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Abstract

Water quality is essential to civilian daily life. There is an urgent need
to place reliable and trustworthy sensors to minimize the impact of water
contamination incidence resulting from deliberate attacks,systems failures or
from careless mistakes. To achieve the sensor placement strategy, optimiza-
tion methods are suggested to be the most effective due to its automatic
placement ability. However, the problem of high computational cost of op-
timization methods(Genetic Algorithm in particular) is pressing and urgent.
Meanwhile, there are different views on how many sensors are required for a
complex water distribution system. From Diao’s [1] finding, approximately
33% to 40% of nodes will help to have a good overview of a complex water
distribution system while others claim substantially smaller numbers would
work. In this thesis, we improved one of the current optimization methods,
Genetic Algorithm, by applying Centrality Mutation and Seed Initiation.
The performance from the improved algorithm provides a better solution set
for Multi-objective Decision Analysis on Nodes Selection . Additionally, we
develop a direct comparison over a set of different number of nodes to detect
their performance on Water Contamination Detection. The analysis in nodes
number will contribute to detecting how many nodes are needed in the case
of Water Contamination Detection.
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Chapter 1

Introduction

1.1 Problem Motivation

Clean water is one of our necessities for survival, besides food and sunlight.
However, water pollution occurs when harmful substances—often chemicals
or microorganisms—contaminate a stream, river, lake, ocean, aquifer, or
another body of water, degrading water quality and rendering it toxic to
humans or the environment.

Water is uniquely vulnerable to pollution. Known as a “universal sol-
vent,” water can dissolve more substances than any other liquid on earth.
It’s the reason we have brilliant blue waterfalls. It’s also why water is so easily
polluted. Toxic substances from farms, towns, and factories readily dissolve
into and mix with it, causing water pollution. Among all these substances,
accidental or intentional contamination events are common nowadays.

Because water is easily polluted, the pollution impact is catastrophic and
irreversible; history has witnessed multiple incidences that many stakehold-
ers are tremendously harmed. In 2016 Boca Bay, Florida, 300,000 gallons
of sewage were dumped into Boca Ciega Bay in Florida. Storm Hermine
dumped more than 900,000 gallons of waster on the bay was dumped again.
The accident led to a huge problem in the red tide and continued to wreak
havoc on the marine life [2]. Moreover, related to water contamination ter-
rorist activities awaken public attention in the United States during the Civil
War, in Europe and Asia during World War II and other countless deliberate
accidents. Hickman(1999) and Deininger Meier(2000) researched the topics
of deliberate contamination of the water supply system [3][4]. Regarding the
pollution impact, take the Hinckley Water Contamination [5] as an example.
Residents showed the increased risk of breast, lung, brain and gastrointesti-
nal cancer, kidney and ovarian tumors, miscarriage and Hodgkin’s disease.
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These activities shall be properly responded to minimize the effect happens
to the city and civilians. Early contamination is the key to solve these stated
problems.

1.2 Current Approaches Overview

For the last few years, there is increasing interest in development Contami-
nation Warning Systems(CWSs). The overall objective is to obtain a cost-
effective approach to mitigating the tremendous impact listed in Section 1.1
[6][7][8]. A CWS is an integrated system that gathers data from online sen-
sors with multiple detection strategies including public health surveillance
systems, physical security monitoring, customer complaints, and routine sam-
pling programs. A CWS facilitates efficient decision making procedures and
timely response to the detected harmful events [8]. One of the remarkable
advantages is CWS deployment would decrease a substantial cost related to
the contamination incidents. Take the EPA’s Threat Ensemble Vulnerabil-
ity Assessment (TEVA) as an example, with CWS deployment, TEVA could
reduce related fatalities by 48% and corresponding economic cost by over 19
billion dollars [9].

With multiple technical challenges in hand to facilitate CWSs as trustwor-
thy and feasible water contamination prevention technology, one of the most
important technologies is sensor placement within the distribution network.
Since it would not be cost effective to place all sensors, the major challenge is
to minimize the public health impact from any contamination intrusion with
few sensors [10]. There two main types of knowledge domains to explore in
sensors placements. One is technical domain characteristics, and the other
is to use a computational model. Three approaches are widely accepted in
the literature: expert opinion [11][12], ranking methods [13][14][15] and opti-
mization methods. Expert opinion is solely guided by human judgment while
ranking methods is to use empirical methods(expert opinions) to rank po-
tential sensor locations. Spatial information is used to ensure good coverage
in ranking methods.

Optimization methods stand out due to their ability to enable auto-
mated placement based on hydraulic and water quality simulation. There
are an increasing number of researchers who devote their time on optimiza-
tion method based sensor placement including a battle of the water sensor
networks (BWSN) that compared 15 different approaches [16].

Among the 15 different approaches, the available options are mostly based
on integer programming [17](e.g. Lee and Deininger 1992), mixed integer
programming [18](e.g. Propato, 2006), heuristic-based algorithm [19](e.g.
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Dorni et al. 2006), graph theory algorithms [20](e.g. Kessler et.al 198) and
genetic algorithm schemes [21](e.g. Ostfeld and Salomons 2004).

1.3 Existing Problems

During the BWSN, nearly optimal sensors layout [22] were found. However,
as pointed out by Hart and Murry, knowledge gap and obstacles still ap-
plies. Computational inefficiency is one of the biggest problems among all
the gaps and obstacles. Distribution networks are usually complex networks
which require high computational effort for proper water quality simulation
while optimization algorithms require a high computational cost for a decent
result. For example, Genetic algorithm schemes [21] (e.g. Ostfeld and Sa-
lomons 2004) require a huge number of iterations which is hard to obtain in
many complex networks. Therefore, researchers would see a clear trade-off
between network complexity versus optimization method complexity. There-
fore, simplification of network and enhancement of existing algorithms are
highly needed.

Beyond the general problems, during optimization methods, researchers
are deploying a fixed number of sensors. However, number of sensors can be
incorporated as one of the important objectives to optimize. Some sensors
are relevant to the cost of labor and its physical cost as well. A better solution
is to provide clear guidance over how many sensors are exactly needed during
the process of Water Contamination Analysis.

According to controllability pre-selection method for sensor placement in
water distribution system [1], researchers need approximately 33% to 40%
of nodes to represent the entire network while other scholars argue for fewer
nodes. There are no universally acknowledged facts over nodes number dis-
tribution in different networks.

1.4 Research Questions

The research questions discussed above, can thus be summarized as following:

1. Given the high computational cost of optimization algorithms(Genetic
Algorithms in particular), how can we improve its efficiency by modi-
fying existing algorithms?

