
Universiteit Leiden

Opleiding Informatica

Constructing Monitors for Reo Circuits

Name: Bart Hijmans

Date: 05/02/2019

1st supervisor: Marcello Bonsangue
2nd supervisor: Farhad Arbab

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

In this thesis we discuss the construction of monitors for the Reo language. The monitors
are specified in a new type of expression we call Reo expressions, that are based on regular
expressions. Several algorithms that build automata for regular expressions are extended
and modified to build Reo automata for Reo expressions, which can be used to monitor
implementations of Reo circuits.

1 Introduction

The Reo coordination language is a visual programming language designed to glue to-
gether other pieces of software and hardware, and coordinate the communication and
other interactions among those pieces. Reo programs, called Reo circuits, connect these
pieces together using connectors that impose data and synchronization constraints, and
define when communication can take place. It is vital that that communication works
correctly and as specified.

The correctness of Reo circuits can be verified by input-output conformance (ioco) testing
as has been done in Kokash et al. [6]. This kind of testing can discover that the circuit
usually works correctly, and edge cases can be investigated. However, in a scenario where
there are infinitely many possible input sequences, such as most Reo circuits, it is not
possible to make a test case for all possible inputs. In order to determine if a Reo circuit
works as intended, it is necessary to continue testing while it is deployed. This type of
testing is done using monitors.

Monitors run in tangent with the implementation and check whether or not an execution
is correct at all times. If an error is detected, the monitor may force the program to stop
so the user can investigate it. In practice it is not always possible to know the instant
something goes wrong. This is black box testing, so it is not possible to observe the
internal behavior of an implementation and it may take some time for such an error to
propagate into an error that can be detected. If an error occurs it must eventually be
observable by a monitor, otherwise the circuit would be working as intended.

The problem we set out to solve in this thesis is how best to construct monitors for
Reo circuits. We do so by making specifications for the Reo circuit in modified regular
expressions we call Reo expressions. Then we modify two existing methods that convert
regular expressions into finite automata, to turn Reo expressions into Reo automata,
which can in turn be used for monitoring.

After some initial definitions in Section 2 we will spend Section 3 discussing what the
specifications for monitors look like, by first defining a single action and then stringing
those actions together into Reo expressions. Then, in Section 4, we will discuss several
methods to build monitors out of these expressions and compare them. We will finally
summarize in Section 5 and discuss future work.

1

q0 q1

q2

a

b

a

b

a

b

Figure 2.1: A finite automaton

2 Preliminaries

Definition 2.1. Given a predefined set of symbols Σ, called an alphabet; a string is an
element of Σ∗, the set of all sequences of symbols in Σ.

A string of no symbols, also called the empty string, is denoted ε.

Definition 2.2. A finite automaton is a 5-tuple consisting of

• Q, a finite set of states,
• Σ, a finite set of symbols called the alphabet,
• δ : Q× Σ→ Q, a transition function,
• q0 ∈ Q an initial state, and
• F ⊆ Q, a set of accepting states.

These automata start in their initial state, read strings of symbols one at a time and
move for each symbol from the current state to a new one as prescribed by the transition
function. If the automaton is in an accepting state after reading the entire string, the
string is accepted. In the finite automaton in Figure 2.1 all strings that end in ’aa’ are
accepted.

Definition 2.3. Given an alphabet Σ, a regular expression denotes a set of strings over
Σ and is defined recursively as follows.

• ∅, the empty set, is a regular expression.
• ε, denoting the set containing only the empty string, is a regular expression.
• a ∈ Σ, denoting the set containing only the string a, is a regular expression.
• If α and β are regular expressions, α+β is a regular expression denoting the union
α ∪ β.
• If α and β are regular expressions, α ·β (often shortened to αβ) is a regular expres-

sion denoting the set of all strings xy with x ∈ α and y ∈ β.
• If α is a regular expression, α∗ is a regular expression denoting the set of strings

that are 0 or more elements of α in sequence.
• Nothing else is a regular expression.

Definition 2.4. Given a regular expression τ over the alphabet Σ, the language of that
expression L(τ) is recursively defined as follows.

• L(∅) = ∅
• L(ε) = {ε}

2

Sync(a, b)
a b

Reads from a and writes to b atomically.

LossySync(a, b)
a b

Same as Sync, except it can also read from a and
discard the data if b cannot accept a write.

SyncDrain(a, b)
a b

Reads from both a and b atomically, discarding
the data from both.

ASyncDrain(a, b)
a b

Reads from either a or b, but never atomically
reads from both.

Fifo1(a, b)
a b

Reads from a and stores the value in the buffer,
then writes to b and forgets the value, resetting
the channel.

Merger(ab, c)
a

b

c

Reads from a and writes to c atomically, or reads
from b and writes to c atomically.

Rep(a, bc)

a

b

c

Reads from a and writes to both b and c atomi-
cally.

Table 1: Basic Reo Connectors

a

b

c

Figure 2.2: Lossy Exclusive Router

• L(a) = {a}, a ∈ Σ
• L(α + β) = L(α) ∪ L(β)
• L(α · β) = L(α) · L(β)
• L(α∗) = L(α)∗

Where L(α) · L(β) is the set of all strings ab with a ∈ L(α) and b ∈ L(β).

Reo (Arbab [1]) is a programming language designed to model the communication be-
tween different software and hardware components. It is made up of a small set of basic
connectors that can be glued together to create more complex connectors. Some of these
basic connectors are shown in Table 1. These basic connectors are combined together
through nodes, represented graphically as dots. Mergers and replicators are usually not
explicitly shown. Nodes with multiple incoming and outgoing arrows are treated as a
series of mergers to merge all the incoming arrows, and then a series of replicators to
replicate to all outgoing arrows.

Some nodes in a Reo circuit connect to the outside world through ports. A port is essen-

3

tially a sync channel from an outside component to the circuit or vice versa. Data can
flow through each port in one predefined direction. The ports are marked with lowercase
letters a, b, A port is said to fire when data passes through it. It can only fire if the
outside component triggers it, and the circuit allows it. A port is considered triggered
when the component tries to read from or write to the port. Often, ports can fire only
if some other port also fires, or if some buffer(s) are full or empty. An example of a Reo
circuit is shown in Figure 2.2. It is a lossy exclusive router that receives data from port
a and sends it to either b or c, or discards it if neither b nor c can accept it.

Modelling Reo circuits and the firing of the ports has traditionally been done using a
type of automaton called a constraint automaton. However here we use a different model
called a Reo automaton, introduced in (Bonsangue et al. [2]), that enables us to use
the information of which ports are triggered to determine whether a firing is allowed to
occur. In the basic connectors described here, this is particularly relevant for the lossy
sync channel. Using constraint automata as monitors it is impossible to check if b could
accept a write if a fires. Reo automata can detect (or prevent) that error.

Reo automata are guarded automata, meaning that every transition has a guard; a
Boolean expression that has to be true in order for a transition to be taken.

Definition 2.5. Let Σ be an alphabet. The set of possible guards over that alphabet, BΣ
is defined to be the free Boolean algebra generated by the following grammar:

g ::= a ∈ Σ|1|0|g ∨ g|g ∧ g|¬g

A guard g is an element of BΣ.

Definition 2.6. Let Σ be an alphabet, and let g be an element of BΣ. Let α ∈ 2|Σ| be
a Boolean assignment containing a Boolean value a or ¬(a) for each element a of Σ. α
satisfying g, or α � g, is recursively defined as follows:
α � 1 always
α � 0 never
α � a if a ∈ α
α � x ∨ y if α � x or α � y

α � x ∧ y if α � x and α � y

α � ¬x if α 2 x

When g is only one symbol, we use ḡ instead of ¬(g) for brevity. In a Reo automaton a
is true in α if and only if the port a is triggered.

Definition 2.7. Given a set of ports P , a Reo automaton is a 4-tuple consisting of
the following components:

• Q, a finite set of states,
• P , a finite set of ports,
• δ : Q× (P(P) \ ∅)× BP → P(Q), a transition function, and
• q0 ∈ Q an initial state.

