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Abstract

Symbolic computation using BDDs and bisimulation minimization are alternative ways to cope with the state

space explosion in model checking. The combination of both techniques opens up many parameters that

can be tweaked for further optimization. Most importantly, the bisimulation can either be represented as

equivalence classes or as a relation. While recent work argues that storing partitions is more efficient, we

show that the relation-based approach is preferable. We do so by presenting a relation-based minimization

algorithm based on new coarse-grained BDD operations. These coarse-grained BDD operations are derived

directly from their definition using Shannon decomposition, guaranteeing correctness. The implementation

demonstrates that the relational approach uses two orders of magnitude fewer memory, performs better and

has better parallel scalability.
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Chapter 1

Introduction

Verification is an important part of both hardware and software development. As computing systems take

over more and more vital roles in our society, including safety-critical applications such as ABS, the impor-

tance of verification will only increase. Verification is often accompanied by validation. The principal contrast

between these two processes is that conventional validation methods, such as testing, are straightforward but

incomplete, while traditional verification methods, such as theorem proving, are thorough but require a great

deal of input and skill from the user.

Model checking [4] is an verification method that is automatic (push-button technology), exhaustive, and

more accessible than theorem proving. In model checking, a transition system which models the behavior of

a system is analysed to decide whether the system meets its formal specification. The method can be applied

to both hardware and software systems which contain a finite number of states or have a finite state abstrac-

tion. The downside of model checking is that it is very resource intensive. For some problems, it is therefore

incomplete in practice. Fortunately, reduction techniques exist which alleviate the required resources.

The main challenge faced in model checking is the state explosion problem. The state space of a system

grows exponentially in the number of variables and processes which are present in the system. Over the

years, various techniques have been suggested to combat this problem. McMillan et al. [9] introduced a

very successful method which represents the state space of a system symbolically rather than explicitly. In a

symbolic representation, states are no longer stored individually, but instead as sets which are represented

by their characteristic function. These characteristic functions can be efficiently stored and manipulated in

a normal form, e.g. binary decision diagrams (BDDs) [8]. Symbolic algorithms can directly manipulate sets

represented by BDDs using basic set operations, such as union, intersection, and subtraction. This allows

symbolic algorithms to manage state spaces that are many orders of magnitude larger than the state spaces

handled by explicit algorithms [9].

Orthogonally, reduction techniques can be used to further reduce the size of state spaces by removing redun-
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2 Chapter 1. Introduction

dant states. Reduction is applied either as a pre-processing step to, or happens “on-the-fly” with, the model

checking process [5]. One prominent reduction technique is bisimulation minimization [23]. State spaces of

concurrent systems often contain many bisimilar states. These are different states with the same behavior in

the represented system. Bisimulation minimization algorithms reduce the size of state spaces by merging

these bisimilar states. To achieve this it computes the maximal bisimulation over the state space, which is the

largest relation that relates bisimilar states. Like model checking, bisimulation minimization is an automatic

process. Symbolic representations can be combined with bisimulation to handle even larger state spaces. This

thesis focusses on the combination of both techniques.

The maximal bisimulation is an equivalence relation and can therefore be represented symbolically in two

ways: either directly as a relation or as a partition which divides the state space into equivalence classes. It

is stated by Fisler and Vardi [16] that symbolic relation-based algorithms are not efficient, because in practice

the BDD that represents the equivalence relation grows too large. However, satisfying results for symbolic

relation-based algorithms have been found in the past by Bouali and de Simone [6] and by Mumme and

Ciardo [24]. Little research has been done to compare the two approaches. Thus, it remains unclear whether

the relation- or partition-based approach is preferable.

For a long time, symbolic algorithms were thought to be difficult to parallelize. However, new results by

Van Dijk and Van de Pol [35] show that the parallelization of symbolic algorithms can certainly be profitable.

Interest in parallel algorithms has been revitalized in recent years due to the increased power consumption

of sequential processors. Yet, Van Dijk’s algorithm is currently the only known parallel algorithm for sym-

bolic bisimulation minimization. Van Dijk’s algorithm is partition-based, and therefore a parallel symbolic

relation-based algorithm does not yet exist. In this thesis, we derive and implement a parallel symbolic

relation-based bisimulation algorithm and compare its performance to Van Dijk’s algorithm. Van Dijk states

that BDDs representing the bisimulation as a partition, like the one used in his algorithm, should generally

remain smaller than relational BDDs. However, our results show that the opposite is true. Relation-based

approaches use fewer memory and perform better than the partition-based approaches. We argue that the

variable interleavings allowed in the relational approach can explain these unexpected results.

Our algorithm is similar to the algorithm proposed by Mumme and Ciardo, but was found independently.

We use a derivation method based on Shannon decomposition [28] to derive principal parts of the algorithm

directly from the definition of the symbolic operations which they perform. This derivation method gives

more insight into the inner workings of the operations. Moreover, the derived operations are coarse, avoiding

BDD unique and cache table pollution by skipping intermediary results, similar to what has been done before

for image computation [34].

This thesis is structured as follows. In Chapter 2 we will explain the notions of model checking, labelled

transition systems, bisimulation minimization, and BDDs in more detail. Chapter 3 presents the parallel

relation-based symbolic bisimulation algorithm, along with its derivation. Related work, and in particular
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van Dijk’s algorithm, are discussed in Chapter 4. Our experiments and their results are presented in Chap-

ter 5. Chapter 6 concludes this thesis with a discussion. The verification of symbolic algorithms using the

theorem prover Dafny [21] is described in the appendix.



Chapter 2

Background

2.1 Model checking

Model checking is a Turing award winning formal verification technique which was developed independently

by Clarke and Emerson [10] and by Queille and Sifakis [26] in the early 1980s. Model checking exhaustively

and automatically verifies a model of a hardware or software system against a given specification [4]. The

problem faced in model checking is formally expressed as the satisfaction relation M |= ϕ. Here M is a model

of the system under study and ϕ is its property. The question, in the model-theoretic sense, is whether the

formula ϕ evaluates to true or false in the model M. Semantically, the model is interpreted as an implicit

transition system (see Section 2.2) whose reachable states, called the state space, represents the complete be-

havior of the system. Model checkers exhaustively search this state space to verify whether the given system

conforms to its properties. This procedure can be performed systematically by an algorithm, and is thus fully

automatic. If the verification of a model fails, a model checker produces a counterexample so that the model

can be corrected and the process reiterated.

Systems are generally modelled in some formal language, which can even be a programming language. The

states in a transition system which interprets a model of a system are derived from different variables valua-

tions in the system. For instance, the state of a computer program is described by the values of its variables

and program counters. Certain actions or events within a system can change the values of its variables. The

transitions in the transition system are derived from these actions and events. For instance, in a computer

program the execution of a program statement is an event which could change the values of some variables

and program counters.

The specification of a system is written in some form of logic, such as linear temporal logic (LTL) or compu-

tation tree logic (CTL) [20]. Temporal logic can define properties over the paths and future states within a

4



2.1. Model checking 5

transition system. For example, for a transition system representing a traffic light, temporal logic can define

properties such as “when a car arrives eventually the light should become green”. Most properties can be

reduced to a reachability problem, in which we check whether a set of critical states is reachable from the

initial states in the model. The sliding tile puzzle in Example 1 shows an example of a small model and its

possible properties.

Example 1. A sliding tile puzzle is a combination puzzle in which the player has to construct an image by rearranging

square tiles that depict parts of the image. The tiles are lain on a rectangular grid in which one space is left empty. The

player can rearrange the tiles by sliding adjacent tiles into the empty space.

The sliding tile puzzle considered in this example consists of a 2 by 2 grid and three identical tiles. Figure 2.1 depicts

a transition system which models this sliding tile puzzle. The tiles can be lain in four different arrangements. Each

arrangement may be seen as a different state of the puzzle. In each state one tile can be slid horizontally (h) and one tile

can be slid vertically (v). By sliding a tile, the state of the puzzle changes.

F F

F

F F

F

F

F F

F

F F

v v v v

h

h

h

h

Figure 2.1: A model displaying the four arrangements of a simple sliding tile puzzle, along with the possible moves for
each arrangement.

A simple property of this model could be that all states should contain exactly three tiles. A more difficult property could

be that the system can always return to its starting state.

Model checking has many advantages. The exhaustive nature of model checking makes it more reliable than

valdidation techniques, such as testing or simulation, which are incomplete. The fact that model checking

is automatic makes it more practical than formal verification techniques, such as theorem proving, which

requires a lot of input and skill from the user. The main disadvantage of model checking is the state explo-

sion problem. The state space of a transition system grows exponentially large as the number of variables

and processes in a system increases. This makes model checking highly resource intensive, and as a result

incomplete for some problems. Techniques such as partial order reduction [17], symmetry reduction [11],

bisimulation minimization [23], and the use of symbolic representations [9] can be applied to alleviate the

state explosion problem.
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2.2 Labelled transition systems

A labelled transition system, or LTS for short, is a directed graph with labelled edges. LTSs are commonly

used in model checking to model different kinds of systems. The nodes of an LTS represent the system’s

states. The labelled edges represent actions or events which cause the system to transition to another state.

Definition 1. A labelled transition system (LTS) is a tuple (S, A,→) consisting of a set of states S, a set of action

labels A, and a transition relation→ ⊆ S× A× S. Instead of (s, a, t) ∈ →, we write s a−→ t.

Example 2. Figure 2.2 demonstrates an LTS which represents the sliding tile puzzle introduced in Example 1. Each

state of the puzzle is represented by a node and each move is represented by a labelled transition. Formally, the LTS

consists of the following sets:

S = {s1, s2, s3, s4}

A = {h, v}

→ = {(s1, h, s2), (s1, v, s3), (s2, h, s1), (s2, v, s4), (s3, h, s4), (s3, v, s1), (s4, h, s3), (s4, v, s2)}

s1 s2

s3 s4

h

h

h

h

v v v v

Figure 2.2: An LTS which models the sliding tile puzzle depicted in Figure 2.1.

An LTS that models a system can be automatically generated from a model description. For hardware

systems, this description is formulated in a hardware description language such as Verilog or VHDL. For

software systems, a (dialect of a) programming language such as C or Java can be used.

States in an LTS can be represented in many forms and do not have to be numbered. In fact, it is often better

not to number states, but to instead use an encoding which preserves some structural properties. This is

important for BDD representations of the LTS, as will be discussed in Section 2.4.3.
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2.3 Bisimulation

An LTS can contain many redundant states. This is undesirable, as this limits the size of the system that

a model checker can handle. For instance, redundant states are frequently present in LTSs which model

concurrent systems. The order in which multiple concurrent events happen usually does not matter for the

resulting system state. However, due to different variable valuations these similar behaving states might

be physically different. This causes the LTS to contain multiple states which essentially represent the same

system state from a behavioral perspective. Fortunately, we can find and remove these redundant states by

computing a bisimulation relation. Definition 2 formally defines a bisimulation.

Definition 2. A binary relation R ⊆ S× S over the set of states of an LTS (S, A,→) is a bisimulation relation

if whenever (s, t) ∈ R and a ∈ A,

1. for all s′ with s a−→ s′, there exists a t′ such that t a−→ t′ and (s′, t′) ∈ R

2. for all t′ with t a−→ t′, there exists a s′ such that s a−→ s′ and (s′, t′) ∈ R

We say that s is bisimilar to t and write s ∼ t if there exists a bisimulation R with (s, t) ∈ R.

A bisimulation relation defines the set of pairs of states (s, t) that have a “similar behavior” within an LTS.

For every outgoing transition of s we can find an outgoing transition for t that represents the same change

in the system modelled by the LTS, and vice versa. As a consequence, two bisimilar states can be merged

without changing the system which the LTS represents. This is illustrated in Example 3.

Example 3. Consider the LTS shown in Figure 2.3a. First off, note that every state is always bisimilar to itself.

