
Opleiding Informatica
& Economie

Programming Misconceptions

of Children from Ages 8 to 11

Tessa Krabbendam

1674641

Supervisors:
Felienne Hermans & Alaaeddin Swidan

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 03/07/2019

Abstract

This research is about programming misconception of children between the ages 8 and 11. In this research,
we specifically look at the programming environment Scratch. We asked fifteen children what their answers
and explanations behind those answers were on specific code sequences in Scratch. From their answers, we
learn that the basic concepts of programming, such as variables, are not well understood by children. This
has partly to do with not reading the blocks carefully. We also learn that children do not seem to see the
differences between different blocks in Scratch. To make sure that these things are resolved in the future
we advise teachers to start with the basics and make sure that these concepts are well understood before
continuing on to more complex concepts. We encourage to use the colours and shapes of the blocks that are
provided by Scratch.

Contents

Introduction 2
1.1 Problem . 2

1.1.1 Research Question . 2

1.2 Thesis Overview . 2

Background and Related Work 3
2.1 Programming Education . 3

2.1.1 Scratch . 3

2.2 Misconceptions . 6

2.2.1 Programming misconceptions . 6

2.2.2 Research into programming misconceptions . 6

Approach 7
3.1 Misconceptions . 7

3.1.1 Optional Misconceptions . 7

3.1.2 Selected Misconceptions . 7

3.1.3 Measuring Programming Misconceptions . 8

3.2 Interview . 8

3.2.1 Consent Forms . 8

3.2.2 Interview Protocol . 9

3.3 Analysing Interviews . 9

Results 10
4.1 Interviews . 10

4.2 Misconceptions . 10

4.2.1 Origin of Misconceptions . 15

4.2.2 Resolving and Preventing . 15

4.3 Tips for Teachers . 15

Conclusion 17

Bibliography 18

Appendix A Interview Protocol 20

Appendix B Consent Form 21

Appendix C Code Sequences 22

Appendix D Correct Result of the Code Sequences 25

Introduction

1.1 Problem

Currently, programming education is gaining popularity. In The Netherlands, we see that the primary schools
are interested in teaching their students programming skills. One of the tools used for programming education
in primary school is Scratch. Scratch is a visual programming environment using blocks to make scripts that
let sprites do things.
The teaching of programming comes with difficulties. One of these difficulties is the children having program-
ming misconceptions. This means that they understand a concept in the wrong way. Having programming
misconceptions can be very frustrating while programming. For example, not being able to figure out why the
program is not giving the expected output can be time-consuming and frustrating. By looking at the reasoning
behind some programming misconceptions that children of ages 8 to 11 have, we want to find a way to resolve
these misconceptions using learning materials and also investigate what is causing these misconceptions.

1.1.1 Research Question

Therefore the research question of this thesis is. “What is the origin of programming misconceptions of children
from ages 8 to 11 and how can these be resolved?”.
From the research question multiple sub-questions can be defined:

RQ1 What is the origin of programming misconceptions?

RQ2 How can the programming misconceptions be resolved?

RQ3 How can the programming misconceptions be prevented?

1.2 Thesis Overview

This thesis starts with background information and related work on programming education, programming
misconceptions and Scratch. Then the thesis goes into the approach that is taken to do the research. Then the
thesis will finish with the results and draw conclusions. The thesis is about programming misconception in
Scratch of children between the ages 8 and 11. To get a good idea of the programming misconceptions they
have we interview them. Based on the answers that the children give we write a trajectory which contains tips
and tricks for teachers so that the misconceptions we found can be prevented in the future. This research will
be supervised by Felienne Hermans and Alaaeddin Swidan from PERL-group at LIACS.

2

Background and Related Work

2.1 Programming Education

Programming is a relatively new subject when it comes to education. There are more and more examples
of countries that are adding programming education to their primary school curriculum [1, 2]. One of the
ways used to teaching children how to program is Scratch [3]. Teaching programming is not only about
programming, but also about learning children that failing is okay and that we can learn from the mistakes [4].
In programming you will not have everything correct the first try, you need to keep trying to find the right or
best solution to your problem. It also teaches the idea of computational thinking, which means being able to
think about a problem and solving in such a way that is understandable for a computer and a human.

2.1.1 Scratch

Scratch [5] is a visual programming environment using a block-based programming language. This means
that every block in the program represents a variable, an operator or a function. The developers came up
with three design principles for Scratch. They wanted to develop something that was “more tinkerable, more
meaningful and more social than other programming environments” [6].

In Figure 2.1, the user interface of Scratch is presented. This is the screen that shows when starting the
program. All the available blocks can be found in the column on the left. This column is called ‘the palette’.
These blocks can be combined into code sequences, also known as scripts, an example is Figure 4.1. With these
code sequences, you can program sprites or stages. Stages in Scratch are the background behind the sprites.
These stages are able to change during the program. Sprites in Scratch can be compared with objects in textual
programming languages.

Scratch also has a social environment that allows users to share their projects and get comments and
feedback. Other users can also copy projects and alter them. This approach helps users learn from each other.
Since its launch in 2007 Scratch has grown in the amount of users [7]. At the time of this research, Scratch
has more than 41 million unique registered users. Most users are children and young adults with the biggest
group being 12 years old.

The program Scratch can be accessed via two different ways. The program can be downloaded onto the
computer and used offline. Scratch can also be used accessed via the internet, then there is no installation
required. Both ways allow the user to upload their projects to their Scratch account.

