
Master Computer Science

[Analysis and Improvement of Document Classification
based on Word2vec and TF-IDF]

Name: Jihui Liu
Student ID: s1987445
Date: 30,05,2019
Specialisation: Computer Science and Business
Studies
1st supervisor: Wessel Kraaij
2nd supervisor: Cor Veenman

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Analysis and Improvement of Document Classification based on
Word2vec and TF-IDF

Abstract. Recently, deep learning approaches have been proposed for document classification. A com-
mon approach is to combine word2vec embeddings with CNNs. However, there is no clear foundation
how much of the success of the combination can be attributed to the word embeddings, and the choices
of different pre-trained vectors and classifiers. Meanwhile, word2vec embeddings ignore the importance
of the word to a document among the corpus. To solve this problem, an improved weighting method
based on TF-IDF is proposed in this paper. Several experiments are conducted in order to assess the
robustness and effectiveness of different variants including the proposed method.

1 Introduction

In order to put words into a machine learning algo-
rithm, the text data should be converted into some
machine-readable numeric or vector representation.
The simplest technique is one-hot representation. As
for the unique word, the one-hot representation is
to create a vector with binary values of corpus size.
And the vector is filled with all 0 except the only
corresponding index, which is replaced by 1. Then a
document will be represented by bag-of-words(BoW)
model. The BoW method treats a document as a col-
lection of words but regardless of the order, grammar,
and semantics of the word. Therefore, in the BoW
vector of a document, the value of each index will
no longer be binary(either 0 or 1) but the number of
times the word appears in this document. But one
disadvantage with BoW model is that the importance
of words are evenly weighted as the times they occur.
However, the real situation could be different since
some words may be more relevant than others.

TF-IDF, which is short for term frequency–inverse
document frequency, is a numerical statistic that is
intended to reflect how important a word is to a docu-
ment in corpus[1]. Then the document representation
could be a vector which provides high value for a
given term if it occurs frequently in certain document
and rarely anywhere else. The full explanation of
TF-IDF will be discussed in section 3.2. However even
though TF-IDF representations strengthen the ability
of a vector to represent a document, the vector itself is
still easy to be very sparse, also known as dimension
explosion phenomenon.

Word embedding is later proposed to transform a
word vector from a space with high dimensions to a
low-dimensional, dense real-vector space. There are
a series of methods to generate word embeddings,
such as neural network[2] and word co-occurrence
matrix[3][4][5]. By making use of the shallow(two-
layer) neural network, word2vec was proposed by
Mikolov et al.[6] in 2013. It generates word repre-
sentations with the relations between a word and
its contextual words in a simple, scalable and fast
way. As for the word-word co-occurrence matrix,
it was applied by Pennington[7] to generate Global
Vectors(GloVe) in 2014.

Even though the lower-dimension and neat word
representations are obtained by word embeddings,
how to use a word vector to effectively represent a
document is still a challenge at present. Normally, a
document can be represented by averaging the sum
of all word vectors included, or generating docu-
ment matrix by all word representations. However,
these methods usually ignore the importance of a
word to a document in the whole collection. Hence,
we try to propose a hybrid method that applies
TF-IDF(discussed in section 3.2.4) algorithm to
weight the word in each document, and test it on
different experimental corpus. The involved experi-
ments will cover various classifiers such as Support
Vector Machine(SVM) and Convolutional Neural
Network(CNN), and different classification type
like binary and multi-class classification. The main
contributions of this paper are:

1. Verify the effectiveness of the combined method
based on TF-IDF and word embeddings.

2. Analyze the effects of different factors, including
word vector size and methods(word2vec or GloVe)
on the classification effect.

3. Analyze the classification performance of different
classifiers(SVM and CNN) with different input rep-
resentations.

2 Problem Statement
Concerning the inspiration from previous empirical
analyses of Yoon Kim[8], Mounir Hader[9] and Ye
Zhang[10], many achievements have been obtained
by them. In the beginning, Yoon Kim[8] proposed a
simple architecture of CNN that obtained satisfying
results on the classification tasks. In addition, based
on the model proposed by Kim[8], Ye Zhang[10] an-
alyzed the sensitivity of CNN model performance by
tuning hyperparameters for the task of classification.
According to the conclusion of Mounir Hader[9],
it was approved that CNN with a simple architec-
ture(shown in Figure 2) could be sufficient to achieve
a satisfying result comparing with Naive Bayes and
linear SVM. In addition, Linear SVM yielded similar
results as CNN model on 2 out of 3 datasets. At
last, considering the lower computational time and
complexity(without tedious parameter tuning), SVMs
could be recommended to be the most practical
method for the basic classification task.

On the other hand, based on the accomplished
experiments by them[8][10][9], we conclude that there
are many aspects which can be further supplemented.
Thus, we aim to design the experiments based on the
following problems.
• It is unclear if the success of the CNN is attributed

to the model itself or input representation(dimension
reduction, and word embedding).
• Most chosen datasets are intended for the binary

classification task. Those datasets are all well-
organized and distributed, which means the positive
and negative samples are almost even. Besides the
classification type, an unevenly distributed dataset
can be also necessary to test the performance of spe-
cific models.
• Experiments of Kim[8] and Zhang[10] only applied

word embedding as the input of CNNs. This means
the influence of traditional model like SVM with
word embeddings stay unclear.
• As for the word embedding collection, only the vec-

tors trained on Google News was applied. How-
ever, other kinds of word vectors like GloVe and
self-trained(based on the datasets themselves) vec-
tors were rarely considered in the work of Kim[8]
and Hader[9].

• All the involved word vectors were fixed to 300-
dimension. It is likely that 300-dimension vectors
are sufficient for different models. But the influence
of vector length is still unknown.

• The word vectors that have been trained are consis-
tent for different documents. But the truth is a bit
different, even if the same word may be different for
different documents with respect to the importance.
Then, applying a fixed vector to all documents in
general can lose some specific information.

3 Method

Referring to the problems draw in Problem Statement
section, a series of experiments will be designed in or-
der to solve those problems as following:

• More models with different kinds of input represen-
tations(BoW with TF-IDF values, and word embed-
ding) needs to be involved.

• Extending the involved datasets from binary to
multi-class classification can be required. Besides
the classification type, the comparison experiments
of approaches on the unevenly distributed dataset are
necessary to test the performance of specific models.

• Word embedding generated with word2vec needs to
be applied on both SVM and CNN models in order
to find a certain model that may obtain a better per-
formance relatively.

• Instead of using vectors trained on Google News
only, different word vectors like GloVe and self-
trained vectors should also be tried to observe
whether the influence is because of learning knowl-
edge on external corpus or on the training data.

• Different vector size will also be involved in order to
observe the influence on the final performance.

• By combining TF-IDF and word embedding, a hy-
brid enhancement technique will be proposed to in-
crease the performance.

3.1 Preprocessing Data

3.1.1 Word segmentation

Text segmentation is an essential operation in the pre-
processing process. Because subsequent classification
operations require the use of words in the text to rep-
resent the document. During the segmentation proce-
dure, the punctuation(commas, parentheses, exclama-
tion marks and so on) and case-sensitivity(Where is
equal to where) of words will be ignored.

3.1.2 Stopwords

Aiming at saving storage space and increasing effi-
ciency, stopwords are the words will be automatically
filtered when processing the raw data[1]. In fact, most
of these words that are filtered out are words that have
no practical meaning or are too frequent. For example,
a, an , the and etc. The list of stop words is easy to find
online. When crawling or indexing of a huge amount
of data, stopwords are also dedicated to decrease the
computational time and save space[11].

3.2 TF-IDF Weighting

3.2.1 Term frequency

With respect to a certain document, the term frequency
(TF) means how many times a given word occurs in
that document. The following equation displays how
to express the importance of a certain word i in a par-
ticular document:

t fi, j =
ni, j∑
k nk, j

(1)

ni, j in the above expression is the times that the word
appears in the document d j, and the denominator is the
sum of the occurrences of all words in the document
d j.

3.2.2 Inverse document frequency

The inverse document frequency (IDF) is a method ap-
plied to express the universal importance of a word in
the collections[12]. The IDF value of a certain word
can be obtained by dividing the amount of whole doc-
uments by the number of documents that the word oc-
curs, and then taking the resulting quotient from the
base 10 logarithm:

id fi = log
|D + 1|

{ j : ti ∈ d j + 1}
+ 1 (2)

where |D| refers to the amount of all documents in
the corpus. { j : ti ∈ d j} means the document fre-
quency(DF), which is used to describe how many doc-
uments that the word occurs. Simply speaking, it is the
amount of documents that meet ni, j , 0. However, if
the term is the out-of-vocabulary(OOV) word, the de-
nominator will become zero. In order to prevent zero
divisions, the constant “1” will be added to the numera-
tor, denominator and the complete id fi formula as well.

3.2.3 TF-IDF

Given by the formula 1 and 2, we can obtain the TF-
IDF equation which goes to:

t f − id fi = t fi, j × id fi (3)

However, it is unlikely that a term of 10 occurrences
within a document means 10 times the importance of
one individual occurrence indeed. Therefore, we use
another common scaling named sublinear tf scaling
(1 + log(t fi, j)) to replace original t fi, j.

3.2.4 Improved Representation based on TF-IDF

TF-IDF is known as a numerical statistic which is
dedicated to illustrating the importance of a term
towards a document among the whole dataset[13]. The
importance of a word increases proportionally with
the occurrence in the certain document, but it also
decreases inversely with the times that it appears in the
whole collection or corpus. Apparently, the TF-IDF
technique is in the spirit of the assumption that the
importance of words for distinguishing documents is
quite related to the frequency that they occur in both
one specific document and entire collections. Hence,
the BoW vectors with TF-IDF values would only
represent documents in a count-based way. However,
word embedding(wor2vec or GloVe) is different,
especially for the word vectors pre-trained by the large
corpus. The word vector represents the meaning of a
word by its contextual words, and even the relationship
between words can be easily represented by vector
itself. The explanation of word2vec and GloVe can be
retrieved in the Appendix section. But the challenge
with using word embeddings to represent a document
is that the same word holds the same vector in different
documents. Obviously, even for the same word, its
importance will vary concerning different documents.
But using the fixed word vector is not able to illustrate
these differences. Therefore, by combining TF-IDF
and word embedding, an improved word vector that
can express both the importance and inherent meaning
of the word simultaneously can be generated.