2. Given the existing network and algorithms, how many nodes would it
require to represent the entire network approximately?
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1.5 Overview

The rest of the thesis report is structured in five parts. In Chapter 2, the ob-
jective is to discuss the simulation tool for water contamination and different
objectives to evaluate contamination incidents in optimization methods. In
Chapter 3, the goal is to improve the existing Genetic Algorithms and provid-
ing a comparison of improved algorithms, original algorithms, and optimal
global result. In Chapter 4, different nodes and performance evaluations are
listed to testify what would be a good approximation of given network.Lastly,
Chapter 5 introduces recommendation for future development.
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Chapter 2

Water Distribution Network

In this Chapter, we will discuss Water Distribution Network Simulation Tool
and its usage. Moreover, we will define objective functions for the optimiza-
tion.

2.1 Motivation

Regarding water quality detection, research claims that the quality of find-
ings may fluctuate due to several real-world changes which include loss of
disinfection residuals that lead to bacterial re-growth [23], development of
taste and odour and corrosion. These concerns push the requirements of
modelling to an increasingly tough standard.

We have physical modelling and simulation modelling to choose from.
Simulation modelling provides safe and efficient solutions to the real-world
problem. Simulation modelling enables easy verification, communication and
understanding [24]. Across different industries and disciplines, simulation
modelling is crucial for providing insights into a complex network.

Particularly in the incidence of water contamination, real-world history
and examples are not sufficient to deal with potential harm and impact which
have not happened in history. A valid digital representation to provide a
risk-free environment and dynamic insights is crucial for accurate represen-
tation of real-world scenarios. While physical modelling is money and time
consuming, it would not be able to handle uncertainty due to its fixed struc-
ture. Therefore, a simulation tool for water contamination detection is highly
needed.
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2.2 Simulation Tool EPANET

There are many water quality processing simulation tools in Water Distri-
bution Systems. Among them, EPANET is the most commonly used soft-
ware application. EPANET is a public domain, water distribution system
modeling software package developed by the United States Environmental
Protection Agency’s (EPA) Water Supply and Water Resources Division.
This application consists of pipes, nodes(junctions), pumps, valves, storage
tanks, and reservoirs which can perform an extended-period simulation of the
hydraulic and water quality behaviour within a pressurised pipe network.

EPANET provides a visual network editor that can help engineers, con-
sultants and researchers to understand the movement and fate of drinking
water constituents within the distribution system, design and size new water
infrastructure, retrofit existing ageing infrastructure, optimize operations of
tanks and pumps, reduce energy usage, prepare for emergencies and many
other real-world analytical questions [25]. Extension package of EPANET
(e.g. EPANET-MSX) [26] enables simulation of multiple chemical species in
bulk water as well as the pipe wall.

Figure 2.1: An overview of User Interface of EPANET
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2.2.1 Hydraulic Modeling

Hydraulic Modeling is an entry bar for high-quality modelling. EPANET
enables several functionalities [27]:

1. System operation complexity ranges from simple tank level to complex
rule-based control

2. Allowing Complex Network and minor head losses for bends, fitting,
etc.

3. Modelling constant or variable speed pumps and computing pumping
energy

4. Modeling various types of valves and allow storage tanks to have any
shape

2.2.2 Water Quality Modeling

Except for Hydraulic Modeling, EPANET also enables Water Quality Mod-
eling as follows:

1. Percent of flow from a given node reaching all other nodes over time

2. Allows wall reaction rate coefficients to be correlated to pipe roughness

3. Movement of a non-reactive tracer material through the network over
time

These two functions allow us to achieve the objective functions stated in later
sections.

2.3 Network and Sensor Placement

2.3.1 Introduction of BWSN

Though there is increasing interest in the sensor placement optimisation
method, the comparison between different optimisation methods is not known
to the majority of the researchers.

Therefore, the Battle of Water Sensor Networks(BWSN) [28][29] as part of
the Eight Annual Water Distribution System Analysis Symposium in Cincin-
nati is designed to explore the comparison between different methods. Fifteen
research teams explored the same design objectives which design the perfor-
mance metrics and contamination events characteristic with two networks.
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2.3.2 Network Introduction

Figure 2.2: Graphical Outline of Network

The Network in this thesis consists of 126 nodes, 1 constant heat source, 2
tanks, 168 pipes, 2 pumps, 8 valves, and was subject to four variable demand
patterns. The system was simulated for a total extend period duration of
96h.

This network was based on real water distribution systems and was “twisted”
to preserve anonymity. Space limitations prohibit the description of all their
details, including diameters, elevation, pipe lengths and many more [28].

2.4 Sensor Placement Evaluation Objectives

To evaluate sensor performance in Water Contamination Detection, we use
the following quantitative design objective values:

2.4.1 Expected Time of Detection

In each possible contamination event, Expected Time of Detection is the
elapsed time from when the contamination start until the event that the first
sensor detects a nonzero contamination concentration.
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The notation tj denotes the first time of detection in the jth sensor loca-
tion and td denotes the minimal tj value which refers to the minimal time of
detection among all sensors. n denotes the overall sum of sensor candidates
number.

td = min
j
tj, j = [1, n]

The objective function is to minimize the average over all td, which is
the detection time of each contamination event. In general, a better sensor
combination is aiming for a smaller Average Time of Detection. ts denotes
the allowed biggest simulation time. Note, the variable is subject to the
limitation of finite-simulation durations used to compute their value, which
means ts cannot exceed 96 hours in the network we are using. If ts is not
within the accurate scope, the objectives including Sj are not valid anymore.

F1 =

∑d
i=1 td
d

→ min, d = [0, ts]

2.4.2 Detection Network Coverage

In each possible contamination event, we denoted with Sj for the jth sensor
how many water contamination events they can detect. In a sensors collection
with total sensors number k, the objective function is to aggregate the sum
of each node within the collection(k number of nodes). We are aiming for
maximising this objective function.

F2 =
k∑

i=1

Sj → max

2.4.3 Objective Selection Motivation

EPANET allows us to explore more possible objectives. According to BWSN
[28](last two), there are two more objectives which are Expected Population
Affected Prior Detection(F3), Expected Consumption of Contaminated Wa-
ter Before Detection(F4).

However, the study(cite) shows that F1, F3, F4 are positively correlated
to one and another while all of them are negatively correlated with F2. One
future development the study is aiming for is to pick one of the objectives
among F1, F3, F4 and then compare to the selection of F2 in Multi-objective
Decision Analysis. Therefore, in the research, we only select F1,F2 as our
objectives.
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2.5 Experiments and Results

To obtain objective function values, we need to utilise the EPANET dynam-
ically linked library.