Scratch has a seperate archive that can be used by teachers and educators to get content for their lessons. This
archive is called ‘The ScratchED Online Community Archive’ [8]. It was developed in 2009 to offer teachers
and educators a platform to support and help each other. Since 2019 it is no longer possible to join the platform
but teachers and educators are able to use everything that has been put on the platform.

3

Figure 2.1: User Interface of Scratch [5]. On the left are all the blocks that can be dragged into the canvas in the middle.
This is called the ‘Code Area’. Sequences of blocks form things that the sprite on the right can do. In the right corner are
all the sprites that belong to this program.

Blocks in Scratch

Scratch has a lot of blocks which are divided into multiple categories. Below an explanation of the categories
of blocks that are available in Scratch. Every category has a unique colour that can be used to easily recognise
a block.

Motion Colour: Dark blue.
The blocks that are in this category can be used to move and rotate sprites. The sprite can be moved to a
specific coordinate or just X steps in a certain direction. The sprite can be rotated using degrees. These motion
blocks can not be used on stages.

Looks Colour: Dark purple.
The blocks in this category can be used to modify the sprite and stage. They can change colour or change to
a different version of themselves. The ‘say’-block is also in this category. This block can make the sprite say
something. This can be plain text or the contents from some variable.

Sound Colour: Light purple.
This category contains the blocks that play, stop and change sounds. The page with sounds can be found in
the upper left corner as can be seen in Figure 2.1. On this page, the user can alter the speed of a sound or add
an effect. This category also contains the blocks that can alter the volume of the program.

Events Colour: Yellow.
This one of the most important categories in Scratch. In this category contains all the blocks that trigger a code
sequence. In Figure 2.2 can be seen that there are multiple things that can trigger a code sequence. The most
simple blocks are the block where the green flag is clicked and the block where a key is pressed. The default
key for this block is the space bar.

4

Figure 2.2: Different blocks in Scratch that trigger the start a code sequence

This category also contains blocks that are able to send out a message to other sprites or code sequences. As
can be seen in Figure 2.2 there is a trigger block that activates the code sequence when a message is received.
This blocks will only activate when another code sequence has sent out that specific message.

Control Colour: Light orange.
This category contains blocks that ‘control’ the code. In this category, you can find the for-loop, the if-statement,
if-then-else-statement and the repeat-until. These are all blocks that look very similar to statements in textual
language. This makes the switch from Scratch to a textual language easier since some concepts will already be
clear.

Sensing Colour: Light blue.
In this category, you can find blocks that get activated only in a certain scenario. For example when the mouse
pointer is touching a specific colour. Here you also find the blocks that need user input. An example is the
block that saves your input in a variable called ‘answer’. This variable has a different colour than the standard
variable. Therefore it is easy to see the difference between a variable made by the programmer and a variable
that gets filled when the user gives an input.

Operators Colour: Green
The blocks that are in this category can be used to apply mathematical operations such as the addition of two
things. Those two things can be two plain texts, two variables or a combination of both. In this category, you
also find the blocks that compare two things with each other. Here those two things can also be two plain
texts, two variables or a combination of both. This category also contains blocks that are operators that are
used on operators. There are the and-block, the or-block and the not-block.

Figure 2.3: These operator blocks can compare
two things such as variables or plain text with
each other.

Figure 2.4: These operator blocks combine two
operators or give the opposite outcome of one
operator.

Variables Colour: Dark orange.
This category contains all the blocks that can set, make and change variables. When a variable is being set, it
means that you give the variable a specific value. When changing a variable you can only use numbers and
either add or subtract a value from the value inside in the variable. Variables can have any name.

My Blocks Colour: Red
In this category, the user can design their own block. This way the user can let the blocks do anything they
want. These blocks can, for example, shorten the code sequence when combining multiple blocks into one
self-designed block.

Add an Extension
Scratch has the option to add an extension. These extensions are provided by Scratch and are there to lift the
program to a different level or add another dimension to the program. One example of an extension is the
Music extension with which the user can play specific instruments. There are also extensions for which an
extra piece of software is needed. One example is the collaboration with micro:bit.

5

As we can see in Figure 2.5 the blocks in Scratch have specific shapes. These shapes show exactly which blocks
can be placed in a code sequence and which blocks have to be dragged into another block. The blocks that are
dragged into other blocks only fit there when the left and right side match with the left and right side of the
spot that the user wants them.

Figure 2.5: The variable on the left will fit into the operator in the middle but not in the operator on the right. The operator
in the middle will fit into the operator on the right.

2.2 Misconceptions

A misconception is a concept that someone has not understood the right way. Smith [9] says “Misconceptions
arise from students’ prior learning, either in the classroom (especially for mathematics) or from their interaction
with the physical and social world.”. Therefore it is important that learning new concepts is combined with
resolving misconceptions around it.
The word misconceptions has many synonyms such as ‘alternative conceptions’, ‘alternative frameworks’ and
‘preconceptions’ [10].
Research into misconceptions has been done in many scientific fields such as electrochemistry [11] and
physics [12].

2.2.1 Programming misconceptions

We will be looking specifically at programming misconceptions which Sorva [13] defined as “understandings
that are deficient or inadequate for many practical programming contexts”.
Programming misconception can be tedious during the process of making a process. Not having the right
understanding of a programming concept can lead to frustration and irritation by the programmer. Since we
will be working with children who are in the process of learning how to program, it is important that they
have as little as possible misconceptions. This so that beginning programmers such as these children will not
see programming as something impossible.