Below we will briefly explain how to improve
the representation of a document based on TF-IDF.
Assume there is the collection D containing M
documents, where Di(i = 1, 2, ...,M), first those
documents will be pre-processed by the methods
mentioned in Section 3.1. And then we train them
through the word2vec model(or use the existing
pre-trained models: Google or GloVe) to get the
N-dimensional words corresponding to each unique
word t, where Wt = (v1, v2, ..., vN). For each word t,
the TF-IDF method(Equation 3) is intended to achieve
its importance value t f − id f (t,Di) in the document,
which is expressed as the weight of word t occurs in
the document Di(i = 1, 2, ...,M). Thus, the improved
word representation could be reformed by weighting
by its TF-IDF value, which is:

W∗t = Wt × t f − id f (t,Di) (4)

Compared with the traditional word representation
method as BoW vector with TF-IDF values, the length
of Equation 4 is obviously less than BoW vector.
The vector of word embedding will be N-dimensional
while the BoW vector can be the size the number of
words in the whole collection or corpus.

As for representing a document by using word repre-
sentations, it will differ from models. For example, the
SVM model uses a vector to represent a document.
Therefore, for each document Di(i = 1, 2, ...,M), its
document representation can be expressed as follows,
where V is the number of words in Di, and W refers to
the word vector of word t, so the document vector d is
also an N-dimensional vector.:

di =

∑
t∈Di

Wt × t f − id f (t,Di)
V

(5)

However, the CNN model is intended to use the docu-
ment matrix as a representation of the document. Ac-
cording to the structure proposed by Kim[8](details
can be found in section 3.5.2), we also used a ma-
trix composed of word vectors to represent a docu-
ment. But the word vector was replaced by a simple
pre-training vector with a vector weighted by TF-IDF,
which is illustrated by Equation 4 as well.

3.3 N-grams

To represent a document, in addition to using a unique
word as a feature, it is also possible to use n-grams
as features. N-gram technique is referring to a con-
tiguous sequence of n items based on a certain docu-
ment. Here, Latin numerical prefixes will be applied to
express n-grams. Therefore, unigram, bigram, and tri-
gram are referring to the n-gram of size 1, 2 and 3 re-
spectively. As for the repetition experiments(reproduce
others achievements to be our baselines), N-grams is
used to conduct experiments in the initial phase in or-
der to obtain a relatively better result as baseline. On
the other hand, since the word vector itself corresponds
to a single word, the sequences of words are not con-
sidered in the pre-trained word vector. Therefore, in
experiments involving the use of word embedding, it
is not wise to construct a vocabulary through bigram
or trigram. In addition, it will also increase the size of
the vocabulary and the computational time. Therefore,
only the repetition experiments adopt n-grams, while
the remaining experiments does not consider it.

3.4 Classifiers

3.4.1 Linear SVM

Assuming there is a form of n point test
set:(~x1, y1), . . . , (~xn, yn), where yi is 1 or −1, re-
flecting the label where ~xi should belong. The

Figure 1: Linear separability: Let the sample belong to
two classes, and use this sample to train the maximum
margin hyperplane obtained by the SVM. The sample
points on the hyperplane are also known as support
vectors. Decision boundary (solid line), margin bound-
ary (dashed line), support vector (bold dot).

dimension of each ~xi vector is fixed as size p. The final
target is to require the maximal margin hyperplane
which separates the point set of yi = 1 and the point
set of yi = −1. And this hyperplane maximizes the
distance between hyperplane and the closest point ~xi.
In addition, points that satisfy the following equation:
~w · ~x − b = 0, where ~w is the normal vector, can be
used to express any hyperplanes. The b

‖~w‖
determines

the offset from the origin along the normal vector
~w to the hyperplane. Figure 1 will give a more
comprehensive illustration.

3.4.2 Convolution Neural Network

Figure 2: The simple CNN architecture with two chan-
nels for an example sentence. Figure is quoted from
Yoon Kim[8].

As for the architecture of the CNN model, we chose
to use the same structure as Kim[8] and Zhang[10].
Figure 2 illustrates the instance of how it works for
binary classification. CNN models have a wide range
of tuneable hyperparameters. It is very demanding to
do the grid search with respect to all accompanying
parameters. Therefore, based on the results of Kim[8]
and Zhang[10], the most significant parameters are ex-
plained in Table 7 in Appendix section. Since the tun-

ing of neural networks is too time-consuming, and our
experimental purpose is not primarily to study the ef-
fects of parameters, we decided to use their ready-
made parameter values as some of our basic parame-
ters.

3.5 Flow Chart

Figure 3 is the brief flow chart of how the experiment
runs.

1. The raw datasets will be processed by splitting
words, removing punctuation and stopwords.

2. Considering the method of word representations, the
simplest way is to use BoW vectors. This method
is only applied by part of experiments on Naive
Bayes and SVM models. With respect to the huge
length size of BoW vector, CNN model abandon
using them as the input in order to save the com-
putational time. Another option is to use word em-
bedding, then we read words one by one and check
whether a certain word exists in the pre-trained vo-
cabularies. If positive, the pre-trained vector will be
adopted. Otherwise, we randomly initialize a vector
from [-1,1].

3. In order to take the importance of a certain word into
consideration, word vectors should be weighted by
the TF-IDF values. For the words that exist in the
testing document but do not appear in the training
document(OOV, short for out of vocabulary), their
TF-IDF values should be zero. In the case of the
traditional BoW model, OOV will be ignored since
each index in the vector represents a token that oc-
curs in the vocabulary. However, as for the experi-
ments apply word embeddings, the pre-trained word
vectors will be multiplied by their own TF-IDF val-
ues(mentioned in section 3.2.4). Then, if we multi-
ply 0 by the pre-trained word vector, the word vector
will also become zero. It means that the meaning of
the word for this document is erased. Therefore, we
choose to use a TF-IDF value of 1 for OOV words.
This will ensure that these words will still be applied
to represent a document without any changes. For
those words that already exist, the value of TF-IDF
should be between 0 and 1 (after normalization) in
a certain document. In order to distinguish between
them and OOV words, we decide to use (TF-IDF+1)
as their value. Because if we still use the value of
the original TF-IDF (from 0 to 1) to weight the word
vectors, then we are equivalent to weakening the im-
portance of these words compared to OOV words
which use 1 instead.

4. Documents can be represented by the word represen-
tations. Given by different models, various document
representations will be applied. For the SVM model,
the mean of the aggregation of all word vectors will
be used as the document vector. On the other hand,

the CNN model will use the word matrix as the rep-
resentation of a certain document.

Figure 3: Part of the flow chart of experiments.

3.6 Hypotheses

Based on the given theory[8][10][9], we believe that
the weighting scheme we propose(mentioned in sec-
tion 3.2.4), as well as other factors(dimensional size,
pre-trained vector characteristics and so on), will in-
fluence the classification effectiveness. However, since
different classifiers may have different characteristics,
the final classification performance may vary widely.
Therefore, here we temporarily list the following hy-
potheses:

• Our weighting scheme(mentioned in section 3.2.4)
will help classifiers get a higher accuracy relatively.

• Higher dimensional size will increase the final accu-
racy.

• Taking the OOV words into consideration(randomly
initializing) may improve the classification perfor-
mance.

• Vectors trained by itself may works worse than those
learning from outside resources(Google or GloVe).

4 Experiments Setup

All the experiments involved in this paper were con-
ducted on different datasets. Given the apparent dif-
ferences in class quantity, document length, vocabu-
lary size, and document complexity, these datasets are
more proper for comparing the performance of vari-
ous classification types(binary or multi-class classifi-
cation). We have chosen a variety of datasets for a more
informed comparison of our methods. In this way, we
hope to assess the robustness of different methods.
Samples of different datasets will be present in the Ap-
pendix section.

4.1 Datasets

• IMDB: the dataset contains movie review from
IMDB1[14], labeled by sentiment(positive or nega-
tive). This dataset includes 50,000 severely polarized
reviews from the Internet. And those comments are
split and organized into half for positive and a half
for negative. Therefore, both training and testing sets
will contain 50% positive reviews and 50% negative
reviews.

• 20 News Group: the dataset is a corpus of approx-
imately 20,000 newsgroup files, distributed evenly
across 20 different newsgroups2[15]. This dataset is
containing 20 various newsgroups, which will be as-
signed to a different topic. Some of the topics are
related to each other, while others are kind of unre-
lated to some extents.

• Consumer Complaints: the dataset is the complaints
received about financial products and services3.
There are 341,301 documents belonging to 18 dif-
ferent topics respectively. Besides the considerable
size, this dataset has another feature which is that
the number of complaints per product is imbalanced.
Conventional algorithms often focus more on the
majority class, not considering the data distribution.
In the worst case, minority classes are treated as ac-
cidents and ignored. Therefore, this dataset can be a
tough task for testing the ability of different classi-
fication methods(different representative schemes or
classifiers).

4.2 Word Embedding

According to the work of Kim[8] and Zhang[10], both
of them used a fixed pre-trained vector of word2vec
based on Google news with 300 dimensions. However,
in order to study the influential factors of word embed-
ding(external knowledge or dimension reduction), we
added some more different pre-trained vectors mod-
els. For more specific information about word2vec and

1http://www.cs.cornell.edu/people/pabo/movie-review-data/
2http://qwone.com/ jason/20Newsgroups/
3https://catalog.data.gov/dataset/consumer-complaint-database

GloVe, please refer to the Appendix section. There is a
list of four options using word embeddings:

• Google News: includes 300-dimensional vectors of
3 million words and phrases trained based on Google
News of nearly 100 billion words on word2vec4.

• GloVe: is trained on Common Crawl with 840B
unique words, 2.2M vocabulary and corpus in 300
dimensions5.

• Self-trained Skip-gram(SG): is the vectors trained on
the given datasets by applying Skip-gram model of
word2vec(dataset would be divided into training and
testing sets, and the self-trained vectors were only
trained by training set, excluding testing set).

• Self-trained Continuous Bag-of-Words(CBOW):
is the vectors trained on the given datasets by
adopting Continuous Bag-of-Words model of
word2vec(training procedure was the same as
Skip-gram model).

With respect to the vector dimension, depending on
the dataset higher dimensional word embeddings may
be required. And 300 dimensions(chosen by both
Kim[8] and Zhang[10]) may not be sufficient for the
huge work. In addition, we tried to use different vector
dimensions as inputs, for instance, 300, 600, 1200 and
2400. Secondly, some existing pre-trained vectors like
Google news and GloVe, they have a fixed dimension
which can not be changed. Consider this situation,
those two kinds of vectors would be concatenated to
form a new vector in 600 dimensions instead.