Consequently, states s3 and s4 are also bisimilar as their outgoing transitions, (s3, c, s5) and (s4, c, s5), have the same

label and s5 ∼ s5. Thus, it is possible to merge these two states. This is done by first adding all incoming transitions of

s4 to s3 and then removing s4 from the LTS. The result is depicted in Figure 2.3b. Observe that the incoming transitions

of a state do not affect its behavior.

Example 4. Figure 2.3c shows the bisimulation minimization of the LTS depicted in Figure 2.2.

s5

s4s3

s2s1

c c

a b

(a)

s5

s3

s2s1

c

a b

(b)

{s1, s2,
s3, s4}

h

v

(c)

Figure 2.3: An LTS (a) and its minimized equivalent (b). And the minimization of Figure 2.1.
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When the bisimilarity relation ∼ is the largest possible bisimulation relation over an LTS, it is more commonly

known as the maximal bisimulation. Because the maximal bisimulation is also an equivalence relation (see

Theorem 1), the size of an LTS can be minimized by computing the maximal bisimulation and merging all

states that are in the same equivalence class. This practice is also called bisimulation minimization and is one

of the techniques used in model checking to combat the state explosion problem.

Theorem 1. The maximal bisimulation is an equivalence relation.

Proof. 1) Reflectivity. It follows directly from Definition 2 that the identity relation I = {(s, s) | s ∈ S} is a

bisimulation relation.

2) Symmetry. Let R be a bisimulation relation. It follows directly from Definition 2 that the converse relation

R−1 is also a bisimulation relation.

3) Transitivity. Let R1 and R2 be two bisimulation relations. We will show that the composition R1 ◦ R2 is

also a bisimulation relation. Let (s, t) ∈ R1 ◦ R2 and s a−→ s′. For R1 ◦ R2 to be a bisimulation relation, there

must exist a t′ such that t a−→ t′ and (s′, t′) ∈ R1 ◦ R2. Since (s, t) ∈ R1 ◦ R2, there is a r such that (s, r) ∈ R1

and (r, t) ∈ R2. Because R1 is a bisimulation relation, there exists a r′ such that r a−→ r′ and (s′, r′) ∈ R1. Also,

as R2 is a bisimulation relation, there exists a t′ such that t a−→ t′ and (r′, t′) ∈ R2. Since (s′, r′) ∈ R1 and

(r′, t′) ∈ R2, we find that (s′, t′) ∈ R1 ◦ R2. Thus, for t′ we have that t a−→ t′ and (s′, t′) ∈ R1 ◦ R2.

The maximal bisimulation is generally computed using a fixed point algorithm. Given an LTS (S, A,→),

relation-based approaches construct a relation R which contains pairs of states in S that are not bisimilar.

Pairs of non-bisimilar states are iteratively added to R, until such pairs can no longer be found. When this

fixed point is reached, the relation S× S \ R contains the maximal bisimulation. The relation-based approach

is discussed in more detail in Chapter 3. Partition-based approaches manage a partition P which initially

contains the state space as its only subset. The partition is iteratively refined by assigning signatures to all

states. Bisimilar states are given the same signature. States with the same signature are grouped together,

refining the previous partition. This process continues until a fixed point is reached. The partition P now

represents the maximal bisimulation as a set of equivalence classes. The partition-based approach is further

explained in more detail in Chapter 4.

2.4 Binary decision diagrams

Explicit representations of an LTS, such as those utilizing lists or tables, grow in proportion to the size of

the LTS. This is why the state explosion problem is such a big issue in model checking. A more efficient

way to store an LTS is by a symbolic representation. In a symbolic representation, states and transitions

are not stored individually, but rather as sets in a memory efficient data structure called a binary decision
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diagram, or BDD for short. BDDs were introduced by Bryant [8] as canonical representations of Boolean

functions that could be easily manipulated. A set of states or a set of transitions is represented in a BDD by

their characteristic function. The biggest asset of BDDs is that set operations can be directly applied to the

data structure without the need of decompression. This feature allows us to create set-based algorithms, also

known as symbolic algorithms, which can efficiently handle much larger systems.

McMillan et al. [9] were the first to introduce a symbolic algorithm for model checking. Their algorithm could

be applied to systems with a state space of more than 1020 reachable states, while explicit state enumeration

methods at the time could only manage state spaces of up to 108 reachable states. Symbolic algorithms can

also be employed in bisimulation minimization, as will be demonstrated in Chapter 3. First, this section will

discuss the structure and functionalities of BDDs in greater detail.

2.4.1 Definition

A Boolean function f : Bn → B takes n ≥ 0 arguments x1, x2, . . . , xn ∈ {0, 1} and returns either a 0 or a 1. We

can restrict f with respect to one of its arguments xi by assigning the value 0 or 1 to it, notation fxi and fxi

respectively, such that

fxi (x1, . . . , xn) = f (x1, . . . , xi−1, 0, xi+1, . . . , xn) and fxi (x1, . . . , xn) = f (x1, . . . , xi−1, 1, xi+1, . . . , xn)

Here fxi and fxi are also called the cofactors of f with respect to xi.

We can abstract a variable xi from f using Shannon decomposition [28] according to the following equivalence

f (x1, . . . , xn)⇔ xi · fxi + xi · fxi

By abstracting all variables from a function we find a structure which represents a binary tree. This can be

seen in Figure 2.4 for the function f (x1, x2, x3) = x1 + x2x3.

Definition 3 defines the BDD data structure. A BDD represents a Boolean function as its Shannon decompo-

sition. More explicitly, a BDD node with variable label x expresses a function f recursively as the disjunction

x · fx + x · fx. Here fx and fx are the low and high child of the node respectively. Any node in a BDD is

essentially the root of a sub-BDD representing its own Boolean function. The order in which the variables are

abstracted determines the variable ordering used in the BDD. The variables over which a BDD is defined are

usually expressed using a vector notation: ~x = x1, . . . , xn, where we assume the order x1 < . . . < xn

Definition 3. A binary decision diagram (BDD) is a rooted directed acyclic graph which is made up of internal

decision nodes and leaves with value 0 or 1. Internal nodes have as attributes a variable label and two child

nodes called its “low” and “high” child.
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f (x1, x2, x3) = x1 + x2x3 ⇔ x1 · fx1(x2, x3) + x1 · fx1(x2, x3)

fx1(x2, x3) = 1

fx1(x2, x3) = x2x3 ⇔ x2 · fx1x2(x3) + x2 · fx1x2(x3)

fx1x2(x3) = 0

fx1x2(x3) = x3 ⇔ x3 · fx1x2x3() + x3 · fx1x2x3()

fx1x2x3() = 0

fx1x2x3() = 1

Figure 2.4: The Shannon decomposition of f (x1, x2, x3) = x1 + x2x3

A BDD is called ordered if the variable labels are encountered in the same order for every directed path down

the root. A BDD is called reduced if it contains no redundant nodes (nodes with the same low and high child)

and no duplicate nodes (two nodes with the same label, low child, and high child).

Figure 2.5 shows two BDDs representing f (x1, x2, x3) = x1 + x2x3. The BDD on the right hand side is re-

duced, the BDD on the left hand side is not. Observed how the structure of the reduced BDD is related to

the Shannon decomposition in Figure 2.4.

Given a fixed variable ordering, a reduced ordered BDD is a canonical representation of a Boolean function.

From this point forward we will use the term BDD to refer to reduced ordered BDDs, as is common in the

literature.

1 1 1 1 0 0 0 1

x3 x3 x3 x3

x2 x2

x1

(a)

01

x3

x2

x1

(b)

Figure 2.5: A non-reduced (a) and reduced (b) BDD representing the function f (x1, x2, x3) = x1 + x2x3

The low and high child of an internal node can be found by following the dashed and solid arrows originat-

ing in the node respectively. Paths which go from the root of a BDD down to a leaf specify different variable

assignments. Whenever we traverse from a node to its low (or high) child, we assign 0 (or 1) to the variable

contained in the node. If a path jumps over a certain variable, then it does not matter which value is assigned
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to the variable. For instance, in the BDD shown in Figure 2.5b the path (x1, 1) skips variables x2 and x3. The

value in the leaf at the end of a path determines the return value of the function represented by the BDD

for the corresponding variable valuation. In essence, non-reduced BDDs are binary trees which enumerate

all possible valuations of arguments for a Boolean function. Reduced BDDs remove from the binary tree all

isomorphic subgraphs and all nodes for which the low and high edges point to the same node.

Instead of saying that a BDD represents a Boolean function, we could also say that it symbolises a set of

binary strings. Namely, the set of variable assignments for which the corresponding path ends in a 1-leaf.

This is the satisfying set of the function represented by the BDD. For example, the BDDs shown in Figure 2.5

represents the set of strings {000, 001, 010, 011, 111}. The notion that a BDD represents a Boolean function

or a set of binary strings can be used interchangeably. In model checking and bisimulation minimization,

BDDs are used as representations of sets of states or sets of transitions. The states and transitions of an

LTS are physically represented as variable valuations from the system under verification. By “bit blasting”

any such state can be represented as a valuation of Boolean variables and stored in a BDD. This approach

is quite memory efficient, as encodings with identical prefixes are represented by overlapping paths in the

BDD. Example 5 illustrates how the sliding tile puzzle from Example 1 can be represented by a BDD.

x1 x2

x3 x4

(a) The four variables which encode a state of the puzzle.

0 1

x4

x3

x2

x1

(b) The BDD for {s1}.

Figure 2.6

Example 5. The states of the LTS which represents the sliding tile puzzle from Example 1 can be encoded by strings of

four binary variables, x1x2x3x4. Each variable corresponds to a position on the puzzle grid, as shown in Figure 2.6a.

A variable is set to 1 if a tile is present in the corresponding grid position. Otherwise, the variable is set to 0. For

instance, the state s1 is encoded by the string 1110. A state like s1 can be stored individually in a BDD by letting the

BDD represent the singleton set {s1}, as shown in Figure 2.6b. For the string 1110 the path from the root to the 1-leaf

consists of three solid arrows followed by one dashed arrow. Observe that this is the only path to the 1-leaf. Thus, the

BDD represents no other states than s1.
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Using BDDs to represent individual states is costly and defeats the purpose of BDDs, which is to efficiently represent

sets. It would be better to represent the entire state space S = {s1, s2, s3, s4} by one BDD, as is done in Figure 2.7. This

BDD contains four paths from the root to the 1-leaf, representing the set of all state encodings {1110, 1101, 1011, 0111}.

Instead of four BDDs containing four internal nodes each, we now have one BDD containing just seven internal nodes.

The transitions of the LTS can be encoded by strings of nine variables: four variables for the source state, four variables

for the target state, and one variable for the action label. This BDD is quite large and is therefore not shown.

0 1

x4x4

x3x3

x2x2

x1

Figure 2.7: The BDD which represents the state space S of the sliding tile puzzle.

2.4.2 Operations

Another reason why BDDs make for such great set representations is that binary set operations, such as

union (∪) and intersection (∩), can all be directly applied to the data structure. Similarly, we have disjunction

(∨) and conjunction (∧), for BDDs representing Boolean functions. The required time of these operations is

linear in the number of nodes in the result BDD, whereas the BDD might represent an exponential number

of assignments in the number of variables. Given two BDDs F and G, and a binary set operation <op>, we

can compute a BDD representing the result of F <op> G using Algorithm 1. This recursive algorithm is based

on the Shannon decomposition of F <op> G.

F <op> G ⇔ x · (Fx <op> Gx) + x · (Fx <op> Gx)

It recursively traverses F and G at the same time, creating nodes in the result BDD as it backtracks. The

algorithm assumes that F and G utilize the same variable ordering. The first line in the algorithm checks for

the terminal case where F and G are both leafs. Here a leaf containing the value of F <op> G is returned. If F

or G is not a leaf, then Line 3 determines the variable label x of the highest node in F and G. Lines 4–6 create

a node with label x whose children are the results of the recursively calls to Fx <op> Gx and Fx <op> Gx. This
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node represents the Shannon decomposition of F <op> G with respect to x. Note that if the variable label

of the highest node in F (or G) is ordered after x, then Fx = Fx = F (or Gx = Gx = G) because the BDD

contains no nodes with label x. In summary, this algorithm builds up a BDD which follows the structure of

the Shannon decomposition of F <op> G and has the same variable ordering as F and G.