2.2.2 Research into programming misconceptions

Research that looks at programming misconception is not new. The current research into programming
misconceptions is mostly done on Computer Science students [14], beginning programmers [15]. The research
into programming misconceptions that looks at children under 18 is not very much, but some examples
are [16–18].
Most of the programming misconceptions that have been written about have been combined in a list compiled
by Sorva [19]. This list contains misconceptions that are found in research, up until the year 2012, about
beginning programmers who take part in courses that are introductions to programming. The list does not
contain misconceptions that are very specific for a programming language.
The misconceptions are grouped based on their nature. One example of these groups is ‘VarAssign’ which
contains misconceptions about assigning variables. Another example of these groups is ‘Ctrl’ which contains
misconceptions around if-statements, for-loops and sequentiality of statements. Every misconception contains
the source to their original research. ’Local’ means that Sorva or one of his colleagues has observed the
misconception themselves.

6

Approach

To answer the research question, “What is the origin of programming misconceptions of children from ages 8

to 11 and how can these be resolved?”, proposed in Subsection 1.1.1 we are doing interviews (See Section 3.2)
with children that are from the ages 8 to 11. We are measuring which misconceptions (See Section 3.1) they
have and what the reasoning behind that is. The last step in this research is analysing the interviews (See
Section 3.3) and drawing conclusions.

3.1 Misconceptions

To measure the programming misconceptions that the children could have, we made sequences of Scratch-
blocks that could induce a misconception. We look at the programming misconceptions from the list with
misconceptions provided by Sorva [19]. This list is composed of other papers that describe programming
misconceptions of mostly adults. Next, we will also test on basic concepts. These concepts will be specifically
based on Scratch, this to see if the children have the misconceptions or just do not understand a certain block
in Scratch.

3.1.1 Optional Misconceptions

In the list provided by Sorva [19] are misconceptions that can arise when programming in Scratch. Therefore,
they are interesting to test on children. A good example is misconception 9: A variable can hold multiple values at
a time / ‘remembers’ old values. This represents one of the basic concepts of programming and should, therefore,
be one of the first things to be learned when programming.
Since we are using Scratch there are several misconceptions on this list that are not applicable because they are
based on a textual programming language. A good example is misconception 126: ‘The dot operator can only be
applied to methods’.

3.1.2 Selected Misconceptions

We have chosen the following misconceptions from the list provided by Sorva [19]. The numbers refer to
the numbers in the original list. We chose these misconceptions because they are applicable in Scratch and
therefore it is possible for the children to have these misconceptions. They also represent the basic concepts of
programming which are important when you start to learn how to program.
9: A variable can hold multiple values at a time / ‘remembers’ old values.
11: Primitive assignment works in opposite direction.
17: The natural-language semantics of variable names affects which value gets assigned to which variable.
23: Difficulties in understanding the sequentiality of statements.
24: Code after if statement is not executed if the then clause is.
26: A false condition ends program if no else branch.
27: Both then and else branches are executed.
28: The then branch is always executed.
160: Confusing textual representations with each other.
In Appendix C all code sequences described above are visually presented.

7

In addition to the misconceptions from the list, we also added some code sequences that have concepts
in them that are specifically targeted on Scratch. These concepts represent basic concepts in Scratch that are
not fully covered by the misconceptions described above but are interesting to test on. This because these
blocks are widely used in code sequences in Scratch. For example, variables are used as scorekeepers in games
made in Scratch. What these blocks do has been explained in Section 2.1.1.

• Control Block: Repeat X times

• Control Block: If-then / If-then-else

• Operator Block: X + X
X could be a variable or a value.

• Operator Block: X > X / X < X / X = X
X could be a variable or a value.

• Variable Block: Set variable to X

• Variable Block: Change variable by X

By having code sequences that contain these blocks we try to find out whether the children understand exactly
how such blocks work. This is important because a lot of these blocks are the basics when it comes to any
Scratch-project and any programming language in general.

3.1.3 Measuring Programming Misconceptions

We will test whether the misconception is present with the child by showing the child a sequence of Scratch-
blocks. By asking specific questions about these sequences we try to find the origin of the answer that they
give. The Scratch-blocks are made in such a way that specific misconceptions can be tested. For example in
Figure 4.1, This sequence represents misconception 9: A variable can hold multiple values at a time / ‘remembers’
old values. This way we can clearly see which misconception are present with the children. Because we have so
many different code sequences, we can test many different misconceptions.

3.2 Interview

To measure which conceptions the children do and do not have we conduct an interview. The interview takes
place with one child at the time. Otherwise, the children could influence each other’s answers. The interview
takes place in Dutch since the children come from Dutch primary schools.

3.2.1 Consent Forms

Before the children can participate in this research their parent(s) need to sign a consent form. This consent
form contains information about the research and information about the rights that the children have during
the interviews. By signing the consent form the parents state that they understand what the research is about,
why it is done and that their child is allowed to participate. The consent forms are handed out to the children
with the question to get it signed by their parents. Once the form is signed the children can participate in our
research. See the consent form in Appendix B

8

3.2.2 Interview Protocol

The interview starts with a questionnaire that the children need to fill out themselves. This questionnaire
contains questions to identify the about of knowledge the children have about Scratch. The questions are about
their age, their previous experience with Scratch and other languages they have used. These other languages
might influence how they understand programming concepts. See Appendix A for the questionnaire.
Subsequently, we conduct the main part of the interview which is measuring the misconceptions. First, we
explain that we are doing this interview as if we were on the opening user interface of a new Scratch-project 2.1.
This opening user interface always has the cat that can be seen in Figure 3.1 as the starting sprite. This user
interface and this sprite will be very recognisable for the children. Every one of our code sequences starts off
with the block ‘when green flag clicked’ which is also a very recognisable block for the children.
Then we explain that we will show them a sequence of Scratch-blocks, such as Figure 4.1. Based on this
sequence they need to tell us what happens when the green flag is clicked and why. When it is relevant we
will also ask why some other branch in this sequence is not happening?. This way we really make the children
think about why they think their answer is the right answer.