Because of the variety of different classifiers, the
document length should be considered as well. For
SVM which used words vectors aggregation, this
issue could be ignored. However, when it referred to
CNN, truncating mechanism (fixed document length
1200) should be applied in order to achieve efficiency.
According to the statement of Hader[9], this should
affect nothing since most texts were shorter than this
limitation(on IMDB dataset).

4.3 Cross-validation

Cross-validation, also known as rotation estimation, is
any of various similar model validation techniques for
assessing how the results of a statistical analysis will
generalize to an independent dataset[16]. Normally, it
will be applied to estimate the accuracy of a predictive
model in reality[17]. According to the paper of Yoon
Kim[8], he applied 10-fold CV on his datasets. How-
ever, given by the differences in size and complexity of
our datasets, we chose to use 5-fold CV on datasets in
order to save computational time. In addition, we also
kept the folds(train and test data randomly) the same

4https://code.google.com/archive/p/word2vec/
5http://nlp.stanford.edu/data/glove.840B.300d.zip

across all the experiments. In that way, we could ob-
serve the result of different experiments on the same
fold.

4.4 Evaluation Metrics

In our experiments, accuracy, precision, recall, and
F1-score would be used as the evaluation metrics.
Both of the detailed definitions and some fundamental
notion can be found in the Appendix section. Since
not only the binary classification but also multi-class
classification was involved, therefore we also treated
them individually as a binary issue, which could be c
and non-c class for any specific class of multi-class
classification.

There are three kinds of result averaging meth-
ods including micro average, macro average, and
weighted average. The macro-average is intended to
calculate the metric individually for each class and
then calculate the mean value, which means it treats
all classes fairly. While the micro-average normally
averages the metrics globally by counting the total true
positives, false negatives and false positives. In our
experiments, we chose to utilize weighted average.
It calculates metrics for each class and generates
their average weighted by the support which is the
number of true instances for each class. Weighted
average could alter macro average to account for class
imbalance and return a reasonable result relatively for
all kinds of datasets.

4.5 Implementation Details

Duranium Tritanium

126GB RAM
20 Intel Xeon

E5-2650 v3 CPUs
@ 2.30GHz (40 threads)
6 NVIDIA GTX 980 Ti

GPUs each with
6GB memory.

2 NVIDIA Titanium
GPUs each with
12GB memory.

3TB RAM
20 Intel Xeon

E5-2650 v3 CPUs
@ 2.30GHz (40 threads)
16 NVIDIA Tesla K80

GPUs each with
11.5GB memory

Table 1: The specifications of the DSLab machines.

Python 3.6 will be applied to implement all the models
involved in the experiments. Part of the most signifi-
cant libraries will be listed as follows:

• TensorFlow v1.3.1: it is a symbolic mathemat-
ics system based on dataflow programming. It is
widely used in the programming implementation of

various machine learning algorithms. Its predeces-
sor is Google’s neural network algorithm library
DistBelief[18].

• Keras v2.2.4: it is a deep learning library based on
Theano and TensorFlow[19].

• Gensim v3.4.0: it is a tool for mining the semantic
structure of documents by measuring phrases (whole
sentences or documents)[20]. This library is used to
train our own word vectors.

• Scikit-learn v0.20.1: it is a free software ma-
chine learning library for the Python programming
language[21]. This library is used for creating tradi-
tional models, like SVMs.

• Numpy v1.15.4: it is a mathematical computing li-
brary of Python. Numpy is usually applied to store
and process large matrices. Compared with the em-
bedded list structure in Python, it is much more ef-
ficient. Also, this structure is beneficial to express
matrices in a more efficient way as well[22].

All experiments were run on the DSLab machines. Ta-
ble 1 shows their configuration in details.

5 Results and Discussion

All results shown in this paper are the average value
of 5-fold cross-validation, except for the dataset which
has a standard train/test split(20 Newsgroups). More
specifically, the dataset is randomly divided into five
parts, training four of them each time, and the rest is
used to test. Then the mean value of all times results
will be recorded as the eventual result. Furthermore, in
order to keep a scientific comparison result, we train
the vector on the training part during each fold for the
datasets which applies 5-fold technique. However, for
the dataset that already has a standard train/test split
like 20 Newsgroups, we just train once for the train-
ing set. As for the hyperparameters involved in CNN
model, Zhang[10] gave a very comprehensive analysis
of model variants (e.g., filter widths, k-max pooling,
etc.) and their effect on performance in his work. In
order to achieve efficiency, we decide to apply those
suggested values(listed in Table 7) in our experiments
instead of tuning them by ourselves.

5.1 Naive Bayes & Linear SVM classification

In order to set a baseline for our experiments, we
just reproduced those results in the spirit of the
related work of Hader[9]. The results for Naive
Bayes and Linear SVM classification can be found
in Table 8. For Multinomial Naive Bayes, applying a
bag-of-uni+bi+trigrams led to the highest accuracy
on IMDB and Consumer Complaints datasets, while
uni+bigrams brought higher performance on 20 News-
groups dataset. Concerning Linear SVM classification,

uni+bigrams achieved both the highest accuracy on
IMDB and 20 New groups, whereas uni+bi+trigrams
obtained better achievement on Consumer Complaints
dataset.

Comparing the variants that achieve the highest
accuracy of N.B. and SVM models, it is obvious
that SVM with sublinear tf-idf feature weighting
brought better performance on all three datasets than
all variants of Naive Bayes model. Furthermore,
all SVM setups achieve much higher accuracy than
N.B. at least 2-6 percent. These results are also
similar to the achievements obtained by Hader[9].
For instance, as for IMDB dataset, Hader[9] got the
highest accuracy of 87.18% and 90.05% on Multi-
nomial Naive Bayes(uni+bi+trigrams) and Linear
SVM(uni+bigrams), while we achieve 87.22% and
90.01% respectively.

5.2 Linear SVM & CNN classification

This part is the key research part of our experiment,
which can be mainly divided into two directions. To
supplement the existing experiments based on the
work of Zhang[10], and also to explore the influence
of different word vectors on the classification effect,
we use different pre-trained word vectors for different
classifiers. At the same time, we also integrate the
idea of combining word2vec and TF-IDF that we
proposed into the experiment and design a sub-
experiment. Hence, there are two potential choices:
only word2vec, or the word2vec vector weighted
by TF-IDF. Other than that, the pre-trained vectors
we use as input may not always be available for
certain words (either in word2vec or GloVe, or trained
by itself). In such cases, we choose to whether to
randomly initialize the vectors between -1 to 1, calling
it fullwords in our experiments. Combining with the
TF-IDF weighted vectors, there can be four different
variants in each main experiment(word2vec, word2vec
with fullwords, word2vec with TF-IDF weighting, and
word2vec with fullwords and TF-IDF weighting).

Results of Linear SVM can be found in Table 9
and 11, while Table 10 and 12 show the results based
on CNN classification. The concrete results can be
retrieved in the Appendix section. Considering the
space constraints, in this section, we only extract some
key-points to illustrate and present. But those points
are generally illustrative.

5.2.1 Effect of input word representations

A basic feature of the classification model is that
the distributed representation of the words is used as
input. The flexibility of this structure allows different
pre-trained word vectors to be exchanged during

Model IMDB 2N.G. C.C.

SVM

CBOW 84.81 70.50 67.62
SG 86.31 78.28 68.36
GloVe 85.89 76.36 63.69
Google 85.34 73.68 62.62

CNN

CBOW 89.39 84.26 72.14
SG 90.47 88.00 74.71
GloVe 88.19 85.70 73.92
Google 90.03 89.66 74.57

N.B. BoW 87.22 82.46 69.53
SVM BoW 90.01 87.00 71.52

Table 2: Accuracy of input word representations on
three datasets. All embeddings are fixed to be 300 di-
mensions. The last two rows refer to the baselines with
traditional models such as Naive Bayes and SVM.

model initialization[10]. Hence, we plan to study the
sensitivity of classifiers based on the different input
representation used. In the spirit of Ye Zhang[10], we
replace word2vec with GloVe. The main differences
between those two representations are listed in the Ap-
pendix section. Except for Google and GloVe vectors,
we also train our own vectors based on CBOW and
SG models, which are also in 300-dimension(same as
Google and GloVe). Table 2 shows the results based
on different resources of word vectors, while the last
two rows illustrate the best baseline results of Table
8. According to Table 2, we can find that for Linear
SVM, SG vector achieved the highest accuracy on the
three datasets. However, for the CNN model, Google
achieved the best performance on one dataset, while
SG still obtained the highest accuracy on the rest.
It seems that without any enhancement skills(like
weighting mechanism or fullwords technique) self-
trained vector may have a stronger ability to represent
a document instead of vectors derived from external
knowledge.

Referring to the difference between CBOW and
SG models(seen in Appendix section), the results clar-
ify that the SG model will bring a better performance
than CBOW model on all three datasets. The specific
theory can be illustrated in Figure 10 in the Appendix
section. From a more general point of view, in the SG
model, with the help of the context words, the central
word will be trained more "professional". So that the
vector result will be relatively accurate, but it will
certainly take longer time. However, CBOW model is
quite different. Actually, the context words will share
the knowledge of one central word. As for how much
the context words have learned, it depends on how
many time they appear in the window of a certain
central word. If they are still in the window during
later rounds, they will have the opportunity to learn

more from other central words, then they can make
a little progress. Therefore, comparing to SG model,
the output result is definitely not good enough, but for
the entire training process, CBOW model is definitely
more efficient and faster. It can be seen that the number
of CBOW’s prediction behaviors is almost equivalent
to the amount of words in the entire document, then
the complexity is probably O(V). Meanwhile, the SG
model predicts more times than CBOW. Because each
word is used as a central word, it must be predicted
once using context words. This is equivalent to K
times more than the CBOW method (assuming K is
the window size), so the time complexity is O(KV).

5.2.2 Effect of input word dimensions

Besides the effect of pre-trained word vectors on
model performance, we are also curious about the
factor of word vectors length size. Since previous
experiments[8][10] used fixed 300-dimensional word
vectors, it is difficult to know if this size of word vector
is sufficient for different classifiers(SVM and CNN)
on different classification tasks. Thus, in addition to
the pre-trained Google news and GloVe word vectors,
we also train 300, 600, 1200-dimensional self-trained
word vectors to meet our sensitivity analysis to
different models on different vector dimensions.
Meanwhile, we also try to do some concatenating
operations to compare some of the word vectors de-
riving from different external knowledge in the same
dimension. For example: 600-dimensional vector =

300-dimensional Google + 300-dimensional GloVe
= 300-dimensional SG + 300-dimensional CBOW =

600-dimensional self-trained SG or CBOW. Aiming to
make a scientific comparison result, we train our own
word vectors on SG and CBOW models for each fold
we applies. However, vectors of Google and GloVe
were fixed which cannot be further retrained. Then,
we only retrain the self-trained vectors during each
experiment.