2.5.1 Dynamically Linked Library

The EPANET Programmer’s Toolkit is a dynamically linked library (DLL)
of functions that allow developers to customise EPANET’s computational
engine for their own specific needs [30]. The functions can be incorporated
into 32-bit Windows applications written in C/C++, Delphi Pascal, Visual
Basic, or any other language that can call functions within a Windows DLL.

Figure 2.3: EPANET Data Flow
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The description of the network can be simulated from an external input
file(.INP), After parsed, interpreted and saved in a shared memory area, the
hydraulics solver module carries out an extended period hydraulic simula-
tion. The temporary result can be stored in a hydraulic file(.HYD). If a
water quality simulation is requested the water quality module accesses the
flow data FRP, the hydraulics file as it computed substances transport and
reaction throughout the network over each time step. Lastly, after both steps,
a binary output file(.OUT) can be used for reporting(.RPT). Any error or
warning are also added to the file.

2.5.2 Objective Function Values

To identify each sensors capability to detect contamination, we need to in-
vestigate their detection coverage and detection time. Both of these objec-
tives are exactly the optimisation objectives in this report. To aggregate
the data, a contaminant is injected in every possible injection node of the
entire network and the EPNAET model is executed. The simulation period
is 96h, with time steps for both hydraulic and water quality equal to 5 mins.
Once the contamination has reached to any node where the concentration
of the contaminant at each driver node is > 0, the event is regarded as be-
ing detected, and the time, until detection is recorded as the tj, and used
to compute objective functions. Otherwise, the event would be regarded as
undetected.

These steps are repeated until all nodes have been considered as the
contamination source where there are 129 contamination events in total. The
nodal injection of the contaminant is simulated by imposing a mass booster
source(set as 300 mg/L) for the duration of 2h from the beginning of the
simulation period.

To ensure the contaminant would not vanish in the system, the settings in
the EPANET software are chosen as Bulk Reaction Order = 1.5; Global Bulk
Coefficient = -1.0; Limiting Concentration = 0.01. Additionally, the dead-
end nodes which referring to the downstream end of a branch pipe(nodes
13, 16, 36, 38 and 125) are assigned a base demand of 2.0 gallons/minute.
Subsequently, all pipes become directed links as the controllability analysis
deal with the directed networks.

Regarding coverage, once a node is detecting a contamination event, these
incidence is marked. After the entire set of contamination events are done, we
check the number of marked events in each node as the coverage indication
of this potential sensors.

In the Full Result Table, the biggest detection time is 87900 s. This is
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roughly 24.4 hrs which is smaller than 96 hrs. Therefore, data from the
simulation are all valid for optimization.

In total, there are 45 Junction Nodes which are valid for Water Contam-
ination Detection. These Junction Nodes are the basis of our experiments in
Chapter 3 and Chapter 4. Full data table are listed in Table 2.1 and Table
2.2.

Table 2.1: Full Result Table from Simulation Part1
Junction Nodes Frequency(Coverage) Detection Time(s)

26 8 3225
64 7 1056
118 7 6900
8 6 2500
91 6 6350
80 5 10800
101 5 4440
106 5 1380
112 5 9360
21 4 2475
45 4 7800
73 4 16575
76 4 41775
110 4 750
123 4 10650
130 4 3900
131 4 1600
36 3 62100
48 3 3500
84 3 1900
85 3 12700
10 2 87900
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Table 2.2: Full Result Table from Simulation Part2
Junction Nodes Frequency(Coverage) Detection Time(s)
13 2 37950
39 2 10800
52 2 1500
66 2 7950
72 2 7350
93 2 1800
14 1 300
16 1 300
37 1 300
38 1 300
41 1 300
42 1 300
50 1 300
74 1 300
82 1 300
83 1 300
99 1 300
100 1 300
114 1 300
124 1 300
125 1 300
126 1 300
129 1 300
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Chapter 3

Sensor Placement Evaluation

In this chapter, the aim is to provide a better optimization method for Water
Distribution System Sensors Placement through Genetic Algorithm modifi-
cation. A designed experiment and its result are discussed in this chapter to
prove the improvement.

3.1 Genetic Algorithm

Algorithm 1 Genetic Algorithm

Input: Initial population candidates
Output: Desired Converged Offspring

1: Generate the initial population
2: Compute fitness
3: REPEAT
4: Selection
5: Crossover
6: Mutation
7: Compute fitness
8: UNTIL population has converged; STOP

A genetic algorithm is a search heuristic that is inspired by Charles Dar-
win’s theory of natural evolution. This algorithm reflects the process of
natural selection where the fittest individuals are selected for reproduction
to produce offspring of the next generation.

There are five phases in a genetic algorithm, starting with an initial pop-
ulation, fitness function, selection, crossover, mutation. The algorithm ter-
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minates if the population has converged (does not produce offspring which
are significantly different from the previous generation) [31].

3.1.1 NSGA II

Algorithm 2 NSGA II

Input: Pool of candidates to select
Output: Desired Converged Offspring to solve f(x)

1: Generate the initial population
2: Evaluate Objective Values
3: Assign Rank(level) based on Pareto-sort
4: Generate Child Population
5: Binary Tournament Selection; Recombination and Mutation
6: for i=1 to g do
7: for EACH Parent and Child in Population do
8: Assign Rank based on Pareto-sort;
9: Generate sets of nondominated solutions

10: Determine Crowding distance
11: Loop by adding solution to next generation strating from the first

front until N individuals
12: end for
13: end for
14: Select points on the lower front with high crowing distance
15: Create next generation to and back to loop

NSGA II is one of the important algorithms that implemented in Mul-
tiobjective Decision Analysis. The basic loop of NSGA II [32] is given by
Algorithm 2.

After initialisation of a population, it goes on with a repeated generational
loop. The first part of the loop is variation where offspring are generated.
For each offspring, two parents are selected. Each one of them is selected
using binary tournament selection, we selecting better one out of two ran-
dom individuals by selecting better one regarding its ranking. Parents are
then recombined using a standard recombination operator. For real-valued
problems simulated binary crossover is used before the mutation process.
Afterwards, new offspring populations and parents are merged into a new
population set.