Figure 3.1: Cat used as default sprite in Scratch [5]

The code sequences have different difficulties. This so that we can test the “simpler” code sequences on the
children that are fairly new to Scratch and “harder” code sequences on children that say that they have done
more with Scratch outside of school. Based on the answers they give we decide which code sequences we
present them with. For example, if we notice that the child does not seem to understand the basics, we continue
with the simpler sequences.

3.3 Analysing Interviews

Once all the interviews have been conducted and transcribed we analyse them. During this analysis, we look at
all the interviews and see which misconceptions are present with the children. By looking at the explanations
behind their answer we try to find the reason behind the misconception. During this process, we also look at
which of the basic concepts of Programming/Scratch are not clear with the children. From there we can build
a trajectory which contains concepts that should be clear before continuing onto more complicated things.

9

Results

4.1 Interviews

We have interviewed fifteen children between ages 8 and 11. Of the fifteen children, three are girls and twelve
are boys. All of these children participated in extracurricular activities for gifted children. They have all used
Scratch as one of these extracurricular activities. Some of them made clear that they have also programmed
with other languages such as Python and Javascript. The interviews took about 10 minutes in which we tried
to get an idea of the Scratch knowledge they had and at the same time create a challenge for them with the
code sequences. We did this by listing to the answers they gave and deciding which code sequence was best
fitting to ask next. During the interviews, we asked about seven to ten different code sequences.

Gender/Age 8 9 10 11
Boy 2 6 3 1

Girl 1 - 2 -

Table 4.1: Distribution of the gender versus the age of the children that were interviewed.

4.2 Misconceptions

We have at least one answer per code sequence that we made. All code sequences are presented in this Section
and in Appendix C. All the correct answers to the code sequences in Appendix C are presented in Appendix D.
Below we discuss the concepts that had an interesting outcome. The numbers of the misconceptions refer to
the original list by Sorva [19]

Variable

9: A variable can hold multiple values at a time / ‘remembers’ old values [19].
With the code sequences in Figure 4.1 and Figure 4.2 we tested if the children understand what happens when
you assign a value to a variable. We tested this with two different code sequences since assigning a number to
a variable could have a different thought process than assigning a word to a variable.
From the thirteen children that we tested on these code sequences, five of them gave the right answer of both
code sequences and said that the last value added to the variable is the value that is currently in that variable
and therefore is the value that the cat says.
One of the other children understood that the cat says what the variable contains. This child did not understand
that a variable can only contain one value. With code sequence 4.1 his answer was 30 meaning that the 20 gets
added to the 10 that was already in A. With code sequence 4.2 the cat would say both words added to the
variable back to back. So this child has misconception 9.

10

Figure 4.1: Sequence of blocks which
represent misconception 9 [19]. This
is the English version of the code se-
quence in Figure C.1.

Figure 4.2: Sequence of blocks which
represent misconception 9 [19]. This
is the English version of the code se-
quence in Figure C.2.

Six of the other children said that the cat would literally say ‘A’ and ‘Fruit’. Here we noticed that these children
do understand seem to understand what the ‘say-block’ does but they do not understand the difference
between a say-block with a variable and a say-block with plain text, see Figure 4.3.
Two of these six children said that in code sequence 4.1 there are 30 A’s. This they explained by saying that 10

+ 20 = 30 so there are 30 A’s, but the cat only says one A.

Figure 4.3: The left block has as output ‘A’ and the right block has as output the value that is inside variable A.

One of the children had their own explanation. With code sequence 4.1 he understood that variable A contains
20. But the cat would say ‘Hello!’ which is the default value when you drag the say-block onto your canvas.
With code sequence 4.2 he said that instead of text we would see pictures of the fruits that are in the variable.
Where in sequence 4.1 he understood that the variable only contains one value, in this sequence, the variable
still contains both values assigned to the variable.

Variable Assignment

11: Primitive assignment works in opposite direction [19].
17: The natural-language semantics of variable names affects which value gets assigned to which variable [19].
With the code sequences C.3 and C.4 we tested whether the children understand what happens when you
assign one variable to another. We did this with two different sequences, one with numbers and one with
words. This so we could see if the children understand the concept.
Out of the six children that we tested on code sequence C.3 only one gave the correct answer.
Three of the children said that both variables would contain the same value at the end of the sequence. This
indicates that they have misconception 23: Difficulties in understanding the sequentiality of statements.
One of the other children said that the variable ‘Fruit’ contains 2 values and variable ‘Dier’ only contains
its original value. The child seemed to think that a ‘Fruit’ can not be assigned to a ‘Dier’. This indicates
misconception 17.
Out of the six children that we tested on code sequence C.4 four gave the correct answer. One of the other
children said that variable A still contains value 1 and value B contains 3 because 2+1=3. This indicates that
this child has misconception 11.
The one remaining child said that variable A would contain the letter B and the end of the sequence.

11

Textual Representation

160: Confusing textual representations witch each other [19].
With the code sequences in Figure C.6 and Figure C.7 we tested if the children understand that there is a
difference between the number 2 and the word two. We did this by making a variable A that contains the
number 2 and then using an operator block to ‘test’ what is in A. In the code sequence C.6 we asked whether
the number 2 is in A. In code sequence C.7 we asked whether the word two is in A. In Figure 4.4 we see how
this looks different.

Figure 4.4: In the left code sequence similar to code sequence C.6 the if-statement is true. In the right code sequence similar
to code sequence C.7 the if-statement is false.