To ensure that the result BDD is reduced, a table, also known as the unique table, is used to store every unique

node that is created. The call to BDD node in Line 6 checks whether the node that needs to be created already

exists in the unique table before constructing a new one. It also makes sure that no redundant nodes are

created. If the low and high child of a new node are the same, BDD node returns the low child instead of

creating a new node. In order to make the operation linear in the number of BDD nodes, another table, called

the operation cache, is used to store the result of every function call. In Line 2 we check whether the result of

the current call has already been computed and in Line 7 we store a new result in the cache. Without this

dynamic programming the time complexity of the algorithm would be exponential in the number of variables

used in the operands.

Algorithm 1 apply(F, G, <op>)

1: if (F = 0∨ F = 1) ∧ (G = 0∨ G = 1) then return F <op> G
2: if (F, G, <op>) in cache then return cache[(F, G, <op>)]
3: x ← min(var(F), var(G))
4: L← apply(Fx, Gx, <op>)
5: H ← apply(Fx, Gx, <op>)
6: result← BDD node(x, L, H)
7: cache[(F, G, <op>)]← result
8: return result

Another BDD operation that is frequently applied in symbolic algorithms is existential quantification: ∃~x : F.

The existential quantifier abstracts (= removes) all nodes with a variable label in ~x from the BDD F. ∃~x : F

is the smallest function independent of ~x which still contains F [31]. After applying existential quantification

over ~x, all paths in F skip over the variables contained in ~x. Thus, it does no longer matters which values are

assigned to these variables. The BDD operation ∃x : F which abstracts a single variable x from F is derived

from the following equivalence

∃x : F ⇔ Fx ∪ Fx

The variable x is not necessarily contained in the root of F. Therefore, the algorithm which computes the BDD

representing ∃x : F traverses F and finds all sub-BDDs F′ which do contain x in their root. Each sub-BDD

F′ is replaced by a BDD representing the union of its children, F′x ∪ F′x. This abstracts all nodes containing x

from F.

The BDD representing ∃~x : F is computed by applying this node abstraction procedure to all nodes having a

variable label in ~x. Algorithm 2 illustrates this process. Line 1 check for the terminal case where F is a leaf.

Line 3 selects the variable label x of the root of F. Lines 4 and 5 recursively search F for nodes with variable
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labels in ~x. If x /∈ ~x, then Line 7 creates a new node for x, as the variable should not be abstracted. Else, x is

abstracted from F in Line 9 by computing the union of the two recursive calls. The result is returned in Line

11.

Algorithm 2 ∃~x : F

1: if F = 0∨ F = 1 then return F
2: if (F,~x, ∃) in cache then return cache[(F,~x, ∃)]
3: x ← var(F)
4: L← ∃~x : Fx
5: H ← ∃~x : Fx
6: if x /∈ ~x then
7: result← BDD node(x, L, H)
8: else
9: result← apply(L, H,∪))

10: cache[(F,~x, ∃)]← result
11: return result

The existential quantifier is prominently used in two other important BDD operations: the computation of

the image and preimage of a set S under a transition relation T. Suppose that S is a BDD representing a set of

states encoded over variables ~x = x1, . . . , xn, and that T is a BDD representing a transition relation between

states of which the source states are encoded over ~x and the target states are encoded over ~x′ = x′1, . . . , x′n.

The image of S under T is computed by the BDD operation

∃~x : (S ∩ T)[~x′ := ~x]

This operation consists of three steps as illustrated in Figure 2.8. First, the intersection of S and T is deter-

mined. This results in a BDD containing all transitions in T with a source in S. Next, the source states are

removed from this BDD by existential quantification over ~x. The result of this abstraction is a BDD containing

the image of S under T. As a last step, the ~x′ variables are renamed to ~x variables. In practice, the three steps

just described can be combined into one coarse operation with the same time complexity as the existential

quantification operation. The preimage of S under T is computed in a similar fashion using the operation

∃~x′ : (S[~x := ~x′] ∩ T). Example 6 illustrates the computation of the image operation for a small sliding tile

puzzle.

S

T

S ∩ Tx

T.S
T.S

T.S
~x

~x′

→
∩

→
∃~x

→
~x′ := ~x

Figure 2.8: Illustration of the three steps performed in the computation of the image of S under T.
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Example 6. Consider a sliding tile puzzle which consists of just one tile and a 2 by 1 grid. This puzzle can be represented

by an LTS with state space S = {s1, s2} and (unlabelled) transition relation→ = {(s1, s2), (s2, s1)}. Thus, the puzzle

can only go back and forth between two states. The states are encoded by a string of two variables, x1x2, which represent

the two grid positions. Again, a variable is set to 1 if a tile is present in the corresponding grid position. We encode s1

by 10 and s2 by 01. The transitions are encoded by concatenating the source state with the target state.

Let S1 be a BDD which encodes {s1} over ~x = x1, x2, and let T be a BDD which encodes→ over ~x and ~x′. Figure 2.9

shows the results of all three steps that must be performed in order to compute the image of {s1} under →. The final

BDD represents {s2}.

S1

0 1

x2

x1

T

0 1

x′2 x′2

x′1 x′1

x2 x2

x1

→
∩

S1 ∩ T

0 1

x′2

x′1

x2

x1

→
∃~x

∃~x : (S1 ∩ T)

0 1

x′2

x′1 →
[~x′ := ~x]

∃~x : (S1 ∩ T)[~x′ := ~x]

0 1

x2

x1

Figure 2.9: The five BDDs that are involved in the computation of the image of S1 under T.

As stated before, the complexity of basic set operations is limited by the size of the result BDD. The com-

plexity of the existential quantification operation is more difficult to define. It applies the union operation

repeatedly at different depths in the BDD, depending on which set of variables is abstracted from the BDD.

Operations which apply quantification, like the (pre)image operation, are also called symbolic steps. Sym-

bolic steps are computationally much heavier than binary set operations, which is why the complexity of

symbolic algorithms is expressed in the number of symbolic steps that they require.

The last operation which we will discuss in this section is the computation of a complement of a set repre-

sented by a BDD. A BDD containing n variables can represent a total of 2n possible binary strings. We call

this set the universe U of the BDD. The complement of a BDD F is defined as F := U \ F. The BDDs F and

F have the exact same structure, except for their 0- and 1-leafs which are interchanged. We can exploit this

similarity by employing complement edges [7]. A complement edge indicates that the BDD to which it points

should be negated. Thus F and F can be represented by the same BDD, only F is reached through a ordinary

edge whereas F is reached through a complement edge. As a result, complement edges allow us to both

save memory space and negate BDDs in constant time. In order to maintain an canonical form, complement

edges are only used on low edges. For high edges, the complement edge can be pushed down the BDD using
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Shannon decomposition: F ⇔ x · Fx + x · Fx. Eventually, an high edge pointing to a leaf will be negated,

which is done by simply changing its destination to the opposite leaf.

2.4.3 Variable Ordering

The run times of symbolic algorithms rely heavily upon the sizes of the BDDs which they manage during

their execution. Thus, it is important that these BDDs are kept as small as possible. The size of a BDD is

strongly dependent on the chosen variable ordering. Figure 2.10 illustrates an extreme case for f (x1, . . . , x6) =

x1 · x2 + x3 · x4 + x5 · x6. Figure 2.10a wields variable ordering x1 < x2 < x3 < x4 < x5 < x6, while

Figure 2.10b employs variable ordering x1 < x3 < x5 < x2 < x4 < x6. In the general case of f (x1, . . . , xn) =

x1 · x2 + . . . + xn−1 · xn, the first variable ordering will result in a BDD containing n + 2 nodes, opposed to

2
n
2 +1 nodes for the second variable ordering.

0 1

x6

x5

x4

x3

x2

x1

(a)

0 1

x1

x3 x3

x5 x5 x5 x5

x2 x2 x2 x2

x4 x4

x6

(b)

Figure 2.10: The BDD representing f (x1, x2, x3, x4, x5, x6) = x1 · x2 + x3 · x4 + x5 · x6 for two different variable orderings.

A bad variable ordering can thus result in a BDD which grows exponentially in the number of variables.

Fortunately, it is often possible to choose a good variable ordering based on prior knowledge about the

problem domain. There are, however, some functions which are inherently complex. BDDs representing

these kinds of functions will grow exponentially for every possible variable ordering. Generally, variables

that are related in some way or are dependent on each other should be located in close proximity to each

other in the variable ordering.
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For transition and bisimulation relations over the states of a system model, this means an interleaved variable

ordering is best [14]. Transitions in a system are often local and do not change many variables within the

system. Thus, many variables in a transition keep the same value. Likewise, two states which are bisimilar,

and thus have a similar behavior, often differ in just a few variables. So two variables xi and x′i which encode

part of the source and target state in a transition or bisimulation relation likely have the same value. Because

of this correlation, interleaved variable orderings, like x1 < x′1 < x2 < x′2 < . . . < xn < x′n, will generally

result in a small BDD.



Chapter 3

Symbolic Bisimulation

This chapter introduces a relation-based fixed point algorithm that computes the maximal bisimulation. It

then derives the coarse BDD operations which are used to efficiently implement this algorithm. Finally, the

algorithm is parallelized.

3.1 A relation-based symbolic bisimulation algorithm

Given an LTS (S, A,→), our algorithm aims to find the maximal bisimulation over S× S. Towards building

a least fixed point algorithm, as discussed at the end of Section 2.3, we give a recursive definition of the

non-bisimilarity relation 6∼ in Equation 3.1. In words, 6∼ is the set of all pairs of states that are not bisimilar.

The recursive definition of 6∼ can be directly derived from Definition 2.

6∼ := {(s, t) | ∃s′∃a : (s a−→ s′ ∧ ¬∃t′ : (t a−→ t′ ∧ (s′, t′) ∈ ∼))} ∪

{(s, t) | ∃t′∃a : (t a−→ t′ ∧ ¬∃s′ : (s a−→ s′ ∧ (s′, t′) ∈ ∼))}
(3.1)

In order to construct 6∼, our algorithm maintains a relation R which contains all pairs of non-bisimilar states

that our algorithm has found thus far. R is initialized as the empty set. Pairs of non-bisimilar states are

iteratively added to R until a fixed point is reached, at which point R equals 6∼. For this purpose, the

following functions are used

fa(R) := {(s, t) | ∃s′ : (s a−→ s′ ∧ ¬∃t′ : (t a−→ t′ ∧ (s′, t′) /∈ R))} ∪

{(s, t) | ∃t′ : (t a−→ t′ ∧ ¬∃s′ : (s a−→ s′ ∧ (s′, t′) /∈ R))}

f (R) :=
⋃

a∈A
fa(R)

18
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R is called a fixed point of f if f (R) = R. The function f is a monotonic (non-decreasing) function with respect

to ⊆, as R1 ⊆ R2 implies that f (R1) ⊆ f (R2). Also, (P(S× S),⊆) forms a complete lattice. Thus, according

to the Knaster-Tarski lemma [20], there exists a (unique) least fixed point of f .

The notation f i(R) is used to denote that f is applied i many times, e.g. f 3(R) = f ( f ( f (R))). If S contains

n states then the least fixed point of f must be equal to f n(∅), because f is strictly increasing until the fixed

point is reached. The least fixed point contains exactly all pairs of non-bisimilar states. Thus, 6∼ = f n(∅)

and we find that the maximal bisimulation is equal to S× S \ f n(∅).