The second part of the iteration is a selection part where a multi-objective
ranking is selected. In the ranking procedure of NSGA II, first is non-
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dominated sorting which produced the Pareto Front while the second is com-
paring crowding distance. An estimate of the density of solutions surrounding
that solution. The crowding distance value of a particular solution is the av-
erage distance of its two neighbouring solutions, the crowding distance of
both candidates on the edge of the scale is marked as infinite. In the picture
below, it is referring to y(1) and y(5) [34].

Figure 3.1: Crowding Distance

Parameters Settings

Below we discuss the parameters setting and motivation for our implemen-
tation of NSGA II and corresponding improved algorithms.

1. Population Size, a smaller population size is believed to give you quicker
convergence speed but the algorithm might be more easily get trapped
in local optima. The reverse thing applies to a large population size.
Therefore, after comparisons, we select two times of the genes as our
population size which is 90.

2. Crossover Rate, the general principle for selection is based on question
size. For smaller candidates pool(i.e. five or forty nodes combination)
we use 20% of crossover rate while for bigger candidates pool(i.e. twenty
nodes combination) we use 30% of crossover rate.

3. Mutation Rate, the general principle is to keep Mutation Rate relatively
low otherwise convergence may be delayed unnecessarily.The selected
Mutation Rate is 5%.

21



4. Generation Number, the generation number is decided by the number
of possible candidate pool. We divide the possible candidates pool to its
population size, however, certain modification is needed after viewing
the output.

3.1.2 Limitations of Selected Genetic Algorithms

One of the important limitations of Genetic Algorithms is its computational
cost to provide a sound solution. In the network (referencing network), if we
are using 20 sensors, there are

C(45, 20) = 3169870830126

possible combinations as our candidates pool. The network we are using is a
small network compared to another complex network. Therefore implemen-
tation of NSGA II is insufficient to provide an optimal solution.

3.2 Improvements

Given the limitation, to provide a better convergence in a shorter period,
we suggest the enhancement in initialisation and mutation operator process
where we can reach the better result quicker.

3.2.1 Initiation Enhancement – Seeds Approach

Algorithm 3 Initiation Approach

Input: Previous Optimal Solutions, Full Candidate List
Output: Population before Objective Evaluation

1: Initialize the population – Size M:
2: Generate population from previous Pareto front – size N
3: Random select M-N out of all candidates if not in size N selection

To investigate how many nodes are needed for water contamination de-
tection, we iterate with size 1,3,5,10,15,20,30,40,45 nodes to give a general
overview of different nodes performance (A detailed explanation in Chapter
4). Therefore, to fully utilise the optimal results from previous experiments,
we use the previous Pareto front to replace the “random” initialised pop-
ulation for the new experiment. For instance, for five nodes optimisation
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process, three nodes’ Pareto front is used to generate the initial population
for later selection where the two nodes left are subject to random selection.

The motivation behind this approach is the optimal solution from previ-
ous experience is a proven record over good performance in both designed
objectives functions, adding new nodes would improve its performance on
the objective function which is related to coverage, perhaps even improve its
performance on average time detection.

3.2.2 Mutation Operator Improvement

Eigen Centrality

Algorithm 4 Eigen Centrality Value

Input: a diagonalizable matrix A
Output: a scalar number h, which is the greatest eigenvalue of A, and a
nonzero vector v, the corresponding eigenvector of h, such that Av = hv

1: Initialisation: initialise a vector b0, which may be an approximation to
the dominant eigenvector or a random vector, and let k = 0

2: for k is smaller than the maximum iteration do
3: calculate bk + 1 = A ∗ bk/(|A ∗ bk|)
4: set k = k + 1
5: end for
6: END

In graph theory, eigenvector centrality (also called eigen-centrality) is a
measure of the influence of a node in a network. Relative scores are assigned
to all nodes in the network based on the concept that connections to high-
scoring nodes contribute more to the score of the node in question than equal
connections to low-scoring nodes. A high eigenvector score means that a node
is connected to many nodes which themselves have high scores [35].

Let A = (ai,j) be the adjacency matrix of a graph. The eigenvector
centrality xi of node i is given by:

xi =
1

λ

∑
k

ak,i xk

where λ 6= 0 is a constant. In matrix form we have:

λx = xA
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Hence the centrality vector x is the left-hand eigenvector of the adjacency
matrix A associated with the eigenvalue λ. It is wise to choose λ as the largest
eigenvalue in absolute value of matrix A. By virtue of Perron-Frobenius
theorem, this choice guarantees the following desirable property: if matrix A
is irreducible, or equivalently if the graph is (strongly) connected, then the
eigenvector solution x is both unique and positive.

The power method can be used to solve the eigenvector centrality prob-
lem. Let m(v) denote the signed component of maximal magnitude of vector
v. If there is more than one maximal component, let m(v) be the first one.
For instance, m(−3, 3, 2) = −3. Let x(0) be an arbitrary vector. [35]For
k ≥ 1:

1. repeatedly compute x(k) = x(k−1)A;

2. normalize x(k) = x(k)/m(x(k));

until the desired precision is achieved. It follows that x(k) converges to the
dominant eigenvector of A and m(x(k)) converges to the dominant eigenvalue
of A. If matrix A is sparse, each vector-matrix product can be performed in
linear time in the size of the graph.

The method converges when the dominant (largest) and the sub-dominant
(second largest) eigenvalues of A, respectively denoted by λ1 and λ2, are
separated, that is they are different in absolute value, hence when |λ1| > |λ2|.
The rate of convergence is the rate at which (λ2/λ1)

k goes to 0. Hence, if
the sub-dominant eigenvalue is small compared to the dominant one, then
the method quickly converges.

The Mutation Operator Improvement

Eigen Centrality is a clear indication of each potential sensor candidates im-
portance in the network. Therefore, when the mutation process in Genetic
Algorithm happens, we assign different weights for each potential sensor can-
didate according to their eigen-centrality value. The sensor candidates with
higher weights are more likely to be selected in the mutation process.

This code substitute the random mutation in the original mutation algo-
rithm which helps to give more probability(weight) to the nodes with higher
centrality value thus achieve the goal of incorporating centrality in mutation
.