Table 11 and 12 in Appendix section mainly il-
lustrate the performance of different dimensions on
different models. Given by the extracted result of
Table 3, what we can observe is that simply increasing
the vector dimension seems to improve the accuracy
to some extent, and the poorer performance the dataset
is before dimension increment, the more obvious
improvement it achieves eventually. For example, for
the Consumer Complaints dataset, large-dimensional
word vectors can help the classifier better distinguish
between different documents. But for IMDB, it is
possible that the performance of a 300-dimensional
word vector is good enough. Blindly increasing
the word vector may have negative effects (such as
over-fitting) and even reduce accuracy. For example,
in the CNN model, the 300-dimensional SG can get

90.47%(Table 2), but the 1200-dimensional SG can
only get 89.55%(Table 3). On the other hand, the
effect of concatenating word vectors also depends
on the word vector itself. Assume there are two
kinds of word vectors with similar ability, such as
Google and GloVe, then the concatenating operation
will enhance their ability. But if the performance
of the two word vectors is very different, such as
SG and CBOW of 20 Newsgroups(we can see from
Table 2), then simply concatenating them may only
bring deteriorate results. Take 20 Newsgroups as
an example, the 600-dimensional CBOW and SG
can get 73.76% and 82.20% respectively, but the
concatenated 1200-dimensional vector can only get
78.65% accuracy.

Model IMDB 2N.G. C.C.

SVM

CBOW_600 87.10 73.76 69.34
CBOW_1200 87.16 74.52 70.31
SG_600 87.11 82.20 69.45
SG_1200 87.38 82.58 70.61
Google&GloVe_600 86.80 76.66 65.50
CBOW&SG_600 86.91 74.89 69.64
CBOW&SG_1200 88.73 78.65 70.62
CBOW&SG_2400 88.14 79.41 71.36

CNN

CBOW_600 85.74 84.00 73.55
CBOW_1200 86.80 86.72 73.88
SG_600 89.53 88.35 76.16
SG_1200 89.55 89.29 75.41

Table 3: Accuracy of input word dimensions on three
datasets.

5.2.3 Effect of fullwords technique

As Figure 4 shows, the final performance of SVM
model suffers from the introduction of randomly
initializing vectors on Google and GloVe models. We
attribute this to the case which was equivalent to intro-
ducing a certain amount of noise for SVM. Because
the word vector is randomly generated and the vector
does not change during the whole process, then this
vector does not have any textual meaning compared to
the pre-trained word vector. Therefore, if these vectors
are introduced blindly, the classification performance
will only be greatly reduced. However, for those
models that use self-trained vectors as input, their
achieved performance will stay almost the same as
before. Reasons can be straight forward, when we train
our own word2vec vectors(no matter SG or CBOW),
the train set we use every fold will cover most words
of the whole vocabulary. Therefore, those rare and
unusual words that may not exist in Google or Glove
will still be included in self-trained vectors. There is
no doubt that there must be OOV(out-of-vocabulary)

Figure 4: Effect of Fullwords technique on three datasets. Y-axis reflects the change in Accuracy before and after
applying fullwords technique, while X-axis shows the results of different input representations.

words in the test set, but for self-trained word vectors,
their influence will be much less than other kinds of
pre-trained vectors(Google and GloVe). The specific
word distribution can be seen in Figure 5. In general,
whether to consider those nonexistent words can
have merely no influence on SG and CBOW, while
Google and GloVe can not. And the influence is
closely related to the pre-trained vector itself. For
example, for dataset 20 Newsgroups after introducing
fullwords, the accuracy of the model using Google has
dropped from 74 to 62 percent, while the model using
GloVe has only dropped from 76 to 74 percent. As for
Consumer Complaints dataset, the situation is similar.
Concerning the IMDB dataset, both Google and GloVe
show some stability (resistance) for the introduction
of random vectors. This also illustrates that different
types of pre-trained vectors have different coverage of
words due to different training corpus. And Figure 5
will prove this point.

As for the CNN model, the situation is quite dif-
ferent. Since the model we applies is non-static(the
pre-trained vectors will be re-tuned for each task),
randomly initializing a word that does not exist in the
pre-trained vocabulary is equivalent to a complement
to the word matrix. For (randomly initialized) vectors
not in pre-trained vector collections, fine-tuning allows
them to learn more meaningful representations. Since
the classifier is provided with more information, also
the random vector itself is not static and fixed, the
final performance will be better than SVM (IMDB:
increase by 0.46 to 1.97 percent; 20 Newsgroup: 0.67
to 0.93 percent; Consumer Complaints: 0.45 to 0.72
percent). Notably, the result is only derived from
variants using Google and Glove. For variants with SG

and CBOW as input, the situation is the same as for
SVM (basically unchanged).

Figure 5: Sample of word distributions in different pre-
trained vectors collections. Y-axis reflects the amount
of words, while X-axis shows the results of different
datasets.

5.2.4 Effect of TF-IDF weighting technique

Unlike the introduction of random vector mechanism,
TF-IDF weighted vector has a positive effect on
results, and this effect also varies depending on the
classification type. Taking Linear SVM into consider-
ation, for the binary classification, it is possible that
these pre-training word vectors are already excellent
enough for SVM to deal with the classification task.
Therefore, whether weighted or not has little effect
on the final performance. However, for multi-class
classifications (regardless of whether the categories
were evenly distributed), the weighted vector will
increase the final accuracy by 0.2 to 5 percent point.
The TF-IDF considers the influence of a word not
only to a document, but also to the whole collection
of corpus. Hence, the weighted vectors can add new

Figure 6: Effect of TF-IDF weighting on three datasets. Y-axis reflects the change in Accuracy before and after
applying TF-IDF weighting technique, while X-axis shows the results of different input representations.

power to the classifying ability of the model. The
experimental results also proves this, regardless of the
pre-trained vector, the weighted vector can improve a
little accuracy more or less.

It can be found from both Figure 6 and Table 10
that the word2vec model weighted by TF-IDF
achieves a positive influence on the performance.
At the same time, the benefits of weighting vectors
are more pronounced than completing fullwords.
Also, on the other hand, CNN with TF-IDF weighted
technique obtains more improvement than Linear
SVM model.The reason can be attributed to the way
of representing a document. In the SVM model, we
add the word vectors together and got average value as
a document vector(as Figure 7 shows). We analyze the
adding and averaging operation will lose some specific
details. Assume a word vector is very significant for a
document, but the final document vector is the result
of all vectors’ average value. Then the importance of
the word may decrease and affect the classification
performance, even if we have adopted the TF-IDF
weighting method. However, the CNN model uses
a vector matrix to represent a document. Figure 8 is
quoted from Ye Zhang[10] in his paper. It illustrates
the architecture Zhang[10] has applied, which is also
adopted by us. The specific values in the pictures are
for demonstration purposes only and do not represent
the parameters used in actual experiments. Here
Zhang[10] faced binary classification task and then he
assumed two potential output states. The only factor
that may have an influence on the result(for the input
phase) will be the matrix size, while the information
hidden in the vectors will be included thoroughly.

5.3 Limitations

It is obvious that tuning of CNN hyperparameters is
a truly boring and demanding task. Normally, those

Figure 7: Representation of input on SVM model.

Figure 8: Representation of input on CNN model. Fig-
ure from Ye Zhang[10].

parameters should be varied on different datasets.
Therefore, it could be more complicated and demand-
ing when referring to each task separately. Thanks

to the achievements of Kim[8] and Zhang[10], we
did not waste much time doing the tuning task in our
experiments. However, we still hold the view that fine-
tuning will have an influence on the final performance.
Moreover, we did not design experiments on SVMs
with other kernels(like poly or RBF). Also, we did not
focus on other kinds of neural network models like
Recurrent Neural Networks(RNN). Although CNN
can perform well in many tasks, it also has some
disadvantages. For example, it cannot capture longer
sequence information. The core idea of CNN is to
obtain the feature representation of the document,
while the more widely adopted in natural language
processing is RNN. Compared with CNN, RNN is
easier to better reflect context information. Therefore,
it will be interesting to run similar experiments on
different architectures, like RNN or joint CNN+RNN
proposed by Wang[23] in 2016.

On the other hand, we also had certain limita-
tions on the selection of datasets. We only selected the
datasets of the binary and the multi-class classification,
but we did not involve the dataset of the multi-label
classification. Multi-label, also named multi-output
classification is referring to the classification problem
where multiple labels may be assigned to one certain
sample[24]. This type of classification is much more
complicated than a simple binary or n-ary classifica-
tion. At the same time, it also tests the classification
ability of the model. However, due to time constraints,
we did not find a suitable multi-label dataset, we
had no choice but to abandon this classification type
temporarily.

5.4 Summary

Figure 9 shows the comparison of the best results of
our experiments with our previous baseline results
for three different data sets. It is apparent that the
CNN model outperformed on all three datasets, while
Multinominal Naive Bayes did achieve the worst
results. But for the SVM model, its results were very
unclear. BoW-based(using TF-IDF values) SVMs
could achieve superior results in two out of three
datasets, while the SVM based on word embedding
only performed better in one dataset.

Basically, TF-IDF weighting would bring posi-
tive benefits to the final performance, while fullwords
would only increase accuracy in the CNN model, and
it brought a negative effect on the SVM model respec-
tively. Hence the results of CNN in the above figure
were all from the variants that introduce fullwords
and tf-idf weighting, while the results of SVM_w2v
belong to variants that applied weighting technique
but not fullwords. As for the result of CNN model,
most best results were obtained by 300-dimensions

vectors of Google weighted by TF-IDF with fullwords
technique. However, most best values of SVM model
were achieved by the high dimensional(1200 or 2400)
SG vectors weighted by TF-IDF but without fullwords
technique. For the specific results, please refer to the
Appendix section.

Figure 9: Comparison of the best results of our exper-
iments and baseline with respect to four overall vari-
ants(input representations, dimensional size, fullwords
technique, and TF-IDF weighting technique). Y-axis
reflects the involved datasets, while X-axis shows the
Accuracy they achieved.

