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Abstract

The overwhelming amount of data that is nowadays available, leads to an increased

demand for techniques that automatically identify abnormal or anomalous behavior. In

this paper, we consider this problem in the context of networks and investigate how

network-based anomaly detection techniques can be used for the purpose of law enforce-

ment and criminal investigations in the field of electronic discovery.

This problem is firstly investigated on static networks. Examples of anomalies in static

networks are network intruders in physical networks or spammers spreading unwanted

advertisements in online social networks. While existing methods typically identify

anomalies from a local perspective, we propose a novel method that identifies nodes from

a global perspective. The proposed community-aware CADA algorithm outperforms

previous methods on both synthetic and real-world data and scales remarkably well to

larger networks.

Second, we approach the problem in networks that change over time. We compare two

existing methods that indicate to what extent two graphs are similar to each other.

Results on real-world data show that the techniques successfully indicate points in time

when something significant happened in the network. In general, these network-driven

techniques can uncover critical information about events in the data that was otherwise

not discovered.
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Chapter 1

Introduction

An important problem in a large variety of fields is the identification of illegal behavior.

Spammers, terrorist groups, drug cartels, and network intruders may all be considered

as groups that should be acted upon. Due to the rapidly growing amount of data,

detecting such behavior by hand becomes increasingly complex and time-consuming.

Therefore, machine learning techniques can be adopted to enhance and accelerate the

detection of anomalous behaviour in large data sets. The research field of identifying

phenomena that diverge from what is considered to be normal is referred to as anomaly

detection [3], further discussed in Section 1.1. In Section 1.2, we introduce the problem

statement that guides this research. To answer the problem statement, we formulate

two research questions in Section 1.3. In Section 1.4, we describe the structure of the

rest of the thesis.

1.1 Anomaly detection in networks

The main goal in the field of anomaly detection is to automatically identify anomalies

in multi-dimensional data points. However, this approach does not account for the

interdependence between data objects. Network analysis can be utilized to represent

and analyse complex relationships between objects and therefore provide a powerful

approach to anomaly detection. The power of network science has already been shown

in a variety of fields, such as pharmacology [4], epidemiology [5], and physics [6].

A network is described as a set of objects (or nodes) and a set of edges (or links), where

each interaction represents a connection between a pair of objects. The formal definition

of a network is dependent on the context of the application, as the definition of an object

or interaction may vary. Note that, while some authors claim there may be a formal

1



Introduction 2

difference between networks and graphs, we use both terms interchangeably throughout

this paper.

Using a network-based approach to anomaly detection can be useful due to the fact

that fraud is expected to occur in at least two different ways [7]: (1) by word-of-mouth,

where it is likely that acquaintances of fraudulent nodes also commit fraud, and (2) by

collaboration, where fraudulent nodes attempt to commit fraud as a group. In various

domains the potential of network-based anomaly detection was already demonstrated,

including spam detection [8] and network intrusion [9].

One of the first network-based anomaly detection algorithms observed the evolution of

a telecommunication network to monitor so-called communities of interest (COI) [10].

The interactions between each phone are based upon the call quantity and duration

between those calls. By observing the temporal evolution of the graphs on a daily basis,

they (1) confirmed the word-of-mouth fraud theory by finding that fraudulent nodes are

connected to each other with close proximity, and (2) that fraudulent objects can be

detected by measuring the similarity between fraudulent objects and new communities

of interest.

Many techniques do not label a node as anomalous, but provide an indication to what

extent a certain node is anomalous by assigning an anomaly score to each node [2,

11]. In many cases, the boundary of what should be considered anomalous is not so

straightforward; non-fraudulent objects can simply behave anomalously and anomalous

objects can behave ordinarily. Therefore, most anomaly detection techniques require

qualitative evaluation by a domain expert to conclude whether an object should truly

be considered anomalous. It is therefore of utmost importance to include the domain

expert in the process of anomaly detection [12].

One application area for network-based anomaly detection is the field of electronic dis-

covery (e-discovery). E-discovery is defined as the discovery of identifying, collecting and

producing electronically stored information in response to a request for production in a

law suit or investigation [13]. The large volumes of data require techniques to rapidly

detect underlying correlations and to identify what kind of network interactions are rel-

evant for the investigations. E-mail is a commonly used medium that actors utilize to

organize fraud. The tremendous amount of incoming and outgoing e-mails include a

lot of irrelevant information, and automatically identifying the interesting nodes for an

investigator may significantly enhance the process of investigation.
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1.2 Problem statement

The challenging task in this study is to identify and evaluate network-based anomaly

detection techniques that accelerate and enhance the anomaly detection process for a

domain expert. Although there are a large number of anomaly detection techniques

available, there is no one-size fits all to detect anomalies efficiently and effectively to

support the domain expert in real-world data sets. In this research, we investigate how

network-based anomaly detection can be beneficial for a domain expert in the field of

law enforcement and investigations. Therefore, the problem statement of this research

reads as follows.

Problem statement: How can network-based anomaly detection algorithms support

domain experts in detecting anomalous behavior in real-world networks?

One could wonder when a domain expert is considered to be supported. We believe a do-

main expert is supported when at least one of the three conditions is met: (1) the domain

expert understands how to evaluate and compare several results from anomaly detection

techniques, (2) the domain expert is provided with a list of objects that demonstrate

divergent behavior as a starting point of the investigation, and (3) the domain expert

knows why a certain event in time has occurred. Note that there are more methods

to support the detection of anomalous behavior, but these occur in a semi-supervised

or supervised setting. This research focuses on anomaly detection in an unsupervised

setting.

1.3 Two research questions

In order to answer the problem statement, two research questions are formulated. There

are various approaches to detect anomalous behaviour in real-world networks. The first

distinction is made between anomaly detection in static or dynamic networks. Anomaly

detection in static networks attempts to identify anomalies in a network that does not

change over time. Therefore, the first research question reads as follows.

Research question 1: To what extent can network-based anomaly detection techniques

be utilized to identify anomalous behaviour in static real-world networks?

Contrary to static networks, anomaly detection in dynamic networks attempt to identify

anomalous behaviour in networks that change over time. Due to the different nature

of the analysis and the underlying data, they both require different approaches and

detect different kinds of data points that deviate from what is considered to be normal.

Real-world networks operate in a constantly changing environment, where edges and
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nodes can be modified, appear, and disappear. The addition of the time component

in network-based anomaly detection could be of critical importance to effectively detect

unusual behaviour in a dynamic real-world context. Hence, the second research question

reads as follows.

Research question 2: To what extent can the addition of the dynamic component in

network-based anomaly detection affect the performance of anomaly detection?

Answering these two research questions allows us to formulate an answer to the problem

statement.

1.4 Structure of the thesis

This rest of this paper is structured as follows. In Chapter 2, we introduce network

science and anomaly detection separately. Subsequently, we bring both fields together

in Chapter 3. In Chapter 4, we introduce anomaly detection methods that are further

investigated in this paper. In Chapter 5, the experimental setup is described to evaluate

on anomaly detection techniques. In Chapter 6, the results of the performed experi-

ments are described. We follow up with a discussion about the results in Chapter 7.

Conclusively, we answer the problem statement and research questions in Chapter 8.



Chapter 2

Background

Before we are able to understand how anomaly detection techniques can support the

domain expert in decision making, we should understand the relationship between fraud

and anomaly detection. Therefore, we discuss the fraud triangle in Section 2.1. Then,

we discuss two fields separately: network science and anomaly detection. In Section 2.2

we describe the properties of real-world networks. A well-studied and relevant problem

in the field of network science is community detection, further discussed in Section 2.3.

As there exist no publicly available labeled data set for anomaly detection, we discuss

synthetic graph generation in Section 2.4. Lastly, we provide relevant information about

anomaly detection in Section 2.5.

2.1 Investigations as a domain expert

Criminologist David Cressey introduced the fraud triangle that is used to describe the

reasons behind committing fraud [14]. The first of the three factors, motivation, refers

to the phenomenon where an individual copes with serious problems (e.g., financial

problems) that motivates him/her to commit the crime. The second factor, opportunity,

describes to what extent a certain possibility arises to solve its financial problem with a

low perceived risk of getting caught. The last factor, rationalization, refers to the fact

that most persons that commit fraud do not perceive themselves as criminals, and the

individual should be able to justify himself in a way that it makes it an acceptable act.

Understanding the fraud triangle can enhance the prevention and detection of fraud-

ulent behavior, as organizations can act upon individuals that show characteristics of

each of the three factors. Although the fraud triangle is able to explain occupational

frauds, it has been criticized since it is ineffective in explaining group fraud [15]. The

5



Background 6

SEC Accounting and Auditing Enforcement Releases reported that 89% of fraudulent

financial reporting included involvement of the CEO, CFO, or both [16]. As the board

of directors is not directly involved in managing the account records, it implies collab-

oration between multiple actors to organize fraud. Utilizing techniques from the field

of network science may therefore provide useful information about the individuals that

committed unethical behavior collaboratively.

The rapidly growing amount of data of today raises the issue that is known as ’drowning

in data’, where the overwhelming chunks of data that need to be analyzed for an inves-

tigation becomes increasingly complex and time-consuming. Automated techniques are

necessary to structure, summarize and evaluate the data quickly, so that individuals that

demonstrate fraudulent behavior can be detected and further investigated. A common

approach to investigate cases is by organizing the data to answer the golden W’s: who,

where, what, when, and why. These are commonly combined with two extra questions,

how and how much. Answering these questions can shed light upon a multitude of

aspects about the reasons behind the fraud.

The investigator iteratively attempts to answer each of these questions with so-called

hypothesis testing, where one attempts to confirm a hypothesis by searching for evidence

in the large volumes of data. The entire process can already be largely automated to

enhance the process of the investigator, so that the investigator can solely focus on

reviewing and testing the hypothesis. The process and components of the digital forensic

process are shown in Figure 2.1, and are based on [17] and an interview with a domain

expert in the field of law enforcement and investigations.

Figure 2.1: The components and aspects in each phase of the digital forensic process
for investigators.
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2.2 Real-world networks

Before we are able to describe what could be considered an anomaly in a network, we

should understand what is considered normal behavior in networks and what a network

is comprised of.

A network G = (V,E) consists of a set of vertices V and a set of edges E. There are

many different ways to describe vertices and edges. Throughout this paper, We use

the terms nodes, objects, and vertices interchangeably. The same holds true for edges,

links, and connections. The total number of nodes and edges are referred to as n and

m respectively. The degree of a node kv is the number of adjacent lines for node v.

One can also make a distinction between the number of incoming (indegree) or outgoing

(outdegree) links of a node. Initially it was assumed that the node degree distribution

of a real-world network follows a Poisson distribution. However, the opposite seemed

true [18]. As an example, consider a large tulip exporter with five departments. It

is irrational to assume that each employee has an equal probability to interact with

random people from all departments, as most employees will interact with many people

from their own department. This is one of the many network properties that correctly

depict a real-world network. We mention the most significant of them below.

(1) The scale-free property [18]. Instead of following a Poisson degree distribution, a

real-world network follows a asymptotic power law degree distribution in the form of

P (k) ∼ k−λ, where P (k) describes the fraction of nodes that have k connections in the

network. λ is the power law exponent that typically falls in the range of 2 < λ < 3. This

means that there are many nodes that link to few other people and a few nodes that

connect to many other nodes. The latter type of nodes are often referred to as hubs, as

they connect to many people that are not connected to each other. In the example

of the tulip exporter, one could expect that managers are the ones communicating

interdepartmental, and therefore function as hubs.