Reo automata for each of the Reo connectors in Table 1 are given in Table 2. For example,
the lossy sync has one state and can fire the set of ports a, b if a and b are triggered, or
a if a is triggered and b is not.

4

Sync(a, b) a b q0

ab� ab

LossySync(a, b) a b q0

ab� ab

ab̄� a

SyncDrain(a, b) a b q0

ab� ab

ASyncDrain(a, b) a b q0

a� a

b� b

F ifo1(a, b) a b
e f

a� a

b� b

Merger(ab, c)

a

b

c

q0

ac� ac

bc� bc

Rep(a, bc)

a

b

c q0

ab� ab

Table 2: Reo Automata for Basic Reo Connectors

q0

ab� ab

ac� ac

ab̄c̄� a

Figure 2.3: Reo Automaton for Lossy Exclusive Router

5

A Reo automaton describes the behavior of a Reo circuit based on the triggered ports
and the state of the automaton. They can be generated directly from a Reo circuit, and
only have constraints on the ports that can fire, not the data transmitted over the Reo
circuit. Reo automata have no explicit accepting states, rather they reject any string that
contains a symbol that does not lead to a valid transition. Reo automata are therefore
prefix-closed. A transition from q to q′ with ports f and guard g can be written as follows.

q
g�f−−→ q′ ⇐⇒ q′ ∈ δ(q, f, g)

The transitions in a Reo automaton have a non-empty set of ports that fire and a guard
over the ports that are triggered. When a set of ports S is triggered, a transition q g�f−−→ q′

can fire only if f ⊆ S and S � g, and the automaton is in state q. There may be multiple
transitions that meet those criteria, in which case one is taken nondeterministically.

A Reo automaton accepts strings of pairs, consisting of a set of ports that fire (N ⊆ P)
and a Boolean assignment for each port that is true if and only if that port is triggered
(α ∈ 2|P |).

Definition 2.8. The language of a Reo automaton M = (Q,P, δ, q0) or L(M) is defined
to be the language of the initial state of M , L(M)q0. The language of a state of a Reo
automaton is inductively defined as follows, where (α,N) is a pair with N ⊆ P and α as
an assignment of Boolean values for each p ∈ P . With q ∈ Q, q′ ∈ Q, f ⊆ P and g ∈ BP .

• ε ∈ L(M)q
• (α,N)x ∈ L(M)q if q′ ∈ δ(q, f, g) and α � g and x ∈ L(M)q′

Essentially for each symbol (α,N) in a string, a transition is taken from the current state
q to a state q′ if a transition q g�f−−→ q′ exists such that N = f and α � g. Then the process
is repeated for the next symbol in the current state q′. If multiple transitions exist for
the same symbol and one of them leads to the string being accepted and the other does
not, the string is accepted. If no such transitions exist, the string is rejected.

Reo automata for Reo circuits are made by taking the product of these basic connectors
to generate larger automata. The Reo automaton for the circuit in Figure 2.2 is given in
Figure 2.3. For more specifics on constructing Reo automata from Reo circuits we will
refer back to the Bonsangue et al. paper.

3 Reo Expressions

Before we can begin to build monitors, we need to identify which actions on the Reo-like
circuit we can observe, which we do in Section 3.1. When we have an understanding of
what actions the system can take, we can define a structure to dictate which actions the
system is allowed to take. Section 3.2 will discuss firings and guards, which define a single
such action. In Section 3.3 we will string these single actions together into what we will
call Reo expressions, which can be used to model the entire behavior of a circuit insofar
as we can observe it. We will also introduce operators to handle the order-agnostic and
parallel nature of some Reo circuits.

6

a b

Figure 3.1: Lossy Sync Channel

3.1 Monitorable Data

There are three levels of information we can sensibly look at. At the very least we need
to know which ports fire. If we don’t know that, there is nothing to monitor. The second
level of information, the one we use here in this thesis, includes which ports are triggered.
This distinction is important because of the lossy sync channel. The lossy sync channel
in 3.1 is not allowed to fire just a if both a and b are triggered, and without knowing
if b is triggered there is no way to catch that error if it occurs. It will also be a trivial
adjustment to apply the methods in this thesis to a system where we only know the ports
that fire, by simply removing all guards.

The third level of information also includes the value of any data that passes through.
This would allow a monitor to make sure that the correct data is sent to the right
ports at any given time. While this would be an interesting and useful addition to the
methods described in this thesis, we do not explore it here. Adding data correctness to
the monitor would add an extra layer of complexity, and it makes sense to leave that out
for the purposes of this first attempt at building monitors for Reo. So we will leave that
for future work, while focusing on the correctness of the more basic protocol here.

So for the purposes of this thesis we assume we have access to the following information
at all times.

• A set of ports P
• For every firing that occurs in the application, the nonempty set N ⊆ P of ports

that fire.
• For every firing that occurs, the Boolean valuation α ∈ 2|P | that is true for each

port that was triggered, and false for each port that was not.
• The order in which the firings occur.

In essence, the monitor receives a string of pairs (α,N) and it must determine whether
or not that string is accepted. It suffices to receive updates whenever a port is triggered
or no longer triggered, and the full set when a firing occurs, as long as those updates are
done in order. For instance we could receive ”a is triggered”, ”{a} fires”, ”a no longer
triggered” and we would have the information we need.

3.2 Firings and Guards

In this section we will discuss the smallest steps a circuit can take, which we will use
as literals for the expressions we make later. A firing in Reo occurs atomically, meaning
every port that fires, fires simultaneously and inseparably. So our literals must be able to
say a specific set of ports fires as a single inseparable block.

We also have access to which ports were triggered at the time a firing occurs. There
are two ways in which this can preclude a firing. First, a firing can only occur if all
ports involved in the firing are triggered. We leave whether or not to test for this up

7

a

b

c

d

Figure 3.2: Reo Example for Section 3.2

to the implementer; it may already be enforced by the way code connects to the Reo
implementation. The other way triggered ports are important is in Reo’s lossy channels.
In Figure 3.1 we see a very simple connector. If a is triggered and b is not, it can fire a
and the data will be lost. If a and b are both triggered, it can’t fire a, it can only fire ab.
In the version of Reo we use here this is the only channel that causes this behavior, but
the methods we use here can also be used in any expansion of Reo where one firing being
triggered precludes another from firing with the right guards.

We will use the example in Figure 3.2. We will make a table of all possible permutations
of ports being triggered, and all firings allowed by that permutation. The format we use
is the set of ports that are triggered, followed by � as a separator, and finally the firing
that can occur.

abcd� ac abcd� bcd abcd̄� ac abcd̄� bc

ābcd� bcd ābcd̄� bc

ab̄cd� ac ab̄cd̄� ac

āb̄cd� − āb̄cd̄� −
abc̄d� b abc̄d̄� b

ābc̄d� b ābc̄d̄� b

ab̄c̄d� − ab̄c̄d̄� −
āb̄c̄d� − āb̄c̄d̄� −

Since firings must involve at least one port, we can remove all those that don’t fire, but
for now they’re there to make it easier to see patterns. Observe that there are only 4
different firing sets in the table, b, ac, bc and bcd, and all of them are listed multiple
times. Take a look at the four instances of b firing. In all four cases b is triggered and
c is not; and there are four cases because every permutation of a and d being triggered
is in there as well. Clearly it doesn’t matter whether or not a and d are triggered. So
instead of writing out |P |2 permutations of triggered ports, or triggered sets, we will make
Boolean expressions over P . These expressions are called guards and we will put them in
the place of the triggered sets. They are identical to the guards used in Reo automata.
The Boolean variable a (seperated from the firing set element a by being on the left of
the � symbol) is considered true if a ∈ t, and false otherwise. We will also add brackets
which will be helpful when we make expressions. This leaves us with the following firings:

[(a ∧ b ∧ c̄ ∧ d) ∨ (ā ∧ b ∧ c̄ ∧ d) ∨ (a ∧ b ∧ c̄ ∧ d̄) ∨ (ā ∧ b ∧ c̄ ∧ d̄)� b]

[(a ∧ b ∧ c ∧ d) ∨ (a ∧ b̄ ∧ c ∧ d) ∨ (a ∧ b ∧ c ∧ d̄) ∨ (a ∧ b̄ ∧ c ∧ d̄)� ac]

[(a ∧ b ∧ c ∧ d̄) ∨ (ā ∧ b ∧ c ∧ d̄)� bc]

8

[(a ∧ b ∧ c ∧ d) ∨ (ā ∧ b ∧ c ∧ d)� bcd]

We can group common terms and simplify by using the idempotency a ∨ a = a.