From the fifteen children that we tested on these code sequences, seven of them do not think there is a
difference between the word two and the number 2. They think that in both code sequences the if-statement is
true. These children have misconception 160.
Seven of the other children explained to us that in the code sequence C.7 the if-statement is not true because
the word two and the number 2 are not the same.
With three of the children that understood the different representations we also noticed misconception 26: A
false condition ends program if no else branch. They thought that when the if-statement is false, the program does
not continue and therefore does not do anything that came after the if-statement.

No Initialisation

With the code sequence in Figure C.14 we tested whether the children understand what happens when we do
not initialise a variable. We did this by using an operator block to ‘test’
We found that from the eleven children that we tested on this sequence, eight of them said that we do not
know what value A has and therefore the if-statement is false. Two of the other children said that if-statement
is true because the variable contains this value. The one remaining child said that the variable does not
contain the value but since there is a say-block everything inside the if-statement is still said by the cat. This is
misconception 28: The then branch is always executed.

If-Then-Else-Statements

27: Both then and else branch are executed [19].
28: The then branch is always executed [19].
With the code sequence in Figure 4.5 we tested whether the children understand what happens with an
if-then-else-statement. We did this by using an operator block that will be false so that the if-statement is false
and the else-statement will be triggered.

12

Figure 4.5: Sequence of blocks which represent misconception 27 and 28 [19]. This is the English version of the code
sequence in Figure C.8.

Out of the nine children that we tested on this sequence, three gave the right answer. They all understood that
the if-statement was false and therefore the else-statement became activated. They also noted that the ’say 1’
block and the ’say 4’ block are always executed since these are part of the main branch.
One of the other children seemed to understand what the if-then-else-statement does but gave the wrong
answer. He said that the if-statement was true and therefore the else-statement will not be activated.
Two of the other children said that the cat says 1, 2, 3 and 4 because that is just how it works. one of the two
noted that ‘A has to go twice’ which would mean that A becomes 20 after two assignments of 10.
The rest of the children do not seem to have a clear understanding of what an if-then-else-statement does.
They seemed to have not read the sequence carefully to understand what happens.

Operator Blocks

With code sequence C.5 we originally wanted to test on the sequentiality of statements but during the
interviews, we noticed that this sequence and code sequence C.10 were more fitting to test the operator blocks.
Specifically, the operator block that adds two things together and the operator block that joins two things
together.

Figure 4.6: On the left the operator block that adds two things such as plain text or variables together. On the right the
operator block that joins two things such as plain text or variables together.

Out of the five children that we tested on code sequence C.5 one gave the correct answer.
All the other children said the cat would literally say ‘X + X’. One of these children said that the cat would
say ‘A+B’ Two of these children said that the cat would say ‘1+2’, so they understood the idea but did not
understand that the sum of this value would go into the variable ‘Sum’. The one remaining child said that the
cat would say ‘3+4’. Here we see misconception 23: Difficulties in understanding the sequentiality of statements.
None of the children that we tested on code sequence C.10 were able to give the right answer. They all said that
the cat would say ‘3’ which would be the right answer if this was the operator block used in code sequence C.5.

What we notice here is that the two operator blocks in Figure 4.6 sound very similar and do similar things.
The English versions of these blocks are more clear than the Dutch version that we used during the interviews.
So one of the reasons that none of the children gave the right answer for code sequence C.10 could be that
the translation of the ‘join’ block is so that it reads as if two values need to be added together. If you read
the Dutch ‘join’ block out loud it is very logical to think that this block has the same function as the operator
‘addition’ block.

13

Multiple operator block

With the code sequence C.17 we tested whether the children are able to understand what happens if there are
two conditions in an if-statement. We did this by having two variables that will be tested in the if-statements,
for this we used an AND-block 4.7. Both operator blocks have to turn out true for the if-statement to execute.
In this case, one of the operator blocks will not be true.

Figure 4.7: This is an AND-block, Both conditions have to be true before this block has true as output.

Four of the eight children that we tested on this sequence understood that both operator blocks have to be true
which they are not and therefore the cat will not say anything.
The other four all seemed to think that because B contains value 1, 1 is smaller than 2, so the operator block is
true. The other operator block was already true so the whole if-statement is true.

For-loop

With code sequence 4.8 we tested the ability of the children to understand how for-loops works. We did this
by assigning the value 10 to variable A. Then we add 10 to the value of A, this last step is repeated 3 times.

Figure 4.8: Sequence of blocks could lead to a misconception around for loops. This is the English version of the code
sequence in Figure C.11.

Out of the five children that we tested on this sequence, three gave the right answer. They understood that 10

gets added three times. One of these three said 10 + 30 = 40. It is debatable whether this child understood
what the for-loop does or just used his mathematical knowledge to come to the right answer.
One of the remaining two children said that at the end variable A contains value 10 since it says ‘Change A to
10’. Here we notice that it is very important to read what the block says because that contains many clues
about what it does. We asked the children to read the code sequence out loud, these seemed to help with
understanding what the block does.
The other child said that the letter A will be said 30 times. So this child seems to think that the say-block
belongs to the for-loop. The child might not have taken a good look at the sequence, saw 3 and 10 and guess
‘something with ‘A and 30’

14

4.2.1 Origin of Misconceptions

Based on the answers given by children, we notice multiple origins of misconceptions.
First off, we see that a lot of concepts are unknown, despite the fact that these concepts are basic concepts
in other languages such as textual languages like Python. One of these concepts is the significant difference
between a number represented in an amount and a number represented in a word. During the interviews we
noticed that only half of the children understand that there is a difference between these two representations.
Another concept is variables During the interviews, we noticed that half of the children do not fully understand.
They think that a variable can hold multiple values or they think that variables get linked to each other when
the value of one variable is assigned to another variable.
Secondly, we notice that children understand a block in Scratch when the block has the default version. For
example, the ‘say-block’ has plain text ‘Hello!’ as the default value. When changing the block to another
version, for example, a ‘say’-block that says the content of a variable, only 40 percent of the children notice
that there is a difference between the two. See Figure 4.4 for the default version and the version that contains a
variable. We also notice that the children do not take the colours of blocks into account.
Third, we find that not all children that were interviewed read the code sequences carefully. Some already
gave an answer before they completely read the code sequence. Not thoroughly reading the code sequence
leads to missing blocks that are important for the final answer.

