as 

the same alignments if we specify this 

parameter in command. 
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7) HISAT2 parameter optimization results: 

The optimization process is done using HISAT2 on all the 12 samples.  

in the next table, only the uniquely mapped rates are compared (with and without 

parameter optimization).  
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Table 10 the mapping results when no optimization on parameters in HISAT2 is applied on PNT data (8GB RAM) 

 

 

 

-HISAT2 uniquely mapped reads rates optimized vs non-optimized: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 the mapping results when optimization on 
parameters in HISAT2 is applied on PNT data (8GB RAM). 

Only uniquely mapped reads rates are shown. 
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8) STAR Parameter optimization results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12 the mapping results when no optimization on parameters in STAR is 
applied on PNT data (8GB RAM) 

 

Table 13 the mapping results when optimization on parameters is 
applied on PNT data in HISAT2 (8GB RAM). Only uniquely mapped 

reads rates are shown. 
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Table 14 the mapping results when optimization on parameters 
is applied on PNT data in STAR (8GB RAM). Only mismatch rates 

are shown. 
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Appendix C 

Installation of different software packages used in the study 

  

In the current Appendix, we explain how to install the different packages used in the 

experiment. Additionally, how data are downloaded is also described. The commands are 

written into the terminal of Linux operating system.  

 

1. Equipment setup 

2. Downloading software packages 

a. Samtools 

b. HISAT2 

c. StringTie 

d. Gffcompare 

e. Ballgown 

3. HISAT2 indices 

4. Download, Install and run STAR 

a. Download STAR 

5. Generating genome indices in STAR 

 

 
1) Equipment Setup  

 

In the upstream analysis of data, Ubuntu environment is used as mentioned. Terminal 

window will do the job to run the commands. We consider a folder named as 

my_rnaseq_data to put all the requirements in. Be careful to make a bin folder in the root 

as your PATH to put all the executable files of the programs in.  

 

2) Downloading software packages  

 

Data is accessible via ftp://ftp.ccb.jhu.edu/pub/RNAseq_protocol/chrX_data.tar.gz. After 

downloading data should be unzipped with the following command:  

 
$ tar xvzf chrX_data.tar.gz  

 

You will see that there are two files and four folders of samples, inexes, genomes and genes 

in the chrX_data. In sample folder there are 24 files related to samples. Each sample has 2 

files of forward and reverse reads, since the reads are all paired-end. It should be mentioned 

that samples are from two populations of GBR (British from England) and YRI (Yoruba 

from Ibadan, Nigeria). Half of the samples are males’ and the other half females’. Genes 

folder contains the annotation file as.GTF file. The indexes file contains 8 files named 

chrX_tran.1.ht2, chrX_tran.2.ht2, chrX_tran.3.ht2, chrX_tran.4.ht2, chrX_tran.5.ht2, 

chrX_tran.6.ht2, chrX_tran.7.ht2, and chrX_tran.8.ht2. All are pre-built indexes of 
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chromosome X downloaded. The genome directory including a file named chrX.fa, which 

is the file of sequences for chromosome X in human (GRCh38 build 81). 

Make a folder to put all executable files in, add to your PATH. By typing mkdir in the 

Terminal, we can make directory in each path we consider. The following command creates 

a bin folder that will be used later as the source of all executable files.  

 
$ mkdir $HOME/bin  

 

Add the created folder as your PATH to the environment variable:  

 
$ export PATH=$HOME/bin:$PATH  

 

Environmental variables are variables that are defined for the current shell and are inherited 

by any child shells or processes.  

 

a) Samtools  

 

Get the Samtools package via the link in the Equipment part, then unpack the file:  

$ tar jxvf samtools-0.1.19.tar.bz2  

In the samtools unzipped file directory write the following commands:  

 
$ cd samtools-0.1.19  

$ make  

$ cd ..  

 

Then the Samtools binary is copied in the PATH just created:  

 
 cp samtools-0.1.19/samtools $HOME/bin 

 

b) HISAT2 

 

After downloading HISAT2, the file is unzipped:  

 
$ unzip HISAT22-2.0.1-beta-OSX_x86_64.zip  

 

The same goes for the HISAT2 package too, the executable files should be copied to the 

PATH:  

 
cp HISAT22-2.0.1-beta/HISAT22* HISAT22-2.0.1-beta/*.py 

$HOME/bin 

 

c) StringTie  

 

The below command followed by downloading and unpacking the StringTie:  
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$ tar xvzf stringtie-1.2.2.OSX_x86_64.tar.gz  

 

cd to the unpacked directory:  

 
$ cp stringtie-1.2.2.OSX_x86_64/stringtie $HOME/bin  

 

d) Gffcompare  

 

Downloading is done, then file is unpacked:  

 
tar xvzf gffcompare-0.10.1.Linux_x86_64.tar.gz 

 