[(a ∨ ā) ∧ b ∧ c̄ ∧ (d ∨ d̄)� b]
[a ∧ (b ∨ b̄) ∧ c ∧ (d ∨ d̄)� ac]

[(a ∨ ā) ∧ b ∧ c ∧ d̄� bc]
[(a ∨ ā)b ∧ c ∧ d� bcd]

And we can simplify instances of a∨ā to 1 and then remove them because 1 is the identity
of ∧.

[b ∧ c̄� b]
[a ∧ c� ac]

[b ∧ c ∧ d̄� bc]
[b ∧ c ∧ d� bcd]

We can simplify these in a few additional steps. Observe that in order for a firing to occur,
the ports that fire must always be triggered. Knowing that, we don’t have to explicitly
state it in the guards. Note that while we won’t explicitly state them in guards anymore,
they are still implicitly there and must be taken into account when performing operations
on the guards.

[c̄� b]
[� ac]

[d̄� bc]
[� bcd]

Now that we have made those guards implicit and with the knowledge that a firing set
can’t be empty, we can remove the � symbol if the firing doesn’t have an explicit guard
anymore. Also if there is only one port in the firing set, we can remove the brackets as
well ([� a] becomes a).

[c̄� b]
[ac]

[d̄� bc]
[bcd]

Now we will formally define what we made here.

Definition 3.1. Let P be a set of ports. A firing set is a nonempty subset of P .

9

Definition 3.2. Let P be a set of ports, and BP be the set of possible guards over P . A
firing is a pair (g, f) with g ∈ BP a guard, and f a firing set.

We will continue writing firings as [g � f]. We will now define an operator to combine
firings that will be used in later sections.

Definition 3.3. Let t = (g, f) be a firing. t is satisfiable if and only if f � g.

The guard always includes an and over the firing set. So if f 3 g there are two options.
The first is that g is unsatisfiable. If g contains a subexpression like a∧ā it can never hold.
The second is that some additional port or ports must be triggered in order to satisfy g.
However, there is no mechanism in Reo where a port being triggered could enable a firing
on other ports. That port can only block that firing by enabling some other firing through
the lossy sync or a similar channel. So a guard like this can’t be implemented in Reo,
and a specification including it is not a valid specification for a Reo circuit. We assume
here that all specifications are valid, and conclude that a firing that is not satisfiable can
never fire.

Definition 3.4. Let t1 = (g1, f1) and t2 = (g2, f2) be two firings from the set of all firings
F . Their combination t = t14t2 is a partial function F × F ⇀ F defined as follows:
t = (g, f) is a firing with firing set f = f1 ∪ f2 and guard g = g1 ∧ g2. It is defined only
if f1 ∩ f2 = ∅ and t is satisfiable.

For example:
a4b = [ab]

[ā� b]4[c̄� d] = [ā ∧ c̄� bd]
[ā� b]4a = undefined

Observe that in the last example the combination would be [ā ∧ b ∧ a � ab]. However,
that result is unsatisfiable because a ∧ ā = false, so the combination is undefined. The
combination operator will be used for letting two firings occur in parallel in Section 3.3.

3.3 Expressions

With a definition for firings in hand, we will now use them to define Reo expressions.
We will then identify a few problems with the expressions and define new operators to
improve them. A Reo expression is similar to a regular expressions, with some subtle
changes and two new operators which we define here. A full definition of Reo expressions
and the languages generated by Reo expressions are at the end of this section.

If we go back to our example in Figure 3.2, we can take the firings we made there and
make the following expression:

([c̄� b] + [ac] + [d̄� bc] + [bcd])∗

For any circuit without internal storage we can simply take all possible firings, put +
symbols between them, and take the Kleene star of the result. However, for circuits with

10

a

b

c

•

Figure 3.3: 3-way Sequencer

a

b

c

d

e

f

Figure 3.4: 3 Input Buffers, Synchronous Output

internal storage, some firings will be enabled or disabled by the presence of data in that
storage. If we look at the sequencer in Figure 3.3, we can see that a, b and c must occur
in that order before the pattern repeats. So the expression for this circuit is ([a] · [b] · [c])∗,
which we can shorten to (abc)∗.

So our expressions work well for choice and sequences. Where we start to notice some
problems is in the example in Figure 3.4. It is not a very complicated circuit. It just reads
inputs from a, b and c in any order and then outputs the data to d, e and f simultaneously.
However, if we put that in a Reo expression we have to state every order in which it can
read from a, b and c. This gives us the expression ((abc+acb+bac+bca+cab+cba)[def])∗,
or alternatively ((a(bc+ cb) + b(ac+ ca) + c(ab+ ba))[def])∗.

If we have two FIFO-buffers in a circuit that are completely unrelated to each other as
in Figure 3.5, we have to always remember the state of both buffers in our expression.
This leads to the overly complicated expression (a(b + (c(ba)∗d)∗b + (c(ba)∗bd)) + c(d +
(a(dc)∗b)∗d+(a(dc)∗db)))∗, and this example has only 4 states the buffers can be in. We’re
not even going to attempt to make an expression for two copies of Figure 3.4. Making
monitors should not be more complicated than making an implementation. Thankfully
we don’t have to worry about that, because we will make the expressions much simpler
by introducing the shuffle operator as discussed in (Broda et al. [3]).

Definition 3.5. Let Σ be an alphabet, the shuffle over two strings in Σ∗ is a set of

a

c

b

d

Figure 3.5: 2 Unconnected Buffers

11

a

b

c

d

Figure 3.6: 2 Asynchronous Buffers

strings in Σ∗, and it is recursively defined as follows; with x, y ∈ Σ∗ and a, b ∈ Σ.
x� ε = ε� x = {x}
ax� by = {az|z ∈ x� by} ∪ {bz|z ∈ ax� y}

This definition can be trivially expanded to Reo expressions by letting a and b refer to
firings and x and y refer to Reo expressions.

Using the shuffle operator we can make much shorter and simpler expressions for the
examples we discussed. An expression for Figure 3.4 is now ((a� b� c)[def])∗; and for
Figure 3.5 we’ll only need (ab)∗ � (cd)∗. However, we are not done yet, because these
expressions are not entirely correct. Reo allows for ports to fire simultaneously in some
cases, when there is no overlap between them. Since the two buffers in Figure 3.5 are
completely independent, if a firing occurs on the one, a firing can occur on the other at
the same time. We will need another new operator for this, the parallel operator. This
operator is inspired by a similar operator used in process algebra. It only works on strings
of sets.

Definition 3.6. Let Σ be an alphabet, and P(Σ) be the powerset of Σ. The parallel of
two strings of sets in P(Σ)∗ is a set of strings in P(Σ)∗ that is inductively defined as
follows; with x, y ∈ P(Σ)∗ and a, b ∈ P(Σ).
x||ε = ε||x = {x}

ax||by =

{az|z ∈ x||by} ∪ {bz|z ∈ ax||y} ∪ {(a ∪ b)z|z ∈ x||y} if a ∩ b = ∅
{az|z ∈ x||by} ∪ {bz|z ∈ ax||y} otherwise

This can be expanded from strings of sets of alphabet symbols to firings as follows.

Definition 3.7. Let P be a set of ports, and T be the set of all firings over P . The
parallel of two strings of firings in T ∗ is a set of strings in T ∗ that is inductively defined
as follows; with x, y ∈ T ∗ and a, b ∈ T .
x||ε = ε||x = {x}

ax||by =

{az|z ∈ x||by} ∪ {bz|z ∈ ax||y} ∪ {(a4b)z|z ∈ x||y} if a4b exists
{az|z ∈ x||by} ∪ {bz|z ∈ ax||y} otherwise

The parallel operator is similar to the shuffle operator, except it explicitly says two firings,
a from one side and b from the other, can fire simultaneously if a4b exists and both a
and b can fire. So the correct expressions for the two examples are ((a||b||c)[def])∗ and
(ab)∗||(cd)∗ respectively. We will also continue to use the shuffle operator, which may be
useful in case someone wants to specifically disallow parallel behavior, such as in Figure
3.6.