(2) The small world phenomenon [19]. The distance between a pair of nodes is described

as the shortest path between two nodes. The average distance between each pair of nodes

appears to be relatively small, a phenomenon also known as the six degrees of separation

[20]. It describes that there is an average of six edges between any pair of nodes. For

example, you might know someone that knows the prime minister of your country, that

in turn shook hands with the president of the United States. Hence, there are only

three handshakes between you and the American president. Hubs play an important

role in the six degrees of separation since they significantly decrease the number of steps

between any pair of nodes.
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(3) Low density. Networks are sparse, meaning that a node is mostly connected to a

small part of the network and not to the entire network. Density is measured as the

number of edges divided by the maximum number of edges in the network. For a directed

network, the maximum number of edges is n(n− 1) and for an undirected network the

maximum number of edges is n(n− 1)/2. We compute the network density by dividing

the number of edges in the network by the maximum number of edges.

(4) High clustering coefficient [20]. The clustering coefficient of a node describes to what

extent direct neighbors of a node connect to each other. The clustering coefficient of a

node can be computed by dividing the number of edges between neighbors of a node

by the maximum number of such edges. The direct neighborhood of a node and links

between those nodes is often described as the egonet of a node. The average clustering

coefficient of a network is the average clustering coefficient over all nodes. A real network

exhibits a high average clustering coefficient.

These four properties collaboratively describe small-world networks. Many networks fol-

low these network properties, such as protein interaction networks, science collaboration

networks, and actor networks.

2.3 Community detection

A well-studied task in networks is to identify groups of persons that tend to cluster

together, also known as community detection [21]. A large variety of community detec-

tion algorithms exist in literature, and we will discuss two of them more in more detail:

Louvain [22] and Infomap [23, 24].

2.3.1 Louvain Modularity

The Louvain Modularity algorithm attemps to optimize the so-called Modularity mea-

sure. Modularity is a measure of quality for the division in a network that was introduced

by Girvan and Newman [25]. It measures the fraction of edges m that connect vertices

in the same community in relation to the expected value of the the network if the

m edges are randomly distributed while maintaining the same vertex degree distance.

Mathematically, the modularity function Q is denoted as follows.

Q =
1

2m

∑
ij

(
Aij − τ

kikj
2m

)
δ(ci, cj) (2.1)
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Here, ci is the community to which vertex i is assigned. Moreover, Aij is a binary number

that states 1 if there exists an edge between vertices i and j. δ(ci, cj) is 1 if vertices i

and j fall in the same community and 0 otherwise. kikj/2m denotes the probability that

there is an edge between i and j if the graph is randomly generated. τ is the so-called

resolution parameter that denotes the size of the communities to be found: a smaller τ

provides more communities. ki is the degree of node i. For a weighted network, Aij can

take any non-negative value.

As each node should be assigned to a cluster to measure the Modularity Q, and identify-

ing the optimal community structure is proven to be a NP-hard problem [26], we use the

greedy Louvain method described in [22]. In short, the Louvain algorithm is executed

as follows. First, all nodes are assigned to their own community. The algorithm will

then iteratively walk through the nodes, and replace each node to the community that

maximizes Modularity. Once we passed all nodes, we aggregate the nodes and edges

of each community into one node and in turn iterate through the aggregated nodes to

find the highest increment in modularity. The algorithm terminates once there is no

improvement in Modularity found.

2.3.2 Infomap

To understand Infomap, one first needs to understand the concept of random walkers. A

random walker is somebody or something that is randomly traversing through the edges

of the graph. By analyzing the path of a random walker for a longer period of time, one

expects to find a pattern, where a random walker traverses through a community for a

longer period of time. Infomap attempts to describe the list of nodes that are visited by

a random walker in a minimal way, i.e., it tries to find the minimum description length

of the path of a random walker.

Compressing the description length is often done with Huffman coding, where terms

that occur often get a short code word, while terms that occur rarely get a long code

word. Finding the theoretical compression limit can be done using Shannon’s source

coding theorem, that describes that the average length of a code word can not be less

than the entropy of a random variable R, if l code words are used to describe the

l states of R that occur with frequencies pi. The entropy of R can be described as

H(X) = −
∑n

1 pilog(pi). The average number of bits to describe a step from a random

walker can then be computed in terms of the frequency distribution P to visit nodes in

the network with a lower bound of H(P).

Infomap uses a two-level description to compress information in the graph. Firstly, each

cluster is provided with a unique name following Huffman coding, where nodes in the
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same cluster are provided with names from a different Huffman coding. An extra ’exit’

code word is provided to capture whether the random walker is leaving a cluster, followed

by the code word of the new cluster. By using the two-level description approach, one

can significantly reduce the description length of the random walker in the network.

Given the set of communities C, the average description length of a single step by the

random walker is computed with the so-called map equation L as follows.

L(C) = qH(O) +
C∑
i=1

piH(Ii) (2.2)

Here, q describes the probability to leave a cluster, and H(O) the entropy of the module

names. Furthermore, H(Ii) is the entropy of within cluster movements, including the

exit code word for cluster i. Finally, pi is formally described as the fraction of within-

cluster movements for cluster i, and the probability of leaving cluster i so that
∑C

i=1 =

1 + q. Now, one can search for an optimal community structure by minimizing the map

equation L.

For the minimization, the authors follow the Louvain method by replacing nodes to the

clusters that minimize the map equation. Once no more increase in L can be found,

the same aggregation procedure is also followed. Furthermore, two extra steps are per-

formed to ensure that the algorithm does not get stuck on local minima: (1) submodule

movements, where each cluster is treated as its own network and the algorithm is ap-

plied on that network. If any submodules were found in the submodule, the algorithm

is reapplied on the entire network where the submodules can move freely between other

modules. and (2) single-node movements, where each node is assigned to be part of its

own module, and then the algorithm is ran subsequently to see whether the node may

belong to a different cluster.

2.4 Graph generation

As real-world networks often consist of noise that obscure the evaluation of performance

measures, and the availability of labeled data sets in the field of anomaly detection

is scarce, a common approach to measure the performance of network-based anomaly

detection algorithms is to generate synthetic graphs that obey the properties of real-

world networks. Synthetic graph generation is a field of large interest, and the number

of graph generators has increased significantly over the past decades [18, 27]. The

identification of a suitable graph generator is therefore a difficult problem. For reasons
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we show later, communities in graphs are closely related to anomaly detection in a static

context.

Therefore, the LancichinettiFortunatoRadicchi (LFR)-benchmark, a graph generator

that generates graphs with the unique property that it obeys the network properties

of heterogeneity for the community sizes and node degrees, appears to be most satisfac-

tory for static anomaly detection [27]. Moreover, the range of parameters to tune makes

the benchmark extremely suitable for the generation of unweighted, weighted, undi-

rected, and directed networks. To elaborate on the parameters, it is best to describe

them in the context of how the graphs are constructed. The graphs are constructed as

follows.

1. A network of n nodes is generated where each node is given a degree extracted

from the power law minus exponent λ1 with kmin and kmax so that the average

degree is d.

2. Community sizes are generated from the power law minus exponent λ2 with com-

munity sizes smin and smax so that smin > kmin and smax > kmax, and the sum of

community sizes is n. If these are not chosen, the community sizes will be chosen

close to the degree extremes.

3. Each node is assigned to a community, as long as the community does not exceed

the set community size. If the number of edges within the community exceeds

the community size, the node becomes homeless. Homeless nodes are randomly

assigned to a community. If the community size is exceeded then a randomly

selected node of that community becomes homeless. The process terminates if all

communities are completed.

4. The algorithm rewires the nodes so that each node has a fraction of approximately

ρ internal neighbors and 1 − ρ external neighbors, whilst the nodes retain their

degree.
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2.5 Anomaly detection

Figure 2.2: A visual representation of a data
set where an anomaly occurs.

As described earlier, anomaly detection

refers to the problem of identifying data

points that diverge from what is con-

sidered to be normal [3]. It can result

in insights into how to prevent and act

upon types of malicious behavior, such

as a breach into a system or a hacked

credit card. Figure 2.2 provides a two-

dimensional visual representation of a

data set that includes two types of anoma-

lies; (1) a white crow, a data point that

clearly does not belong to any of the two

clusters, and (2) an in-disguise anomaly, a

data point that attempts to behave like a

normal data point but actually attempts

to breach into the cluster.

2.5.1 Types of anomaly detection

Research in anomaly detection dates back to the 19th century [28]. Since then, many

techniques have been developed in the field of anomaly detection. The majority of these

techniques can be divided into six categories [3]: (1) classification based, (2) clustering

based, (3) nearest neighbor based, (4) statistical, (5) information theoretic, and (6)

spectral. The techniques in each category are similar to the data mining categories,

only with another purpose. As an example, a clustering-based technique attempts to

detect anomalies by clustering the data set and identifying the nodes that do not belong

to any of the clusters, as is clearly the identification of a white crow anomaly illustrated

in Figure 2.2.

Furthermore, there are three different approaches to detect anomalous behavior: (1)

unsupervised anomaly detection, that identifies anomalies in unlabeled data, (2) super-

vised anomaly detection, where the data is already labeled anomalous or not, and (3)

semi-supervised anomaly detection, where a model is constructed on a labeled training

data set, and one measures the likelihood that other instances follow the same anoma-

lous pattern. In this research, we identify anomalous nodes in an unsupervised fashion

because there are no publicly available labeled data sets.
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2.5.2 Challenges in anomaly detection

One of the main challenges in anomaly detection is to determine whether a node should

truly be considered anomalous or not. As an example, consider a student that attempts

to conduct a survey on a social network channel on the one hand. The student may

send a lot of friend requests to gain more exposure to complete the survey. On the

other hand, we consider a spammer, that also attempts to send malicious messages to as

many people as possible. The spammer also sends a lot of friend requests to maximize

its reach. The behavior of the student and spammer can be extremely similar, while the

spammer should be considered fraudulent and the student should not.

Therefore, the exact definition of each anomaly differs for each domain. Anomalies are

usually the result of malicious actions, and it is of critical importance to correctly define

the anomaly one is looking for. Still, the persons that commit illegal actions may be

aware of the methods to uncover illegal activities and attempt to hide by acting as

normal persons would (illustrated as the in-disguise anomaly in Figure 2.2). Therefore,

domain experts should be involved throughout the process to determine whether the

flagged node should be acted upon.

2.5.3 Anomaly detection examples

Figure 2.3: A normal distribution (ob-
tained from [1]).

A simple but effective statistical approach to

anomaly detection relies on the assumption

that the data follows a normal distribution. Il-

lustrated in Figure 2.3, a normal distribution

has the property that about 68% of the data

points falls within one standard deviations σ

of the mean µ and 95% of the data falls within

2σ of µ. If the data is normally distributed,

anomalous data points are those points with

the furthest distance towards µ. A threshold

can be set to flag all data points that are not

covered within 3σ from the µ as anomalous.

Often, the median x̃ is used instead of the mean as the mean can become skewed due

to outliers. Although this is a very intuitive approach, the assumptions that the data

follows a normal distribution and can be reduced to a one-dimensional value does not

always hold true.

Another relatively simple approach to anomaly detection is by utilizing the k-means

clustering algorithm [29]. k-means clustering focuses on assigning each observation, that
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consists of a vector of features, to one of the k clusters. It starts by initializing k clusters

and assigning or estimating the centroid of the k clusters. The algorithm iteratively runs

two steps: (1) the clustering step, where each observation is assigned to the cluster of

the closest centroid, and (2) the centroid update step, where the centroid is repositioned

in the vector space by averaging each feature that belongs to that centroid. The distance

between each feature vector can be computed with several distance measures, yet the

Euclidean distance is commonly used and is described as follows.