6 Related Work

The essential purpose of our work is to verify the
effectiveness of our proposed ideas(mentioned in
section 3.2.4) and to extend the research on some
existing work[8][10][9]. Table 4 shows the main
differences between our experiments and other related
work, mainly based on the research results of Yoon
Kim[8] and Ye Zhang[10].

First of all, Kim[8] proposed a simple CNN ar-
chitecture with little hyperparameter tuning that
could achieve excellent results on sentiment analysis
classification. And his work was quite similar to the ar-
chitecture of Razavian et al.[25], which was designed
for image classification task initially. By running vari-
ous experiments with CNNs(improved upon the state
of the art on 4 out of 7 datasets), Kim[8] approved
that CNNs with pre-trained vector could perform
remarkably well. Also, his simple architecture was
applied widely by all the following works more or less.

But, there was little practical analysis to guide
the decisions about setting various hyperparameters.
And Zhang[10] tried to address this gap in his work
in 2016. Then, a more comprehensive analysis of
various hyperparameters was completed by Zhang[10]
instead. His aim was to distinguish between important
and comparatively inconsequential design decisions
for sentence classification by applying the model
proposed by Kim[8]. In addition to considering the
multi-class classification, using Google’s pre-trained

vector and some concatenating operations on vec-
tors, he also introduced GloVe vector, which was
proposed by Pennington et al.[7]. GloVe was the
vector trained by involving nonzero elements in a
word-word co-occurrence matrix, instead of the whole
sparse vector matrix or the context windows in a
large corpus. Meanwhile, Pennington[7] clarified
that GloVe vectors could outperform other models
on word analogy, word similarity, and named entity
recognition tasks. In the end, Zhang[10] derived quite
a few suggestions regarding CNN architecture and
hyperparameters(input word vector, filter region size,
number of feature maps, activation function, pooling
strategy, and regularization).

On the other hand, the research of Mounir Hader[9]
was also relevant to our ideas. He tried to investigate
the practical use of CNN for text classification by
comparing with other traditional models like SVMs
and Naive Bayes. He drew the conclusion that without
the tuning job, CNN was sufficient to dealing with
classification tasks. Moreover, conventional meth-
ods like SVM could obtain similar achievement as
his CNN model on 2 out of 3 datasets. However,
his work only dealt with the binary classification
task, and he did not consider the word vector rep-
resentation and dimensional diversity. In addition,
he did not find the impact of word embedding on
other classifiers, For example, in his research, the
experiment of CNN+vector(based on Google News of
word2vec) was carried out, however, the possibility of
SVM+vector(word2vec) was not considered. Then,
it could be unclear if his achievements was attributed
to the model itself or input representation(dimension
reduction, and word embedding).

Combined with those existing achievement and
limitations, our experiments would cover more thor-
oughly. Initially, we extended the word vector types to
self-trained vectors by adopting word2vec proposed by
Mikolov[6] (CBOW and SG). In addition, we have ex-
tended the consideration of the vector dimension from
300 to 2400. Even for vectors of the same size, we
not only had vector concatenating operation but also
trained vectors of this length directly. Furthermore,
both Kim[8] and Zhang[10] considered initialize the
OOV words randomly for CNN model but ignored the
influence of OOV words for SVM model. However,
we also considered the relevant experiments of the
SVM model (although the final performance may not
as satisfied as CNN model). The last row in Table
4 is a weighting method we proposed(mentioned in
section 3.2.4). Through our experiments, we could see
that the word2vec model based on TF-IDF weighting
had a good performance on all classifiers. This also
verifies the effectiveness of the combined method

of generating improved word representations in the
document classification task.

Yoon Kim Ye Zhang Our work
Type binary multi-class multi-class
Input 1 2 4
Dimension 300 300 300 to 2400
Fullwords CNN CNN SVM & CNN
TF-IDF No No Yes

Table 4: Differences between our experiments and
related work. Type means the type of classification
task, while Input shows the choice of trained embed-
dings(Google, GloVe, SG, and CBOW) as input. Di-
mension reflects the vector size, and Fullwords rep-
resents the technique that considers the existence of
OOV words. Last, TF-IDF refers to the hybrid method
that combines word embedding and TF-IDF.

7 Conclusion

We have run several extended experiments of SVM
and CNN for document classification with respect
to many aspects. In this section, We made some
conclusions by summarizing our main findings and
deriving from this practical information for those who
are looking to implement classification problems.

Given by the hypotheses we proposed in section
3.6, here we summarize some main empirical findings:

• Using TF-IDF to weight pre-trained vector does help
increase the performance for both SVM and CNN
models. However, the improvement influence varies
from model to model, and the effect of CNN in
our experiments is significantly better than the SVM
model. This may also be due to the way we choose
to represent a document. As we discussed in sec-
tion 5.2.4(Efect of TF-IDF weighting technique), we
have taken the mean operation in the SVM model,
which more or less interferes with the impact of the
weighting method.

• Since the length of the Google and GloVe vectors
is fixed, and we cannot change them. Hence we
only draw this conclusion based on self-trained vec-
tors(CBOW and SG). High-dimensional word vec-
tors do bring higher accuracy, and this phenomenon
is particularly evident in the SVM model. But un-
fortunately, adopting a higher-dimensional vector
means longer training time and calculation process.
In general, a 300-dimensional vector is sufficient
for the CNN model, while the SVM model is not
enough. If a better classification performance is re-
quired, we recommend not using vectors with more
than 1200 dimensions. Because an oversized vector

is not only quite demanding, but it can also cause
side effect like over-fitting, which reduces accuracy.

• For OOV(out-of-vocabulary) words, randomly gen-
erating their vectors will become noise interference
terms for the SVM model, however not for the CNN
model. Therefore, we hold the view that when using
SVM for classification, it is wise to drop the OOV
words, but they can be taken into account in the CNN
model. If existing pre-trained vectors (Google and
GloVe) are applied, it is difficult to guarantee that the
word vectors they provide cover most of the words in
the vocabulary. Then, when using the CNN model, it
is a good choice to consider the existence of OOV
words. On the other hand, if self-trained vectors are
chosen, whether to consider OOV words becomes
unnecessary since they are likely to cover the most
words respectively.

• Vectors trained by learning from outside knowl-
edge(Google and GloVe) seems to work better then
self-trained(CBOW and SG). Word vectors trained
based on the large corpus can indeed generate better
vectors. More corpus information gives them more
knowledge, which is why vectors learning from ex-
ternal resources perform better than self-trained vec-
tors. But at the same time, the shortcomings are also
obvious. It is hard to ensure that Google and GloVe
can cover most of the words in the vocabulary, espe-
cially for some personal comments, movie reviews
and other speech that are more casual and infor-
mal. As for this type of document, the pre-trained
word vector is somewhat weak and not as satisfied
as self-trained vectors. In this case, the self-trained
word vector can achieve higher accuracy at the be-
ginning(without weighting). However, since those
well-trained vectors are easy to access online, which
means it saves a lot of training time indeed. We still
recommend using those existing vectors pre-trained
by others, especially for those huge and demand-
ing work. On the other hand, for those who want to
train their own vectors, then vectors based on the SG
model is recommended. However, it will cost more
time than CBOW model to obtain the better vectors
respectively.

7.1 Future work

Other than the lack of various selection of the model
we mentioned in the Limitations section, we can also
refer to more methods of document representation.
For example, the doc2vec method proposed by Tomas
Mikolov[26] can be the choice. Doc2vec is a method
that derives from the adaptation of word2vec. Instead
of generating the word vectors, doc2vec intends to rep-
resent a document directly. This algorithm simplifies
the procedures since there is no need to use word vec-
tors to encode a document, while doc2vec will output

the document representation directly. And we also tried
to do a comparison experiment between doc2vec and
word2vec, but doc2vec is a non-deterministic vector
representation. Precisely speaking, every time we use
doc2vec to represent a document, we may get different
vectors. Because the final result was not that stable, we
gave up on this method. But in future experiments, we
may wish to consider optimizing doc2vec to achieve a
satisfying result. Also, our weighting method is mainly
for word embeddings, but we also see that the tradi-
tional SVM+BoW model with TF-IDF values can per-
form well in many cases and it takes less time as well.
We consider that we can try to improve the traditional
BoW vector in the future. It is well known that BoW
vectors are too sparse, and there are many places in the
vector where the value is 0 (0 means that the word does
not appear in this document). Then we can consider us-
ing word2vec to find the "existing words"(in this doc-
ument) which are most similar to these "non-existing
words"(values of 0). Furthermore, those meaningless
0 can be replaced with other values. And we hold the
view that it will be likely to improve the expressive
power of BoW vectors.

References

[1] A. Rajaraman, J.D. Ullman, Data Mining (Cam-
bridge University Press, 2011), p. 1–17

[2] T. Mikolov, I. Sutskever, K. Chen, G. Corrado,
J. Dean, Distributed Representations of Words
and Phrases and their Compositionality, arXiv e-
prints arXiv:1310.4546 (2013), 1310.4546

[3] R. Lebret, R. Collobert, Word Emdeddings
through Hellinger PCA, arXiv e-prints
arXiv:1312.5542 (2013), 1312.5542

[4] O. Levy, Y. Goldberg, Neural word embedding as
implicit matrix factorization, in Advances in neu-
ral information processing systems (2014), pp.
2177–2185

[5] Y. Li, L. Xu, F. Tian, L. Jiang, X. Zhong, E. Chen,
Word embedding revisited: A new representa-
tion learning and explicit matrix factorization
perspective, in Twenty-Fourth International Joint
Conference on Artificial Intelligence (2015)

[6] T. Mikolov, K. Chen, G. Corrado, J. Dean, Ef-
ficient Estimation of Word Representations in
Vector Space, arXiv e-prints arXiv:1301.3781
(2013), 1301.3781

[7] J. Pennington, R. Socher, C.D. Manning, GloVe:
Global Vectors for Word Representation, in Em-
pirical Methods in Natural Language Processing
(EMNLP) (2014), pp. 1532–1543, http://www.
aclweb.org/anthology/D14-1162

[8] Y. Kim, Convolutional neural networks
for sentence classification, arXiv preprint
arXiv:1408.5882 (2014)

[9] M. Hader, A Comparative Study of Naive
Bayes, SVMs and Convolutional Neural Net-
words for Binary Text Classification (2017), re-
search project of Leiden Institute of Advanced
Computer Science(LIACS)