Now that we have defined the new operators we can formally define Reo expressions.

12

Definition 3.8. Given a set of ports P , a Reo expression denotes a set of strings of
firings t = (gt, ft) in T , the set of all firings over P . It is recursively defined as follows.

• ∅, the empty set, is a Reo expression
• ε, denoting the set containing only the empty string, is a Reo expression
• t ∈ T , denoting the set containing only the firing t, is a Reo expression.
• If α and β are Reo expressions, α+β is a Reo expression denoting the union α∪β.
• If α and β are Reo expressions, α · β (often shortened to αβ) is a Reo expression

denoting the set of all strings xy with x ∈ α and y ∈ β.
• If α is a Reo expression, α∗ is a Reo expression denoting the set of strings that are

0 or more elements of α in sequence.
• If α and β are Reo expressions, α� β is a Reo expression denoting the shuffle of α

and β.
• If α and β are Reo expressions, α||β is a Reo expression denoting the parallel run

of α and β.
• Nothing else is a Reo expression.

Definition 3.9. Given a Reo expression τ over the set of ports P . The language of τ ,
or L(τ), is the prefix closure of L(τ) which is recursively defined as follows, where t is a
firing (gt, ft).

• L(∅) = ∅
• L(ε) = {ε}
• L(t) = {(α,N) : N = ft, α � gt}
• L(α + β) = L(α) ∪ L(β)
• L(α · β) = L(α) · L(β)
• L(α∗) = L(α)∗
• L(α� β) = L(α)� L(β)
• L(α||β) = L(α)||L(β)

Where L(α) · L(β) is the set of all strings ab with a ∈ L(α) and b ∈ L(β).
Where L(α)� L(β) is the set of all strings a� b with a ∈ L(α) and b ∈ L(β).
And where L(α)||L(β) is the set of all strings a||b with a ∈ L(α) and b ∈ L(β).

The definition of L(τ) as the prefix closure of L(τ) means that for any string xy ∈ L(τ),
x ∈ L(τ). Any prefix of a string that is accepted by the Reo expression, is also accepted
by that Reo expression.

With Reo expressions we are able to make any specification for the behavior of a Reo-like
circuit. The parallel and shuffle operators allow us to do so while keeping the expressions
at a reasonable size and human-readable. Now it’s time to use the expressions to build
monitors.

4 Building Monitors

In order to use Reo expressions to monitor an implementation, we are going to convert the
expressions into automata. We will discuss two different methods. The first is a modified
Thompson Construction in Section 4.1. In Section 4.2 we will discuss a method using

13

α

Figure 4.1: Construction Invariant Automaton

derivatives of Reo expressions. Finally, in Section 4.3 we will compare the two methods
and look at why you would choose one over the other.

4.1 Improved Thompson Construction

We make two versions of this construction, the full automaton construction and the splits
and joins construction.

4.1.1 Full Automaton Construction

In this section we construct Reo automata by adapting an improved version of the Thomp-
son Construction from (Ilie and Yu [5]). This version uses an invariant that has one initial
state with no incoming transitions and one accepting state with no outgoing transitions.
It will be non-deterministic and contain ε-transitions, but the invariant limits both, be-
cause it is safe to combine initial and accepting states of different (sub)automata without
unintentionally allowing incorrect behavior. Reo automata don’t have accepting states,
but they are used in the construction to indicate which states should be merged and are
used only for that purpose. Once construction is complete any states marked as accepting
will be treated as an ordinary state.

The construction is done depth-first on the parse tree of the Reo expression. For the
expression α + β, the automata for α and β are constructed first, and then combined
into an automaton for α + β. For that construction it is irrelevant what α and β do, as
long as they match the invariant. So regardless of what it looks like internally, for the
purposes of the next step of the construction the automaton for some subexpression α
always looks like Figure 4.1.

The construction rules are given in Table 3. The steps are applied depth-first. This table
does not include rules for shuffle and parallel. The visual descriptors break down when
we add constructions for these operators, because we have to work with internal states.

For α � β we will construct a composite of the automata α and β by making a new
automaton γ. For every state a in α and b in β we create a state (a, b) in γ. For every
transition from a to a′ in α we create a transition from each state (a, b) to (a′, b) in γ
with the same transition symbol. Symmetrically, for every transition from b to b′ in β we
create a transition from each state (a, b) to (a, b′) in γ. If the initial states of α and β are
a0 and b0 respectively, the initial state of γ is (a0, b0). Similarly if the accepting states are
af and bf respectively, the accepting state γ will be (af , bf).

Observe that since neither a0 nor b0 had incoming transitions, and our construction
doesn’t add them, (a0, b0), the initial state of γ, doesn’t have any either. Similarly the
accepting state (af , bf) doesn’t have any outgoing transitions. Therefore the invariant
holds.

14

ε

ε

(g, f)
(g, f)

Union α + β

α

β

Concatenation α · β
α β

Iteration α∗

α

ε ε

Table 3: Improved Thompson Construction

The construction for the expression α||β is identical to the construction for α�β, except
it adds another step. For every state (a, b) in γ and every transition t1 from (a, b) to
(a′, b) and t2 from (a, b′), if neither t1 nor t2 are ε-transitions and if t14t2 exists, add a
transition from (a, b) to (a′, b′) with transition symbol t14t2.

Note that we do not combine ε-transitions. They can already be taken at any time, so
adding combinations with ε-transitions would add unnecessary transitions.

Theorem 4.1. Let E be a Reo expression, and let M be the Reo automaton generated
from E by the construction.
L(E) = L(M).

Proof. Definition 3.9 lists the language of a Reo expression for each base case and oper-
ator. For L(∅) the construction makes no automaton, and so the automaton can’t accept
any language.
For L(t) with t = (gt, ft) the Reo expression accepts any (α,N) such that N = ft and
α � gt. After construction the transition generated from t has guard gt and firing set ft
and originates from q0. Per Definition 2.8 it accepts the same (α,N).
The correctness for ε, union, concatenation and iteration are clear from the construction.
Let E be the Reo expression α� β and let M be the Reo automaton generated from E.
Let x be a string accepted by α, and y be a string accepted by β. Let Mα and Mβ be the
automata for α and β. There must be some path of states q0q1q2 . . . in α that accepts x
with the transitions t0 from q0 to q1, t1 from q1 to q2 etc. In the composite automaton
M the initial state is (q0, qβ) with qβ the initial state of Mβ. By construction, from any
(qx, qβ) there is a transition tx to qx+1. Processing symbols from y triggers transitions from
(qx, qβ) to (qx, q′β). From there a transition tx to (qx+1, q

′
β) also exists by construction. So

any interleaved string x� y, where x is accepted by Mα and y by Mβ, will be accepted
by M .
The parallel case is identical to the shuffle case except that it allows combinations of fir-
ings a4b. Observe that in both the expression and the automaton that is only allowed if
a4b exists. If a combination exists, by definition the expression ax||by accepts any string

15

(a4b)z where z is accepted by x||y. If α and β accept azα and bzβ respectively such that
zα4zβ = z, then reading a from qa, the initial state of Mα, leads to a state q′α that accepts
zα and reading b from qβ leads to a state q′β that accepts zβ. By construction M has a
transition for a4b from (qα, qβ) to (q′α, q′β), and inductively (q′α, q′β) accepts zα4zβ = z.
Lastly, both Reo automata and Reo expressions are prefix-closed.
Therefore L(E) = L(M) holds in all individual cases and inductively holds in all cases.

There are four improvements that can be made to these automata as suggested by Ilie
and Yu [5], which are repeated below. For the sake of clarity and simplicity we won’t
be actively using them in the construction of automata with the exception of rule (d),
but we may refer to them later. Improvement (d) was modified because we can merge
transitions with the same source, destination and firing set even when their guards differ.