24



Algorithm 5 Eigen Centrality Mutation

Input: Child Population After Binary Tournament Selection
Output: Child Population Before Ranking Method before next iteration

1: Initialize with sensors candidates and its corresponding centrality value
2: Start indication = 0
3: Index indication = 0
4: Random select a number between 0 and centrality value
5: Binary Tournament Selection; Recombination and Mutation
6: for Enumerate centrality value with both indication number do
7: Start += Centrality Value
8: If random selected number ¡ = start: break from loop
9: end for

10: Return index indication to represent sensor

Algorithm 6 Fast Non dominated Sort

Input:All possible solutions in the candidate pool
Output: Non-dominated Solution Set

1: Sort all the solutions (P1. . . PN) in decreasing order of their first objective
function (F1) and create a sorted list (O)

2: Initialise a set S1 and add the first element of list O to S1

3: for every solution Oi (other than the first solution ) of list O , compare
solution Oi from the solutions of S1..i do

4: If any element of set S1 dominate Oi; Delete Oi from the list
5: If Oi; dominate any solution of the set S1; update set S1 = S1UOi

6: If set S1 becomes empty; add immediate solution at an immediate
solution to S1

7: end for
8: Print non dominated set S1
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3.3 Experiment Design

There are three sets of experiment group. The ControlGroup1 is the optimal
solution from the entire set of candidates; the ControlGroup2 is the solution
deriving from original NSGA II; the last which is the ExperimentGroup is
the solution deriving from the improved algorithms mentioned above.

When considering computational cost, three sensors combination is where
the experiments based upon. Since

C(45, 3) = 14190

is a relative smaller set as compared to the rest experiments(i.e. C(45, 20) =
3169870830126).

For ControlGroup1, after generating the full list of three-nodes combi-
nation of sensor candidates, we run through a fast non-dominated algorithm
to compute inspired by the NSGA II(Algorithm 6).

We iterate from the entire set of three nodes candidates to produce the
non-dominant set as the optimal solution. The solution of ControlGroup2
is running against original NSGA II Algorithm.

For ExperimentGroup, it initialise the population with the Pareto front
from one nodes selection which is calculated from non dominated solution
mentioned in from all sensors candidates. Therefore, before the selection,
we compute the Pareto Front of One sensor by applying Algorithm 6. The
final output of Experiment Group is running against the improved algoritm
purposed in this Chapter.

* represents that Node 14 16 37 38 41 42 50 74 82 83 99 100 114 124 125
126 129 can replace each other

Table 3.1: One Node Optimization Solution
Junction Nodes Coverage Index Detection Time
26 0.125 3225
64 0.142857 1056
110 0.25 750
14* 1 300

3.4 Experiment Result and Conclusion

In Fig 3.2, the Coverage is reffering to F2 in Chapter 2. However, in order to
visualize it, we turned the objective from maximizing to minimizing by ap-
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Figure 3.2: Experiment Result from Control Groups and Experiment Group

plying 1/F2. While Detectio Time is calculated in seconds and it is referring
to F1.

Observing from Fig 3.2, the ControlGroup2(NSGAII) does not com-
pute the optimal solution as compared to the ControlGroup1 while the
ExperimentGroup provides a better approximation over the ControlGroup1.
In particular, there is a huge gap between the nodes selection regarding av-
erage detection time.

Even if after longer iterations, both algorithms improve itself by provid-
ing better candidates, however, the ExperimentGroup still provide closer ap-
proximation towards the ControlGroup2 as compared to the ControlGroup1.

Experiment result proves the ability of the purposed algorithm for pro-
viding better optimal solutions for sensors placement.
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Chapter 4

Network Sensors Placement

In this chapter, we use different number of nodes as our experiment group
to evaluate their performance in Water Contamination Detection. Mean-
while, except for existing controllability analysis, we additionally prove that
approximately 30% to 40% of nodes are sufficient for the purpose of Water
Contamination Detection.

4.1 Motivation

Water Contamination Detection sensors capability has been developed through-
out these years. The sensor can measure the physiochemical parameters of
water quality, such as flow, temperature, pH, conductivity, and oxidation-
reduction potential. These physiochemical parameters are used to detect
water contaminants. The sensors, which are designed from first princi-
ples and implemented with signal conditioning circuits, are connected to
a microcontroller-based measuring node, which processes and analyses the
data. The sensor is capable of reading physiochemical parameters, and can
successfully process, transmit, and display the readings [36].

The increasingly sophisticated capability of sensors determines its costly
price. If the deployment of contamination detection sensors reaches a larger
scope (i.e. a more complex network), it is not sufficient to put sensors in
every possible location. Moreover, if the detection time and consumption
of contaminated water exceed a certain threshold or important undetected
event might cause a huge impact, it is important to maximise the utility
of sensors location. Therefore, sensors number shall be another important
objective for optimization methods.

In BWSN, a fixed number of sensors are imposed. How a different number
of sensors performance would influence the result of designed objectives is
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hardly ever being discussed.

4.2 Existing Research

Scholars provide different assumptions over how many nodes are needed in
water contamination events. According to controllability analysis [1], it is
estimated that in water distribution network, using a comparatively small
amount of nodes is sufficient in the case study networks (between 15 to 20
nodes). Meanwhile, during the competition of BWSN, the network we are
using has a fixed number of five sensors for optimisation.

4.2.1 Controllability analysis overview

Computational cost is a commonly stressed problem for optimisation method;
online monitoring enjoys a widely acknowledged reputation regarding its abil-
ity to protect against the impact of contamination intrusions. This method
suffers the same problem in computational cost. Therefore, in order to de-
crease the relevant computational cost, a pre-selection method based on Con-
trollability is purposed.

Controllability

According to the control theory, a linear time-invariant system whose states
are determined by the following equation:

dx(t)

dt
= Ax(t) +Bu(t)

Where the vectorX(t) = (x1(t), · · · , xN(t))T , denotes the state of N nodes
in the network at time t, A is the transpose of the adjacency matrix of the
network, B is the input matrix that defines how control signals are inputted
to the network, and u(t) = (u1(t), · · · , uM(t))T represents the H input signals
at time t. A node whose control signal is directly inputted is called a driver
node. The minimum sets of driver nodes to control a network are called the
minimum driver nodes sets (MDSs).

Controllability Application in network

The controllability of complex water distribution systems is explored by ap-
plying the linear equation listed above to help understand the real non-linear
systems.
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Controllability is an extremely efficient method which has a very low
computational cost O(N1/2L) at most, where N and L denote the number
of nodes and links respectively. The computational cost made it feasible to
explore the large and complex network.

The pre-selection method successfully decreases the number of decision
variables for approximately 30 to 40 percent.

4.3 Experiments and Results

4.3.1 Experiments Design

Since there is a lack of sensors number guidance, we purposed a clear com-
parison over a different number of sensors capability in dealing with two
objective functions purposed in Chapter 3.

The total number of sensor candidate is 45 which is selected by full it-
eration of simulated contamination event purposed in Chapter 2. There-
fore, this experiment needs to work through nine experiments with the im-
proved algorithms. The number of sensors suggested for each experiment is:
1,3,5,10,15,20,30,40,45.