4.2.2 Resolving and Preventing

Based on the origins of the misconceptions, we provided possible solutions that can resolve or prevent
misconceptions.

Colours and Shapes
The colours and shapes of the blocks that Scratch provides have not been used much in relation to program-
ming education. The colours and shapes of blocks reveal what a block does or in which other blocks it can be
used. Using these two concepts in the teaching of programming could help understand the concept behind the
block and the things that can be done with the block.
Reading
If children would read the blocks more carefully, the would have a better understanding of the concept of
the blocks. We noticed that reading the block out loud helped with realising what the block does. The best
example of this practice is the ‘if-then-else’-block. When reading this block out loud, you say exactly what the
concept behind the block is.
Teachers
We notice that it is important that the teacher knows what they are talking about. When the teacher has some
prior experience with programming, they understand all the concepts and can explain them in such a way that
the concept is clear for the children.
Tests
The knowledge of programming could, just like other subjects, be tested with tests. This way the teachers can
keep track of the progress that the children make in their programming knowledge. The content of the lessons
can then be adjusted to the outcome of the tests so that no misconceptions are formed and that acquired
misconceptions can be resolved.

4.3 Tips for Teachers

Per concept, we propose a tip that can be used or way of explaining the concept. With all these tips we highly
recommend to incorporate the colours of the blocks.

1. ’Say’- block
The ’say’ block is a purple block. When using this block the sprite always gets a speech bubble next to
him, even when nothing is said. The colour of the item that is said is very important for the actual thing
that the sprite says. White means that it is literally said. Orange means a variable, value that is inside the
variable is said. Green means operator, then you first need to do the chosen operation.

15

2. Variables
Variables are a concept that is also part of other subjects such as mathematics. When you are teaching
programming to children in primary school, they will not have had this concept yet. Therefore it is
important that the variable gets explained carefully. To explain what a variable is, use recognisable things.
You could compare a variable with a box. This box can only contain one thing. When a new value gets
assigned to the variable the old value disappears because there is no room for more than one value.
Make sure to always initialise a variable. Without initialisation, the program can do unknown things.
This is also a good practice for understanding which value the variable currently contains.
There is also the option of adding assigning the value of one variable to another. In Scratch when the
block is ‘set A to B’ this means that the value of B gets copied and assigned to A. Now variable A en
variable B have the same value. Variable B remains unchanged during this whole process.
Every block that has anything to do with variables has an orange colour.

3. Operator blocks
With operator blocks, you can add, subtract, divide and multiply two things. It needs to be clear that
these operator blocks do things. When you put two things in, you get one output. This output can, for
example, be put into a variable but it can also be said by the sprite.
There are also operator blocks that compare two things. These blocks are mostly used to ask a question
to the program. It is important to understand that these blocks do not set or change any variable that
you try to compare. These operator blocks give true or false as output.
Then there are also blocks that combine two operator blocks that compare things. Then the outcome of
these inside operator blocks gets combined into a new output.
Outside Operator blocks are always part of another block that is not an operator block.

4. Nested blocks
When you have multiple blocks inside each other such as multiple loops or operators in operators, it
is important to understand that the most inner block starts first. When we look at Figure 4.6 we see a
variable inside an operator block that is inside a variable block. It is important to understand that the
operator block creates an output that will be used as input for the outer variable block.

5. If-then statements
These blocks are used when you have code that needs to be activated under certain conditions. It is
important to understand that the if-then statement only gets activated when the condition is true, then
the else-statement will not be activated. This is also the other way around. The main branch continues
under the if-statement. Reading the if-statement and the condition out loud can help make clear what
the idea is behind the block.
An if-statement can be explained as if we are asking a question to the program. If the answer is yes,
continue with the then-statement. If the answer is no, continue with the else-statement if there is one.
After that, the main branch will be continued.
An if-statement always needs to be combined with an operator block.

6. Repeat block
Repeat blocks are there to not have to put in a piece of code multiple times if you want it to repeat
multiple times. Repeat blocks are very easy to understand when you read them. It speaks for itself. You
can put in exactly how many times you want to have the code repeated.
The ‘repeat until’ block is a little more complicated. This block needs to be combined with an operator
block. Every time you come at the top of the repeat block you need to ask the computer again if the
operation is true. As long as the answer is yes, the repeat block gets activated.

16

Conclusion

In this research, we looked at programming misconception in Scratch by children between the ages 8 and 11

and the origins of those misconceptions. The measuring of the origins of the misconceptions was done by
conducting interviews. During the interview, the children saw code sequences. They needed to explain what
the output was and give the reasoning behind that answer. During the analysis, we found the origins behind
the misconceptions.
We noticed that the children lacked knowledge of basic concepts. They did not notice differences between
different blocks and they did not see differences between different concepts. We also noticed that the code
sequences were not being read carefully which lead to not understanding what happens in the code sequence.