In order to compute fa the following sets need to be constructed

Ya := {(s, t) | ∃s′ : (s a−→ s′ ∧ ¬∃t′ : (t a−→ t′ ∧ (s′, t′) /∈ R))}

and

Za := {(s, t) | ∃t′ : (t a−→ t′ ∧ ¬∃s′ : (s a−→ s′ ∧ (s′, t′) /∈ R))}

such that fa(R) := Ya ∪Za. R is initially symmetric, as the empty set is a symmetric relation. If R is symmetric

then Za = Y−1
a , and thus the result of fa(R) is also symmetric. Therefore, R is symmetric during every step of

the construction of 6∼. Furthermore, this means that Za can be determined by taking the converse of Ya. This

is an advantage because computing the converse of a relation requires no symbolic steps (see Section 3.3),

while computing Za takes two.

We found it hard to find a symbolic operation that computes Ya directly due to the two quantifiers in its

definition, which both quantify over the target states of the transition relation. Therefore, one of the quantifi-

cations is performed in an intermediate step. This intermediate step computes the following set

Xa := {(s′, t) | ¬∃t′ : (t a−→ t′ ∧ (s′, t′) /∈ R)}

such that Ya := {(s, t) | ∃s′ : (s a−→ s′ ∧ (s′, t) ∈ Xa}.

Algorithm 3 presents our symbolic bisimulation algorithm bisim. As input, bisim takes a BDD S and a list of

BDDs T. S represents the set of states contained in the given LTS. The list T forms a partition of the transition

relation →, where the transitions are split on their action label. That is, each BDD Ta in T contains all

transitions having label a ∈ A but no other transitions. This way, the actions labels need not be stored in the

BDDs. This is beneficial, because the encoding of an action label a in a transition (s, a, t) has no correlation

with, or is in no way depending on, the encoding of s or t. Thus, including action labels will cause the

transition relation BDD to blow up in size, as is explained in Section 2.4. The relation R is represented in

the algorithm by a BDD with the same name, which uses an interleaved variable ordering to store pairs of

non-bisimilar states.

Line 1 initializes R to the empty set. The algorithm computes the least fixed point in the loop starting at Line
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Algorithm 3 bisim(S, T)

1: R← ∅
2: repeat
3: R′ ← R
4: for all Ta ∈ T do
5: Xa ← {(s′, t) | ¬∃t′ : ((t, t′) ∈ Ta ∧ (s′, t′) /∈ R)}
6: Ya ← {(s, t) | ∃s′ : ((s, s′) ∈ Ta ∧ (s′, t) ∈ Xa)}
7: R← Ya ∪Y−1

a

8: until R = R′

9: return S× S \ R

2. Line 3 stores a copy of R, Lines 4–7 extend R by computing fa for every action a, and Line 8 checks if a

fixed point has been reached. After a fixed point is found, the maximal bisimulation is returned in Line 9.

While iterating over actions a ∈ A, there are two approaches for extending R: breadth first search (BFS)

or chaining. Both of these approaches are illustrated in Figure 3.1. In BFS strategies, the result of fa(R) is

computed for every a ∈ A before the found pairs are added to R. Contrarily, in chaining the result of fa(R)

is immediately added to R. Thus, R is extended after every call to fa. This is the approach employed by

Algorithm 3. After R is extended, subsequent calls to fa might find pairs that would not have been found

before the extension. Therefore, chaining will generally find more pairs per iteration than BFS strategies. This

makes chaining the more efficient approach [30].

R a ⇒ R
b

⇒ R

c

⇒ R

R a ⇒ R
b

⇒ R

c

⇒ R

Figure 3.1: The extension of R using chaining (above), as used by Algorithm 3, vs BFS (below).

The next section will derive the symbolic operations that compute Xa and Ya. Section 3.3 describes how the

converse relation Y−1
a is computed. Finally, the last section of this chapter introduces a variant of bisim that

employs parallel BFS extension instead of sequential chaining.

3.2 Computing pairs of non-bisimilar states

Pairs of non-bisimilar states are determined in two steps using two symbolic operations, ∀preimage and

relcomp, where Xa = ∀preimage(R, Ta) and Ya = relcomp(Ta, ∀preimage(R, Ta)). Thus, given a BDD R

representing pairs of non-bisimilar states and a BDD T representing an unlabelled transition relation, the
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∀preimage needs to compute the following set

{(s′, t) | ¬∃t′ : ((t, t′) ∈ T ∧ (s′, t′) /∈ R)}

The BDD operation which computes this set follows directly from the predicate which defines it. It takes as

arguments the two BDDs R and T, which are both defined over the interleaved variables ~x and ~x′. The result

should be a BDD which is defined over the same variables. Note that the source states of T, which are defined

over ~x, form the target states of the result, which are defined over ~x′. The source states T cannot be redefined

over ~x′, as these variables are already used to encode the target states of R and T. The source states of T must

therefore be relabelled to a new set of variables ~x′′. As a final step, the operation relabels these states once

more to ~x′ in order to define the result over the desired variables. We find the following operation:

∀preimage(R, T) := (¬∃~x′ : (T[~x := ~x′′] ∧ R))[~x′′ := ~x′]

An algorithm which computes this operation can be found by rewriting the definition of ∀preimage to a

recursive form. This is done by abstracting a single variable x from the formula using Shannon decomposition

and subsequently rewriting the formula to a recursive form. Here there are three different cases, as x can be

a part of either ~x, ~x′, or ~x′′.

1) x ∈ ~x

∀preimage(R, T) := (¬∃~x′ : (T[~x := ~x′′] ∧ R))[~x′′ := ~x′]

= x((¬∃~x′ : (T[~x := ~x′′] ∧ R))[~x′′ := ~x′])x ∨ x((¬∃~x′ : (T[~x := ~x′′] ∧ R))[~x′′ := ~x′])x

= x((¬∃~x′ : (T[~x := ~x′′] ∧ Rx))[~x′′ := ~x′]) ∨ x((¬∃~x′ : (T[~x := ~x′′] ∧ Rx))[~x′′ := ~x′])

= x · ∀preimage(Rx, T) ∨ x · ∀preimage(Rx, T)

2) x′ ∈ ~x′

∀preimage(R, T) := (¬∃~x′ : (T[~x := ~x′′] ∧ R))[~x′′ := ~x′]

= (¬∃~x′ : ((T[~x := ~x′′] ∧ R)x′ ∨ (T[~x := ~x′′] ∧ R)x′))[~x
′′ := ~x′]

= (¬∃~x′ : ((Tx′ [~x := ~x′′] ∧ Rx′) ∨ (Tx′ [~x := ~x′′] ∧ Rx′)))[~x
′′ := ~x′]

= (¬(∃~x′ : (Tx′ [~x := ~x′′] ∧ Rx′) ∨ ∃~x′ : (Tx′ [~x := ~x′′] ∧ Rx′)))[~x
′′ := ~x′]

= (¬∃~x′ : (Tx′ [~x := ~x′′] ∧ Rx′) ∧ ¬∃~x′ : (Tx′ [~x := ~x′′] ∧ Rx′))[~x
′′ := ~x′]

= (¬∃~x′ : (Tx′ [~x := ~x′′] ∧ Rx′))[~x
′′ := ~x′] ∧ (¬∃~x′ : (Tx′ [~x := ~x′′] ∧ Rx′))[~x

′′ := ~x′]

= ∀preimage(Rx′ , Tx′) ∧ ∀preimage(Rx′ , Tx′)
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3) x′′ ∈ ~x′′

∀preimage(R, T) := (¬∃~x′ : (T[~x := ~x′′] ∧ R))[~x′′ := ~x′]

= (x′′(¬∃~x′ : (T[~x := ~x′′] ∧ R))x′′ ∨ x′′(¬∃~x′ : (T[~x := ~x′′] ∧ R))x′′)[~x
′′ := ~x′]

= (x′′(¬∃~x′ : (T[~x := ~x′′]x′′ ∧ R)) ∨ x′′(¬∃~x′ : (T[~x := ~x′′]x′′ ∧ R)))[~x′′ := ~x′]

= (x′′(¬∃~x′ : (Tx[~x := ~x′′] ∧ R)) ∨ x′′(¬∃~x′ : (Tx[~x := ~x′′] ∧ R)))[~x′′ := ~x′]

= (x′′(¬∃~x′ : (Tx[~x := ~x′′] ∧ R)))[~x′′ := ~x′] ∨ (x′′(¬∃~x′ : (Tx[~x := ~x′′] ∧ R)))[~x′′ := ~x′]

= x′(¬∃~x′ : (Tx[~x := ~x′′] ∧ R))[~x′′ := ~x′] ∨ x′(¬∃~x′ : (Tx[~x := ~x′′] ∧ R))[~x′′ := ~x′]

= x′ · ∀preimage(R, Tx) ∨ x′ · ∀preimage(R, Tx)

The terminal cases of ∀preimage are found by assigning values 0 or 1 to R and T: ∀preimage(0, 1) = 0 and

∀preimage(1, T) = ∀preimage(R, 0) = 1. The algorithm which results from these derivations is shown in

Algorithm 4.

Algorithm 4 ∀preimage(R, T)

1: if R = 0∧ T = 1 then return 0
2: if R = 1∨ T = 0 then return 1
3: if (R, T, ∀preimage) in cache then return cache[(R, T, ∀preimage)]
4: x ← min(var(R), var(T))
5: if x ∈ ~x ∧ x = var(R) then
6: do in parallel:
7: L← ∀preimage(Rx, T)
8: H ← ∀preimage(Rx, T)
9: result← BDD node(x, L, H)

10: else if x ∈ ~x ∧ x = var(T) then
11: do in parallel:
12: L← ∀preimage(R, Tx)
13: H ← ∀preimage(R, Tx)
14: result← BDD node(~x′(x), L, H)
15: else
16: do in parallel:
17: L← ∀preimage(Rx, Tx)
18: H ← ∀preimage(Rx, Tx)
19: result← apply(L, H,∩)
20: cache[(R, T, ∀preimage)]← result
21: return result

Lines 1 and 2 check for terminal cases. Line 4 selects the variable label x of the highest node in R and T. As

stated before, x can be a part of either ~x, ~x′, or ~x′′. The use of ~x′′ variables can be avoided by distinguishing the

source states of R and T with a simple check. This is done by changing the case x ∈ ~x to x ∈ ~x ∧ x = var(R)

and changing the case x ∈ ~x′′ to x ∈ ~x ∧ x = var(T). Lines 5–19 create nodes in the result BDD according to

the three recursive definitions of ∀preimage which followed from our derivations. The two recursive calls in

each case are done in parallel. The expression ~x′(x) in Line 14 maps the variable x to its primed equivalent

in ~x′, e.g. ~x′(xi) = x′i . Lines 3 and 20 add dynamic programming to the algorithm, reducing its complexity,
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as is typical for BDD operations (see Section 2.4). The result is returned in Line 21.

Observe that the algorithm is coarse-grained. The existential quantification, conjunction and renaming oper-

ations, which need to be performed in order to compute the ∀preimage, are all combined in one operation.

This avoids pollution of the unique table and operation cache by skipping intermediary results, making the

operation more efficient.

The relcomp (relational composition) operation is given as inputs a BDD T representing an unlabelled tran-

sition relation and a BDD X representing the result of the ∀preimage operation. It computes the composition

of the two relations.

{(s, t) | ∃s′ : ((s, s′) ∈ T ∧ (s′, t) ∈ X)}

The BDD operation which constructs this composition follows directly from the predicate which defines it. It

takes as arguments the BDDs T and X, which are both defined over the interleaved variables ~x and ~x′. The

result BDD should also be defined over ~x and ~x′. The operation matches the target states of T with the source

states of X. Thus, these should be defined over the same variables. Both the target states of T and the source

states of X are therefore relabelled to ~x′′. We find the following operation:

relcomp(T, X) := ∃~x′′ : (T[~x′ := ~x′′] ∧ X[~x := ~x′′])

We again derive an algorithm for the operation by abstracting a single variable from this formula. There are

three cases.