The motivation behind the selection is based on several criterions.

1. We select the sensors on its minimal and maximal scale to indicate the
boundary of the sensor(s) performance.

2. Ten nodes difference is serving as the gap between each experiment.

3. According to BWSN, the network used in the thesis requires five sen-
sors. However, according to controllability analysis, sensors number
shall be in between 15 to 20. Therefore, 5, 15, 20 are also selected.

4.3.2 Hypervolume indicator

How to compare Pareto sets lies at the heart of research in multi-objective
optimization. A measure that has been the subject of much recent study in
evolutionary multi-objective optimization is the hypervolume indicator. It
measures the volume of the dominated portion of the objective space and is
of exceptional interest as it possesses the highly desirable feature of strict
Pareto compliance [33].

We compare the optimal approximation factor with the approximation
factor achieved by sets maximizing the hypervolume indicator. Therefore
the larger the hypervolume index, the more optimal result we can get.
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Figure 4.1: Hypervolume index example

Since Genetic Algorithm would not always compute the same result, after
ten experiments, we select the Pareto Front with the maximal hypervolume
indicator in each experiment separately.

4.4 Result Analysis and Conclusion

4.4.1 Algorithm Performance

For each experiment, we use the same reference point in order to directly
compare the hypervolume index and run ten times to detect if our algorithm
is consistent and reliable.

Node 1, 3, 45 is calculating from full list candidates(45 is exactly full
list candidates) which produce the optimal results while the rest is running
against the improved algorithm, therefore 1,3,45 would not be compared
through Hypervolume index boxplot.

As we can from the boxplot, 15 sensors and 20 sensors provide a high
hypovervolume index as compared to the rest. Starting from 30 sensors,
the hypervolume index decreas due to its significantly longer average time
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Figure 4.2: Boxplot: Hypervolume index for each experiments

detection in F2 while improves relatively little in coverage index (F1). As
a result, it proves that approximately 30% to 40% nodes are sufficient for
sensors placement in Water Contamination Detection.

In order to show that our algorithm can produce a consistent performance.
We use Standard Deviation/ Average as an index to reflect if the hypervolume
index is consistent.

Table 4.1: Algorithm Performance Comparison
Experiment Group Standard Deviation/Average
5 nodes 0.01855
10 nodes 0.01797
15 nodes 0.01705
20 nodes 0.01056
30 nodes 0.00690
40 nodes 0.00601
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4.4.2 Result Analysis and Conclusion

From the result collection Fig 4.3, all the Pareto front is selected based on
hypervolume index in each experiment.

We can see the coverage continually improve when deploying more nodes.
the distribution time values fluctuates in different nodes set.

We can observe starting from 15 nodes to 20 nodes, the selected net-
work almost cover the entire network even with low distribution time. With
more nodes deployed starting from 20 nodes, the Pareto Front performance
does not improve sufficiently regarding coverage while the distribution time
fluctuates.

Therefore, together with the finding in boxplot, it proves that approxi-
mately 30% to 40% nodes are sufficient for approximating network.

Figure 4.3: Pareto Front for different sensors number(s) (Sensor num-
bers:1,3,5,10,15,20,30,40,45)
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4.5 Result Tables For Each Experiment

Full result Tables are in the Appendix, here attached the Pareto Front picture
of each experiment.

1. Coverage Index is reversed by 1/SumOfCoverage to turn from maximize
objective function to minimize objective function

2. Detection Time is calculating in second(s)

Figure 4.4: Pareto Front for different sensors number(s) (Sensor numbers:1)

Figure 4.5: Pareto Front for different sensors number(s) (Sensor numbers:3)
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Figure 4.6: Pareto Front for different sensors number(s) (Sensor numbers:5)

Figure 4.7: Pareto Front for different sensors number(s) (Sensor numbers:10)
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Figure 4.8: Pareto Front for different sensors number(s) (Sensor numbers:15)

Figure 4.9: Pareto Front for different sensors number(s) (Sensor numbers:20)
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Figure 4.10: Pareto Front for different sensors number(s) (Sensor num-
bers:30)

Figure 4.11: Pareto Front for different sensors number(s) (Sensor num-
bers:40)
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Figure 4.12: Pareto Front for different sensors number(s) (Sensor num-
bers:45)
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Chapter 5

Discussion and Future Work

5.1 Case study on different network

At the moment, the network selected from this paper is relatively small.
Realistically, a network for the city is more complex. A more comprehensive
network would help us better check the capability in enhanced algorithm
performance and purposed assumptions.

5.2 Sensors number as a new objective

Different experiments are running against multiple sets of sensors, but Sen-
sors number is not calculated as an objective. Therefore, a new objective
function related to sensors number shall be added.

5.3 Incorporates Risk Analysis

A sensor design currently is running against expected value by simulation
process. However, there are multiple different sources of risk in a realistic
world might not be covered in the simulation process. However, to provide
a better simulation, risk analysis shall be considered.

5.4 Sensor Reliability

In reality, the correct functioning of sensors is not guaranteed. Considering
both false positive and negative rates would serve as a starting point for
checking the reliability of sensors. The challenge remains for incorporating
the reliability as part of the sensor design process.

39



Bibliography

[1] Kegong Diao*, Wolfgang Rauch, Controllability analysis as a pre-
selection method for sensor placement in water distribution systems,
6087-6108, 2013.

[2] Charlie Frago, https://www.tampabay.com/news/environment/water/
st-petersburgs-black-cloud-of-sewage-woes-grows-by-58-million-gallons/

2293625. Retrieved Sep 2018.

[3] Hickman, D.C., A chemical and bilogical warefare threat: USAF water
systems at risk. Counterproliferation Paper No.3, USAF Counterprolifer-
ation Center, Maxwell Air Force Base, Ala, 1999.

[4] Deininger, R. A. and Meier, P.G., Sabtoage of public water supply system.
Security of public water supply, Vol.66, 2000.

[5] https://ejatlas.org/conflict/hinkley-groundwater-contamination.
Retrieved Sep 2018.

[6] American Water Works Association(AWWA), Contamination Warning
Systems for Water: an Approach for Providing Actionable Information
on Decision-makers, 2005.

[7] Megan Janke PH.D., Adam D. ,Douglas K., Modeling Change in Older
Adults’ Leisure Activities, 2007.

[8] ES B., MA Palmer, JD Allan, G Alexander, Synthesizing US river restora-
tion efforts, 2005.