(a) After concatenation, if the merged state p has exactly one outgoing transition p ε−→ q,
the states p and q can be merged and the transition removed. Otherwise if p has
exactly one incoming transition q

ε−→ p, p and q can be merged and the transition
removed.

(b) After building an iteration, if there are any loops of ε-transitions from the middle
state back to the middle state, merge all states in those loops and remove the
ε-transitions.

(c) After the construction is complete, if the initial state has exactly one outgoing
transition labeled ε, remove that transition and merge the initial state with the
destination of the transition.

(d) When there are multiple transitions with the same source, destination and firing
set, replace them with a single transition with that source, destination and firing
set and the union over the guards of the transitions.

Let M = (Q,P, δ, q0 be a Reo automaton built by the construction. In order to monitor an
implementation we keep a set of states S ⊆ Q that the system could be in. Initially we will
add to that set the initial state, and any state reachable from there using ε-transitions.
We can then remove any states from the set for which the only outgoing transitions are
ε-transitions, with the exception of a state with no outgoing transitions. By construction,
there is exactly one such state. Whenever we observe a firing f , we make a new set of
states S ′. For every s ∈ S, for every outgoing transition from s to some s′ that accepts f ,
we add s′ to S ′. Then we also add every state reachable from s′ using only ε-transitions
to S ′, and we once again remove all states with only outgoing ε-transitions (that have
outgoing transitions). Then we delete S and replace it with S ′ and continue. If at any
point S is empty, we have detected an error. This is what we’re monitoring for.

Observe that the shuffle and parallel operators add a lot of states and especially transitions
to the automaton. That is because the shuffle and parallel operators very effectively reduce
the size of Reo expressions, and we don’t have a similar structure for the automata. For
example, if we have a checklist with 26 points; a circuit that might be used in a system
with 26 components where we have to wait for each component to be ready before we can
start. We do not care about the order in which they are ready and multiple components
may report ready at the same time. The expression for that system is a||b||c|| . . . ||y||z.
Each of the one-letter subautomata has 2 states. Therefore the total automaton will have
226 states. Observe that from the initial state it is possible to reach every single other

16

state in a single transition, so there are 226 − 1 transitions from that state alone. The
total number of transitions is as follows.

26∑
n=0

(
26
n

)
(226−n − 1) = 2, 541, 798, 719, 465

Note that n is the number of letters checked, the binomial coefficient is how many possibil-
ities there are for having checked n letters, and (226−n−1) is all the possible combinations
of letters that could still be read if n letters have already been read. Storing all those
transitions would take terabytes of data. Asking someone to run something that big just
to monitor their much smaller program is unreasonable. What we need is some structure
on automata that serves the same function as the shuffle and parallel operators do in
expressions. We will call that structure splits and joins.

4.1.2 Splits and Joins

If we don’t want to break open the subautomata α and β to combine them, we have to
connect them on the edges instead. When we get to the initial state of our automaton
for α � β we will split our attention and look at both sides simultaneously. So what
we’ll do is combine the initial states of α and β into a split state, essentially splitting the
automaton into two automata. The automaton will be in a state in both subautomata.
So it is simultaneously in the initial state of α and the initial state of β. When a firing
occurs we take a transition from one of the two states to whatever state the transition
leads to, and remain in the state we were in in the other.

For the parallel operator, we will consider splitting the firing, taking part of it as a
transition on one side and another part on the other.

We also combine the accepting states of the two subautomata into a join state. If the join
state is accepting, it only accepts if both subautomata are in the join state, and a join
state only allows outward transitions if both subautomata are in the join state.

Definition 4.1. A split state is a triple of three states, the top state and two branch
states. If a system is in the top state, it is considered to be in both branch states as well.
The branch states may not have any incoming transitions. The split state is also either a
shuffle-split state or a parallel-split state.

Definition 4.2. A join state is a triple of three states, the top state and two branch
states. If the system is in both of the branch states, it is also in the top state. The branch
states may not have any outgoing transitions.

Note that the split states and join states are opposites of each other. While we will
continue calling split states and join states states, it makes sense for the construction to
treat them as three separate states. With the splits and joins, we can define graphically
what the construction is for the shuffle and parallel operators in Table 4. The big states
are the top states and the two smaller states connected to each top state are the matching
branch states. Observe that our graphical representation breaks down somewhat when
combining multiple shuffle or parallel operators together, such as in ((a� b) + (c� d)) ·
((a � b) + (c � d)) where the top states of two joins and two splits are all the same

17

Shuffle α� β

�
↘
↗

α

β

Parallel α||β

|| ↘
↗

α

β

Table 4: Shuffle and Parallel Additions to Improved Thompson Construction

state, but that only affects the graphical representation. Note that in the construction,
improvement (a) from the previous section does not apply to branch states.

There is one downside to this construction over the larger one from Section 4.1.1, which
is that we no longer have a transition for every valid input. This is especially a problem
for the parallel operator. If we are in a pair of states under a parallel operator, and there
is a firing where 10 ports fire, we have to check each of the 210 possible ways to divide
the ports over the two branches to find which ones lead to a valid transition and which
ones don’t. In the checklist example at the end of Section 4.1.1, if we fired 10 ports, we
would have to check every way those 10 ports could be divided over 26 branches, which
leads to 2610 = 141, 167, 095, 653, 376 possibilities, from which exactly one will lead to a
transition. We need to be able to tell which way to go, so we will introduce a rule on the
use of parallel operators.

Definition 4.3. In the expression α||β, the union of all firing sets from all firings in α
must be disjoint from the union of all firing sets from all firings in β.

In essence, the parallel operator may only be used on two subexpressions that cover a
completely separate subset of ports. Note that it isn’t nearly as important to have this
rule for the shuffle operator. The same checklist example with shuffle instead of parallel
operators would only have 26 different possibilities. Therefore we do not extend it to
shuffle. However, the meaning and use cases behind a�a are questionable and one might
easily choose differently.

With the rule in place we can, for every parallel-split, have two sets of ports. One set
has the ports which are used in one branch, and one has the ports which are used in the
other. If we are in a pair of states under a parallel operator now, and there is a firing
where 10 ports fire again, all we have to do is check, for each of the ports, which of those
two sets they are in. When we have divided them over the two branches, we can look
for transitions from one of the states with one subset, and from the other state with the
other subset.

With the splits and joins and the new rule, we can make monitors. In Section 4.1.1 we
made monitors that kept a set of states the automaton could be in. This will no longer be
enough, since we can be in multiple states at once. We could make sets of sets of states
and that would contain all the information we need, but it would necessitate checking
which two states belong to the same pair of branches. It would be much more efficient to
store that information as well, and to that end we will make sets of binary trees instead.

18

||
0 1

3

2

4

↘
↗

5a

b
1, 3

2, 3

1, 4

2, 4

a

b

b

a

[ab]

Figure 4.2: Comparison Full Construction and Splits and Joins

The trees have two types of nodes. The first type is the split node. Each split node is either
a shuffle-split node or a parallel-split node, and, in the case of parallel-split, contains (or
links to) the sets of ports each branch of the split covers. The other type of node is the
state-node. It contains exactly one state from the automaton. All leaf nodes are state
nodes and all other nodes are split nodes. Every split node has exactly two children, one
for the left branch and one for the right branch.

We make a set of trees S, and first insert a tree with one state node with the initial state
of the automaton.

Whenever a firing occurs the monitor calls a recursive function called FindTransitions on
the root of all trees in S. FindTransitions has three arguments; a tree x, a set of ports p
and a set of ports that were triggered pt, and it returns a set of trees. We send the trees
from S to x, the ports that fire to p and the ports that were triggered to pt. We replace
S with the union of the return values. Pseudocode for the FindTransitions function is
found in Algorithm 1.

The gist of it is that it finds all transitions that can be taken from trees in S and returns
all the states or trees of states they lead to. It does so depth-first on the trees, and it
takes splits and joins whenever needed, growing or shrinking the trees in the process.