DEuc(p, q) =

√√√√ N∑
i=1

(pi − qi)2 (2.3)

Here, p and q are two vectors of size N , where pi and qi denote the ith value of the

vector space. When searching for anomalies with the k-means algorithm, the challenge

is to find those data points in the cluster that are furthest away from the centroids of the

clusters. In other words, we select the nodes that have a large intra-cluster distance given

a certain threshold. Although k-means offers no accuracy guarantees, it offers simplicity

and performance. In case of Figure 2.2, the white-crow anomaly can be detected by

initializing the algorithm with k = 2 to find the purple and blue clusters. The white

crow anomaly will either be assigned to the purple or blue cluster, but the distance

to the centroid of both clusters remains high, which makes the k-means algorithm a

suitable approach for detecting white-crow anomalies.
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Related work

Contrary to anomaly detection in regular data sets, using a network-based approach to

capture the relationship between objects can provide different insights into the network

and its anomalies. As mentioned before, in many domains it is expected that fraud

spreads by word-of-mouth, and that organized fraud occurs in closely related groups [7].

Therefore, we bring two fields together in this Chapter: anomaly detection and network

science. We discuss the network anomaly types in Section 3.1. In Section 3.2, we

provide a variety of applications of network-based anomaly detection. In Section 3.3,

we address five different methods on how to evaluate on anomaly detection algorithms.

The contributions of this research are described in Section 3.4.

3.1 Network anomaly types

According to [7, 30, 31], There are four types of anomalies that can be detected in

networks: (1) anomalous nodes, (2) anomalous edges, (3) anomalous sub-graphs, and

(4) events. We discuss each one of them below shortly.

Node anomaly is an object that behaves considerably different compared to other

objects in the network. One of the most prominent node anomalies in the field of static

network-based anomaly detection, is the node that connects to random nodes in the

network [2, 11, 32–34]. There are two reasons why node anomalies can be considered

anomalous: (1) these nodes are considered hubs and therefore play an important role in

the network by connecting two or more distinct communities (e.g. opinion leaders), and

(2) these nodes are not aware of the global network structure and therefore connect to

many random nodes (e.g., spammers that send e-mails to as many e-mail addresses as

they could find on the web).

15
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Edge anomaly describes interactions between two nodes that seem irregular. An edge

anomaly can occur in a variety of ways. An typical example of an edge anomaly is that

there exist an extremely strong tie between two nodes, while both nodes do not have

strong ties to any other nodes in the network [2, 33]. Other than strong ties, interactions

that connect two groups of objects in the network that were otherwise not connected

could be considered anomalous [35].

Sub-graph anomaly can be described as a group of nodes that collaboratively show

anomalous or fraudulent behaviour. In large groups, it is unlikely that everybody knows

each other and groups that are very strong connected to each other may indicate collu-

sion. For example, in a review network where users are connected if they both reviewed

a specific product, groups of fake reviewers can be identified as they constantly review

each other or the same products [2, 36].

Event anomaly is an anomaly where a significant change in the network happened

between time step t and previous time steps. An event anomaly can only be detected

in a dynamic network, where several network features are monitored over consecutive

graphs. A graph in the stream of consecutive graphs can be flagged anomalous if the

graph significantly differs from the rest of the graphs [37, 38]. Analyzing a network over

time may provide new insights into the network, but also requires techniques with low

computational complexity to analyze the network in a rapid fashion.

(a) Node anomaly (b) Edge anomaly (c) Sub-graph anomaly

Figure 3.1: Examples of anomaly types in static networks as defined in [2]. Note that
the Event anomaly is not illustrated, because that only occurs in a dynamic context.

3.2 Anomaly detection in networks

The anomalies described in the previous section can be detected with various tech-

niques. We divided the techniques in five categories: (1) local-structure based, (2)
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global-structure based, (3) clustering based, (4) factorization based and (5) event detec-

tion.

3.2.1 Local-structure based

The first type of network-based anomaly detection refers to anomaly detection by only

measuring local structural properties of each node. As an example, the Oddball algo-

rithm was introduced for weighted graphs that (1) extracts a number of features, such

as the number of nodes and edges, from the ego-network of each node. (2) identifies

a pattern of normal behaviour by fitting so-called power laws on these features, and

(3) detects points that deviate from these power laws. The algorithm is able to detect

stars (node anomaly) or near-cliques (sub-graph anomaly), and dominant links (edge

anomaly) in a weighted graph [2]. Each of the detected anomalies was also described

in the context of a real-world network. For example, a star may accurately represent

spammers in networks, because spammers are typically not aware of the local clustering

structure and therefore send a message to people that are not connected to each other.

3.2.2 Global-structure based

Many studies in the field of network science focus on measuring the centrality of each

node, i.e., the importance of a node in the network. The results can provide insights into

the key players in the network and may therefore be of critical importance to identify

objects that influence other nodes in the network. Using centrality-based methods, one

can uncover the most important nodes in a network (those nodes with a high centrality).

While centrality measures do not truly belong to the field of network-based anomaly

detection, these techniques can be beneficial for the domain expert to get insight into

the network. Therefore, we mention the five well-known ones below.

The degree centrality is described as the number of nodes that a node is connected to

in the network. It therefore indicates the popularity of a node, being in contact with a

lot of other nodes in the network. One could also make a distinction between indegree

centrality (the popularity of an object), and outdegree centrality (objects that want to

connect to many other objects).

The betweenness centrality is the fraction of shortest paths in the network that pass

a specific node. Therefore, it indicates which nodes influence the flow throughout the

network. Hence, these are nodes that act as a ’bridge’ in the network, and therefore

play an important role in connecting communities. Another approach is to compute

the betweenness centrality on a local part of the graph, so one can identify local hubs
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in the network. For example, Hassanzadeh et al. extended the Oddball algorithm by

extracting the average betweenness centrality of each ego-network and comparing that

against the number of edges, detecting stars or near-stars and cliques or near-cliques

more accurately than the Oddball algorithm [32].

An alternative centrality measure is closeness centrality, one that indicates how close the

node is to all other nodes in the network. It is computed as the fraction of shortest paths

between a node and all other nodes. Nodes with a high closeness centrality are nodes

that should be reached out to if one wants to rapidly spread information throughout the

entire network. The closeness centrality can also be useful to determine the person that

is most central in a certain sub-graph, to identify the persons that are closely connected

to everyone else in that group.

Lastly, an interesting centrality measure for the purpose of investigations is the PageR-

ank centrality [39]. Created by Google founder Larry Page, the PageRank centrality is a

measure that is based on random walks. Intuitively, the PageRank algorithm generates

a probability distribution that represents the likelihood that a specific person will arrive

at any particular object in the network by randomly navigating through the network.

In other words, a node is considered important if there exists a link from another im-

portant node or if the node has many incoming links. PageRank centrality is useful as

it does not only take into account one-hop away neighbors, but also two, three, or k-hop

neighbors with decreasing weight. To compute the PageRank centrality, consider a set

of nodes V , where each node v ∈ V is initialized with a ranking factor PR(vi) of 1
n .

Then, in each iteration the value PR(v) is updated and distributed over all nodes v is

connected to. It is repeatedly computed as follows.

PR(vi) =
1− a
n

+ a
∑

pj∈indeg(vi)

PR(vj)

outdeg(vj)
(3.1)

Where a is a damping factor that describes if an individual stops navigating through

the network and stays on the node. Note that in each iteration, each node gets a value

of at least 1−a
n that represents the probability that a random surfer starts over on a new

node. a is commonly set to 0.85. As we can infinitely update the PageRank values,

the algorithm is set to converge once there is no significant difference in the updated

PageRank value. Note that there are many variants of the PageRank centrality. For

example, the Eigenvector centrality is equal to the PageRank centrality if the graph is

undirected and unweighted.
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3.2.3 Clustering based

Another approach to identify anomalous behaviour in static real-world networks is to

cluster the nodes in the network. Nodes or sub-graphs can then be considered anomalous

if (1) the structure of a cluster, such as the density, is different compared to the other

clusters in the network, or (2) if the node does not belong to a cluster or is a link

between multiple clusters. Note that it is sometimes claimed that normal community

detection methods are not suitable for the purpose of anomaly detection as the results

of community detection algorithms are affected by the presence of anomalies [11].

Other techniques that solely cluster the nodes from a local perspective can be used to

identify clusters and anomalies. As an example, the Structural Clustering Algorithm for

Networks (SCAN) is a method that clusters nodes together if a pair of nodes share at

least a common set of neighbors. Nodes that do not belong to any cluster and connect

to multiple clusters can then be considered hubs in the network [40].

In the field of dynamic network-based anomaly detection, a wide variety of methods

utilize clustering techniques. For example, Tang et al. identify persons of significance

in a community to model the evolution of significant communities over time [41], while

Wang et al., utilize a clustering-based approach to identify whether a sudden change

in the network structure is caused internally in a community or globally by a group of

communities [42].

3.2.4 Factorization based

Factorization based methods construct an adjacency matrix or matrix with features of

the graph for each time step, to further decompose the matrix to capture the underlying

structure of the data. As an example, Tong et al. introduced the novel technique Non-

negative residual Matrix Factorization (NrMF) for bipartite graphs. Bipartite graphs

are graphs where the vertices are decomposed in two disjoint sets (V1, V2), where there

only exist relationships between the one and the other set. An example of such a network

is a user to movie rating network.

NrMF captures underlying correlations of the graph by decomposing the bipartite ad-

jacency matrix with the unique property of imposing non-negativity constraints on the

residual matrix R [33]. Mathematically, the low-rank approximation of the adjacency

matrix is presented as A = Ã+R = FS+R, where F = n1×g and S = g×n2 reveal the

community structure of the graph, while the residual matrix R is an indicator of which

nodes do not obey the underlying patterns in the data and can therefore be considered

anomalous. By imposing the non-negativity constraint on the residual matrix, one can
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use this approach to detect four anomalous patterns: (1) strange connection between

two remotely connected communities, (2) port scanning, a node from V1 that connects to

many other nodes in V2, (3) ddos, a node from V2 that connects to many other nodes in

V1 and (4) bipartite core, where a group in V1 and a group in V2 are strongly connected

to each other.

3.2.5 Event detection

In the field of dynamic network-based anomaly detection, events can be detected by

investigating the difference in graph structure between time step t and t+ 1. A common

approach is to extract features of the graph at each time step and compute the similarity

of the network with respect to previous time steps. One then sets a threshold on the

similarity to flag a certain network as anomalous.

As an example, the algorithm NetSimile firstly extracts f features of each network, such

as the number of neighbors of each node, the clustering coefficient, and the number

of incoming and outgoing edges in the egonet, to generate a n × f matrix [38]. The

authors found that the n× f matrix can be reduced by aggregating the n vectors to one

vector by solely capturing statistical measures of the vectors such as the median, mean,

standard deviation, skewness and kurtosis1 of each feature for the graph. A variety of

distance measures can then be used to measure the similarity between the current and

past networks.

Koutra et al. found that one could also measure the change in flow of the network by

computing a similarity score between two graphs with the same number of nodes by

measuring the difference of affinity of each node i to j in the graphs [37]. The node

affinity is computed using Fast Belief Propagation [43], a belief propagation algorithm

that is guaranteed to converge. It then measures the distance between the node affinities

of the current and earlier networks to provide an indication of the similarity of the graph.

A shortcoming of these methods is that they are biased towards flagging events when

the network becomes sparser or denser than the previous time step. To solve this issue,

La Fond et al. introduced a variety of statistics that are normalized over the size of the

network, and is therefore able to flag size independent events [44].

1The kurtosis is a measure that describes whether the distribution is light- or heavy-tailed.
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3.3 Evaluation of anomaly detection algorithms

As we described earlier, one of the main challenges in anomaly detection is what should

be considered normal or anomalous. Another problem of network-based anomaly de-

tection is that there is no available labeled data set to evaluate anomaly detection

techniques. According to [7], there are five evaluation methods that are commonly used

in the field of anomaly detection and we describe each one of them below shortly.