1) x ∈ ~x

relcomp(T, X) := ∃~x′′ : (T[~x′ := ~x′′] ∧ X[~x := ~x′′])

= x(∃~x′′ : (T[~x′ := ~x′′] ∧ X[~x := ~x′′]))x ∨ x(∃~x′′ : (T[~x′ := ~x′′] ∧ X[~x := ~x′′]))x

= x(∃~x′′ : (Tx[~x′ := ~x′′] ∧ X[~x := ~x′′])) ∨ x(∃~x′′ : (Tx[~x′ := ~x′′] ∧ X[~x := ~x′′]))

= x · relcomp(Tx, X) ∨ x · relcomp(Tx, X))

2) x′ ∈ ~x′

relcomp(T, X) := ∃~x′′ : (T[~x′ := ~x′′] ∧ X[~x := ~x′′])

= x′(∃~x′′ : (T[~x′ := ~x′′] ∧ X[~x := ~x′′]))x′ ∨ x′(∃~x′′ : (T[~x′ := ~x′′] ∧ X[~x := ~x′′]))x′

= x′(∃~x′′ : (T[~x′ := ~x′′] ∧ Xx′ [~x := ~x′′])) ∨ x′(∃~x′′ : (T[~x′ := ~x′′] ∧ Xx′ [~x := ~x′′]))

= x′ · relcomp(T, Xx′) ∨ x′ · relcomp(T, Xx′))
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3) x′′ ∈ ~x′′

relcomp(T, X) := ∃~x′′ : (T[~x′ := ~x′′] ∧ X[~x := ~x′′])

= ∃~x′′ : ((T[~x′ := ~x′′] ∧ X[~x := ~x′′])x′′ ∨ (T[~x′ := ~x′′] ∧ X[~x := ~x′′])x′′)

= ∃~x′′ : ((T[~x′ := ~x′′]x′′ ∧ X[~x := ~x′′]x′′) ∨ (T[~x′ := ~x′′]x′′ ∧ X[~x := ~x′′]x′′))

= ∃~x′′ : ((Tx′ [~x
′ := ~x′′] ∧ Xx[~x := ~x′′]) ∨ (Tx′ [~x

′ := ~x′′] ∧ Xx[~x := ~x′′]))

= ∃~x′′ : (Tx′ [~x
′ := ~x′′] ∧ Xx[~x := ~x′′]) ∨ ∃~x′′ : (Tx′ [~x

′ := ~x′′] ∧ Xx[~x := ~x′′])

= relcomp(Tx′ , Xx) ∨ relcomp(Tx′ , Xx)

The terminal cases of relcomp are: relcomp(T, 0) = relcomp(0, X) = 0 and relcomp(1, 1) = 1. The algorithm

which performs the relcomp operation using these derivations is shown in Algorithm 5. The use of the vari-

ables ~x′′ can be avoided by changing the case x ∈ ~x to x ∈ ~x ∧ x = var(T) and changing the case x ∈ ~x′ to

x ∈ ~x′ ∧ x = var(X).

Both the ∀preimage and relcomp operation require one symbolic step, as they contain one existential quan-

tifier. Apart from the memoization operations, both operations are entirely derived from their mathematical

definition. Therefore, if these derivations are correct, then so are the algorithms.

Algorithm 5 relcomp(T, X)

1: if T = 0∨ X = 0 then return 0
2: if T = 1∧ X = 1 then return 1
3: if (T, X, relcomp) in cache then return cache[(T, X, relcomp)]
4: x ← min(var(T), var(X))
5: if x ∈ ~x ∧ x = var(T) then
6: do in parallel:
7: L← relcomp(Tx, X)
8: H ← relcomp(Tx, X)
9: result← BDD node(x, L, H)

10: else if x ∈ ~x′ ∧ x = var(X) then
11: do in parallel:
12: L← relcomp(T, Xx)
13: H ← relcomp(T, Xx)
14: result← BDD node(x, L, H)
15: else
16: x ← ~x(x), x′ ← ~x′(x)
17: do in parallel:
18: L← relcomp(Tx′ , Xx)
19: H ← relcomp(Tx′ , Xx)
20: result← apply(L, H,∪)
21: cache[(T, X, relcomp)]← result
22: return result



3.3. Computing the converse of a relation 25

3.3 Computing the converse of a relation

Theoretically, computing the converse of a relation represented by a BDD R is a simple task. Let the source

states of R be defined over ~x and the target states over ~x′. If R uses an interleaved variable ordering, then R

can be converted to the converse relation R−1 by relabelling its source states to ~x′, relabelling its target states

to ~x, and adopting the new variable ordering x′1 < x1 < x′2 < x2 < . . . < x′n < xn. The structure of the BDD

does not change, thus R−1 contains exactly the same paths as R. However, a path encoding a pair (s, t) in R

encodes the pair (t, s) in R−1. The time required for this operation is linear in the size of R, as every node in R

needs to be visited only once to relabel its variable. The downside of this approach is that it changes the order

of the variables. Most BDD operations require that their operands employ the same variable ordering. It is

therefore desirable that the same variable ordering is used in all BDDs managed by an algorithm. Otherwise,

the algorithm would have to spend a lot of time relabelling. Fortunately, the converse of a relation can also be

computed without changing the variable ordering. The algorithm which achieves this repeatedly swaps two

levels in the BDD. This changes the structure of the BDD, but preserves its variable ordering. This swapping

technique originates from dynamic variable reordering algorithms [27].

The conversion algorithm takes as input a single BDD R, which is again defined over ~x and ~x′ and uses

an interleaved variable ordering. The algorithm recursively traverses R and in each call considers the first

two variables xi and x′i in the variable ordering of the current (sub-)BDD. As an initial step, the algorithm

recursively computes the converse of the sub-BDDs directly below the two levels containing xi and x′i . Then,

it swaps the levels of xi and x′i without changing the relation represented by the BDD. Finally, it relabels the

nodes containing xi to x′i and the nodes containing x′i to xi. This both restores the variable ordering of the

BDD and converts R to R−1.

R0 R1

x′i
⇒

R0 R1

xi

(a) var(R) = x′i

R0 R1

xi

⇒

R0 R1

x′i

(b) var(R) = xi ∧ var(R0) 6= x′i ∧ var(R1) 6= x′i

Figure 3.2: Conversion on structures a and b.

The two levels containing xi and x′i can take on five different structures. The first two of these structures

are shown in Figure 3.2. Here R has either no nodes containing xi (structure a) or no nodes containing

x′i (structure b). In both of these cases the two levels do not have to be swapped, as one of the levels is

not present in the BDD. Therefore, the algorithm only relabels the root node of the BDD to its (un)primed

counterpart.

The next three structures are depicted by Figure 3.3, Figure 3.4, and Figure 3.5. In these structures xi is the

variable label of the root of R and x′i is the variable label of the low child R0, or of the high child R1, or of both.
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R0

R10 R11

x′i

xi

⇒

R0 R10 R0 R11

xi xi

x′i

⇒

R0 R10 R0 R11

x′i x′i

xi

(c) var(R) = xi ∧ var(R0) 6= x′i ∧ var(R1) = x′i

Figure 3.3: Conversion on structure c.

R00 R01

x′i R1

xi

⇒

R00 R1 R01 R1

xi xi

x′i

⇒

R00 R1 R01 R1

x′i x′i

xi

(d) var(R) = xi ∧ var(R0) = x′i ∧ var(R1) 6= x′i

Figure 3.4: Conversion on structure d.

Here the two levels do need to be swapped. The swapping of the levels is illustrated for each structure in its

corresponding figure. After swapping, the (grand)children of R are still reached through the same outgoing

edges of xi and x′i . For example, in Figure 3.4 R01 is reached by taking the dashed edge in the xi node and the

solid edge in the x′i node. This holds both before and after the levels are swapped. Only the order in which

the edges are followed has changed. The final step, which relabels the nodes, can in practice be performed

while the levels are being swapped.

R00 R01 R10 R11

x′i x′i

xi

⇒

R00 R10 R01 R11

xi xi

x′i

⇒

R00 R10 R01 R11

x′i x′i

xi

(e) var(R) = xi ∧ var(R0) = x′i ∧ var(R1) = x′i

Figure 3.5: Conversion on structure e.

Algorithm 6 depicts the conversion algorithm. Line 1 checks for the terminal case where R is a leaf. Lines 2

and 35 are memoization operations which again reduce the complexity of the algorithm. Lines 3–34 perform
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the recursive calls and level swaps for all five structures. The recursive calls are performed in parallel. For

each case a BDD node is created which represents the rightmost BDD in the corresponding figure above. The

result is returned in Line 36. The algorithm visits every node in R exactly once. The time complexity of the

algorithm is therefore linear in the size of R. This means that the algorithm requires no symbolic steps.

Algorithm 6 converse(R)

1: if R = 0∨ R = 1 then return R
2: if (R, converse) in cache then return cache[(R, converse)]
3: x ← var(R)
4: R0 ← low(R), R1 ← high(R)
5: if x ∈ ~x′ then . Structure a
6: do in parallel:
7: low← converse(R0)
8: high← converse(R1)
9: result← BDD node(~x(x), low, high)

10: else if var(R0) 6= ~x′(x) ∧ var(R1) 6= ~x′(x) then . Structure b
11: do in parallel:
12: low← converse(R0)
13: high← converse(R1)
14: result← BDD node(~x′(x), low, high)
15: else
16: if var(R0) 6= ~x′(x) then . Structure c
17: do in parallel:
18: R00 ← R01 ← converse(R0)
19: R10 ← converse(low(R1))
20: R11 ← converse(high(R1))
21: else if var(R1) 6= ~x′(x) then . Structure d
22: do in parallel:
23: R00 ← converse(low(R0))
24: R01 ← converse(high(R0))
25: R10 ← R11 ← converse(R1)
26: else . Structure e
27: do in parallel:
28: R00 ← converse(low(R0))
29: R01 ← converse(high(R0))
30: R10 ← converse(low(R1))
31: R11 ← converse(high(R1)

32: low← BDD node(~x′(x), R00, R10)
33: high← BDD node(~x′(x), R01, R11)
34: result← BDD node(x, low, high)
35: cache[(R, converse)]← result
36: return result

3.4 Parallel breadth first search extension

All three symbolic operations which were described in the previous two sections compute their recursive calls

in parallel. Thus, the bisim algorithm already contains a lot of concurrency. The algorithm can be further

parallelized by concurrently performing the computation of fa for each action a, instead of looping over all
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actions. This approach employs a BFS extension of R, rather than an extension by chaining (which is inher-

ently sequential). Algorithm 7 displays the version of bisim which implements this approach.

Algorithm 7 bisim2(S, T)

1: R← ∅
2: repeat
3: R′ ← R
4: R← parLoop(R, T)
5: until R 6= R′

6: return S× S \ R

The parallelization of the loop which computes fa is handled by the function parLoop, shown in Algorithm 8.

This function takes as inputs a BDD R which represents non-bisimilar state pairs and a list T of BDDs rep-

resenting transition relations which are separated on action labels. Instead of considering each transition

relation in T sequentially, the function decomposes T into two halves. It then recursively calls itself on both

halves, and computes the results in parallel. This takes place in Lines 6–8. The union of the two results is

returned in Line 9. When T only contains one transition relation, the recursive procedure is stopped. In Lines

2–5 the result of fa(R) is returned for the action corresponding to the transition relation contained in T.

Algorithm 8 parLoop(R, T)

1: n← |T|
2: if n = 1 then
3: X ← {(s′, t) | ¬∃t′ : ((t, t′) ∈ T[1]∧ (s′, t′) /∈ R)}
4: Y ← {(s, t) | ∃s′ : ((s, s′) ∈ T[1]∧ (s′, t) ∈ X))}
5: return Y ∪Y−1

6: do in parallel:
7: L← parLoop(R, T[1 :

⌊ n
2
⌋
])

8: H ← parLoop(R, T[
⌊ n

2
⌋
+ 1 : n])

9: return L ∪ H

The recursive decomposition applied in parLoop corresponds to a task dependency graph. In a task depen-

dency graph each node represents a task and each edge expresses a dependency between two different tasks.