Note that the pseudocode does not deal with ε-transitions at all. ε-Transitions should be
taken from every a and b in the if-statement on line 6; every d in the else clause of that
if-statement, and every top state c found on line 42, adding all reachable states or pairs
of states to the relevant sets, or making the necessary recursive calls. It also doesn’t deal
with the case where a state is the top state for multiple splits. ε-transitions should also
be taken from the branch states of a split state as possible. FindTransitions should never
return the tree with both branch states of a split, since it could only do that if the top
state of that split is also returned, and the tree would add no new information.

If S is ever empty, the monitor has detected an error and should act accordingly. This is
the value that is monitored and as long as the set is not empty, the implementation is
working correctly to the best of our knowledge.

Automata made with splits and joins don’t much look like the Reo automata that we
were aiming for. However, if we look at the comparison in Figure 4.2, we can clearly see
that when we are in state (1, 3) in the full construction, we are in a tree with leaves 1 and
3 in the splits and joins construction. From there we can take transitions with a, b and
[ab]. These are exactly the same transitions that can be taken from (1, 3). The automaton
with splits and joins, together with the trees we introduced to identify states, are simply
a different representation of the exact same automaton. So technically we still have all the
same states, but by using splits and joins and storing them as trees we only have to store

19

Algorithm 1 FindTransitions
1: function FindTransitions(x, p, pt)
2: if p = ∅ then . If no ports are sent to this branch,
3: return x , . take no transitions
4: else if x is a state node then
5: R← ∅
6: if x is a split state with operator o and branch states a and b then
7: make a new tree y with o as root
8: add a and b as children of o
9: R = FindTransitions(y, p, pt)

10: end if . If x is a split, also explore the branches
11: for all transitions t from x to d do . Find transitions from x
12: if t has firing set p and is enabled by pt then
13: make a new tree y with root d
14: add y to R
15: end if
16: end for
17: return R . Return all trees found
18: else . t is the top node of a (sub)tree
19: R← ∅
20: if t is shuffle-split then . Take transitions in 1 branch
21: a← FindTransitions(tleft, p, pt)
22: b← FindTransitions(tright, p, pt)
23: R← all trees with ai ∈ a as left child and tright as right child
24: R← R∪ all trees with bi ∈ b as right child and tleft as left child
25: else . t is parellel=split
26: pa ← subset of p associated with left branch of operator in root of t
27: pb ← subset of p associated with right branch of operator in root of t
28: if pa ∪ pb = p then . if a port is in neither branch, stop looking
29: a← FindTransitions(tleft, pa, pt)
30: if a 6= ∅ then . otherwise we know we’re done
31: b← FindTransitions(tright, pb, pt)
32: end if
33: for all ai ∈ a and bj ∈ b do
34: Make a new tree y with the same root as t
35: t′left ← ai . combine all options for the left branch
36: t′right ← bj . with all options for the right
37: add y to R
38: end for
39: end if
40: end if
41: for all Trees in R with operator x as root with two leaf nodes a and b do
42: if a and b are branch states of a join with top state c then
43: Remove the subtree and replace it with c
44: end if
45: end for
46: return R
47: end if
48: end function

20

the ones the automaton could actually be in, and not all of them. Instances where we can
be in so many different possible states that it becomes problematic in computation time
or storage space should be exceedingly rare.

It is clear from the construction that L(E) = L(M) from Theorem 4.1 also holds for the
splits and joins construction.

4.2 Derivative Automata

In this section we will make automata on the fly instead of making them beforehand. We
will be doing that using Brzozowski derivatives of our Reo expressions, first introduced
in (Brzozowski [4]). The derivative is what is left of the expression after reading a symbol
(or in this case a firing). For example the derivative after reading a in ab, or δa(ab), is b.

There are two Reo expressions that we haven’t used before, but will now. They are 0 and
1, and they are synonyms of ∅ and ε respectively. Using 0 and 1 makes the definitions
below easier to understand.

The function ε over Reo expressions is defined below. The function determines if the
empty string is accepted by the expression E. For this specific function, the expression
is not prefix-closed and ε only returns 1 if ε ∈ L(E) (see Definition 3.9). We have added
entries for the shuffle and parallel operators.

Definition 4.4. Given a Reo expression E the function ε(E) is recursively defined as
follows:
ε(0) = 0
ε(1) = 1
ε(a) = 0
ε(α + β) = Max(ε(α), ε(β))
ε(α · β) = Min(ε(α), ε(β))
ε(α∗) = 1
ε(α� β) = Min(ε(α), ε(β))
ε(α||β) = Min(ε(α), ε(β))

In the definition of derivatives below, we have added a check for the guards and entries
for the shuffle and parallel operators.

Definition 4.5. Given a Reo expression E over ports P , the derivative of E with regards
to some firing a = (v,N) with v (usually called α) a Boolean valuation for each port in
P and N ⊆ P , δa(E), is recursively defined as follows:
δa(E) = E for any expression E if N = ∅
δa(0) = 0
δa(1) = 0

δa(b) =

1 if a = (α,N) and fb = N and α � gb
0 otherwise

δa(α + β) = δa(α) + δa(β)
δa(α · β) = δa(α) · β + ε(α)δa(β)
δa(α∗) = δa(αα∗)

21

δa(α� β) = δa(α)� β + α� δa(β)
δa(α||β) = ∑

b∪c=a,b∩c=∅
δb(α)||δc(β)

The δa(E) = E case can only occur after a parallel case where b = a and therefore c = ∅,
or c = a and b = ∅.

Theorem 4.2. Let E be a Reo expression and ax ∈ L(E): x ∈ L(δa(E)).

Proof. The proof follows from Definition 3.9. The construction of the derivatives precisely
follows the rules set out in that definition, and in Definitions 3.5 and 3.7.

The monitor will need to simplify the resulting expression to detect if it has found an
error. This is done recursively and depth first, and can be done while calculating the
derivative or separately afterwards. The simplifications are as follows:

0 + α = α + 0 = α

0 · α = α · 0 = 0 1 · α = α · 1 = α

0� α = α� 0 = 0 1� α = α� 1 = α

0||α = α||0 = 0 1||α = α||1 = α

0∗ = 1 1∗ = 1

In all other cases, no changes are made. Observe that the one simplification that appears
to be missing is 1 + α. This can’t be simplified because ε(1 + α) = 1 regardless of the
value of α; but the derivative δa(1 + α) = δa(α). Simplifying 1 + α to 1 would break the
derivative and simplifying it to α would break the ε-function. In all cases listed above the
simplification works for both the derivative and ε.

After the expression has been simplified, if the resulting expression is 0, an error has been
detected in the implementation, and monitoring stops.

There are several places we can optimize this algorithm. Observe that, as in Section 4.1.2
a parallel operator on a firing with n ports generates 2n unique subexpressions. This can
be avoided again by enforcing the rule in Definition 4.3. With that rule and the necessary
metadata about which ports belong on which side of the operator, only one subexpression
will have to be made.

Another optimization we can make is duplicate detection. Take the example (a∗)∗. We
will take the derivative twice.

δa(a∗)∗ = δa(a∗)(a∗)∗ = δa(a)a∗(a∗)∗ = 1a∗(a∗)∗ = a∗(a∗)∗

δa(a∗(a∗)∗) = δa(a∗)(a∗)∗ + ε(a∗)δa(a∗)∗ = 1a∗(a∗)∗ + 1a∗(a∗)∗ = a∗(a∗)∗ + a∗(a∗)∗

The problem here is that every time we take that derivative we double the size of the
expression. Obviously a∗(a∗)∗ + a∗(a∗)∗ = a∗(a∗)∗. We can detect duplicates over + by
comparing either parse trees or the strings that represent the subexpression, and remove
duplicates from there. It may be necessary to detect duplicates over associativity as well,
as in a + b + a = a + b. Together these should deal with most instances of expressions
growing in size unnecessarily.

22

We have now made a working monitor, but we can choose to build a Reo automaton by
remembering all the expressions the monitor has already seen as states and all the firings
that have been processed as transitions. The construction isn’t very complicated. The
initial expression becomes the initial state. When a new firing is observed the monitor
checks to see if a transition exists for it and takes that transition. If it doesn’t exist,
it calculates the derivative. If that derivative matches a state that already exists, the
monitor makes a transition from the current state to that state and takes it. Otherwise
it makes a new state with the derivative and makes a transition there.