• Internal evaluation - This type of evaluation utilizes the statistical distribution

of the anomaly scores to quantify to what extent a node does not belong to the

distribution. This is an internal evaluation because it solely clarifies the outlier

score of the model that is used and cannot be used to compare results with other

models.

• Qualitative evaluation - Qualitative evaluation is described as finding explanations

for why the anomaly was detected by performing an in-depth analysis on a real-

world data set. This approach may require incorporation of domain knowledge to

determine whether the anomalies should truly be considered anomalous.

• Synthetic graph injection - In many fields of network science, such as community

detection, there is the need to be in control of the network structure to properly

evaluate how the technique performs on different network structures. One is able to

quantitatively evaluate the anomaly detection technique by generating a network

and evaluate on the manually imputed anomalies that the model detected.

• Anomaly injection - Contrary to the previous approach, anomaly injection focuses

on imputing anomalies in real-world data sets, instead of synthetic data, to quan-

titatively evaluate on the detected anomalies. A limitation of this method is that

the real-world data set may contain anomalies by itself and therefore obscure the

performance of uncovering anomalies.

• Validation by external source - The last evaluation method triangulates multiple

data sources to evaluate whether an identified anomaly truly demonstrates anoma-

lous behavior. As an example, one can identify a fraudulent node by considering

only the graph structure, and then use meta information about the node to observe

whether the node should be considered anomalous.
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3.4 Contributions

As the field of network-based anomaly detection has had a lot of attention in the last

decade, a variety of complementary surveys have been conducted that describe the

difference between the anomaly detection techniques on a high level [7, 30, 31]. A

group of algorithms, that are further discussed in the next Chapter, identify similar

anomalies.

The contribution of this thesis is threefold. Firstly, we identify and utilize methods

that uncover similar anomalies in a static network, and report on the performance of

each of these methods on synthetic and real-world data sets. Secondly, we introduce

a new method, named CADA, and demonstrate that the community-aware approach

performs better than previous approaches in uncovering the node anomaly. CADA is

also described in a dedicated paper [45]. and (3) we show how dynamic network-based

anomaly detection methods can be used to identify events in consecutive graphs over

time. Furthermore, we show to what extent these anomaly detection algorithms can

assist law enforcement and investigations in rapidly organizing the data to answer the

two of the golden W’s: who and when by identifying suspicious nodes or suspicious

moments of interests that should be further investigated.
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Methods

As we have provided information about anomaly detection techniques for networks in

general, this Chapter provides an extensive description of the methods that are further

used in the paper. These techniques are chosen as they are prominent in the field

of network-based anomaly detection [7, 30]. In Section 4.1 we address how to detect

anomalies in networks at one point of time, also known as static network-based anomaly

detection. In Section 4.2 we describe how to detect events in networks that evolve over

time.

4.1 Identifying persons of interest in a static network

In this section we describe how network-based anomaly detection algorithms can support

domain experts in identifying anomalous behavior in a static context. It encompasses an

extensive description of four static anomaly detection algorithms that are investigated.

It begins with Oddball, an algorithm that identifies four types of anomalies and is also

used as a baseline in terms of identifying anomalies in static networks.

One of the identified anomalies, is the node anomaly, the node that connects to many

nodes that are not connected to each other. There are many other types of node anoma-

lies, but from now on we refer to this anomaly as the node anomaly. As a follow-up

on Oddball, we describe two other methods that can be used to detect the node

anomaly. Then, we propose our new community-aware approach CADA to identify the

node anomaly. In some cases, we use the well-known Zachary’s Karate Club Network

to illustrate the technique with an example. The network is illustrated in Figure 4.2.

23
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4.1.1 Oddball

Oddball analyses the ego-network for each node in the network [2]. The ego-network

is the direct neighborhood of a node, and the connections between those nodes. The

authors extracted multiple features of each ego-network and identified four features that

follow a power law and accurately describe normal behavior in networks. The extracted

features are (1) the number of neighbors of ego-network i, (2) the number of edges in

ego-network i, (3) the total weight of ego-network i, and (4) the principal eigenvalue

of the weighted adjacency matrix of ego-network i. By illustrating the features in two-

dimensional space, they found that the combination of two features sometimes followed

so-called power laws. We mention the three observed power laws below.

1. Egonet Density Power Law (EDPL): the number of nodes ni and the number of

edges mi of the ego-network i follow a power law (mi ∝ nαd
i ).

2. Egonet Weight Power Law (EWPL): the total weight wi and the number of edges

mi of the ego-network i follow a power law ((wi ∝ mαw
i ).

3. Egonet λw,i Power Law (EPPL): the principal eigenvalue of the weighted adjacency

matrix λw,i and the total weight wi of ego-network i follow a power law (λw,i ∝
w
αp

i ).

These power laws exhibit normal patterns of the data set. The authors defined four

anomaly types that can be identified if an ego-network does not obey one of the power

laws, and we define how these may be useful for an investigator:

1. Star or Near-star: Nodes that connect to many nodes that are not connected

to each other (i.e., a low clustering coefficient, extracted from EDPL). Typical

examples of stars are network intruders in physical networks or spammers spread-

ing unwanted advertisements in online social networks. Other examples of star

anomalies can be key players in the network as they connect to an extremely large

amount of groups.

2. Clique or Near-Clique: ego-networks that have an extremely high density (i.e., a

high clustering coefficient, extracted from EDPL). It is expected that fraud spreads

by word-of-mouth, so it may be useful to find those nodes that are very tightly

connected to each other.

3. Heavy Vicinity: ego-networks that have an extreme weight compared to the num-

ber of edges (extracted from EWPL). This is a follow up on (2), because ego-

networks with a high activity may even empower the assumption made in (2).
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Figure 4.1: Egonet Density Power Law on Zachary’s Karate Club network. The blue
line shows at what point a star ego-network occurs.

The heavy vicinity indicates that there was a high activity of e-mails in the ego-

network, and may therefore yield similar results as (4) for denser graphs.

4. Dominant Pair: nodes that have an extremely strong tie compared to the rest

of the edges in the ego-network (extracted from EPPL). A high activity between

nodes persons in the network compared to the other links from that person indi-

cates that something unusual occurs between those two nodes.

As the data points follow a power law, we can fit the function f(x) = Cxα̌, where C is

a constant, and x is the variable of interest where the power law should be fitted on. α̌

is the power law exponent. The resulting fitting line can be used to measure to distance

of each ego-network to the fitting line, which in turn can be used as an indicator of the

deviance of a node compared to the rest of the network. Hence, for each ego-network i,

where yi describes the real value of the feature, we compute the anomaly score ob as the

distance to the fitting line as follows.

ob(i) =
max(yi, Cx

α̌
i )

min(yi, Cxα̌i )
log(yi − Cxα̌i + 1) (4.1)

An example of such a plot, the Egonet Density Power Law (EDPL), is illustrated in

figure 4.1 on Zachary’s Karate Club network. If the node is near or on the ’Star’ line,

it indicates that the node connect to different nodes that are not connected to each

other. To obtain a list of most anomalous nodes, one sorts the list of anomaly scores in

descending order.
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4.1.2 Structural Clustering Algorithm for Networks

Figure 4.2: The results of SCAN with param-
eter setting ε = 0.5 and κ = 2 on the Karate

Club Network.

The Structural Clustering Algorithm for

Networks (SCAN) is a method devel-

oped to detect communities in networks

[40]. Many community detection algo-

rithms solely focus on graph partitioning,

while not considering (1) hubs, nodes that

connect multiple clusters, and (2) out-

liers, nodes with only one connection in

the network. SCAN attempts to achieve

this by creating structure-connected clus-

ters, meaning that nodes are clustered to-

gether if they share many common neigh-

bors. The structural similarity is defined

as follows.

ν(v, w) =
Γ(v) ∩ Γ(w)√
(|Γ(v)||Γ(w)|

(4.2)

Where Γ(v) denotes the neighborhood of node v, including the node v. Since ν(v, w)

returns a measure between 0 and 1, a threshold ε is set to assign cluster membership of

a node. Nodes that share a structural similarity of at least ε with at least κ neighbors, is

defined as a core vertex. The core vertices are used to assign cluster membership. ε and

κ are two parameters that determine whether the node should be assigned to the cluster

of a vertex core. An additional of SCAN is that the algorithms detects anomalous

nodes by identifying (1) hubs, nodes that belong to no cluster and connect multiple

clusters, and (2) outliers, by identifying nodes that do not belong to any cluster and

solely connect to one cluster. An example of SCAN on Zachary’s Karate Club Network

is given in figure 4.2.

SCAN requires accurate and careful selection of parameters to detect hubs and outliers

in an accurate manner. The authors propose to extract the nearest structural simi-

larities of the neighbors for a sample of the nodes. By ordering the nodes by nearest

structural similarity, one could identify the turning point at which the nodes tend to

cluster together. One is able to use that measure to determine at what point a node

should be considered a anomalous. An example of such a plot is given in figure 4.3 for

the Karate Club network. Furthermore, the authors recommend to set κ = 2, which

remains an intuitive choice to ensure that the algorithm identifies a vast number of core

vertices to further cluster nodes in the network.
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Figure 4.3: A nearest structural similarity plot for the neighbors of each node on
Zachary’s Karate Club network.

One issue of the SCAN algorithm is that it provides a list of hubs, while not providing

an indication of the deviance of each hub. In some cases, the number of hubs detected

can be of substantial size and an indication of the anomaly score of each hub may be

necessary. By testing on synthetic networks, we found that the best way to uncover the

node anomaly, was to assign an anomaly score sc to each node by computing the average

structural similarity between each hub and its neighbors. A lower average structural

similarity indicates that the node does not share any common neighbors with any of

its neighbors. We also considered normalizing it solely over the degree and number of

communities it is connected to, and chose this measure as it performed best on synthetic

data.

4.1.3 Embedding approach

An emerging technique in the field of network science is that of network embedding. Net-

work embedding focuses on embedding each node to a multi-dimensional vector while

preserving the network structure in the embedding [46]. In general, network embedding

techniques attempt to preserve the global structure to best summarize the network in a

set of vectors. Hu. et al approached the problem of network-based anomaly detection by

using a slightly different embedding approach. More precisely, they focused on identify-

ing nodes that connect to a number of influential regions by preserving the local linkage

structure of each node, instead of the global linkage structure [11]. Those nodes may be

considered structural inconsistencies, as they obscure the community structure of the

network and therefore decrease the performance of community detection methods. The

embedding approach is described as follows.

Given an undirected graph G = (V,E), associate each node i ∈ V with a R-dimensional

vector Xi, where R is the number of influential regions and item Xr
i describes the

relationship between node v and region r. As we want to embed each node into a

vector, we want to find an embedding where nodes that are connected should have
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similar values of Xi, while disconnected nodes should have distinct values of Xi. In

other words, Embed attempts to find an embedding of the nodes where the following

equation holds true.

||Xi −Xj || =

0 if (i, j) ∈ E

1 if (i, j) 6∈ E
(4.3)

Where ||Xi|| is the Euclidean norm of vector Xi. The resulting value will always be

between 0 and 1 because the authors impose non-negativity constraints on the vector

and an upper bound of

√
(2)

2 for ||Xi||. However, this approach is not realistic, since

there are many nodes that connect disconnected nodes, and those nodes cannot have

similar values of ||Xi|| for both disconnected nodes. Therefore, a so-called stress function

S(Xi, Xj) was defined that describes to what extent the ideal embedding is violated. The

stress function is described below.

S(Xi, Xj) =

||Xi −Xj ||2 if (i, j) ∈ E

(||Xi −Xj || − 1)2 if (i, j) 6∈ E
(4.4)

As this provides an embedding of the local linkage structure, we could formalize this as

an objective function that can be minimized. However, as most networks are sparse and

thus the quantity of non-edges is relatively high compared to the number of edges, there

should be a balancing factor γ that ensures that there is a balance between the edges

and non-edges. γ can be estimated by dividing the number of edges by the number of

non-edges in the network. An more elegant way is to sample a set of non-edges that is

of equal size to the number of edges, to approximately define the objective function Om

as follows.