[9] Murray R., Uber J. and Janke R., Model for estimating acute health
impacts from consumption of contaminated drinking water, 2006.

[10] Storey et al, Double layer in ionic liquids: Overscreening versus crowd-
ing. 2011

40

https://www.tampabay.com/news/environment/water/st-petersburgs-black-cloud-of-sewage-woes-grows-by-58-million-gallons/2293625
https://www.tampabay.com/news/environment/water/st-petersburgs-black-cloud-of-sewage-woes-grows-by-58-million-gallons/2293625
https://www.tampabay.com/news/environment/water/st-petersburgs-black-cloud-of-sewage-woes-grows-by-58-million-gallons/2293625
https://ejatlas.org/conflict/hinkley-groundwater-contamination


[11] Berry, J. Hart, W.E., Philips, C.A., Uber, J.G, Walski, T.M., Water
quality sensor placement in water networks with budget constraints. In:
Proc., World Water and Environment Resources Planning and Manage-
ment 132(4), 218-224, 2005

[12] A Preis, M Propato, O Piller, GB Trachtman, The battle of the wa-
ter sensor networks (BWSN): A design challenge for engineers and algo-
rithms, 2008.

[13] Bahadur, R., Samuels, W.B., Gratman, W., Amstuz, D., Pickus, J.,
2003. PipelineNet: a model for monitoring introduced contaminant sin
a distribution system. In: Proc., World Water and Environmental Re-
sources Congress and Related Symp. ASCE, Reston, Va. 2003

[14] SR Ghimire, BD Barkdoll, Heuristic method for the battle of the water
network sensors: Demand based approach, 2006

[15] Z Xu, RR Yager,Dynamic intuitionistic fuzzy multi-attribute decision
making, 2008

[16] DP Solomatine, A Ostfeld, Data-driven modelling: some past experi-
ences and new approaches, 2008

[17] BH Lee, RA Deininger, Optimal locations of monitoring stations in wa-
ter distribution system, 1992

[18] M Propato, Contamination warning in water networks: General mixed-
integer linear models for sensor location design, 2006

[19] Dorni, C.A., Vidyalakshmi, K.S. Vasanthi, H.R, Rajamanickam, G.V
and Dubey,G.P. Anti-inflammatory activity of Plumbago capensis. Phar-
macognosy magazine, 2(8):239-243. 2006

[20] A Kessler, A Ostfeld, G Sinai, Detecting accidental contaminations in
municipal water networks, 1998

[21] A Ostfeld, E Salomons, Optimal layout of early warning detection sta-
tions for water distribution systems security, 2004.

[22] WE Hart, R Murray, Review of sensor placement strategies for contam-
ination warning systems in drinking water distribution systems, 2010

[23] Clark R.M. and Haught R.C. (2005). Characterising pipe wall demand:
implications for water quality modelling. J. Water Resources Planning
and Management, 31(3), 208-217.

41



[24] https://www.anylogic.com/use-of-simulation/. Retrieved Sep
2018.

[25] Rossman L.A., EPANET 2 users manual, Water Supply and Water Re-
sources Division, National Risk Management Research Laboratory, Office
of Research and Development, U.S. Environmental Protection Agency,
Cincinnati, Ohio, 2000

[26] Shang F., Uber J.G. and Rossman L.A., Modelling reaction and trans-
port of multiple species in water distribution systems. Journal of Envi-
ronmental Science and Technology, 42(3), 808-814, 2008

[27] https://www.epa.gov/water-research/epanet. Retrieved Sep 2018.

[28] A Ostfeld, JG Uber, E Salomons, JW Berry, The battle of the water sen-
sor networks (BWSN): A design challenge for engineers and algorithms,
2008

[29] M Propato, O Piller, Battle of the water sensor networks, 2008

[30] https://sites.google.com/site/waterdistributionusingdream/

about-epanet. Retrieved Sep 2018.

[31] J. H. Holland. Adaptation in natural and articial systems. The Univer-
sity of Michigan Press, Ann Arbor, MI, 1975.

[32] Deb K, Pratap A, Agarwal S, Meyarivan T, A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput
6(2):182–197’, 2002

[33] K. Bringmann, T. Friedrich. Approximating the volume of unions and
intersections of high-dimensional geometric objects. Computational Ge-
ometry: Theory and Applications, Vol. 43, pages 601-610. 2010.
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Appendix A

Full iteration results

Notes:

1. * represents that Node 14 16 37 38 41 42 50 74 82 83 99 100 114 124
125 126 129 can replace each other

2. Coverage Index is reversed by 1/SumOfCoverage to turn from maximize
objective function to minimize objective function

3. Detection Time is calculating in second(s)

4. Node 1, 3, 45 is calculating from full list candidates which produce the
optimal results while the rest is running against the improved algorithm
(45 nodes are exactly full list of candidates, therefore not shown in the
table)

Table A.1: One Node Optimization Solution
Junction Nodes Coverage Index Detection Time
26 0.125 3225
64 0.142857 1056
110 0.25 750
14* 1 300
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Table A.2: Three Nodes Optimization Solution
Junction Nodes Coverage Index Detection Time
26,64,118 0.045454545 3727.0
26,64,8 0.04761905 2260.33333333
26,64,106 0.05 1887.0
26,64,110 0.05263158 1677.0
64,106,131 0.0625 1345.33333333
64,110,131 0.06666667 1135.33333333
64,106,14* 0.07692308 912.0
64,110,14* 0.0833333 702.0
64,14*,16* 0.111111 552.0
110,14*,16* 0.166666667 450.0
14*,16*,37* 0.33333 300.0

Table A.3: Five Nodes Optimization Solution
Junction Nodes Coverage Index Detection Time
26,64,118,8,91 0.029412 4006.2
26,64,8,91,106 0.03125 2902.28
26,64,106,8,110 0.033333 1782.2
26,64,110,131,106 0.03571429 1602.2
64,106,131,110,13* 0.04761905 1017.8
64,110,131,10*,13* 0.05882352 801.2
64,106,14*,10*,13* 0.06666667 667.2
64,110,14*,10*,13* 0.09090909 451.2
110,14*,16*,10*,13* 0.125 330.0
14*/16*/37*/10*/13* 0.2 300.0