There are two things we glossed over in describing the construction, the first of which is
what it means for two expressions e1 and e2 to match. There is some flexibility in how we
define expressions matching, the strongest of which is equivalence. The expressions e1 and
e2 are equivalent if and only if L(e1) = L(e2). The trivial way to test if two expressions
are equivalent is to construct the minimal (Reo) automaton for both expressions and
compare them, but using that method we would need to construct the entire automaton
in the first step, so any time and memory saved by not doing that is gone. There are
many other, more efficient methods for finding equivalence between regular expressions
and any of them can be used in this construction. However we will not focus on those
methods here.

Instead of expression-equivalence we’ll use lexicographical equivalence. Two expressions
are only equivalent if they are exactly the same. For our purposes in many cases that
will be enough. The derivatives generated are generally well-behaved and while they will
absolutely spawn copies of subexpressions, they won’t rearrange subexpressions and they
will spawn copies in a predictable and consistent manner. If there is a subexpression
a+ b, and no other instances of a or b, there is no combination of derivatives that can be
taken that will generate the subexpression b + a. Experiments will have to show if, and
under what circumstances, it is necessary to reorder expressions into a canonical form
to determine if they are equivalent by associativity or commutativity. It is unclear how
the cost of doing so compares to the benefit of possibly having fewer states in the final
automaton.

We also glossed over making transitions. Obviously the firing set will be the set of ports
that fired, and the source and destination are clear, but the guard is more complicated.
The simplest way to make the guard is to take the and over the states of all the ports.
So if we have ports {a, b, c} and a fires when a and b are enabled, the guard would be
a ∧ b ∧ c̄ because that was what was observed. Then if we have the same firing from the
same state with a, b and c enabled, instead of adding a new transition, we would do an
or over the two guards. So we would get (a∧ b∧ c̄)∨ (a∧ b∧ c) which we can simplify to
a ∧ b ∧ (c̄ ∨ c) and further to a ∧ b. However in circuits where a typical firing only relies
on a small subset of ports, it can take a very long time to find that information.

We can do better by combining the guards of every derivative we take. When a firing
occurs we make a new empty Boolean expression g = 1. Whenever we encounter a δa(b)
case, and fb = a and the guard gb holds, g becomes g ∧ gb. If fb = a and gb does not
hold, g becomes g∧¬gb. The final g covers every instance where all of the subexpressions
return the same result. This doesn’t necessarily mean this is the exact right guard for
this transition, but it is guaranteed to be correct and it will be much closer than before.

We can also do better comparing expressions to the expressions already in the automaton.

23

0

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

1

ε

ε

a

b

c

[ab]
[ac]

[bc]
[abc]

b

c
[bc]

a

c

[ac]

a

b

[ab]

c

b

a

d

b

ε

ε

b

ε

ε

a

ε

a

a

a

ε

b

ε

b

ε

c

b

b

Figure 4.3: Full automaton construction

Instead of simply comparing the new expression to all the expressions we’ve had before,
we can use a hashing function or a binary search tree or a similar data structure to store
the states and find the right one, or the non-existance thereof, much more efficiently.

4.3 Method Comparisons by an Example

So now we have four methods to make automata out of expressions: the full automaton
construction, the automaton construction with splits and joins, the derivative construc-
tion and the derivative construction that builds an automaton. We will start with a big
example and do the construction for each method. We will simply mark which expressions
are identical for the derivative construction with arrows, because the actual derivatives
are the same whether we build an automaton or not. The example is the specification
((a||b||c)d((a∗� bb) + a∗c))∗, and the string a[bc]daabbad.

The constructed full automaton is shown in Figure 4.3. The area between states 1 and 9
is a little hard to read, but it may help to know that all labels are above their respective
transitions. The automaton with splits and joins is shown in Figure 4.4. Note that both
automata have two states 1. They are the same state, but overlapping them would make
the picture less clear, and we don’t have graphical notation for a state being simultane-
ously the top state of a join and a split. Their sets of states respectively sets of trees are
in Table 5.

The derivatives are in Table 6. Whenever a symbol is read, the table shows an unsimplified
derivative and a simplified one on the next line. Subexpressions that simplify to +0 are
omitted. Arrows mark the three simplified expressions that are identical and would be
the same state if we built an automaton. The last column is part of the expression, but
since that part never changes it is separated out for clarity.

24

0

||1

2

||
3

4

5

6

7

8

↘
↗

3

↘
↗

11

10
�

12

13

14

15

16

17

18

19

20

↘
↗

1
ε

ε

a

b

c

d

ε

ε
a

ε

b

a

ε

b

c

Figure 4.4: Splits and joins construction

{0, 1, 2} {0, 1, 2}

a {3}



||

||

76

4


[bc] {9} {11}

d {10, 13, 14, 17, 19} {12, 13, 18} ∪


�

1615

�

1915


a {13, 14, 17, 19} {13, 18} ∪


�

1615

�

1915


a {13, 14, 17, 19} {13, 18} ∪


�

1615

�

1915


b {15, 18}


�

1617

�

1917


b {1, 2, 16} {1, 2} ∪


�

1620



a {1, 2, 3, 16} {1, 2}



�

1620

||

||

76

4


d ∅ ∅

Table 5: Sets of States and Sets of Trees Example

25

0 ((a||b||c)d((a∗� bb) + a∗c))∗

a (1||b||c)d((a∗� bb) + a∗c) ((a||b||c)d((a∗� bb) + a∗c))∗

1 (b||c)d((a∗� bb) + a∗c) ((a||b||c)d((a∗� bb) + a∗c))∗

[bc] (1||1)d((a∗� bb) + a∗c) ((a||b||c)d((a∗� bb) + a∗c))∗

2 d((a∗� bb) + a∗c) ((a||b||c)d((a∗� bb) + a∗c))∗

d 1((a∗� bb) + a∗c) ((a||b||c)d((a∗� bb) + a∗c))∗

3 → ((a∗� bb) + a∗c) ((a||b||c)d((a∗� bb) + a∗c))∗

a ((1a∗� bb) + 1a∗c) ((a||b||c)d((a∗� bb) + a∗c))∗

4 → ((a∗� bb) + a∗c) ((a||b||c)d((a∗� bb) + a∗c))∗

a ((1a∗� bb) + 1a∗c) ((a||b||c)d((a∗� bb) + a∗c))∗

5 → ((a∗� bb) + a∗c) ((a||b||c)d((a∗� bb) + a∗c))∗

b ((a∗� 1b) + 0) ((a||b||c)d((a∗� bb) + a∗c))∗

6 (a∗� b) ((a||b||c)d((a∗� bb) + a∗c))∗

b (a∗� 1) ((a||b||c)d((a∗� bb) + a∗c))∗

7 (a∗) ((a||b||c)d((a∗� bb) + a∗c))∗

a ((a∗) + (1||b||c)d((a∗� bb) + a∗c)) ((a||b||c)d((a∗� bb) + a∗c))∗

8 ((a∗) + (b||c)d((a∗� bb) + a∗c)) ((a||b||c)d((a∗� bb) + a∗c))∗

9 c 0

Table 6: Derivatives Example

So what can we learn from the constructions? We can see the differences between the full
automaton and the splits and joins version by seeing that the splits and joins version has
a lot fewer transitions. Specifically it reduced the number of transitions in the (a||b||c)-
section from 19 to 3. We can also see in the subautomaton for (a∗ � bb) that there is
repetition. There are three copies of the subautomaton for a∗ horizontally and three copies
of bb vertically. No such repetition exists in the splits and joins version.

Looking at Table 5 we can see that at every stage both construction methods have the
same number of possible states or trees. This is partly because we do not allow a tree
with the two branch states of a split to be in a set together with the top state of that
split (or recursively as subtrees of otherwise identical trees), because they are redundant.
Because of that every tree in the set uniquely matches one state in the full automaton.
So whenever state 13 is in the set, the tree 15� 16 is in the other set.