[10] Y. Zhang, B. Wallace, A Sensitivity Analysis of
(and Practitioners’ Guide to) Convolutional Neu-
ral Networks for Sentence Classification, arXiv
e-prints arXiv:1510.03820 (2015), 1510.03820

[11] H.P. Luhn, Key word-in-context index for techni-
cal literature (kwic index), American Documen-
tation 11, 288 (1960)

[12] K. Sparck Jones, A statistical interpretation of
term specificity and its application in retrieval,
Journal of documentation 28, 11 (1972)

[13] A. Rajaraman, J.D. Ullman, Data Mining (Cam-
bridge University Press, 2011), p. 1–17

[14] A.L. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y.
Ng, C. Potts, Learning Word Vectors for Senti-
ment Analysis, in Proceedings of the 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies (As-
sociation for Computational Linguistics, Port-
land, Oregon, USA, 2011), pp. 142–150, http:
//www.aclweb.org/anthology/P11-1015

[15] K. Lang, Newsweeder: Learning to filter netnews,
in Proceedings of the Twelfth International Con-
ference on Machine Learning (1995), pp. 331–
339

[16] R. Kohavi, A Study of Cross-Validation and Boot-
strap for Accuracy Estimation and Model Selec-
tion (Morgan Kaufmann, 1995), pp. 1137–1143

[17] S. Arlot, A. Celisse, A survey of cross-validation
procedures for model selection, Statist. Surv. 4,
40 (2010)

[18] M. Abadi, P. Barham, J. Chen, Z. Chen,
A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., TensorFlow: A Sys-
tem for Large-Scale Machine Learning, in
12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16)
(USENIX Association, Savannah, GA, 2016),
pp. 265–283, ISBN 978-1-931971-33-1, https:
//www.usenix.org/conference/osdi16/
technical-sessions/presentation/abadi

[19] F. Chollet, Xception: Deep Learning with Depth-
wise Separable Convolutions, arXiv e-prints
arXiv:1610.02357 (2016), 1610.02357

[20] R. Řehůřek, P. Sojka, Software Framework for
Topic Modelling with Large Corpora, in Proceed-
ings of the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks (ELRA, Valletta,
Malta, 2010), pp. 45–50, http://is.muni.cz/
publication/884893/en

[21] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg et al.,
Scikit-learn: Machine learning in Python, Jour-
nal of machine learning research 12, 2825 (2011)

[22] S. van der Walt, S.C. Colbert, G. Varoquaux, The
NumPy Array: A Structure for Efficient Numer-
ical Computation, Computing in Science Engi-
neering 13, 22 (2011)

[23] X. Wang, W. Jiang, Z. Luo, Combination of con-
volutional and recurrent neural network for sen-
timent analysis of short texts, in Proceedings
of COLING 2016, the 26th International Con-
ference on Computational Linguistics: Technical
Papers (2016), pp. 2428–2437

[24] J. Read, B. Pfahringer, G. Holmes, E. Frank,
Classifier chains for multi-label classification,
Machine Learning 85, 333 (2011)

[25] A. Sharif Razavian, H. Azizpour, J. Sullivan,
S. Carlsson, CNN features off-the-shelf: an as-
tounding baseline for recognition, in Proceedings
of the IEEE conference on computer vision and
pattern recognition workshops (2014), pp. 806–
813

[26] Q.V. Le, T. Mikolov, Distributed Representa-
tions of Sentences and Documents, arXiv e-prints
arXiv:1405.4053 (2014), 1405.4053

[27] Y. LeCun, Y. Bengio, G. Hinton, Deep learning,
nature 521, 436 (2015)

[28] D.P. Kingma, J. Ba, Adam: A Method for Stochas-
tic Optimization, arXiv e-prints arXiv:1412.6980
(2014), 1412.6980

[29] V. Nair, G.E. Hinton, Rectified Linear Units
Improve Restricted Boltzmann Machines,
in Proceedings of the 27th International
Conference on International Conference on
Machine Learning (Omnipress, USA, 2010),
ICML’10, pp. 807–814, ISBN 978-1-60558-907-
7, http://dl.acm.org/citation.cfm?id=
3104322.3104425

A Word2Vec & GloVe

A.1 Word2Vec

In the spirit of the Neural Network Language
Model(NNLM) proposed by Bengio[27], Mikolov et
al.[6] came up with the word2vec model in 2013.
By utilizing a very shallow neural network, word2vec
is designed to generate the word embeddings in
an efficient way. Generally speaking, word2vec is a
prediction-based method which involves two main
models. Figure 10 shows the difference between
the two models. One model is named continuous
bag of words(CBOW), while another is called skip-
gram(SG). CBOW model uses the contextual words as
input and utilizes them to predict the possibility of cen-
tral word. However, SG model works in a reverse way.
SG uses a central word to predict the contextual words
of it. With respect to the difference of training proce-
dure, the performance and computational time could
differ from models. To some extents, CBOW model
could be less professional than SG model. All the up-
date of contextual words is shared by the knowledge
of the central word, which means one specific mount
of information will be divided into pieces and each
contextual words will obtain some of them. However,
as for the SG model, the central word will be modi-
fied by the effort of all the corresponding contextual
words. Therefore, CBOW model could be more proper
for small text data, while SG model could get better
embeddings in a large dataset instead.

Figure 10: CBOW and Skip-gram models of
Word2Vec

With respect to the output of word2vec, also known as
word embeddings, they make the word vectors mean-
ingful comparing with the traditional BoW vectors.
With the help of word2vec, the vector itself can re-
flect some relationship between words. For instance,
it can be used to find the most similar word in the vec-
tor space. Even for the word formula, such as King -
Man + Woman = Queen, can be realized by word2vec
as well. Therefore, it is obvious that the word vector is
very useful for expressing the semantic features of the
word.

A.2 GloVe

GloVe is an unsupervised learning algorithm for ob-
taining vector representations for words[7]. Unlike
the theory of word2vec mentioned in Appendix A.1,
GloVe is a method based on the word-word co-
occurrence matrix. There is an example of word-word
co-occurrence matrix shown in Table 5. As for the no-
tation of matrix, Pi j = P(j|i) = Xi j/Xi where Xi j shows
the number of times word j occurs in the context of
word i, and Xi illustrates the overall time of occur-
rence of all corresponding contextual words of i. Then
the ratio of two different words and one mutual word
can also reflect some interesting relationships between
words. For instance, assume solid is the mutual word
which seems relevant to ice than steam, the ratio can
be greater than 1. However, if the mutual word is gas
which is closer to steam instead of ice, then the ra-
tio can be smaller than 1 relatively. But if the mu-
tual word is water or fashion, then the ratio can be
around 1. This means that words like water or fash-
ion is either relevant to both ice and steam or irrelevant
to them. Based on this situation, Pennington[7] tried
to propose a model to reflect it. This is the theory of
Global Vectors for Word Representation, also known
as GloVe. And according to the statement of Jeffrey
Pennington[7], for the same corpus with similar train-
ing time, GloVe consistently outperforms word2vec.

B Datasets

Given the apparent differences in class quantity, docu-
ment length, vocabulary size, and document complex-
ity, these datasets are more proper for comparing var-
ious classification types(binary or multi-class classifi-
cation). Samples of different datasets will be listed as
followings, where the order is: IMDB, 20 Newsgroups,
and Consumer Complaints. Due to the space limita-
tion, some contents are omitted which is replaced by
an ellipsis.

In 1974, the teenager Martha Moxley (Maggie Grace)
moves to the high-class area of Belle Haven, Greenwich,
Connecticut. On the Mischief Night, eve of Halloween,
she was murdered in the backyard of her house and her
murder remained unsolved. Twenty-two years later, the
writer Mark Fuhrman (Christopher Meloni), who is a
former LA detective that has fallen in disgrace for them
in O.J. Simpson trial and moved to Idaho, decides to
investigate the case with his partner Stephen Weeks
(Andrew Mitchell) with the purpose of writing a book.
The locals squirm and do not welcome them, but with
support of the retired detective Steve Carroll (Robert
Forster) that was in charge of the investigation in the 70s
they discover the criminal and a net of power and money
to cover the murder."Murder in Greenwich" is a good TV
...

Probability and Ratio k = solid k = gas k = water k = fashion
P(k|ice) 1.9x10−4 6.6x10−5 3.0x10−3 1.7x10−5

P(k|steam) 2.2x10−5 7.8x10−4 2.2x10−3 1.8x10−5

P(k|ice)/P(k|steam) 8.9 8.5x10−2 1.36 0.96

Table 5: Co-occurrence probabilities based on a 6 billion token corpus. Table is quoted from Pennington[7].

From: Mamatha Devineni Ratnam<mr@andrew.edu>
Subject: Pens fans reactions
Organization:
Post Office, Carnegie Mellon, Pittsburgh, PA
Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu
I am sure some bashers of Pens fans are pretty confused
about the lack of any kind of posts about the recent
Pens massacre of the Devils. Actually, I am bit puzzled
too and a bit relieved. However, I am going to put an
end to non-PIttsburghers’ relief with a bit of praise for
the Pens. Man, they are killing those Devils worse
than I thought. Jagr just showed you why he is much
better than his regular season stats. He is also a lot of
fun to watch in the playoffs. Bowman should let JAgr
have a lot of fun in the next couple of games since the
Pens are going to beat the pulp out of Jersey anyway.
...
"I have been trying to open a small XXXX business
XX/XX/XXXX and had worked with XXXX of Chase
Bank in XXXX XXXX, WI for business funding.
our relations she promised me she was diligently going
see if she could get my business funding with Chase, I
was asking for a XXXX loan. After waiting weeks for a
return call regarding her promise, I never heard back
her to this day. Without funding from Chase, we were
with no choice to get a loan, WI (formerly known as
Bank) for 33 % interest and our 2 motorcycles as collect
Our thoughts are to pay that loan in the shortest
time possible once we are able to open our doors for
revenue. This money now was not only the money we
needed but it also has $ XXXX of our property tied to it.
4 days before we were to secure the loan I opted to open
my business checking account with XXXX at the 2nd
Chase branch, WI. We did not want to sign for that loan
but we needed to, to complete my business plan buy
...

C Evaluation Metrics

In order to make it easier to understand those equa-
tions, we first use Table 6 to illustrate some essential
notations. The first metric we use is the accuracy. It
is the ratio of the number of all correct classes to the
number of all the wrong classes.

accuracy =
tp + tn

tp + tn + f p + f n
(6)

Then we use the precision to represent the ratio of the
number of samples with the correct classification to the

number of all classified texts in this predicted class.

precision =
tp

tp + f p
(7)

Similar to precision, recall is the ratio of the number
of samples with the correct classification to the actual
number of texts in this real class.

recall =
tp

tp + f n
(8)

As for F1-score, it is an indicator that considers both
precision and recall.