Om =
∑

(i,j)∈E

||Xi −Xj ||2 +
∑

(i,j) 6∈E

(1− ||Xi −Xj ||)2, γ =
m(

n
2

)
−m

(4.5)

The optimal embedding can then be found by using gradient descent. Since gradient

descent is not scalable for large networks, the authors adopt a mini-batch gradient

descent approach and solve the minimization as a nonlinear programming problem.

Hence, the gradient descent method iteratively updates the embedding of each node i

by

Xi,t+1 ← Xi − Λt · ∇Om (4.6)
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Here, Λt is the step size of the tth iteration. A t of 50 is sufficient. The authors further

propose to approximately represent Om by removing β and equal the number of existent

edges (E) and non-existent edges Es to balance the optimization, leading to the following

∇Om.

∇Om =
∑

(i,j)∈E

2||Xi−Xj || ·∇||Xi−Xj ||+
∑

(i,j)∈Es

2(||Xi−Xj ||−1) ·∇||Xi−Xj || (4.7)

To further enhance the process, the authors propose to, (2) to initialize the vectors

with equal embedding values if nodes belong to the same partition according to network

partitioning method METIS, and (3) reduce the number of dimensions in vectors of the

embedding to k+, where k is the average degree and β a toleration factor for the number

of regions node anomalies connect to. According to the authors, β = k/4 is sufficient.

After successful minimization of the network embedding, we represent the correlation of

node i with r regions as follows:

NB(i) = (y1
i , ..., y

R
i ) =

∑
(j)∈NB(i)

(1− ||Xi −Xj ||) ·Xj (4.8)

The Embed anomaly score em(i) of node i can then be computed as follows.

em(i) =
R∑
j=1

yki
y∗i

(4.9)

Here, y∗i is the maximum of (y1
i , ..., y

R
i ). Embed runs in O(t · m · (k + β)), where t is

the iteration threshold of gradient descent, again with m the number of edges and k the

average degree. A drawback of Embed is that the results are dependent on the number

of dimensions R, that are chosen, and as such the approach is not parameter-free.

4.1.4 CADA

The methods discussed above, mainly focus on identifying the node anomalies from a

local perspective, or are not parameter-free. Although it is sometimes postulated that

the presence of anomalies might affect the performance of community detection algo-

rithms [11], one may wonder to what extent it truly does so. In particular because

community detection algorithms typically find an optimum of some function or quality



Methods 30

metric, and as such can deal quite well with imperfect divisions of a network into com-

munities, for example because of anomalous nodes. The efficiency of modern community

detection methods times has furthermore improved drastically over the years (they run in

O(m)), allowing us to extensively investigate their performance for networks with more

obvious as well as more obfuscated community structures, as we will do in Section 6.

The proposed Community-Aware Detection of Anomalies algorithm consists of

two steps.

First, CADA (cd in short) assigns each node to a particular community using an out-

of-the-box community detection method [21]. In this paper, we employ two well-known

community detection algorithms that both scale linearly in the number of edges and as

such run in O(m): the Louvain algorithm [22] and the Infomap approach [24]. These

are extensively described in Section 2.3. We refer to CADAL or cdL when Louvain

is used as community detection method, and to CADAI or cdI when Infomap is used

as community detection method. Both assign each node to a community, and can

handle undirected and directed networks (Louvain would ignore link direction), and can

incorporate weights.

The second step of CADA is to assign an anomaly score to each node, based on the

communities each node connects to. The anomaly score describes to what extent the

neighbors of a node belong to a diverse number of communities, while not strongly

belonging to one of them. Thus, for each node i, we create a vector gi, where gci represents

the number of neighboring nodes of node i that belong to community c. g∗i represents

the maximum number of neighboring nodes that belong to the same community. We

can then compute an anomaly score for each node as follows:

cd(i) =
c∑
j=1

gji
g∗i

(4.10)

4.2 Identifying moments of interest in dynamic networks

Contrary to static networks, dynamic networks are networks that change over time.

Research in the field of anomaly detection in dynamic networks has seen increased

interest in recent years, as one is able to define normal behavior of a node and its

connections over time. This makes it a powerful approach to identify points in time

where a node, sub-graph, or entire network behaves considerably different compared

to other moments in time. While a variety of techniques exist in the field of dynamic

network-based anomaly detection, we will focus on one approach in particular: event
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detection. Event detection is useful for the investigator, because it can uncover moments

of critical importance in the network that is under investigation.

The problem of event detection can be described as follows. Given a graph stream, or

a sequence of graphs, G1, G2, ..., GT , where T is the total number of time steps in the

network, identify graphs in time where the network has changed significantly compared

to previous points in time. Note that choosing the width of each time step t between Gi

andGi−1 with 0 < t < T is crucial to correctly identify anomalous points in time, because

events can be very context specific. For example, in a corporate e-mail network, one

can expect to find low e-mail activity in the weekends, causing inconsistencies in various

statistics of the graphs in the graph stream if observed on a daily basis. Moreover, by

comparing graphs on a monthly basis, the width may be to wide to accurately understand

on what day or week the anomaly occurred.

4.2.1 EdgeDiff

A straightforward approach to detect events in networks, is to observe the difference in

edge count of the network over time. We refer to this approach as EdgeDiff. One

can expect that at an important moment in time, the activity in the network increases,

leading to a growth in the number of edges at that moment in time.

Although this may be a simple and effective approach, it may oversee crucial information

that can only be discovered by monitoring other graph statistics over time. As an

example, consider an communication network of an organization. At a certain moment

in time, the CEO is replaced by a newcomer. The newcomer decides to change its

board of directors, and higher-level management. While the activity of communication

between the old and new board of directors may still be relatively similar, the change

of management leads to a change in the global structure of the network, obscuring the

old network structure.

Hence, we introduce two measures that indicate to what extent two graphs are similar

to each other for the purpose of event detection: NetSimile [38], and DeltaCon [43].

Lastly, we discuss how these measures can be compared to detect anomalous events in

time.

4.2.2 NetSimile

NetSimile was the first to measure the similarity between two graphs [38]. It consists

of three steps: (1) feature extraction, (2) feature aggregation, and (3) comparison. We

discuss each step below shortly.
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The first step, feature extraction, computes several features f on a local basis for each

node. NetSimile computes the following features for each node, but note that Net-

Simile is not limited to these features:

• ki: Degree of node i

• ei: Clustering coefficient of node i

• Ki: Average number of two-hop away neighbors of node i

• ẽi : Average clustering coefficient of the neighboring nodes of node i

• mi: Number of edges in the ego-network of node i

• mi,out: Number of outgoing edges from ego-network i

• nbi: Number of neighbors of ego-network i

The feature extraction results in a n × f matrix FGt for each graph Gt in the graph

stream. The second step, feature aggregation, summarizes each feature of the graph

matrix FGt to five values, namely the median x̃, mean µ, standard deviation σ, skewness

skew, and kurtosis kurt. While the former three are relatively straightforward, the latter

two can be described as follows. The skewness provides an indication of asymmetry of

the distribution.

skew =

∑n
i=0(Yi − µ)3/n

σ3
(4.11)

Here, Yi denotes the ith value in the distribution. The kurtosis describes to what extent

the distribution is light tailed or heavy tailed. Mathematically, it is denoted as follows.

kurt =

∑n
i=0(Yi − µ)4/n

σ4
(4.12)

The feature summarization step results in a signature vector SGt with fn = f × 5

ordinates for each graph in the graph stream. The last step is to measure the similarity

between the signature vectors SGt and SGt−1 for the entire graph stream. The authors

found that the Canberra Distance suited best for comparison, as it is sensible for small

changes near zero. The Canberra distance DCan is described as follows:

DCan(St, St+1) =

fn∑
i=1

|St,i − St+1,i|
St,i + St+1,i

(4.13)
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4.2.3 DeltaCon

DeltaCon was constructed to measure the similarity in the node affinity of each node

to every other node in the Gt and Gt−1. The rationale behind the method is that connec-

tions between nodes that connect multiple communities should be accounted for more

as a similarity difference compared to sole connections in the network. As an example,

consider the three graphs in Figure 4.4. While these are nearly similar, graph (b) is

different to graph (a), because one connection is missing in one of the two communities.

Similarly, in graph (c) one connection is missing. However, the connection links both

communities, and as such the difference between graph (a) and graph (c) should be

accounted for more compared to graph (a) and graph(b).

(a) Sub graph (b) Sub graph (c) Sub graph

Figure 4.4: Example graphs for DeltaCon. Figure (a) illustrates a normal network,
figure (b) illustrates a change in a sub-graph of network (a), while figure (c) illustrates
a change that causes the two sub-graphs to become separate. DeltaCon penalizes for

changes that lead to a change in the global structure of the network.

With this intuition, the authors propose to use Fast Belief Propagation [43], a variant

of Random Walks with Restarts that is based on maximum likelihood estimations. Fur-

thermore, the underlying technique takes into account k-hop away neighbors as well with

decreasing weight and therefore suits the intuition that nodes that function as bridge in

the network should be accounted for more in terms of similarity. The n×n node affinity

matrix B is defined as follows.

B = [bij ] = [I + ζ2K − ζA]−1 (4.14)

Here, I is the identity matrix, K the diagonal matrix with the degree of node i on the Kii

dimension, and A the adjacency matrix of the graph. ζ captures the influence between

neighbors. Among the many measures that were investigated, the authors propose to

use the Matusita distance because it is similar to the Euclidean distance, while it usually

gives better results because it even detects small changes in the graph. The Matusita

distance Dmat is defined as follows.
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DMat =

√√√√ n∑
i=1

n∑
j=1

(
√
bt,ij −

√
bt+1,ij)2 (4.15)

Here, st,ij is the node affinity of node i to node j of the affinity matrix s on timestep t.

Note that we obtain the similarity between consecutive graphs by sim = 1
1+dMat

.

4.2.4 Anomaly detection in graph time series

The similarity measures and the difference in number of edges of consecutive graphs

provide how the networks differ to each other over time. By using these methods, we

obtain a set of data points for each similarity measures. Now, the challenge is to flag

data points that deviate significantly from the rest of the distribution. Recall that we

discussed how to flag data points as anomalous from data distributions in Section 2.5.

The authors of NetSimile and DeltaCon chose a similar approach. That is, that data

points that exceed the x̃+ 3σ (for NetSimile), or x̃− 3σ (for DeltaCon) are flagged

as anomalous. Here, x̃ is the median, and σ the standard deviation.
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Experimental setup

In this Chapter we describe how we answer the problem statement and research ques-

tions. Throughout this research, it became clear that it is difficult to evaluate network-

based anomaly detection algorithms for a variety of reasons. Therefore, we narrow down

the scope to one specific anomaly in static anomaly detection: the node anomaly, the

node that is unaware of the global structure of the graph. But before we are able to ex-

tensively review the anomaly detection algorithms, we discuss the data sets that are used

in this research in Section 5.1. In Section 5.2 we discuss the settings of each anomaly

detection algorithm that is discussed in the previous Chapter. Lastly, we discuss how

the algorithms are compared to each other in Section 5.3.

5.1 Data sets

As we described in Section 3.3, there are no available labeled data sets to evaluate

network-based anomaly detection techniques. Therefore, we described five mechanisms

to evaluate the algorithms, and consider two of them most suitable for evaluation pur-

poses: (1) synthetic graph injection, and (2) qualitative evaluation. These two are chosen

because they allow to quantify and qualify the performance of each anomaly detection

algorithm. We describe the construction of the data sets below.