A dependency indicates that the result of a task (source of edge) is required for the execution of another task

(target of edge). Thus, a directed path in the graph depicts a sequence of tasks which must be performed

consecutively. By summing up the execution times of all tasks which lie on the longest path in the graph, the

minimal time which is needed to perform all tasks in the graph in parallel can be found. In our algorithm

the tasks consist of computing the union of the two recursive calls and computing fa(R). An example of a

task dependency graph for parLoop is shown in Figure 3.6. The only symbolic steps required in parLoop are

found at the bottom level of the graph for the computation of fa(R). The computation of parLoop should in

theory thus only need two symbolic steps, given that enough computing resources are available. A chaining

algorithm would require 2 · n symbolic steps, with n the number of actions contained in the given LTS.

It is not immediately clear if the bisim2 algorithm is more efficient than the standard bisim algorithm. The

parallelization of the extension of R should cause bisim2 to have a better scalability than bisim, but chaining
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fa(R) fb(R) fc(R) fd(R)

⋃ ⋃

⋃

Figure 3.6: A task dependency graph of the parLoop algorithm for an input LTS containing actions A = {a, b, c, d}.

is the more efficient extension approach.



Chapter 4

Related Work

There exist two main approaches to bisimulation minimization. The first approach refines an equivalence

relation by iteratively removing pairs of non-bisimilar states from the relation. This relation-based approach

is used in the bisim algorithm. Boauli and de Simone [6] were the first to implement a symbolic relation-

based bisimulation algorithm. Their results showed small improvements over the existing explicit methods.

Another symbolic relation-based algorithm was introduced by Mumme and Ciardo [24]. Their algorithm

functions very much like our bisim algorithm, but the two algorithms were found independently. Mumme

and Ciardo’s algorithm differs from bisim in four ways. Firstly, the algorithm is sequential instead of parallel.

Secondly, the algorithm does not apply the converse operation utilized in bisim. As a consequence, the

computation of non-bisimilar pairs of states requires two extra symbolic steps. Thirdly, the algorithm does

not use coarse-grained operations, such as ∀preimage and relcomp. Fourthly, the algorithm operates on

quasi-reduced MDDs instead of BDDs and employs a heuristic called saturation [29]. MDDs expand on

BDDs by allowing internal nodes to have more than two outgoing edges. Saturation is a heuristic which

makes MDD operations more efficient. Slow run times of symbolic algorithms are often caused by decision

diagrams which grow too large. This explosion in size generally takes place in the lower levels of the decision

diagram. The saturation heuristic tries to combat this problem by saturating the lower levels of a decision

diagram as much as possible.

Saturation accomplishes this by performing operations locally on sub-BDDs, instead of operating on the

entire BDD. For instance, let R be a BDD representing a relation which is encoded over variables ~x and ~x′.

Thus, a pair of states (s, t) is encoded as the string x1x′1x2x′2 . . . xnx′n. Let T be a BDD representing a transition

relation which is also encoded over ~x and ~x′ and has a root node containing variable label xi. Any statement

of the form

R := R <op> T

30
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does not affect the nodes in R containing variables x1, x′1, . . . , xi−1, x′i−1. Or in other words, the operation

<op> functions on these nodes like an identity function. Therefore, we can derive the result of R := R <op> T

by traversing R and applying the operation to every sub-BDD which is directly below the level of nodes

containing x′i−1. The saturation heuristic utilizes this approach to apply operations to the lowest nodes in a

decision diagram first. Mumme and Ciardo’s algorithm takes as inputs the MDD B, representing the maximal

bisimulation, and a list of MDDs T, containing MDDs Ta representing all transitions with label a. This list is

sorted on the height of the root nodes. The algorithm traverses to the bottom of B and finds new non-bisimilar

pairs of states using the transition relation with the lowest root first. Next, it searches for new non-bisimilar

pairs of states using the transition relation with the second lowest root, etc. Every time a new pair is found,

the algorithm traverses back to the bottom of B and repeats the process, starting again with the transition

relation with the lowest root. This maximally saturates the lower levels of the MDD, which keeps it small.

The saturation heuristic has been shown to be very successful in MDD algorithms. To our knowledge,

saturation has not yet been applied to BDD algorithms. We are very interested in seeing what benefits

saturation could bring to BDD algorithms like bisim.

The second approach to bisimulation minimization uses signatures to iteratively refine a partition which

devides the state space into equivalence classes that contain states which are pairwise bisimilar. This partition-

based approach is used in explicit algorithms by Paige and Tarjan [25] and by Groote et al. [19], and in

symbolic algorithms by Wimmer et al. [37] and Van Dijk [35] among others. The algorithm presented by Van

Dijk is, as far as we are aware, the only parallel symbolic bisimulation algorithm. The algorithm maintains

a partition π which initially contains just one equivalence class that comprises the entire state space. The

partition is iteratively refined based on signatures, which characterise each state, until a fixed point is reached.

Given an LTS (S, A,→) and a partition π, the signature σ of a state s is defined as follows,

σ(π)(s) := {(a, C) | ∃s′ ∈ C : s a−→ s′}

where C is an equivalence class contained in π. Partitions are refined using a function named sigref, which

groups states with the same signature into the same equivalence class. Let πi denote the partition found

in iteration i. The initial partition is refined until a fixed point πn+1 = πn is reached, using the following

definitions

sigref(π, σ) := {{t ∈ S | σ(π)(s) = σ(π)(t)} | s ∈ S}

π0 := {S}

πn+1 := sigref(πn, σ)

After every partition refinement step, a new signature is assigned to each state. Thus, each iteration of the
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algorithm consists of two steps, a partition refinement step and a signature computation step.

The algorithm uses BDDs to symbolically represent all data. The partition π is represented by a BDD P,

which encodes a state s followed by a block number (= equivalence class label) b. The signatures σ are

represented by a BDD σ, which encodes a state s followed by a action a and a block number b. Lastly, the

transition relation → is represented by a BDD T, which encodes a source state s and a target state s′ in an

interleaved fashion followed by an action a.

The symbolic partition refinement operation efficiently reuses block numbers and requires no symbolic steps.

However, the operation is too intricate to further discuss here. New signatures are computed by the following

operation

∃s′ : (T ∧ P[s := s′])

which does comprise a single symbolic step. The signature computation operation is computationally the

heaviest step in the algorithm and occupies 70 to 99 percent of the sequential execution time.

It is stated by Van Dijk and by Fisler and Vardi [16] that partition-based BDDs form a smaller representation

of the maximal bisimulation than relation-based BDDs. This statement is based on the number of variables

which are used in partition- and relation-based BDDs. If an LTS contains n states, then a relation-based R

will require at least 2 · dlg ne variables to encode all pairs of states. The number of variables used in partition-

based BDD P depends on the number of equivalence classes contained in the partition. If just one equivalence

class is present, then P does not need any variables to label the classes. Thus, a minimum of dlg ne variables

are needed to encode the partition. However, in the worst case the partition contains n equivalence classes.

P now needs at least dlg ne variables to label all equivalence classes. Thus, P also requires a total of 2 · dlg ne

variables to represent the bisimulation. The number of nodes in a BDD can grow exponentially in the number

of used variables. Therefore, the conclusion is drawn that partition-based BDDs are generally smaller.

The maximal bisimulation of an LTS can also be computed by fixed point computation on dependency

graphs, as is demonstrated in [12]. A dependency graph G = (V, E) consists of a set of nodes V and a set of

hyperedges E ⊆ V × P(V). An assignment on a dependency graph is a function fA : V → {0, 1}. A fixed

point assignment is an assignment fA for which every hyperedge (v, V′) satisfies the following property: if

fA(v′) = 1 for all v′ ∈ V′, then fA(v) = 1. The least fixed point assignment is a fixed point assignment

fAmin where ∑v∈V fAmin(v) is minimal. Figure 4.1 shows an example of a least fixed point assignment on

a dependency graph. A number of problems, such as the problem of Horn formula satisfiability, can be

reduced to fixed point computation on dependency graphs [22].

Given an LTS (S, A,→), the dependency graph G = (V, E) associated with the LTS is defined as follows

V := S× S

E := {((s, t), {(s′, t′) | t a−→ t′}) | s a−→ s′} ∪ {((s, t), {(s′, t′) | s a−→ s′}) | t a−→ t′}



33

Two states s, t ∈ S are bisimilar if and only if fAmin((s, t)) = 0 in the dependency graph associated with the

given LTS. Therefore, bisimulation minimization can be reduced to fixed point computation on dependency

graphs (and vice versa). As a consequence, the bisim algorithm is also able to find the least fixed point of a

dependency graph. However, bisim can only be applied to dependency graphs that are derived from an LTS.

An efficient symbolic algorithm for general dependency graphs does not yet exist. We expect that such an

algorithm would make a significant contribution.

a b

c

d

∅

Figure 4.1: A least fixed point assignment on a simple dependency graph. The colored nodes are mapped to 1 by the
assignment.

The benefits of bisimulation minimization in the context of state space reduction prior to or during the

verification of invariance properties are examined by Fisler and Vardi in [16]. In their work, three algorithms

are presented which verify the invariance properties of a model while computing its maximal bisimulation.

These partially symbolic algorithms were produced by incorporating on-the-fly model checking in three

existing bisimulation algorithms. The algorithms mark all states that are visited during the bisimulation

minimization process. When a critical state is reached, the algorithm terminates. Thus, if the model can not

be verified, the bisimulation minimization process is stopped prematurely.

Fisler and Vardi found in previous work [15] that the cost of bisimulation minimization often exceeds the

cost of model checking by a considerable margin. They hoped that their new approach would be more

efficient than model checking without the use of bisimulation minimization. Unfortunately, the results show

that using bisimulation minimization as either a part of, or as a preprocessor to, model checking invariant

properties is not profitable. However, this does not mean that bisimulation minimization can not be beneficial

in other verification contexts.
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Experimental Evaluation

5.1 Implementation

The bisim and bisim2 algorithms (Algorithm 3 and 7), and the ∀preimage and relcomp BDD operations were

implemented in C using Sylvan [33], a parallel BDD package. Sylvan offers (internally) parallel BDD opera-

tions, by splitting the recursive calls into fine-grained tasks, which are scheduled by Lace [36]. We used the

same approach to implement the recursive calls listed in our new coarse BDD operations, ∀preimage and

relcomp, as parallel calls. Thus, all BDD operations performed in our algorithms are fully parallel.

The bisim2 algorithm also features high-level parallelism by creating a task dependency graph of BDD op-

erations themselves. We implemented these parallel calls as separate tasks in Lace, which ensures that the

fine-grained internal tasks and the high-level (external) calls are all executed in parallel, while maintaining

the partial order stipulated by the dependency graphs.

We did not succeed with implementing the bisim and bisim2 without the coarse-grained BDD operations

from Algorithms 4 and 5. Therefore, we could not compare the individual gains achieved by the develop-

ment of these coarse operations. Since [34] showed an up to 40% percent performance and space savings

improvement for an integrated image BDD operation (RelProdS), we can reasonably expect at least a similar

improvement from our coarse BDD operations. In fact, the benefit likely exceeds that amount, because the

bisimulation computation in small steps requires the introduction of doubly primed variables (and RelProdS

does not).

All algorithms and BDD operations were implemented within the SigrefMC package [35]. This extended

version of SigrefMC can be found online at [2].

34
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5.2 Experiments

We repeated the experiment ran by Van Dijk in [35] to study the difference in performance between bisim,

bisim2, and Van Dijk’s state-of-the-art algorithm. In the experiment, the maximal bisimulation is computed

for six LTS models which portray Kanban production systems [37]. The smallest model contains 256 states

and 904 transitions, while the largest model contains 264,515,056 states and 1,689,124,864 transitions.

The experiment was performed on a machine that contains two Intel Xeon E5-2630v3 CPUs, which each

have eight physical cores. To evaluate the parallel speedup of each algorithm, the experiment was run once

using only one core and once using all sixteen cores. We do not use any hyperthreading. At the start of the

experiment, 2.625 GB of memory space is allocated for the two hash tables which contain the unique table

and the operation cache. The maximum size of each hash table was limited to 84 GB.