F1 − score = 2 ∗
precision ∗ recall
precision + recall

(9)

Predicted
pos/c class neg/non-c class

Tr
ue pos/c class tp fn

neg/non-c class fp tn

Table 6: Definition of TP,TN,FP and FN.

D Hyperparameters of CNN model
Table 7 represents the most significant parameters set
in the CNN model. Those parameters with symbol
* are the new tuneable parameters we introduce. As
for other parameters, most of them are the same in
the mentioned papers written by Yoon Kim[8], Ye
Zhang[10], and Mounir Hader[9]. But, all the related
work is set for binary classification and small datasets.
Therefore, we decide to increase several values in or-
der to obtain a relatively higher performance on larger
and multi-class classification issue. For instance, we
add HD, NF and BS from (0,100,64) to (128,128,128).
And we set cross-entropy loss as our objective function
which should be minimized. Adam(short for Adap-
tive Moment Estimation)[28] is used as the optimiza-
tion algorithm. We also applied early stopping scheme
in order to save the computational time. This mech-
anism means the machine will stop training if the
model gets No optimization over 1000 steps. However,
aiming to avoid the accident, we will save the best-
observed model after each epoch, which will be used
for evaluation later. In addition, different from Kim[8],
our model will contain a hidden layer. Therefore, we
choose ReLu(short for Rectified linear units)[29] as ac-
tivation function for convolutional layer.

Param. Definition Baseline

HD Hidden Dimensions: is the number of neurons in hidden layer 128

FS Filter Size: the heights of the kernels 3,4,5

DP Dropout Probability: drop out the neurons with a certain probability 0.5

NF Number of Filters: the number of filters applied for each filter region 128

BS Batch Size: size of the mini-batches 128

PM Pooling method: scheme to apply to the feature map global max

UB Use Bias: whether to add a bias term after the convolutional layer yes

LR Learning Rate: determines to what extent the latest information overrides the previous one 1e-3

DR Decay Rate: indicates the extent of reducing the learning rate 0.9

AF Activation Function: is used to add nonlinear factors ReLu

BW Balance Weight: whether to adjust class weights inversely proportional to the class frequencies no

*WV Word Vector: resources of input word vectors pre-trained

*VD Vector Dimension: dimension of vectors as input 300

*TW Tf-idf Weighted: whether to use the weighted vector by tf-idf values no

*FW Fullwords: whether to randomly initialize an nonexistent word no

*VF Vocabulary Filter: whether to trim the vocabulary yes

Table 7: Part of Tuneable Hperparameters in CNN model

E Tables of Results

Table 8 reflects the results of Multinomial Naive Bayes
and Linear SVM classifications based on sublinear tf-
idf. These results are also obtained by Mounir Hader[9]
in his work. Table 9 and 10 represent the performance
of both Linear SVM and CNN based on different in-
put representations and variants(fullwords and TF-IDF
weighting techniques). As for the results of different
models based on different input dimensions, they can
be found in Table 11 and 12 respectively.

IM
D

B
20

N
ew

sG
ro

up
s

C
on

su
m

er
C

om
pl

ai
nt

s

M
od

el
N

-g
ra

m
s

A
cc

.
Pr

e.
R

ec
.

F1
A

cc
.

Pr
e.

R
ec

.
F1

A
cc

.
Pr

e.
R

ec
.

F1

M
ul

tin
om

ia
lN

.B
.

su
bl

in
ea

r
tf

-id
f

un
i

82
.5

0
85

.1
4

78
.8

8
81

.8
8

81
.6

1
81

.5
4

81
.6

1
81

.4
3

67
.8

7
66

.8
4

67
.4

8
67

.1
1

un
i+

bi
84

.8
7

87
.4

5
83

.4
6

85
.1

1
82

.4
6

82
.6

2
82

.4
6

82
.4

4
68

.1
1

69
.2

3
68

.8
8

68
.5

0
un

i+
bi

+
tr

i
87

.2
2

88
.1

5
86

.5
5

85
.4

8
80

.3
5

80
.5

2
80

.3
5

80
.3

4
69

.5
3

69
.2

0
68

.9
3

69
.5

5

L
in

ea
r

SV
M

su
bl

in
ea

r
tf

-id
f

un
i

88
.7

8
88

.1
0

88
.9

8
88

.9
8

85
.9

0
86

.1
1

85
.9

0
85

.8
0

70
.1

3
69

.9
9

70
.5

9
70

.2
3

un
i+

bi
90

.0
1

89
.5

5
90

.8
8

90
.1

2
87

.0
0

87
.1

9
87

.0
0

86
.8

7
70

.6
7

70
.5

3
70

.8
9

70
.4

6
un

i+
bi

+
tr

i
89

.7
3

88
.9

2
90

.1
0

89
.6

8
86

.7
4

86
.9

4
86

.7
4

86
.6

0
71

.5
2

70
.9

8
71

.0
3

71
.4

6

Ta
bl

e
8:

R
es

ul
ts

of
M

ul
tin

om
ia

lN
ai

ve
B

ay
es

an
d

L
in

ea
rS

V
M

cl
as

si
fic

at
io

ns
ba

se
d

on
su

bl
in

ea
rt

f-
id

f

IM
D

B
20

N
ew

sG
ro

up
s

C
on

su
m

er
C

om
pl

ai
nt

s
M

od
el

Pr
e-

tr
ai

ne
d

A
cc

.
Pr

e.
R

ec
.

F1
A

cc
.

Pr
e.

R
ec

.
F1

A
cc

.
Pr

e.
R

ec
.

F1

L
in

ea
r

SV
M

w
or

d2
ve

c

C
B

O
W

84
.8

1
84

.8
2

84
.8

1
84

.8
1

70
.5

0
70

.7
2

70
.4

2
70

.3
7

67
.6

2
67

.5
3

68
.9

6
66

.3
7

SG
86

.3
1

86
.3

1
86

.3
1

86
.3

1
78

.2
8

78
.3

5
78

.2
9

78
.1

9
68

.3
6

68
.2

8
69

.6
2

67
.1

7
G

lo
V

e
85

.8
9

85
.8

9
85

.8
9

85
.8

9
76

.6
1

76
.6

5
76

.7
8

76
.4

1
63

.6
9

63
.7

5
65

.4
6

61
.8

6
G

oo
gl

e
85

.3
4

85
.3

4
85

.3
4

85
.3

4
73

.9
7

74
.0

3
74

.3
1

73
.5

8
62

.6
2

62
.5

3
64

.5
6

60
.7

7

L
in

ea
r

SV
M

w
or

d2
ve

c
(f

ul
lw

or
ds

)

C
B

O
W

84
.8

1
-

-
-

70
.5

0
-

-
-

67
.6

2
-

-
-

SG
86

.3
1

-
-

-
78

.2
8

-
-

-
68

.3
6

-
-

-
G

lo
V

e
85

.7
5

85
.7

5
85

.7
5

85
.7

5
74

.4
5

74
.5

6
74

.6
1

74
.1

9
62

.9
7

63
.0

6
64

.8
4

61
.0

2
G

oo
gl

e
83

.8
6

83
.8

6
83

.8
6

83
.8

6
61

.4
0

60
.9

2
62

.1
6

61
.1

2
59

.1
7

58
.7

3
61

.8
0

56
.9

8

L
in

ea
r

SV
M

tfi
df

w
ei

gh
te

d
w

or
d2

ve
c

C
B

O
W

84
.8

8
84

.8
9

84
.8

8
84

.8
8

70
.6

0
70

.7
7

70
.5

7
70

.4
7

67
.9

4
68

.0
0

69
.1

6
66

.6
7

SG
87

.1
7

87
.1

1
87

.2
0

87
.2

0
78

.4
2

78
.4

9
78

.4
4

78
.3

4
68

.4
4

68
.4

4
69

.6
2

67
.2

5
G

lo
V

e
85

.9
1

85
.9

2
85

.9
1

85
.9

1
77

.4
6

77
.4

8
77

.6
3

77
.2

6
63

.7
0

63
.8

1
65

.4
7

61
.8

2
G

oo
gl

e
85

.4
0

85
.4

0
85

.4
0

85
.4

0
74

.0
4

74
.1

3
74

.3
8

73
.6

2
63

.0
3

63
.3

4
64

.7
2

61
.0

3

L
in

ea
r

SV
M

tfi
df

w
ei

gh
te

d
w

or
d2

ve
c

(f
ul

lw
or

ds
)

C
B

O
W

84
.8

8
-

-
-

70
.6

0
-

-
-

67
.9

4
-

-
-

SG
87

.1
7

-
-

-
78

.4
2

-
-

-
68

.4
4

-
-

-
G

lo
V

e
85

.7
9

85
.7

9
85

.7
9

85
.7

9
74

.9
4

74
.8

8
75

.1
7

74
.7

6
62

.9
6

63
.0

2
64

.8
6

61
.0

1
G

oo
gl

e
84

.2
1

84
.2

1
84

.2
1

84
.2

1
61

.7
4

60
.9

4
62

.2
8

61
.1

9
59

.3
5

59
.8

1
61

.5
1

56
.7

2

Ta
bl

e
9:

R
es

ul
ts

of
L

in
ea

rS
V

M
cl

as
si

fic
at

io
n

ba
se

d
on

di
ff

er
en

ti
np

ut
re

pr
es

en
ta

tio
ns

IM
D

B
20

N
ew

sG
ro

up
s

C
on

su
m

er
C

om
pl

ai
nt

s
M

od
el

Pr
e-

tr
ai

ne
d

A
cc

.
Pr

e.
R

ec
.

F1
A

cc
.

Pr
e.

R
ec

.
F1

A
cc

.
Pr

e.
R

ec
.