5.1.1 Synthetic data sets

We generate synthetic networks with ground-truth community structure ranging from

1,000 to 500,000 nodes with the LFR benchmark graph [27]. The LFR benchmark is

chosen because it satisfies many real-world properties. Moreover, the range of param-

eters to tune in the LFR benchmark makes the benchmark extremely suitable for the

35
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Table 5.1: Parameter settings for generating LFR benchmark networks.

Parameter Description Setting

n The number of nodes from 103 to 5 ·105

d Average degree 2 · n1.15/n

kmax Maximum degree n1/(t1−1)

λ1 minus exponent for degree distribution 3
λ2 minus exponent for community size dis-

tribution
2

ρ Mixing parameter for topology from 0.1 to 0.6

generation of unweighted, weighted, undirected, and directed networks. The parameters

are illustrated in Table 5.1, and chosen to cover a wide variety of network structures. We

generated 10 networks of 100,000 nodes for each mixing parameter between 0.1 to 0.6,

and 10 networks for each size ranging from 1,000 to 500,000 with a mixing parameter of

0.4.

Following the approach suggested in [11] we employ two generative processes to insert

anomalies in the synthetic networks, that reflect on the node anomaly.

Random anomaly is inspired by the fact that infiltrating nodes are not aware of the

global network structure and therefore connect to random nodes in the network. The

anomalies are injected by adding n/100 nodes that connect to x random existing nodes,

where x is between k and kmax. For each inserted node, the value of x is set by drawing a

value from the the same power law degree distribution as that of the synthetic network.

Replaced anomaly first generates n+ h nodes with the LFR benchmark. The goal is

to replace h nodes to obtain n + n/100 nodes. We randomly select x existing nodes in

the network that have a degree lower than 2 · k. An anomaly is injected by rewiring all

edges from the x nodes to the new anomaly. The x nodes are then removed from the

network. the value of x ranges from 2 to 21, with an increment of 1, until n + n/100

nodes are obtained.

5.1.2 Real-world data sets

Ranshous et al. provide a clear overview of fifteen data sets that can be used in either a

static or dynamic context [31]. The Enron data set is the main focus of our investigations,

because it closely reflects to real-world data in the field of electronic discovery. The Enron

data set is made available by the Federal Energy Regulatory Commission as a part of the

investigations of the Enron scandal. It consists of e-mail boxes from about 150 former

Enron employees that had a senior position. During our experiments, we noticed that
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there were some issues in reproducing work of other papers, such as [2, 38, 43], as they

do not elaborate on the way the network data set was extracted. We therefore describe

precisely how the data set should be processed to obtain similar results.

We extracted all one-to-one and one-to-many e-mails on a weekly basis, including CC

and BCC, where the nodes represent e-mail addresses and the edges represent whether

two nodes have sent an e-mail to one another from a preprocessed database, published

at http://www.ahschulz.de/enron-email-data/. An e-mailbox often consisted of

multiple e-mail addresses belonging to the same person. All those e-mail addresses are

normalized to the foremost e-mail address of that e-mailbox. Furthermore, the Enron

data contains a lot of duplicates. For example, if an e-mail was sent from one to the

other e-mail box, the e-mail belongs to both e-mail boxes. Hence, we deleted duplicate

e-mails if the from, to, and message identifier were equal. We generated a network for

each week, starting from July 1999 to December 2002.

Lastly, it is important to note that one can obtain different kinds of communication

networks. One possibility is to include all e-mails that were sent from or to one of the

e-mail boxes. This results in a network with many nodes that only sent one e-mail, and

includes irrelevant and spam e-mails. However, it may also contain relevant information

about e-mail addresses that interacted with the senior employees of the network. We

therefore chose to create two Enron data sets, (1) Enroncore, that only consists of the

e-mail addresses of the senior employees from the e-mailboxes, and (2) Enrontotal, that

consists of all encountered e-mails addresses in the data set.

Furthermore, to support our results in static anomaly detection, three other real-world

data sets were chosen to qualitatively assess the performance of the anomaly detection

algorithms. Douban (http://socialcomputing.asu.edu/datasets/Douban) is a Chi-

nese recommendation website where a link exists between two users if they had an explicit

friendship connection. Amazon (http://snap.stanford.edu/data/amazon0601.html)

is a co-purchasing network where a link exists between two articles if these products

are frequently purchased together on Amazon. DBLP (http://projects.csail.mit.

edu/dnd/DBLP) is a collaboration network based on co-authorship between mostly com-

puter scientists, extracted from the popular DBLP listing website. See Table 5.2 for

an overview of the data sets. The number number of messages is only relevant for the

Enron network as the weight of the links is also included in the analysis.

http://www.ahschulz.de/enron-email-data/
http://socialcomputing.asu.edu/datasets/Douban
http://snap.stanford.edu/data/amazon0601.html
http://projects.csail.mit.edu/dnd/DBLP
http://projects.csail.mit.edu/dnd/DBLP
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Table 5.2: Properties of the real-world network data sets.

Data set Description n m

Enroncore E-mail network 149 1,853
Enrontotal E-mail network 75,377 293,200
Douban Social network 154,907 327,162
Amazon Co-purchase network 403,394 2,443,408
DBLP Co-authorship network 1,412,414 5,947,085

5.2 Settings of anomaly detection algorithms

In this section we describe the parameter settings for each algorithm. We firstly discuss

the settings of the proposed static anomaly detection algorithms. Then, we discuss how

the parameters are tuned to consider a graph in time as anomalous in Section 5.2.2.

5.2.1 Static algorithm settings

The static anomaly detection algorithms rely on different concepts of machine learning,

such as clustering and network embedding. Therefore, some algorithms require param-

eter selection to detect anomalies. We discuss each algorithm and its settings below

shortly.

Oddball is completely parameter free. However, the distance to the fitting line needs to

be computed to measure the anomaly score of each node. For the purpose of identifying

the node anomaly, we only need to identify the stars, i.e., the nodes below the fitting

line of the EDPL. Thus, we can redefine Equation 4.1 as follows.

ob(i) =
Cxα̌i
yi

log(yi − Cxα̌i + 1) (5.1)

For Scan, we choose two parameters, κ and ε. Recall, that κ and ε can be selected by

identifying the turning point in the structural similarity plot as was shown in Figure

4.3. We noticed that the structural similarity plot was not always helpful in selecting

a good value for ε. We finally set κ to 2, and ε to 0.3 on the synthetic data sets to

maximize performance. This provided us with a list of hubs, and the hubs were ordered

in ascending order of average structural similarity with the neighbors of each hub in

the network as an indicator of deviance. Hence, hubs with lowest average structural

similarity were considered most anomalous.

Embed relies on the number of dimensions R. As mentioned in the paper, R = n/500

has shown to provide good results for various graphs. However, this does not scale
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properly with network size. Hence, we set R =
√
n to let the algorithm scale with all

network sizes.

Cada is completely parameter free. However, one can tune the performance of Cada

by tuning parameters of the out-of-the-box community detection algorithms. As an ex-

ample, one can tune the resolution parameter of the Modularity maximization algorithm

Louvain. We set the resolution parameter to 0.1.

5.2.2 Dynamic algorithm settings

There are no parameters to tune for the dynamic algorithms. However, we must decide

when a certain moment in time should be considered anomalous. Recall that, Delta-

Con and NetSimile both suggest to solely observe the median of the network and

flag moments as anomalous when the similarity between consecutive graphs exceeds a

threshold of the median and z standard deviations x± z · σ. The authors set z to 3.

We approach the problem in a similar fashion, in which we tune z to maximize perfor-

mance. Furthermore, note that this approach may flag two consecutive graphs in time

as anomalous, because one of them was considerably different compared to the previous

and upcoming graph. This leads to a low similarity for two consecutive graphs. In this

case, we only flag the first consecutive graph as anomalous. Note that for DeltaCon,

graphs are flagged anomalous if the similarity is below x − z · σ, while data points for

NetSimile and EdgeDiff are considered anomalous if the similarity is below x−z ·σ.

Furthermore, an anomaly is considered correct if the anomaly is detected ± 10 days

from the ground-truth event.

5.3 Perform comparative experiments

In this section, we define how we evaluate and compare the anomaly detection algorithms

in a static (see Section 5.3.1) and dynamic context (see Section 5.3.2).

5.3.1 Static anomaly detection

We will qualitatively and quantitatively evaluate the static anomaly detection algo-

rithms. Combining both mechanisms gives us a fair performance overview of each algo-

rithm.
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5.3.1.1 Evaluation on synthetic data sets

As it is hard to quantitatively evaluate on unlabeled data sets, we can only evaluate on

synthetic graphs. The output of what is considered an anomaly can vary per technique.

For example, one technique provides an anomaly score for each node, while the other

technique labels whether the node is anomalous or not. To fairly evaluate and compare

the algorithms with each other, we have defined an anomaly score for each node as is

described in Section 6.1. Therefore, we can sort the list of anomaly scores to obtain the

first k most anomalous nodes and evaluate on the difference between them.

We perform the quantitative evaluation by firstly imputing a fixed number of i = 0.01n

anomalies in each synthetic graph. We flag nodes as anomalous as follows. We firstly

run CadaI on each data set. Then we compare the 1% most anomalous nodes according

to each algorithm with the ground-truth anomalies by computing the F1-score. The F1-

score is based on recall and precision. Recall is the fraction of true positives (discovered

anomalies) divided by the total number of ground-truth anomalies (that we inserted),

while precision is equal to the true positives divided by the number of nodes that are

flagged anomalous. The F1-score is then:

F1 = 2 · precision× recall
precision+ recall

(5.2)

5.3.1.2 Evaluation on real-world data sets

The qualitative evaluation is twofold: (1) we provide a case study of the nodes on the

Enron e-mail network and the DBLP network, and (2) we compare how many common

nodes are found in the top 1% most anomalous nodes of the considered real-world

networks. Note that this could be slightly more than 1% because nodes could have

the same anomaly score, in which case we included all nodes with the same score as the

node at the exact cutoff. For two sets of discovered node anomaly sets A1 and A2, we

use the Jaccard similarity, defined as follows:

J(A1, A2) =
|A1 ∩A2|
|A1 ∪A2|

(5.3)

5.3.2 Dynamic comparative experiments

To evaluate on the dynamic anomaly detection algorithms, we use ground-truth data of

events that happened in the last years of Enron. Hence, we can check whether anomalous

graphs that are discovered by any of the methods, correspond to the ground-truth events.
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Performance of each method can be further described in terms of recall, precision, and

F1, as described in Section 5.3.1.1. Furthermore, we observe the distribution of each

similarity measure over time, to examine whether we are missing crucial items that

should actually be flagged anomalous.

Note that, the significance of events is merely subjective, as a variety of newspapers

highlight different moments as important in the last years of Enron. We selected the

most important events that follow the timelines of the NY times1, The Guardian2, and

the movie Enron: The smartest guys in the room. The ground-truth events are listed

in Table 5.3.

Table 5.3: Ground-truth events from the Enron scandal between June 1999 and
February 2002.