And cd to the folder:  

 
$ make  

 

the gffcompare file is copied into the PATH:  

 
$ cp gffcompare-0.10.1.Linux_x86_64/gffcompare $HOME/bin  

 

e) Ballgown  

 

After installation of R software, with the version of 3.2.2, Ballgown package should be 

installed. The command is written in the R console: 

 
> install.packages("devtools",repos="http://cran.us.r-

project.org")  

> source("http://www.bioconductor.org/biocLite.R")  

>biocLite(c("alyssafrazee/RSkittleBrewer","ballgown","genef

ilter","dplyr", "devtools")) 

 

3) HISAT2 index  

 

There are two options to get the HISAT2 indexes available. The first is downloading them 

via the HISAT2 website. And the second is creating the indexes if they are not available. 

The following commands make the HISAT2 indexes:  

Before making indexes, we run a python script in the HISAT2 folder that determines splice 

sites:  

 
$ extract_splice_sites.py chrX_data/genes/chrX.gtf > 

chrX.ss  

$ extract_exons.py chrX_data/genes/chrX.gtf > chrX.exon  

 

✓ The Shebang on top of python script should be changed to the python executable 

current PATH, i.e. #!/home/mina/anaconda2/bin/python  
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Then we build the HISAT2 indexes:  

Options:  

 

 
 

 

$ HISAT22-build --ss chrX.ss --exon chrX.exon 

chrX_data/genome/chrX.fachrX_tran 

 

4) Download, install and run STAR 

The process of alternating STAR with HISAT2 is begun by firstly downloading the STAR 

package. All the steps necessary to download the package is in Appendix A. The package 

is downloaded and installed in terminal of Linux. The “make” function should be run after 

unzipping the files. 

The codes are run in the terminal and by using the options to make indices, we then start 

to map by STAR.   

a) Download STAR: 

To download STAR package, the following command is written in Terminal of the Linux: 

wget 

https://github.com/alexdobin/STAR/archive/2.5.3a.tar.gz 

 

When downloading is finished, the file should be unzipped: 

tar -xzf 2.5.3a.tar.gz 

 

to build the STAR we need to cd to the unzipped file: 

 
cd STAR-2.5.3a 

 

To get STAR source using git: 

 
git clone https://github.com/alexdobin/STAR.git 

cd STAR/source 

 

In the source file:  



 

61 
 
 

make 

5) Generating Genome Indices in STAR 

Before starting to map the reads, genome index files are required. If you wish to build 

them yourself: 

STAR --runThreadN 8 --runMode genomeGenerate --genomeDir 

/home/mina/genomeDir --genomeFastaFiles 

/home/mina/my_rnaseq_exp/chrX_data/genome/chrX.fa --

sjdbGTFfile 

/home/mina/my_rnaseq_exp/chrX_data/genes/chrX.gtf --

sjdbOverhang 74 

As you see, there are options used in the command: 

 

✓ It should be mentioned that genomeDir folder must be made before starting the 

run. All the indices will put here. 

 

✓ You should be careful that options are case sensitive. So, each should be written 

the same as above. 
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Appendix D 

For the experiment, the required hardware and software packages names and specifications are 

included in the current Appendix. To get the same results as [1] we need to download and run the 

same software and versions as PNT [1]. 

1. Hardware 

2. OS 

3. Software 

4. Extra installations 

1) Hardware: 

 

- 64-bit computer running either Linux or Mac OS X (10.7 Lion or later) 

- 4 GB of RAM (8GByte preferred)  

 

2) OS: 

 

- Upstream process of analysis is performed in Ubuntu environment (for example version 

of 17.04).  

- Downstream process is performed on windows 10, 64 bits.  

 

3) Software: 

 

- HISAT22 software (https://anaconda.org/bioconda/HISAT22/2.0.1beta/download/linux-

64/HISAT22-2.0.1beta-py34_0.tar.bz2) (version 2.0.1 or later).  

- StringTie software (http://ccb.jhu.edu/software/stringtie/dl/stringtie-

1.2.2.Linux_x86_64.tar.gz), version 1.2.2 or later.  

- SAM tools (https://kent.dl.sourceforge.net/project/samtools/samtools/0.1.19/samtools-

0.1.19.tar.bz2) (version 0.1.19 or later).  

- Gffcompare (http://ccb.jhu.edu/software/stringtie/dl/gffcompare-

0.9.5.Linux_x86_64.tar.gz) version -0.10.1  

- R (https://www.r-project.org) (version 3.2.2 or later).  

- STAR aligner version 2.5.3a 

 

4) Extra installations 

 

- Zlib in Ubuntu should also be installed. Since some programs need it to run. It can be 

installed by apt-get in Terminal.  

- Seqtk software needed for down-sampling 
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