F1

C
N

N
w

or
d2

ve
c

C
B

O
W

89
.3

9
89

.4
0

89
.3

8
89

.3
8

84
.2

6
84

.6
5

84
.0

1
84

.1
3

72
.1

4
71

.9
1

72
.6

4
71

.8
4

SG
90

.4
7

90
.4

8
90

.4
7

90
.4

7
88

.0
0

88
.0

6
87

.9
6

87
.9

7
74

.7
1

74
.5

3
75

.0
8

74
.5

1
G

lo
V

e
88

.1
9

88
.2

1
88

.1
8

88
.1

8
85

.7
0

85
.8

0
85

.6
8

85
.6

2
73

.9
2

73
.7

0
74

.3
7

73
.7

0
G

oo
gl

e
90

.0
3

90
.0

4
90

.0
3

90
.0

3
89

.6
6

89
.9

0
89

.5
0

89
.5

8
74

.5
7

74
.3

1
74

.9
7

74
.4

3

C
N

N
w

or
d2

ve
c

(f
ul

lw
or

ds
)

C
B

O
W

89
.3

9
-

-
-

84
.2

6
-

-
-

72
.1

4
-

-
-

SG
90

.4
7

-
-

-
88

.0
0

-
-

-
74

.7
1

-
-

-
G

lo
V

e
90

.1
6

90
.1

7
90

.1
6

90
.1

6
86

.6
3

86
.7

7
86

.5
5

86
.5

7
74

.3
8

74
.0

7
74

.7
9

74
.2

7
G

oo
gl

e
90

.4
9

90
.5

0
90

.4
9

90
.4

9
90

.3
3

90
.7

4
90

.0
3

90
.2

1
75

.2
9

75
.0

2
75

.6
7

75
.1

9

C
N

N
tfi

df
w

ei
gh

te
d

w
or

d2
ve

c

C
B

O
W

89
.4

8
89

.4
9

89
.4

7
89

.4
7

85
.1

0
85

.3
2

84
.9

9
85

.0
0

73
.7

0
73

.4
8

74
.0

4
73

.5
7

SG
90

.9
1

90
.9

5
90

.8
9

90
.8

9
88

.9
8

89
.1

9
88

.8
3

88
.9

3
75

.4
8

75
.2

2
75

.8
4

75
.3

9
G

lo
V

e
90

.5
9

90
.6

0
90

.5
9

90
.5

9
90

.6
0

90
.9

0
90

.3
9

90
.5

1
74

.7
7

74
.5

7
75

.1
4

74
.5

9
G

oo
gl

e
90

.6
0

90
.6

3
90

.5
9

90
.5

9
91

.0
8

91
.2

7
90

.9
5

91
.0

3
75

.7
2

75
.5

6
75

.9
9

75
.6

1

C
N

N
tfi

df
w

ei
gh

te
d

w
or

d2
ve

c
(f

ul
lw

or
ds

)

C
B

O
W

89
.4

8
-

-
-

85
.1

0
-

-
-

73
.7

0
-

-
-

SG
90

.9
1

-
-

-
88

.9
8

-
-

-
75

.4
8

-
-

-
G

lo
V

e
90

.8
3

90
.8

5
90

.8
2

90
.8

2
91

.7
8

91
.8

0
91

.7
8

91
.7

5
74

.9
2

74
.7

6
75

.1
9

74
.8

2
G

oo
gl

e
91

.5
5

91
.5

6
91

.5
5

91
.5

5
92

.2
5

92
.3

4
92

.2
0

92
.2

1
75

.9
3

75
.7

6
76

.2
3

75
.8

0

Ta
bl

e
10

:R
es

ul
ts

of
C

N
N

cl
as

si
fic

at
io

n
ba

se
d

on
di

ff
er

en
ti

np
ut

re
pr

es
en

ta
tio

ns

IM
D

B
20

N
ew

sG
ro

up
s

C
on

su
m

er
C

om
pl

ai
nt

s
M

od
el

Pr
e-

tr
ai

ne
d

A
cc

.
Pr

e.
R

ec
.

F1
A

cc
.

Pr
e.

R
ec

.
F1

A
cc

.
Pr

e.
R

ec
.

F1

L
in

ea
r

SV
M

un
w

ei
gh

te
d

C
B

O
W

_6
00

87
.1

0
87

.1
0

87
.1

0
87

.1
0

73
.7

6
73

.9
3

73
.6

9
73

.6
5

69
.3

4
69

.1
1

70
.4

6
68

.4
5

C
B

O
W

_1
20

0
87

.1
6

87
.1

6
87

.1
6

87
.1

6
74

.5
2

74
.6

7
74

.4
7

74
.4

3
70

.3
1

70
.0

6
71

.2
7

69
.6

1
SG

_6
00

87
.5

6
87

.5
6

87
.5

6
87

.5
6

82
.2

0
82

.2
9

82
.2

0
82

.1
1

69
.4

5
69

.2
2

70
.5

8
68

.5
6

SG
_1

20
0

87
.5

9
87

.5
9

87
.5

9
87

.5
9

82
.5

8
82

.6
5

82
.6

1
82

.4
9

70
.6

1
70

.3
6

71
.5

8
69

.8
9

G
oo

gl
e&

G
lo

V
e_

60
0

86
.8

0
86

.8
0

86
.8

0
86

.8
0

76
.6

6
76

.7
2

76
.7

7
76

.5
0

65
.5

0
65

.2
6

67
.1

0
64

.1
5

C
B

O
W

&
SG

_6
00

86
.9

1
86

.9
1

86
.9

1
86

.9
1

74
.8

9
74

.9
0

75
.1

3
74

.6
4

69
.6

4
69

.5
6

70
.6

8
68

.6
8

C
B

O
W

&
SG

_1
20

0
88

.7
3

88
.7

4
88

.7
3

88
.7

3
78

.6
5

78
.8

1
78

.6
1

78
.5

4
70

.6
2

70
.3

6
71

.5
6

69
.9

4
C

B
O

W
&

SG
_2

40
0

88
.1

4
88

.1
5

88
.1

3
88

.1
3

79
.4

1
79

.5
3

79
.3

7
79

.3
2

71
.3

6
71

.0
1

72
.2

1
70

.8
7

L
in

ea
r

SV
M

w
ei

gh
te

d

C
B

O
W

_6
00

87
.1

2
87

.1
2

87
.1

2
87

.1
2

74
.0

2
74

.1
6

74
.0

0
73

.9
0

70
.5

6
69

.1
0

71
.9

5
69

.1
8

C
B

O
W

_1
20

0
87

.3
3

87
.3

3
87

.3
3

87
.3

3
74

.5
7

74
.7

1
74

.5
1

74
.4

8
71

.4
1

70
.1

8
71

.4
1

70
.2

5
SG

_6
00

88
.3

2
88

.3
2

88
.3

2
88

.3
2

82
.6

3
82

.7
1

82
.6

5
82

.5
3

70
.7

2
69

.3
4

71
.5

9
69

.4
3

SG
_1

20
0

88
.5

3
88

.5
3

88
.5

3
88

.5
3

83
.3

1
83

.3
7

83
.3

5
83

.2
2

71
.6

3
71

.0
0

72
.4

1
71

.5
8

G
oo

gl
e&

G
lo

V
e_

60
0

87
.3

2
87

.3
2

87
.3

2
87

.3
2

77
.0

5
77

.0
9

77
.1

9
76

.8
8

67
.0

0
66

.4
1

67
.7

1
64

.5
2

C
B

O
W

&
SG

_6
00

87
.1

7
87

.1
7

87
.1

7
87

.1
7

75
.4

2
75

.4
6

75
.5

8
75

.2
1

70
.5

7
69

.5
8

71
.6

5
69

.6
2

C
B

O
W

&
SG

_1
20

0
88

.8
5

88
.8

5
88

.8
5

88
.8

5
79

.1
2

79
.2

9
79

.0
5

79
.0

1
71

.6
8

70
.7

2
72

.3
0

70
.4

2
C

B
O

W
&

SG
_2

40
0

88
.2

4
88

.2
4

88
.2

4
88

.2
4

79
.6

1
79

.7
1

79
.5

9
79

.5
3

72
.3

7
71

.8
7

72
.7

9
71

.8
3

Ta
bl

e
11

:R
es

ul
ts

of
L

in
ea

rS
V

M
cl

as
si

fic
at

io
n

ba
se

d
on

di
ff

er
en

ti
np

ut
di

m
en

si
on

s

IM
D

B
20

N
ew

sG
ro

up
s

C
on

su
m

er
C

om
pl

ai
nt

s
M

od
el

Pr
e-

tr
ai

ne
d

A
cc

.
Pr

e.
R

ec
.

F1
A

cc
.

Pr
e.

R
ec

.
F1

A
cc

.
Pr

e.
R

ec
.

F1

C
N

N
un

w
ei

gh
te

d

C
B

O
W

_6
00

85
.7

4
85

.7
5

85
.7

3
85

.7
3

84
.0

0
84

.1
5

83
.9

3
83

.9
2

71
.2

9
71

.1
9

71
.9

4
70

.7
3

C
B

O
W

_1
20

0
86

.8
0

86
.8

1
86

.8
0

86
.8

0
86

.7
2

86
.8

8
86

.7
4

86
.5

3
72

.6
9

72
.5

1
73

.1
9

72
.3

7
SG

_6
00

89
.5

3
89

.5
3

89
.5

3
89

.5
3

88
.3

5
88

.4
6

88
.2

8
88

.3
1

74
.5

9
74

.3
0

75
.0

0
74

.4
7

SG
_1

20
0

89
.5

5
89

.6
0

89
.5

3
89

.5
3

89
.2

9
89

.5
0

89
.1

5
89

.2
2

74
.8

3
74

.6
9

75
.0

9
74

.7
2

C
N

N
w

ei
gh

te
d

C
B

O
W

_6
00

89
.2

3
89

.2
4

89
.2

3
89

.2
3

85
.0

6
85

.1
9

84
.9

9
85

.0
0

73
.5

5
73

.4
1

74
.0

6
73

.1
7

C
B

O
W

_1
20

0
89

.3
4

89
.3

5
89

.3
3

89
.3

3
87

.1
4

87
.3

9
86

.9
8

87
.0

6
73

.8
8

73
.6

6
74

.2
5

73
.7

2
SG

_6
00

90
.7

5
90

.7
7

90
.7

4
90

.7
4

89
.5

5
89

.6
6

89
.5

0
89

.5
0

76
.1

6
75

.9
2

76
.4

8
76

.0
9

SG
_1

20
0

90
.4

5
90

.4
6

90
.4

5
90

.4
5

90
.1

1
90

.2
2

90
.0

3
90

.0
7

75
.4

1
75

.3
2

75
.6

5
75

.2
6

Ta
bl

e
12

:R
es

ul
ts

of
C

N
N

cl
as

si
fic

at
io

n
ba

se
d

on
di

ff
er

en
ti

np
ut

di
m

en
si

on
s