5.3 Results

The results of the experiment are presented in Table 5.1. The run times shown in the table are the average of

at least 16 runs. Entries containing a dashed line (-) went over the time limit, which was set to 2400 seconds.

The number behind the algorithm name in the column header indicates the number of cores that were used

in the experiment. The speedup of each algorithm is determined per model by dividing the sequential run

time by the parallel run time.

Table 5.1: Results of the experiments. The shown run times are the average of at least 16 runs. The timeout is set to 2400
seconds.

Time (s) Speedups

Model Van Dijk 1 Van Dijk 16 bisim 1 bisim 16 bisim2 1 bisim2 16 Van Dijk bisim bisim2

kanban01 0.07 0.09 0.02 0.08 0.03 0.11 0.78 0.25 0.27

kanban02 0.17 0.61 0.72 1.93 1.42 1.71 0.28 0.37 0.83

kanban03 3.66 3.18 7.14 5.83 18.67 7.18 1.15 1.22 2.60

kanban04 53.84 24.60 42.81 18.38 194.17 39.45 2.19 2.33 4.92

kanban05 549.47 201.82 216.82 55.44 1223.02 157.65 2.72 3.91 7.76

kanban06 - 1758.71 724.84 147.12 - 576.85 - 4.93 -

For kanban04, -05, and -06 (the three largest models) bisim provides the best results. The parallel execution

of bisim on the kanban06 model is almost 4 times faster than the parallel execution of bisim2 and almost 12

times faster than the parallel execution of Van Dijk’s algorithm. Also, bisim is the only algorithm that can

compute the maximal bisimulation of the kanban06 model within the time limit using only one core. For the

smaller kanban02 and -03 models, Van Dijk’s algorithm does outperform bisim and bisim2. The speedups of

both bisim and bisim2 are higher than the speedup of Van Dijk’s algorithm, indicating a better scalability. As
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expected, bisim2 does have a better speedup than bisim.

The efficiency of a symbolic algorithm directly depends on the size of the BDDs handled by the algorithm.

The graphs in Figure 5.1 depicts the number of nodes in the non-bisimilarity relation BDD R during the

execution of bisim and bisim2 on the kanban05 model. At its peak, the BDD used in bisim2 is about 4 times

as large as the BDD used in bisim. It appears that the chaining heuristic used in bisim keeps R much smaller

than the breadth first search heuristic employed in bisim2. We also measured the peak size of the BDDs

Xa and Ya, which represent the results of the ∀preimage and relcomp operations respectively. For bisim, Xa

contains 1,965,391 nodes and Ya contains 1,165,512 at its peak. The peak sizes of bisim2 are much higher, with

11,405,465 nodes for Xa and 16,761,754 nodes for Ya. Together, the transition relation BDDs contain a total of

2108 nodes, which is negligible compared to the other BDDs.

Figure 5.1: Number of nodes contained in R per iteration for the execution of bisim and bisim2 on the kanban05 model.

The kanban05 model contains 16,772,032 states, which, after bisimulation, are divided over 5,033,631 equiva-

lence classes. We therefore expected that the permutation BDD P (see Chapter 4) used in Van Dijk’s algorithm

would be smaller than the relation BDD R used in bisim, as it requires less variables to represent the maximal

bisimulation. However, the leftmost graph shown in Figure 5.2 reveals that P becomes much larger than R.

The signatures BDD σ grows even larger still, as can be seen in the rightmost graph in Figure 5.2. At its

peak, σ is at least two orders of magnitude larger than R. We presume that the equivalence relation BDDs

stay smaller because of their interleaved variable ordering. In the permutation BDDs, all block variables are

located below the state variables. In the signatures BDDs, there are action variables located in between the

state and block variables as well. Encoding different objects underneath each other in a BDD typically causes

the BDD to blow up in size. So, even though permutation BDDs contain less variables, they still grow much

larger than equivalence relation BDDs. Interleaved variable orderings will not be effective for the permutation

and signatures BDDs, as there is no correlation between states, actions, and block number encodings.

Observe that P and σ also do not decrease in size at any time during the execution of the algorithm. This

is likely caused by the fact that Van Dijk’s algorithm adds new block variables at the bottom of the BDDs
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during its execution.

Figure 5.2: Number of nodes contained in permutation BDD P and signatures BDD σ per iteration for the execution of
Van Dijk’s algorithm on the kanban05 model.

The size of the signatures BDD is crucial for the time efficiency of Van Dijk’s algorithm, as it is the result of the

time consuming signature computation step. One iteration of Van Dijk’s algorithm takes one symbolic step,

while a single iteration in bisim could require at most 2 · |A| symbolic steps. Coincidentally, both algorithms

terminate after 31 iterations for the kanban05 model. Thus, the difference in size between the BDDs used

in the two algorithms seems to outweigh the difference in symbolic steps in terms of time efficiency for the

kanban05 model.

As BDDs can grow exponentially, the differences between the number of nodes in the relation and partition

BDDs are not as substantial for smaller models. For instance, for the kanban02 model R peaks at 13,883 nodes,

while P peaks at 19,057 nodes and σ at 86,689 nodes. This causes Van Dijk’s algorithm to be more efficient

than bisim for smaller models, as is shown by the results for the kanban02 and -03 models in Table 5.1.

5.4 Validation

We have used the results of Van Dijk’s algorithm to validate the results of bisim and bisim2. In order to

do so, the partition returned by Van Dijk’s algorithm had to be converted to a relation. Unfortunately, this

conversion was too time consuming to validate the results of the two largest models. All other results were

successfully validated.



Chapter 6

Conclusions

We have presented a parallel relation-based algorithm for symbolic bisimulation minimization. For an ef-

ficient implementation in the BDD package, we derived novel coarse-grained BDD operations (∀preimage

and relcomp). The correctness of the derived BDD is assured by the derivation. Even though the derivation

method is straightforward and fundamentally connected with BDDs, we have not yet seen it applied in other

works.

We have compared the performance of our algorithm to the state-of-the-art parallel symbolic bisimulation al-

gorithm, which is partition-based. The surprising result is that our relation-based algorithm outperforms the

partition-based algorithm by a significant margin. The consensus in the literature is that partition-based algo-

rithms handle smaller BDDs and should therefore be more efficient than relation-based algorithms. However,

our results suggest that the opposite is true. We found that, even though partition-based BDDs generally

require less variables to represent the maximal bisimulation, their inefficient variable ordering make them

considerably larger than corresponding relation-based BDDs. In particular, partition-based approaches can-

not use the interleaved variable ordering that is so efficient for storing relations in BDDs.

As future work we advocate more research on the differences between relation-based and partition-based

symbolic bisimulation algorithms, as many contradictions can be found in the current literature. Further-

more, we are interested in the application of the saturation heuristic on BDDs. This heuristic has significantly

improved MDD algorithms in the past, but has not yet been applied to BDD algorithms. We suspect that the

use of saturation would also be beneficial to our symbolic bisimulation algorithm. Another possible improve-

ment to our algorithm is the inclusion of actions in the transition relation BDD. This increases the number

of nodes which are needed to store all possible transitions, but reduces the number of symbolic operations

which need to be performed.
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Appendix A

Program Verification using Dafny

Dafny [21] is a theorem prover for program and algorithm verification. In the past, the tool was used by

van de Pol [32] to successfully verify the Nested Depth-First Search algorithm. Stimulated by this effort, we

used Dafny for the verification of symbolic operations, with the goal to ultimately verify the ∀preimage and

relcomp operations (Algorithms 4 and 5). We were able to successfully verify the union and intersection

operations, and partially verify the (pre)image operation, showing completeness. In what follows, we will

describe Dafny in more detail, and present our verification attempts and the difficulty in verifying soundness

for the (pre)image operation. All presented code is accessible online at [1].

A.1 Dafny

Dafny is both an automatic program verifier (or theorem prover) and an imperative programming language.

Programs written in the Dafny programming language can be augmented with specification annotations, such

as invariants and pre-/postconditions, which describe the intended meaning of the program, as presented by

Floyd [18]. The program verifier automatically verifies the functional correctness of Dafny programs based

on the provided annotations. It also type checks the program, confirms the absence of run time errors, and

assures termination. Programs are verified in a modular fashion, such that the correctness of a program is

implied by the correctness of all its subroutines. When verification fails, the user is provided with a sensible

error message about the origin of the failure. Dafny’s automatic program verifier is build upon the SMT

solver Z3 [13].

The Dafny programming language supports sequential programs, generic classes, and dynamic allocation. It

also provides abstract data types, such as sets, sequences, and user-defined algebraic data types. The keyword

method is used to declare subroutines. Specification annotations are added between the declaration and the
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body of a method. Annotations include preconditions (requires), postconditions (ensures), and invariants

(invariant). Annotations are expressed using basic forms of logic and can include functions and predicates.

Functions are parametrized expressions and are mainly used for queries, such as computing the absolute

value of an integer. Predicates are used to define Boolean functions. Both functions and predicates can only

be used in annotations, unless their declaration is appended by the method keyword. Like methods, the

intended meaning of functions and predicates can be specified by annotations. The keyword decreases is used

in annotations to help Dafny decide the termination of a program. These annotations state that a data object

should decrease in positive size after the execution of a loop iteration or a recursive subroutine call.

A.2 The verification of the union and intersection operations

Figure A.1 expresses the union operation in Dafny syntax. Line 1 defines BDDs as an algebraic data type.

This avoids the need for a unique table, as instances are treated as terms. A Bdd can be a 0-leaf (O), a 1-leaf (I),

or an internal node (Node) containing a low child (l), a high child (h), and an integer (v) which represents the

variable label. The data type xint and function method x (Lines 3 and 4) are used to compare and distinguish

leafs and internal nodes. Leaf nodes are given the variable label Infty by x, such that the variable labels of

leaf nodes and internal nodes can be compared. The function methods low and high (Lines 6 and 7) are used

to access the low and high child of its argument Bdd X respectively. They also take a variable label v as an

argument, such that the child node is only returned if v is contained in the root of X. This ensures that the

two Bdd operands of the union operation are traversed at the same pace, as the algorithm only goes deeper

into the BDD which contains the lowest variable label. The function method min (Line 9) simply returns the

smallest value of its two arguments and is used to find the node with the lowest variable label in two BDDs.

1 datatype Bdd = Node ( l : Bdd , h : Bdd , v : i n t ) | O | I
2

3 datatype x i n t = I n t ( n : i n t ) | I n f t y
4 f u n c t i o n method x (X: Bdd) : x i n t { i f X = O ∨ X = I then I n f t y e l s e I n t (X . v ) }
5

6 f u n c t i o n method low (X: Bdd , v : i n t ) : Bdd { i f x (X) = I n t ( v ) then X. l e l s e X }
7 f u n c t i o n method h igh (X: Bdd , v : i n t ) : Bdd { i f x (X) = I n t ( v ) then X. h e l s e X }
8

9 f u n c t i o n method min ( a : i n t , b : i n t ) : i n t { i f a < b then a e l s e b }
10

11 method un ion (A: Bdd , B: Bdd) r e t u r n s (R: Bdd)
12 {
13 i f A = I ∨ B = I { r e t u r n I ; }
14 i f A = O ∨ A = B { r e t u r n B; }
15 i f B = O { r e t u r n A; }
16 var v := min (A . v ,B . v ) ;
17 var L := un ion ( low (A, v ) , low (B, v ) ) ;
18 var H := un ion ( h igh (A, v ) , h i gh (B, v ) ) ;
19 i f H = L { r e t u r n H; }
20 R := Node (L ,H, v ) ;
21 }

Figure A.1: Expressing the union operation in Dafny.