Date Description

May 5, 2000 Operation Death Star announced
July 19, 2000 Enron announces deal with Blockbuster
August 23, 2000 Enron hit all time high
December 13, 2000 Enron announces Skilling will take over as CEO

February 12, 2001 Skilling takes over as CEO
March 5, 2001 Bethany McLean releases article
April 17, 2001 The asshole call
May 14, 2001 Mintz sends memorandum to Skilling on LJM paperwork
June 22, 2001 Skilling hit in the face by a pie in California
August 14, 2001 Skilling resigns as CEO while stating company is doing well
October 16, 2001 Enron reports gigantic loss
October 23, 2001 Lay supports Fastow during conference call with analists
October 24, 2001 Fastow fired
November 19, 2001 Enron restates its third-quarter earnings and discloses to

restructure

February 4, 2002 Lay resigns from board
February 7, 2002 Skilling testifies before congress

1https://www.nytimes.com/2006/01/18/business/worldbusiness/timeline-a-chronology-of-enron-corp.

html
2https://www.theguardian.com/business/2006/jan/30/corporatefraud.enron

https://www.nytimes.com/2006/01/18/business/worldbusiness/timeline-a-chronology-of-enron-corp.html
https://www.nytimes.com/2006/01/18/business/worldbusiness/timeline-a-chronology-of-enron-corp.html
https://www.theguardian.com/business/2006/jan/30/corporatefraud.enron


Chapter 6

Results

In this Chapter we illustrate and describe the results of the experiments of graph-based

anomaly detection algorithms. In Section 6.1, we report how each of the static anomaly

detection algorithms performs on both synthetic and real-world networks. Then, we

follow up with the detection of events in consecutive graphs in Section 6.2.

6.1 Static comparative experiments

This section encompasses results of the four discussed static anomaly detection algo-

rithms on real-world networks (see Section 6.1.1) and synthetic networks (see Section

6.1.2).

6.1.1 Results on real-world data

We firstly illustrate an anomaly found on ENRONtotal, using Oddball, with the EDPL,

to measure the distance to the fitting line for each node. Illustrated in Figure 6.1, the

foremost node anomaly is Kenneth Lay, CEO of Enron and key player in the ENRON

scandal.

All other methods did not flag Kenneth Lay as an anomalous node. As a matter of fact,

Embed, Scan and Cada gave Kenneth Lay a low anomaly score. One reason why this

could be the case is that Kenneth Lay connects to a large number of persons that have no

further connections in the graph, which causes Cada and Embed to classify neighboring

nodes to the same group. Furthermore, there is a lot of room for interpretation to fully

comprehend the anomalies on the Enron data set, and we have no extensive ground-truth

information about the nodes in the network.

42
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Figure 6.1: Oddball Egonet Density Power Law on the ENRONtotal network, where
CEO Kenneth Lay, key player in the ENRON Scandal, is flagged as an anomaly.

Therefore, we decided to zoom in on the DBLP data set, and two noteworthy findings

were detected by Cada. These anomalies were solely identified by Cada with Infomap,

but ignored by Oddball, Scan, and Embed. First, we found authors that have pub-

lished with many different authors, such as prof. dr. H. Vincent Poor, who was president

of the IEEE Information Theory Society, and at the time of the data set has published

with over 400 authors from all over the world. Second, many discovered anomalies were

actually authors with the same name, such as 63 distinct authors named ’Wei Liu’ that

collaboratively published with over 1332 different authors. Other such authors were

’Jing Li’, ’Yan Zhang’, and ’Yu Zhang’. This illustrates that apart from outliers such as

authors with extremely large number of publications, also errors in the underlying data

can efficiently be identified using anomaly detection techniques.

After a careful check, we found that there is a small overlap in the anomalies that were

detected by each method. Therefore, we also zoomed in on the agreement between dif-

ferent methods on real-world data sets, of which results in the form of Jaccard similarity

are reported in Table 6.1.

6.1.2 Evaluation on synthetic data sets

To quantitatively evaluate the static anomaly detection algorithms, we generated LFR

benchmark graphs and imputed Random Anomaly and Replaced Anomaly in the syn-

thetic graphs, as described in Section 5.1.1. We firstly evaluate the performance on

synthetic networks with different degrees of community structure, by illustrating the



Results 44

Table 6.1: Jaccard similarity of the most anomalous nodes on DBLP, Amazon,
Douban, Enrontotal, and Enroncore (left to right, up to down). Oddball (ob), Embed

(em), Cada Louvain (cdL), and Cada Infomap (cdI).

sc em cdL cdI
ob 0.0 0.02 0.02 0.02
sc - 0.09 0.16 0.22
em - - 0.22 0.24
cdL - - - 0.24

sc em cdL cdI
ob 0.03 0.11 0.11 0.17
sc - 0.06 0.06 0.09
em - - 0.17 0.20
cdL - - - 0.21

ob em cdL cdI
ob 0.1 0.00 0.00 0.00
sc - 0.09 0.09 0.11
em - - 0.37 0.43
cdL - - - 0.34

sc em cdL cdI
ob 0.07 0.03 0.02 0.02
sc - 0.07 0.04 0.07
em - - 0.25 0.23
cdL - - - 0.15

ob em cdL cdI
ob 0.15 0.0 0.36 0.0
sc - 0.0 0.0 0.0
em - - 0.07 0.03
cdL - - - 0.0

performance of each algorithm on networks with different mixing parameters (a higher

mixing parameter means a less present community structure) in Figure 6.2.

Besides evaluating on networks with different community structures, another evaluation

metric is to assess the performance on networks with varying network sizes. The results

on networks with network sizes of 1, 000 to 500, 000 nodes with a fixed mixing parameter

of 0.4 are illustrated in Figure 6.3.
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Figure 6.2: F1-score for different values of the mixing parameter for networks with
100,000 nodes.



Results 45

1 2 5 10 20 50 100 200 500
0

0.2

0.4

0.6

0.8

1

Network sizes (×1000)

F
1
-s

co
re

Oddball
Scan
Embed
CadaL
CadaI

(a) RandomAnomaly

1 2 5 10 20 50 100 200 500
0

0.2

0.4

0.6

0.8

1

Network sizes (×1000)

F
1
-s

co
re

Oddball
Scan
Embed
CadaL
CadaI

(b) ReplacedAnomaly

Figure 6.3: F1-score for different network sizes with fixed mixing parameter 0.4.

6.2 Results on dynamic networks

In this section, we identify anomalous moments in time by observing the similarity

of the consecutive graphs on a weekly basis with three different similarity indicators,

EdgeDiff, NetSimile and DeltaCon. We illustrate the number of edges at each

time stamp in Figure 6.4.

Figure 6.4: The number of new edges at each time stamp of Enroncore over the time
span of June 1999 to July 2002

First, we quantify the performance for different settings of the number of times z that

the standard deviation σ should deviate from the median x̃. The results are illustrated

in Figure 6.5. The illustration shows that EdgeDiff and DeltaCon perform best on

the real-world Enron data set.

F1-scores indicate how well the graph is performing, but we are also interested in whether

the metrics show to identify similar anomalies. To further qualify the performance, we

illustrate the flagged anomalous events for each similarity metric in Figure 6.6. The value
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Figure 6.5: F1-score for each similarity metric for various z on the Enroncore network,
where z represents the number of times that the standard deviation should diverge from

the median to consider a data point as anomalous.

of z was selected from Figure 6.5, so that the threshold maximizes F1-score. Hence, we

set z to 1.5, 0.0, and 1.4 on EdgeDiff, NetSimile, and DeltaCon respectively.

Figure 6.6: Events of Enron between June 1999 and February 2002. Note that the
lowest figure illustrates the edge count over time, with the ground-truth events shown
with the green lines. For the other three measures, the green line is an event that is
correctly flagged as an anomaly, while the red line is an event that is incorrectly flagged

as an anomaly.
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Discussion

In the previous Chapter we reported results of both static and dynamic anomaly detec-

tion algorithms. In this Chapter, we discuss the results obtained in the previous Chap-

ter. In Section 7.1, we discuss the results of the static anomaly detection algorithms. In

Section 7.2, we discuss the results of the dynamic anomaly detection algorithms.

7.1 Static anomaly detection algorithms

To accurately evaluate on the static network-based anomaly detection algorithms, we

performed experiments on both synthetic networks and real-world networks. The results

on real-world network data is discussed in Section 7.1.1, and the results on synthetic

network data is discussed in Section 7.1.2. In Section 7.1.3, we discuss how each method

is beneficial for a domain expert.

7.1.1 Results on real-world networks

The results on real-world networks demonstrate that the static anomaly detection al-

gorithms under investigations were capable of identifying anomalous nodes. The first

finding was illustrated in Figure 6.1, where Oddball provided a clear overview of the

graph in two-dimensional space. Furthermore, Kenneth Lay, key player in the Enron

scandal, was flagged as the most anomalous node in the network according to Oddball.

It is rather straightforward why Kenneth Lay was considered an anomaly, as he received

e-mails from over 1,000 objects in the network. Of course, Kenneth Lay was in contact

with a variety of people, may it be colleagues, journalists, or people that simply tried to
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reach the CEO. Unsurprisingly, the high degree with many unrelated objects implies a

low clustering coefficient, that results in a high anomaly score according to Oddball.

Other techniques that were investigated, were limited in the sense that they erenot able

to give a similar two-dimensional overview as Oddball. However, by zooming in on the

DBLP data set, we were able to give meaning to the anomalies discovered by Embed

and Cada. As a matter of fact, Cada found relevant anomalies that were not discovered

by any of the other methods.

Table 6.1 demonstrates that the overlap in anomalous nodes on all real-world data

sets under investigation varies a lot. It uncovers a limitation of CADA, as one would

expect that the overlap between nodes from CadaL and CadaI would be higher than

the overlap between nodes from Cada and the other methods. It illustrates, that the

technique is dependent on the community detection performance of the network, and

unfortunately there is no universal method to detect communities most accurately in

each network. A possible step for future research may be to check which community

detection algorithm performs best for Cada.

7.1.2 Results on synthetic networks

Results on the LFR benchmark networks show that each method is capable of uncovering

node anomalies in the networks. We have illustrated how each algorithm performs

in identifying the node anomaly with two methods, namely by (1) varying with the

strengths of community structures (see Figure 6.2), and (2) by varying with the graph

sizes (see Figure 6.3).

Figure 6.2(a) illustrates that the algorithms perform very well on networks with a strong

community structure, that is, F1-scores of 0.9 or higher for a mixing parameter of 0.1

on the Random Anomaly. Once the mixing parameter increases, the results of both

Oddball and SCAN, that approach the node anomaly detection from a local perspec-

tive, perform worse than the other two methods. The performance of Scan decreases

most significantly, followed by Oddball. Embed and CADA are performing signifi-

cantly better, where Cada takes the lead with the Louvain and the Infomap community

detection method.

Figure 6.2(b), again, illustrates that CadaI performs best in identifying the Replaced

Anomaly on graphs with varying community structure. Oddball closes in when the

community structure diminishes. It further demonstrates that CadaL performs worse

than CadaI , which is likely due to the resolution limit, which starts to play a larger

role for higher values of the mixing parameter [47].
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Furthermore, CADA performs best on both anomalies for networks of all sizes, with

Embed closing in, especially once the network becomes larger than 200, 000 nodes.

Embed starts performing better on larger networks as the number of dimensions R may

play a smaller role on larger networks. In Figure 6.3(b), Cada with Infomap consistently

performs best, but the difference with other methods is smallest.

7.1.3 Uses for the domain expert

While a variety of static network-based anomaly detection techniques exist, many of

them focus on one specific anomaly; a node that connects to many communities while

not belonging to one of them. We investigated how the anomaly detection techniques

can benefit the domain expert, and we discuss each one of them below shortly.

The Oddball algorithm defines normal behavior by fitting a line on the data. It can

be easily visualized in two-dimensional space and thus assist in navigating through the

network. With the visualization it is rather easy to interpret why nodes are anomalous

according to the algorithm. The most expensive task of the anomaly detection method

is to extract the features from the egonet, with a complexity of O(n · d2), where d is

the average degree of the network. Oddball is not only limited in identifying the node

anomaly, but is a best-of-suite method that can identify other anomalies by taking other

features of the ego-networks into consideration. A clear shortcoming of the Oddball

algorithm is that it solely identifies anomalies by observing the local neighborhood of a

node, instead of utilizing regional features for the detection of anomalies.