We propose a few solutions for resolving and preventing. First, we advise making of the colours and
shapes of the blocks during the explanation of the concepts behind the blocks. These things reveal what a
block can do and with which other blocks a block can be used. Then we advise making sure that the basic
concepts of programming are well understood. This can be tested via tests, these also help to keep track of the
expanding programming skills of the children. Explaining the basic concepts can be done by comparing them
to concepts that the children do know already. Lastly, we find it important that the teachers have experience
with programming, this helps with explaining the basic concepts.

In conclusion, it is very important for the teaching of programming education that the basic concepts
are clear. Without basic concept we are not teaching them how to programming, we are teaching children how
to make games. Games can be a tool but they should not be leading in programming education. On top of
that, it is very important that we try to keep track of the expanding programming skills by doing regular tests.
By doing so, misconceptions can be prevented and acquired misconceptions can be found and solved during
the next lesson.

Further Research

It would be interesting to see whether the same misconceptions can be found in other programming languages
used in programming education in primary schools. The background of the children has not been taken into
account during this research, this might contain some interesting information in relation to the misconceptions
that the children have.

17

Bibliography

[1] PO Doorbraakproject Slimmer Leren met ICT, “Programmeren in het PO.” https://maken.wikiwijs.

nl/74282/Programmeren_in_het_PO#!page-1843082, 2015.

[2] Computing At School, “Computing in the national curriculum - a guide for primary teachers.” https:

//community.computingatschool.org.uk/resources/2618/single.

[3] N. Smith, C. Sutcliffe, and L. Sandvik, “Code club: bringing programming to uk primary schools through
scratch,” in Proceedings of the 45th ACM technical symposium on Computer science education, pp. 517–522,
ACM, 2014.

[4] M. Lucassen, “Leren programmeren: waarom eigenlijk?.” https://www.vernieuwenderwijs.nl/

leren-programmeren-waarom-eigenlijk/, April 2017.

[5] MIT Media Lab, “Scratch.” https://scratch.mit.edu, 2006.

[6] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A. Millner, E. Rosen-
baum, J. S. Silver, B. Silverman, et al., “Scratch: Programming for all.,” Commun. Acm, vol. 52, no. 11,
pp. 60–67, 2009.

[7] MIT Media Lab, “Scratch Statistics.” https://scratch.mit.edu/statistics/.

[8] K. Brennan, “ScratchEd Online Community Archive.” https://scratched.gse.harvard.edu/index.

html, 2009.

[9] J. P. Smith III, A. A. Disessa, and J. Roschelle, “Misconceptions reconceived: A constructivist analysis of
knowledge in transition,” The journal of the learning sciences, vol. 3, no. 2, pp. 115–163, 1994.

[10] K. S. Taber, “Alternative conceptions/frameworks/misconceptions,” Encyclopedia of science education,
pp. 37–41, 2015.

[11] M. J. Sanger and T. J. Greenbowe, “Common student misconceptions in electrochemistry: Galvanic,
electrolytic, and concentration cells,” Journal of Research in Science Teaching: The Official Journal of the
National Association for Research in Science Teaching, vol. 34, no. 4, pp. 377–398, 1997.

[12] J. Clement, “Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in
physics,” Journal of research in science teaching, vol. 30, no. 10, pp. 1241–1257, 1993.

[13] J. Sorva, “Notional machines and introductory programming education,” ACM Transactions on Computing
Education (TOCE), vol. 13, no. 2, p. 8, 2013.

[14] L. C. Kaczmarczyk, E. R. Petrick, J. P. East, and G. L. Herman, “Identifying student misconceptions of
programming,” in Proceedings of the 41st ACM technical symposium on Computer science education, pp. 107–111,
ACM, 2010.

[15] P. Bayman and R. E. Mayer, “A diagnosis of beginning programmers’ misconceptions of basic program-
ming statements,” Communications of the ACM, vol. 26, no. 9, pp. 677–679, 1983.

[16] A. Swidan, F. Hermans, and M. Smit, “Programming misconceptions for school students,” in Proceedings
of the 2018 ACM Conference on International Computing Education Research, pp. 151–159, ACM, 2018.

[17] S. Grover and S. Basu, “Measuring student learning in introductory block-based programming: Examining
misconceptions of loops, variables, and boolean logic,” in Proceedings of the 2017 ACM SIGCSE technical
symposium on computer science education, pp. 267–272, ACM, 2017.

18

https://maken.wikiwijs.nl/74282/Programmeren_in_het_PO#!page-1843082
https://maken.wikiwijs.nl/74282/Programmeren_in_het_PO#!page-1843082
https://community.computingatschool.org.uk/resources/2618/single
https://community.computingatschool.org.uk/resources/2618/single
https://www.vernieuwenderwijs.nl/leren-programmeren-waarom-eigenlijk/
https://www.vernieuwenderwijs.nl/leren-programmeren-waarom-eigenlijk/
https://scratch.mit.edu
https://scratch.mit.edu/statistics/
https://scratched.gse.harvard.edu/index.html
https://scratched.gse.harvard.edu/index.html

[18] R. T. Putnam, D. Sleeman, J. A. Baxter, and L. K. Kuspa, “A summary of misconceptions of high school
basic programmers,” Journal of Educational Computing Research, vol. 2, no. 4, pp. 459–472, 1986.

[19] J. Sorva et al., Visual program simulation in introductory programming education, pp. 359–368. Aalto University,
2012. ISBN:978-952-60-4626-6.