Take a look at the third row of Table 5. Both automata can only be in a single state, 9
and 11 respectably. If we look at those states and read the letter d, in the full automata
we explore the transitions 9 → 10, 10 → 13, 13 → 19, 10 → 14 and 14 → 17. In the
automaton with splits and joins we explore 11 → 12, 12 → 13, 13 → 18, 14 → 16, and
16→ 19. We also look at, but don’t take, the same four transitions. So even the transitions
are essentially the same. The only difference betweeen the two automata constructions is
where we store the information about where each side of a shuffle or parallel operator is,
and what transitions or combinations of transitions can be taken. In the full construction
we store everything in the automaton, which is why we end up with many more transitions
and more states (when the branches are larger or more numerous). In the splits and joins

26

method we store some of that information in the trees instead.

We define the split-depth d of an expression to be the largest number of parallel or
shuffle branches that can be explored at the same time. For example a has a split-depth
of 1, (a||b) has a split-depth of 2, our example has a split-depth of 3 and ((a� b)||(c�d))
has a split-depth of 4. In the splits and joins construction, the number of nodes in a tree is
at most 2d− 1, where the set of states stores exactly one state. If we look at the number
of states in the automaton, the number of states in the splits and joins construction
is exactly 2d plus the number of states in subexpressions, assuming there are exactly
d splits. In the full automaton construction it is the product of the number of states
in each subexpression. Since empty subexpressions are meaningless, each subexpression
must have at least two states and thus the total number of states is at least 2d. So the
splits and joins method scales linearly with split-depth, and the full construction scales
exponentially, making the full construction substantially less efficient for expressions with
high split-depth.

When we use derivatives the first question we should ask ourselves is if we should construct
the automaton or not. The upside of building the automata is that eventually we won’t
have to calculate derivatives anymore, and the resulting automaton will be very efficient,
because it is deterministic. The downside is that it takes resources to build and store the
automaton.

It should be clear that if there are no states visited repeatedly, it makes no sense to
store them. Let x be an expression without a Kleene closure. Observe that if we make
an automaton for x, using any of our construction methods, the automaton will have no
loops. Meaning that it is never possible to reach a state we have already been. So if there
is no Kleene closure in the expression and we are taking derivatives, it is pointless to
build an automaton from them.

If we look at the checklist example (with a Kleene star around it) (a||b|| . . . ||z)∗ we can
easily see that there is an expression for all s26 subsets of {a, b, . . . , z}, and all the 2.5
trillion transitions are there to be found as well. Additionally, instead of storing just
the states and transitions, we also have to store a unique expression for each state. So
in the worst case building a DFA using derivatives uses the most storage. However in
practice only a small subset of these states will ever be visited, and thereby constructed.
The derivative automaton construction only builds the parts of the automaton that are
actually used, which is why, in practice, storage space shouldn’t be a big concern.

The actual speeds of the four algorithms and the sizes of the automata they generate
both vary heavily depending on the expression, so it isn’t possible to say which one is the
smallest and which one is the fastest, but we will give some general heuristics based on
expectations and examples, but there are counterexamples to be found for almost all of
them.

For size we can be pretty confident that the derivatives without automaton will usually
be the smallest. The splits and joins construction will generally be smaller than the full
automaton construction which can grow to ludicrous sizes if there are many shuffle or
parallel operators in an expression. Using derivatives to build a DFA will eventually lead
to the largest automaton in the worst case, but for many automata it will be substantially
smaller than the full construction.

27

If we look at efficiency the full automaton construction will generally be the most efficient.
Splits and joins is a more complicated version of the same construction that saves space
at the cost of some efficiency. The derivatives will typically be slower. Using derivatives
to construct a DFA will start off as the slowest method, but when the automaton is
constructed it will easily be the fastest. How long it takes to get to that point will vary
wildly.

Over all, the splits and joins method seems a good general choice. It is not the fastest and
it is not the smallest, but it is consistent and predictable. Further experiments should be
done to see which method works best in practice.

5 Conclusions

In this thesis we have described methods that construct monitors for Reo-like circuits. We
adapted regular expressions into Reo expressions, based on the ideas of Reo automata,
to serve as specifications. Like Reo automata, the Reo expressions are guarded. We also
added two operators; the shuffle operator which allows the behavior of two sub-expressions
to be interleaved, and the parallel operator that allows independent sections of a circuit
to act simultaneously.

With the Reo expressions in hand, we described four methods for constructing monitors
based on these specifications. The first method constructed non-deterministic automata
using an improved version of the Thompson construction, modified to add constructions
for the shuffle and parallel operators. Some investigation revealed that in some cases these
automata could grow to unreasonable sizes. A solution was found in a second method,
which introduced splits and joins on automata. The essence of this improvement is that
if two subautomata were put in parallel, the full automaton would have a state for every
possible combination of states in those subautomata. Splits and joins calculates those
combinations if and when they’re needed, potentially saving a lot of storage space at the
cost of more processing time.

The other two methods both take the derivatives of Reo expressions. To that end Br-
zozowski derivatives of regular expressions were expanded to deal with firings, and the
shuffle and parallel operators. The difference between these methods is that one con-
structs a deterministic automaton based on every derivative it has taken and the other
doesn’t. Eventually the automaton is going to be faster, but it may not be worth the
effort if there are a very large number of states that are rarely visited.

We have also tried to compare the different methods, but the results from pure theory are
inconclusive. There seems to be a niche for most, if not all, of the methods. Determining
which method works best in general, real-world scenarios would require more experiments.

The obvious future work would be actually implementing one or more of these methods
and using them to monitor Reo-like circuits. That would also allow the methods to be
thoroughly tested to see which one works best in practice. It would also be useful if that
implementation connected easily to the Extensible Coordination Tools that are currently
used to build and generate code for Reo circuits.

Another piece of future work would be to try and build a monitor that doesn’t just

28

check if a firing was allowed to take place. With the methods presented here we can’t
determine if a firing was supposed to take place based on the ports that were triggered.
This information could potentially be used to detect an error if a firing was supposed to
happen, and didn’t. Also, in an implementation that could either be in a state that could
fire a or a state that could fire b, if a is triggered and no firing occurs, we could conclude
that it must be in the state that can fire b.

If the splits and joins-automaton is used in future work and papers, it would be good
to have a robust definition of it, as well as a graphical representation that can present
having one state be the top state of multiple splits and/or joins in an understandable
graphical manner.

It will also be worth exploring monitors that can also check that the data being transferred
is correct. We decided not to do that in this thesis for the sake of simplicity in new
methods, but it should be worth a closer look. It isn’t hard to imagine a circuit that
would be undeniably wrong and would still pass the test here. Imagine a circuit that
takes data from two input ports and sends it to two output ports atomically. The Reo
expression can’t have information on which input is supposed to be connected to which
output, but that is definitely important to how the circuit functions. It seems possible to
monitor that data flow, but it may be that traditional test cases are better for detecting
these sorts of errors.

References
[1] Farhad Arbab. Reo: a channel-based coordination model for component composition.

Mathematical Structures in Computer Science, 14(3):329–366, 2004. doi: 10.1017/
S0960129504004153.

[2] Marcello Bonsangue, Dave Clarke, and Alexandra Silva. Automata for context-
dependent connectors. In John Field and Vasco T. Vasconcelos, editors, Coordination
Models and Languages, pages 184–203, Berlin, Heidelberg, 2009. Springer Berlin Hei-
delberg. ISBN 978-3-642-02053-7. doi: 10.1007/978-3-642-02053-7 10.

[3] Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis. Automata
for regular expressions with shuffle. Information and Computation, 09 2017. doi:
10.1016/j.ic.2017.08.013.

[4] Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494,
October 1964. ISSN 0004-5411. doi: 10.1145/321239.321249. URL http://doi.acm.
org/10.1145/321239.321249.

[5] Lucian Ilie and Sheng Yu. Follow automata. Inf. Comput., 186(1):140–162, October
2003. ISSN 0890-5401. doi: 10.1016/S0890-5401(03)00090-7. URL http://dx.doi.
org/10.1016/S0890-5401(03)00090-7.

[6] Natallia Kokash, Farhad Arbab, Behnaz Changizi, and Leonid Makhnist. Input-
output conformance testing for channel-based service connectors. Electronic Proceed-
ings in Theoretical Computer Science, 60, 08 2011. doi: 10.4204/EPTCS.60.2.

29