The algorithm for the union operation is displayed in Lines 11–21. It takes as arguments two Bdds A and
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B, and returns a Bdd R which should represent the union of A and B. The algorithm can be obtained from

apply (Algorithm 1) by implementing some minor changes. Lines 13–15 showcase three base cases which

are specific for the union operation. Line 19 avoids the creation of redundant nodes. Duplicates nodes do

not exist, as Bdds are algebraic data types. The operation has been verified with and without the use of an

operation cache. For simplicity, we only show the version of union that does not use cache operations. Apart

from these changes, the algorithm functions exactly like apply.

Dafny successfully verifies the union operation displayed in Figure A.1. However, this code does not yet

contain any specification annotations. Thus, Dafny only verifies the absence of run time errors, such as null

dereferences (e.g. A.v, where A is a leaf node). In order to also verify the functional correction and termination

of union, we need to add annotations to the code. For the functional correctness of the operation we need to

ensure two things. First, the result should represent the set with exactly all elements which are present in

A or B, but no more. In other words, the result should be mathematically sound and complete. Second, the

result Bdd R should have the correct form. That is, it should be both reduced and ordered, its root can not be

ordered before the roots of A and B, and R should be defined over the same variables as A and B.

Figure A.2 displays the added annotations which declare the correctness conditions just described. The ror

predicate (Line 12) ensures that its argument Bdd is reduced and ordered. Reduction is checked by the

predicate reduced (Line 8). It recursively traverses its argument Bdd and makes sure that no internal node has

an identical low and high child. Again, Bdds can not contain duplicate nodes. The predicate ordered (Line 6)

ensures that its argument Bdd is ordered. It does so by calling another predicate increasing (Line 1), which

recursively traverses its argument Bdd to ensure that every internal node contains a variable label which is

greater than the variable label of its parent. As a precondition union requires that both of A and B are reduced

and ordered (Line 40). In return, Dafny proves that R is also reduced and ordered, as is required by the

postcondition in Line 41. The second postcondition (Line 42) checks whether the root of R is not ordered

before the roots of A and B. The third postcondition (Line 43) makes sure that R is defined over the same

variables as A and B using the defOver predicate (Line 23). This predicate takes as arguments a Bdd X and

a set of integers (= variable labels) s. It recursively traverses X and assures that the variable label of every

internal node is contained in s. The last postcondition (Line 44) ensures the soundness and completeness of

union. It states that any binary string contained in A or B must also be contained in R, and vice versa. The

contains predicate (Line 27) takes as arguments a Bdd X and a Boolean sequence i and checks whether i is

contained in X. We do this by traversing X and following the path defined by i. If the path ends in a 1-leaf we

return true, if it ends in a 0-leaf we return false. Note that we also return true if the path defined by i ends

before reaching a leaf (Line 35). Because R should contain all paths from both A and B, the union operation

might remove some redundant nodes from the paths in R which are present in A and/or B. For instance, let A

and B be defined over variables x1 and x2. The Bdd A might only contain the valuation x1 ← 1, x2 ← 0, while

B only contains x1 ← 1, x2 ← 1. Now R will not contain any nodes with variable label x2, as it is redundant.
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Thus if i is the singleton sequence [1], a 1-leaf will be reached in R but not in A and B. By returning true for

sequences which don’t reach a leaf, we can still proof the soundness of R.

1 p r ed i c a t e i n c r e a s i n g (X: Bdd , prev X : Bdd)
2 r e q u i r e s prev X 6= O ∧ prev X 6= I
3 dec rea se s X
4 { X = O ∨ X = I ∨ (X . v > prev X . v ∧ i n c r e a s i n g (X . l ,X) ∧ i n c r e a s i n g (X . h ,X) ) }
5

6 p r ed i c a t e o rde r ed (X: Bdd) { X = O ∨ X = I ∨ (X . v ≥ 0 ∧ i n c r e a s i n g (X . l ,X) ∧ i n c r e a s i n g (X . h ,X) ) }
7

8 p r ed i c a t e r educed (X: Bdd)
9 dec rea se s X

10 { X = I ∨ X = O ∨ (X . h 6= X. l ∧ r educed (X . h ) ∧ r educed (X . l ) ) }
11

12 p r ed i c a t e r o r (X: Bdd) { r educed (X) ∧ o rde r ed (X) }
13

14 p r ed i c a t e method x l e q ( a : x i n t , b : x i n t )
15 {
16 i f b = I n f t y then t rue
17 e l s e i f a = I n f t y then f a l s e
18 e l s e a . n ≤ b . n
19 }
20

21 f u n c t i o n method xmin ( a : x i n t , b : x i n t ) : x i n t { i f x l e q ( a , b ) then a e l s e b }
22

23 p r ed i c a t e de fOver (X: Bdd , s : set<i n t >)
24 dec rea se s X
25 { X = I ∨ X = O ∨ (X . v i n s ∧ de fOver (X . h , s ) ∧ de fOver (X . l , s ) ) }
26

27 p r ed i c a t e c o n t a i n s (X: Bdd , i : seq<bool>)
28 r e q u i r e s o rde r ed (X)
29 dec rea se s X
30 {
31 match X
32 case O ⇒ f a l s e
33 case I ⇒ t rue
34 case Node (L ,H, v ) ⇒
35 i f v ≥ | i | then t rue
36 e l s e i f i [ v ] then c o n t a i n s (H, i ) e l s e c o n t a i n s (L , i )
37 }
38

39 method un ion (A: Bdd , B: Bdd) r e t u r n s (R: Bdd)
40 r e q u i r e s r o r (A) ∧ r o r (B)
41 ensu re s r o r (R)
42 ensu re s x l e q ( xmin ( x (A) , x (B) ) , x (R) )
43 ensu re s ∀ s : set<i n t> • de fOver (A, s ) ∧ de fOver (B, s ) =⇒ de fOver (R , s )
44 ensu re s ∀ i : seq<bool> • c o n t a i n s (R , i ) ⇐⇒ c o n t a i n s (A, i ) ∨ c o n t a i n s (B, i )
45 dec rea se s A, B
46 { . . . }

Figure A.2: The added annotations and predicates for the verification of the union operation.

Finally, the decreases annotations in all recursive subroutines help Dafny in deciding the termination of the

algorithms. Dafny is able verify the annotated union algorithm without any problems. A similar proof can

be generated for the symbolic intersection operation. One small alteration is needed for this proof. Line 36 in

the contains predicate should return false for the intersection operation, as R should not contain any shorter

paths than found in A and B.

A.3 The verification of the image and preimage operations

Figure A.3 presents the image operation ∃~x : S ∩ R in Dafny syntax. The operation is performed by the

relnext algorithm, shown in Lines 27–51. This algorithm was obtained by the derivation method described in
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1 p r ed i c a t e d i s j o i n t ( s : set<i n t >, t : set<i n t >) { ∀ i : i n t • i i n s =⇒ i 6∈ t }
2

3 p r ed i c a t e method x l e s s ( a : x i n t , b : x i n t )
4 {
5 i f b = I n f t y ∧ a 6= I n f t y then t rue
6 e l s e i f a = I n f t y then f a l s e
7 e l s e a . n < b . n
8 }
9

10 p r ed i c a t e con ta i n sR (R: Bdd , a : seq<bool>, b : seq<bool>, s : set<i n t >, s ’ : set<i n t >)
11 r e q u i r e s o rde r ed (R)
12 r e q u i r e s de fOver (R , s+s ’ )
13 dec rea se s R
14 {
15 match R
16 case O ⇒ f a l s e
17 case I ⇒ t rue
18 case Node (L ,H, v ) ⇒
19 i f v i n s then i f v ≥ | a | then f a l s e
20 e l s e i f a [ v ] then con ta i n sR (H, a , b , s , s ’ )
21 e l s e con ta i n sR (L , a , b , s , s ’ )
22 e l s e i f v ≥ | b | then f a l s e
23 e l s e i f b [ v ] then con ta i n sR (H, a , b , s , s ’ )
24 e l s e con ta i n sR (L , a , b , s , s ’ )
25 }
26

27 method r e l n e x t (S : Bdd , R: Bdd , s : set<i n t >, s ’ : set<i n t >) r e t u r n s (T: Bdd)
28 r e q u i r e s r o r (S) ∧ r o r (R)
29 r e q u i r e s de fOver (S , s ) ∧ de fOver (R , s+s ’ )
30 r e q u i r e s | s | = | s ’ | ∧ d i s j o i n t ( s , s ’ )
31 ensu re s r o r (T)
32 ensu re s x l e q ( xmin ( x (S ) , x (R) ) , x (T) )
33 ensu re s de fOver (T, s ’ )
34 ensu re s ∀ b : seq<bool> • (∃ a : seq<bool> • c o n t a i n s (S , a ) ∧ con ta i n sR (R , a , b , s , s ’ ) ) =⇒ c o n t a i n s (T, b )
35 // en s u r e s ∀ b : seq<bool> • c o n t a i n s (T, b ) =⇒ (∃ a : seq<bool> • c o n t a i n s (S , a ) ∧ con ta i n sR (R , a , b , s , s ’ ) )
36 dec rea se s R, S
37 {
38 i f S = O ∨ R = O { r e t u r n O; }
39 i f R = I { r e t u r n I ; }
40 i f x l e s s ( x (R) , x (S ) ) ∧ R. v i n s ’ {
41 var L := r e l n e x t (S ,R . l , s , s ’ ) ;
42 var H := r e l n e x t (S ,R . h , s , s ’ ) ;
43 r e t u r n i f L = H then L e l s e Node (L ,H,R . v ) ;
44 }
45 e l s e {
46 var m := i f x l e s s ( x (R) , x (S ) ) then R. v e l s e S . v ;
47 var L := r e l n e x t ( low (S ,m) , low (R ,m) , s , s ’ ) ;
48 var H := r e l n e x t ( h igh (S ,m) , h igh (R ,m) , s , s ’ ) ;
49 T := un ion (L ,H) ;
50 }
51 }

Figure A.3: Our attempt to verify the image operation.

Chapter 3. The algorithm takes as arguments a Bdd S representing a set, a Bdd R representing a relation, and

two sets of variable labels s and s′. It returns a Bdd T which should represent the image of S under R.

In order to prove the functional correctness of relnext we again need to show two things. First, T should have

the correct form. This is assured by the pre- and postconditions in Lines 28–33. Second, T needs to be sound

and complete. The completeness of T is ensured by the postcondition in Line 34. In words, it states that if

a ∈ S and (a, b) ∈ R then T should contain b. The completeness of R can be successfully verified by Dafny. A

similar proof can be generated for the preimage operation.

The soundness postcondition (Line 35), cannot be verified. In words, the soundness condition states that

if b ∈ T then there should exist an a such that a ∈ S and (a, b) ∈ R. If we uncomment the soundness

postcondition, Dafny will give an error message stating the verification process has timed out. After further

analysis, we found that checking the soundness of R is much more complex than checking its completeness.
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The soundness condition can be rewritten to the following form

∀b : (b /∈ T ∨ ∃a : (a ∈ S ∧ (a, b) ∈ R))

This is different from completeness, which can be rewritten to the following form

∀b : (∀a : ¬(a ∈ S ∧ (a, b) ∈ R) ∨ b ∈ T)

Leino, the creator of Dafny, has stated that proving that an existential quantifier holds can be problematic

for Dafny [3]. Therefore, universal quantification over an expression containing an existential quantifier is

inherently difficult to validate. The completeness condition does not suffer from this difficulty. Due to the

aforementioned issue and time constraints we gave up on the verification of the ∀preimage and relcomp

operations.
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J. Žilinskas, A. Costan, R. G. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci, S. Benkner,

S. Petit, V. Scarano, J. Gracia, S. Hunold, S. L. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Breitbart, and

M. Alexander, editors, Euro-Par 2014: Parallel Processing Workshops, pages 206–217, Cham, 2014. Springer

International Publishing.

[37] R. Wimmer, M. Herbstritt, H. Hermanns, K. Strampp, and B. Becker. Sigref – a symbolic bisimulation tool

box. In S. Graf and W. Zhang, editors, Automated Technology for Verification and Analysis, pages 477–492,

Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.