19

Appendix A

Interview Protocol

20

Appendix B

Consent Form

Toestemmingformulier
Programmeeronderwijs

Beste ouder(s)/verzorger(s)

Vanuit de Universiteit Leiden zijn wij bezig met een onderzoek over

programmeeronderwijs op de basisschool. Daarom willen wij uw kind vragen om mee te

doen aan dit onderzoek.

In dit onderzoek willen we graag meten welke concepten van het

programmeeronderwijs wel en niet goed begrepen worden door de kinderen. Specifiek

zullen we kijken naar de programmeeromgeving Scratch.

De kinderen worden kort geïnterviewd waarbij ze een paar vragen beantwoorden over

de programmeeromgeving Scratch. Hierna zullen er nog een paar vervolgvragen volgen

m.b.t de eerder gegeven antwoorden.

Vertrouwelijkheid
Namen van kinderen zullen niet worden gebruikt in de publicatie van het onderzoek.

De kinderen mogen altijd stoppen met het onderzoek als zij dat willen.

Toestemming

Ik begrijp de achtergrond van het onderzoek en ik begrijp dat de resultaten

geanonimiseerd zullen worden.

Als ouder/verzorger van ___________________(naam kind) stem ik in met deelname

aan dit onderzoek

Geboortedatum kind:____________ Groep:__________

Datum:____________ Handtekening:______________

21

Appendix C

Code Sequences

These are the code sequences used to measure the misconceptions with the children. They are in Dutch since
the children use Scratch in Dutch. The code sequence below are based on one or more misconceptions from
the list provided by Sorva [19].

Figure C.1: Sequence of blocks which
represent misconception 9 [19]

Figure C.2: Sequence of blocks which
represent misconception 9 [19] Figure C.3: Sequence of blocks which

represent misconception 9, 17 and
23 [19]

Figure C.4: Sequence of blocks which
represent misconception 16 [19]

Figure C.5: Sequence of blocks which
represent misconception 23 [19]

Figure C.6: Sequence of blocks which
represent misconception 24 [19]

22

Figure C.7: Sequence of blocks which
represent misconception 24, 26 and
160 [19]

Figure C.8: Sequence of blocks
which represent misconception 27

and 28 [19]

Figure C.9: Sequence of blocks which
represent misconception 32 [19]

Figure C.10: Sequence of blocks
which represent misconception
17 [19]

Below are all the code sequences that show concepts in Scratch that we also wanted to test. They are not
directly related to one specific misconception from the list provided by Sorva [19].

Figure C.11: Sequence of blocks
could lead to a misconception
around for loops

Figure C.12: Sequence of blocks
could lead to a misconception
around for loops and if statements

Figure C.13: Sequence of blocks
could lead to a misconception
around for loops around if state-
ments

23

Figure C.14: Sequence of blocks
could lead to a misconception
around not initialising variables

Figure C.15: Sequence of blocks
could lead to a misconception
around operator blocks in Scratch

Figure C.16: Sequence of blocks
could lead to a misconception
around operator blocks in Scratch

Figure C.17: Sequence of blocks could lead to a
misconception around operator blocks in Scratch

Figure C.18: Sequence of blocks could lead to a
misconception around operator blocks in Scratch

24

Appendix D

Correct Result of the Code Sequences

1. Code Sequence C.1. Correct Answer: 20

2. Code Sequence C.2. Correct Answer: Appel

3. Code Sequence C.3. Correct Answer: Appel 2 seconds, Banaan 2 seconds

4. Code Sequence C.4. Correct Answer: 2 2 seconds, 2 2 seconds

5. Code Sequence C.5. Correct Answer: 3

6. Code Sequence C.6. Correct Answer: Hallo! 2 seconds, Tot ziens! 2 seconds

7. Code Sequence C.7. Correct Answer: Tot ziens! 2 seconds

8. Code Sequence C.8. Correct Answer: 1 2 seconds, 3 2 seconds, 4 2 seconds

9. Code Sequence C.9. Correct Answer: 1 2 seconds, 2 2 seconds, 3 2 seconds 4 2 seconds, 5 2 seconds, 6 2

seconds

10. Code Sequence C.10. Correct Answer: 12 2 seconds

11. Code Sequence C.11. Correct Answer: 40

12. Code Sequence C.12. Correct Answer: 20 2 seconds, 30 2 seconds, 40 2 seconds, 40 2 seconds

13. Code Sequence C.13. Correct Answer: 20 2 seconds, Kleiner 2 seconds, 30 2 seconds, Kleiner 2 seconds, 40

2 seconds, 40 2 seconds

14. Code Sequence C.14. Correct Answer: Doei 2 seconds

15. Code Sequence C.15. Correct Answer: 7 2 seconds, 3 2 seconds

16. Code Sequence C.16. Correct Answer: 1 2 seconds

17. Code Sequence C.17. Correct Answer: ‘Nothing’

18. Code Sequence C.18. Correct Answer: Hallo! 2 seconds, Tot ziens 2 seconds

25

	Introduction
	Problem
	Research Question

	Thesis Overview

	Background and Related Work
	Programming Education
	Scratch

	Misconceptions
	Programming misconceptions
	Research into programming misconceptions

	Approach
	Misconceptions
	Optional Misconceptions
	Selected Misconceptions
	Measuring Programming Misconceptions

	Interview
	Consent Forms
	Interview Protocol

	Analysing Interviews

	Results
	Interviews
	Misconceptions
	Origin of Misconceptions
	Resolving and Preventing

	Tips for Teachers

	Conclusion
	Bibliography
	Appendix Interview Protocol
	Appendix Consent Form
	Appendix Code Sequences
	Appendix Correct Result of the Code Sequences