Table A.4: Ten Nodes Optimization Solution
Junction Nodes Coverage Index Detection Time
64,125*,124*,114*,100*,14*,99*,41*,10*,16* 0.052 420.6
110,125*,124*,114*,100*,14*,99*,41*,10*,16* 0.077 345
26,64,106,8,110,118,91,101,112,80 0.017 4676.1
129*,125*,124*,114*,100*,14*,99*,41*,10*,16* 0.1 300
26,64,106,8,110,131,52,84,93,14* 0.024 1601.1
26,64,118,8,110,14*,52,84,10*,16* 0.026 1321.1
26,64,118,8,14*,106,101,112,80,110 0.0189 4071.1
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Table A.5: Fifteen Nodes Optimization Solution
Junction Nodes Coverage Index Detection Time
110,64,(129,125,124,114,100,14,99,41,10,16,83,82,74,42)* 0.031 619.067
26,64,118,8,91,106,101,112,80,110,131,21,130,45,123 0.013 4879.067
(129,125,124,114,100,14,99,41,10,16,83,82,74,50,42)* 0.0677 300.0
42*,45*,84,52,21,106,8,112,118,100*,131,124*,82*,39,26 0.0185 3376.0
84,50*,52,125*,80,26,16*,82*,64,91,106,93,74*,130,123 0.0172 2937.4
8,73,118,106,52,76,38*,45,110,91,39,83*,84,130,101 0.0256 1255.067
26,64,118,8,91,106,101,112,84,110,131,21,130,45,123 0.013 4460.73
110,(129,125,124,114,100,14,99,41,10,16,83,82,74,50)* 0.0556 330.0
64,(129,125,124,114,100,14,99,41,10,16,83,82,74,50)* 0.0476 350.4

Table A.6: Twenty Nodes Optimization Solution
Junction Nodes Coverage Index Detection Time
37*,41*,114*,52,26,84,106,64,80,85 0.017543859649122806 2981.8
73,125*,8,48,93,129*,100*,74*,14*,82*
124*,112,8,101,73,84,42*,91,66,21 0.014925373134328358 3905.3
131,48,45,72,93,52,50,64,83,110
26,85,110,21,91,126*,100*,37*,72 0.015384615384615385 3411.8
93,42*,38*,123,106,84,8,64,50,39,48
82*,129,85,106,126*,26,48,123,101 0.013513513513513514 5189.3
80,64,72,112,100*,131,8,73,91,38*,39
74*,91,83*,112,72,129*,131,85,84,110 0.01639344262295082 3239.05
93,101,130,52,37*,82*,64,21,45,126*
14,16,37,38,41,42,50,74,82,83,106 0.03030303 414.3
99,100,114,124,125,126,129,110,64
26,64,118,8,91,106,101,112,80,110 0.010526316 7481.8
130,45,123, 73,76,84,48,85,21,131
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Table A.7: Thirty Nodes Optimization Solution
Junction Nodes Coverage Index Detection Time
(52,84,125,74,16,85,64,26,93,80,106,129,39,48,123 0.01041667 4809.033
110,42,118,130,21,82,112,41,66,37,50,8,76,91,100)*
(64,72,85,52,126,118,83,106,125,99,130,37,80,131,8 0.01010102 6855.8667
76,36,73,82,38,84,48,123,21,14,26,74,91,114,101)*
(52,80,83,114,39,74,50,106,14,131,82,26,37,85,118 0.0114942529 2918.3667
126,41,124,38,73,91,64,42,110,129,99,8,101,21,125)*
14,16,37,38,41,42,50,74,82,83,106,52,131,93,84,21 0.013513514 1170.8667
99,100,114,124,125,126,129,110,64,8,26,48,130,101
26,64,118,8,91,106,101,112,80,110,36,52,93,72,66 0.00877193 12252.8667
130,45,123, 73,76,84,48,85,21,131,39,13,10,14*,16*
(131,83,123,73,42,100,74,26,21,48,130,124,125,80,129 0.0093457943 8797.3452
82,84,72,112,110,45,85,8,101,91,118,64,76,39,106)*

Table A.8: Fourty Nodes Optimization Solution
Junction Nodes Coverage Index Detection Time
(74,125,114,85,118,21,130,110,131,64,76,37 0.008064516 9264.65
39,16,123,84,101,93,41,36,72,52,124,66,100,126
73,106,26,48,45,91,8,129,13,10,80,112,83,50)*
(99,14,82,38,36,125,8,126,100,16,131,39,124,85 0.008130081 7074.65
52,91,129,101,48,84,45,26,72,110,41,114,21,112
130,80,123,93,106,76,50,64,37,118,83,74)*
(101,52,74,125,37,99,50,13,45,26,130,64,118, 0.0081967213 6133.4
110,80,14,66,129,48,84,38,123,112,100,39,91,
76,83,42,36,126,72,106,16,131,8,114,21,73,93)*
(41,100,83,38,64,26,131,93,74,125,106,91,48 0.00826446281 5529.65
118,39,50,114,76,85,123,52,42,72,73,126,37,8
45,80,130,112,21,84,101,66,36,99,10,110,124)*
(21,26,123,16,110,38,72,14,37,83,64,129,85,45 0.00877193 3144.65
114,101,91,36,48,82,8,76,50,130,118,131,100
106,73,80,39,125,74,10,84,66,42,112,52,41)*
(14,37,121,64,129,85,45,21,26,123,16,110,38,72, 0.008620690 3360.275
119,101,91,120,48,82,8,76,50,130,118,131,100
106,73,40,39,125,42,10,84,66,42,112,52,41)*
(72,14,37,83,64,129,85,45,21,26,123,16,110,38, 0.00847457627 4134.65
110,80,14,66,129,48,84,38,123,112,100,39,91,
106,73,80,39,125,74,10,84,66,42,112,52,41)*

46



Appendix B

Eigen Centrality Value of
Sensor Candidates

Table B.1: Eigen Centrality Value Result Table
Junction Nodes Centrality
123 0,082226
130 0,301279
131 0,091494
36 0,672393
48 0,184193
84 0,657461
85 0,42535
10 0,328839
13 0
39 0,438871
52 0,415769
66 0,074522
72 0,185071
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Table B.2: Eigen Centrality Value Result Table Part2
Junction Nodes Centrality
99 0,199984
100 0,337818
114 0,419577
124 0,290348
125 0,30949
126 0,445138
129 0
26 0,389607
64 0,074546
118 0,264835
8 0,123821
91 0,144328
80 0,374543
101 0,199984
106 0,232671
112 0,075092
21 0,60618
45 0,082226
73 0,206232
76 0,655913
110 0,025722
93 0,136205
14 0,075469
16 0
37 0,752721
38 0,672393
41 0,198965
42 0,251222
50 0,184193
74 0,34258
82 0,646136
83 1
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