Scan does not only detect outliers, but also clusters the network from a local perspec-

tive. It can therefore inform the domain expert on two aspects: (1) by providing an

overview of the groups of clusters in the network, and (2) by providing a list of anoma-

lous nodes. However, the parameter optimization requires a lot of effort and it is difficult

to determine whether the parameters are accurately selected. Furthermore, Figure 6.2

and 6.3 illustrates that Scan flags many false positives as anomalies on the synthetic

data set, especially as the mixing parameter increases. Later on it became clear why this

is the case: the structural similarity becomes tremendously low for nodes that connect

to many other nodes in the network, that is not limited towards nodes that are unaware

of the global structure of the network. The time complexity of Scan is O(m).

Embed solely focuses on identifying nodes that connect to a number of influential re-

gions. It takes into account regional features (e.g. cluster membership), for identifying

such nodes. It does, however, require that one chooses the number of dimensions R to

find the optimal embedding. As a rule of thumb the authors claim that R = n/500 is

a good initial value. However, this does not scale well with networks of various sizes



Discussion 50

and different parameter settings gave rather different results. After some tuning, we

set R =
√

(n). Embed scores well on synthetic data with a variety of network statis-

tics, outperforming Oddball and Scan on most networks, and closing in on Cada

on networks with larger sizes. A shortcoming of Embed is the time complexity, being

O(t ·m · (k + β)), and that the method is not completely parameter-free.

Cada, the new method that is proposed, is (1) parameter free, (2) scales linearly with the

number of edges, (3) provides a list of groups that cluster together in the network, and

(4) incorporates global features of the graph by using highly performing community de-

tection methods to find anomalous nodes. It outperforms all above methods on a variety

of synthetic data sets. On real-world data, Cada shows to identify relevant anomalous

nodes that were not discovered by the other methods. Hence, the node anomaly is most

accurately detected by Cada, making it a suitable approach for providing insight into

the communities of the network and suitable for identifying anomalous nodes.

7.2 Dynamic anomaly detection algorithms

Time brings a completely new dimension to the analysis of networks. This is beneficial

and relevant for the purpose of anomaly detection, because one is able to define how

nodes, edges, or (sub-)graphs behave normally over time. While there exist a wide

variety of applications in dynamic anomaly detection, we focused on event detection,

where we used three different metrics to measure the similarity between consecutive

graphs over time.

The similarity metrics were able to identify anomalous points in time that are meaningful

in the context of the Enron scandal. Illustrated in Figure 6.5, EdgeDiff and DeltaCon

perform well on the data set, while NetSimile performs considerably worse. EdgeDiff

performs most consistent manner, while DeltaCon shows some fluctuation.

By zooming in on the distributions over time in Figure 6.6, we see that EdgeDiff flags

many anomalous events accurately, while missing other relevant events. DeltaCon,

that performed similarly to EdgeDiff in terms of F1-score, flags different moments in

time as anomalous. This indicates that DeltaCon is suitable to identify moments in

time as anomalous that were elsewise not discovered. Moreover, due to the low similarity

of first anomaly detected by DeltaCon, we did a careful check. The anomaly flagged is

on December 26, 2000. While this is not an event that corresponds with the Enron data

set, it is clear that the graph is different compared to previous graphs due to Christmas.

It also became clear why NetSimile performs worse. First of all, most anomalous

points are detected between July 1999 and January 2000. Due to the low activity in
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terms of edges, the small differences between those graph are accounted for more for

NetSimile. After February 2000, NetSimile performs better and identifies nearly as

much anomalous events as false positives. This also leads to a drawback of our current

approach to flag moments in time as anomalous.

By determining the median and standard deviation on the entire distribution of data

points, one also takes into account statistics of the future. The network can change

over time, with a growing or shrinking number of nodes, causing a change in what can

be considered a normal similarity in the graph. As an example, one can expect that

once the number of nodes and edges grow in general, the similarity between consecutive

graphs becomes lower in general. Considering data points of the graph stream may

therefore lead to a higher standard deviation, that causes the techniques to inaccurately

flag moments in time as not anomalous. This could be further investigated in future

work.

Nonetheless, our results illustrate that graph similarity measures can be used to indicate

when events occurred in the network. Therefore, it can support the domain expert

by illustrating at which moments in time something happened between the persons of

interest in the investigation, that might lead to relevant moments in time that can be

acted upon.
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Conclusions

In this Chapter we provide an answer to the three research questions and the problem

statement formulated in Chapter 1. In Section 8.1 we provide answers to the research

questions. In Section 8.2 we answer the problem statement. Finally, we discuss future

work in Section 8.3.

8.1 Answers to the research questions

In this section, we provide an answer to each of the research questions formulated in

Chapter 1.

Research question 1: To what extent can network-based anomaly detection techniques

be utilized to identify anomalous behaviour in static real-world networks?

To answer this research question, we firstly identified and implemented three existing

network-based anomaly detection techniques. One of them, demonstrated that anoma-

lous nodes, edges, and sub-graphs could be found by observing various features of the

direct neighborhood of each node of the graph in two-dimensional space. Other tech-

niques discovered a similar node anomaly, the node that is unaware of the global struc-

ture of the graph. Typical examples of such anomalies are network intruders in physical

networks or spammers spreading unwanted advertisement in online social networks.

The previously proposed techniques identified the node anomaly from a local perspective,

or were not parameter-free. That motivated us to introduce a new method, named

Cada, or Community-Aware Detection of Anomalies. Cada identifies anomalous nodes

based on whether they connect to large number of communities, while not belonging

to one distinct community themself. As such, it tackles the problem from a global
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perspective. An advantage of this community-aware approach is that it scales linearly

with the number of edges, improving upon previous techniques. Furthermore, it is

parameter free and highly effective. Experiments showed that our proposed community-

aware methodology can spot anomalies in both synthetic and real-world data sets that

were not discovered by other methods. Furthermore, on all synthetic benchmark data

sets, Cada outperformed previous approaches. In addition to uncovering the node

anomaly, Cada provides a list of groups of people that tend to cluster together in the

network.

Therefore, the answer to the first research question reads as follows. Network-based

anomaly detection techniques can be used to gain insight into anomalous behaviour in

static real-world networks. The techniques can be used to summarize the graph and

uncover nodes that do not obey common patterns in the graph. Furthermore, most

techniques also have additional benefits, where our new anomaly detection technique

Cada also uncovers groups of people that tend to cluster together in the network.

Hence, static network-based anomaly detection techniques can be a powerful technique

to provide insight into the network for a domain expert.

Research question 2: To what extent does the addition of the dynamic component in

network-based anomaly detection affect the performance of anomaly detection?

To answer this research question, we firstly discussed a variety of anomalies that can

be detected in networks that change over time. A benefit of dynamic network-based

anomaly detection is that one can learn how nodes, edges, or (sub-)graphs behave nor-

mally over time. One can utilize this information to discover at what points in time

parts of the graph behave considerably different and mark those points as anomalous.

Although the possibilities of dynamic network-based anomaly detection are endless, we

have focused on detecting one anomaly in specific, the event anomaly. We showed that

one can use various graph features to quantify the similarity between consecutive graphs

over time. Anomalous points in time can then be uncovered by using simple statistical

anomaly detection methods on the set of similarities or by observing the similarity plots

over time.

Therefore, the answer to the second research question reads as follows. In real-world

applications, networks are constantly evolving over time. Incorporating the dynamic

component when detecting anomalies can be of critical importance to accurately reduce

the amount of manual work that should be done by the domain expert. Hence, event de-

tection on networks can be a vigorous approach to identify activities that have occurred

in a network of persons that are under investigation.
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8.2 Answer to problem statement

Problem statement: How can network-based anomaly detection algorithms support

domain experts in detecting anomalous behavior in real-world networks?

In this thesis we investigated whether we can assist domain experts in the field of elec-

tronic discovery by using network-based anomaly detection techniques. Our aim was

to provide an overview of the current network-based anomaly detection techniques and

compare them to each other in a unsupervised setting. We investigated (1) anomaly de-

tection techniques in a network at one moment in time, and (2) the detection of events

in graphs over time.

In Chapter 1, we defined when a domain expert is considered supported, which was

when at least one of the three conditions is met: (1) the domain expert understands

how to evaluate and compare several results from anomaly detection techniques, (2) the

domain expert is provided with a list of objects that demonstrate divergent behavior,

or (3) the domain expert knows why a certain event in time has occurred.

From our investigations, we may conclude that network-based anomaly detection tech-

niques can be used to support domain experts in the field of electronic discovery to a

certain extent. The methods can be used to rapidly summarize statistics of the network

to uncover nodes or moments in time that deviate considerably from the expected pat-

terns in the data set. These anomalies can be used as a starting point of the investigation,

and therefore enhance the process of an investigator.

However, in some cases, it may be difficult to understand why certain nodes are con-

sidered anomalous. Therefore, domain knowledge can be of critical importance to com-

prehend the data set and accurately flag anomalous nodes or events. Of course, each

network-based anomaly detection technique can be used to find such anomalies, but a

combination of multiple methods and collaboration with a domain expert may signifi-

cantly enhance the process of anomaly detection and uncover useful anomalies that can

be acted upon in real-world networks.

8.3 Future work

This section provides recommendations for further research. Network science has more

to offer than solely network-based anomaly detection, and therefore we have multiple

recommendations that can support the domain expert in the field of electronic discovery.
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For the e-discovery field, we have three recommendations for future work in the field of

network science.

• Network visualization and navigation: While lists of anomalous nodes and mo-

ments in time are useful for a domain expert, navigating through the networks over

time can truly support the domain expert in comprehending the graph. Hence, it

allows the domain expert to analyze the network and its most important nodes in

an accessible manner.

• Community evolution: The research field of community evolution focuses on iden-

tifying how significant communities shrink, grow, appear, and dissapear over time.

Modeling such behavior may show how certain groups started to appear and how

they have collaborated with each other over time.

• Centrality-based methods: This methods focus on identifying the most important

nodes in the network, that is already done on the Enron data set [48]. Further

research may be useful in combination with network visualization and navigation.

For network-based anomaly detection, we also have three recommendations for future

work.

• Node anomaly detection: An interesting step in future development of CADA is

identify which community detection methods are most robust for node anomaly

detection, and whether a hybrid method combining both global and local features,

may yield more accurate and relevant anomalies.

• Attributed anomaly detection: We only took into consideration network nodes and

edges. The methods could be enriched by incorporating node and edge attributes,

such as the weight of the graph. Hence, developing algorithms that use graph fea-

tures and information about the nodes can provide new insights into the network.

• Event detection: As we mentioned in Section 7.2, a drawback of the current ap-

proach is that the median and standard deviation of the entire data set are used.

Improvements may be achieved by investigating whether other statistical methods

to anomaly detection, such as moving windows, can more accurately flag events as

anomalous.



Bibliography

[1] Normal distribution. Normal distribution — Wikipedia, the free encyclopedia, 2018.

URL https://en.wikipedia.org/wiki/Normal_distribution. [Online; accessed

3-July-2018].

[2] L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies in

weighted graphs. In Proceedings of the 14th Pacific-Asia Conference on Knowl-

edge Discovery and Data Mining, PAKDD, pages 410–421. Springer, 2010.

[3] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM

Comput. Surv., 41(3):15:1–15:58, 2009.

[4] A.L. Barabási, N. Gulbahce, and J. Loscalzo. Network medicine: a network-based

approach to human disease. Nature Reviews Genetics, 12(1):56–68, 2011.

[5] M. J. Keeling, L. Danon, A. P. Ford, T. House, Chris P. Jewell, G. O. Roberts,

J. V. Ross, and M. C. Vernon. Networks and the epidemiology of infectious disease.

Interdisciplinary Perspectives on Infectious Diseases, 2011, 2011.

[6] E. Cotilla-Sanchez, P.D.H. Hines, C. Barrows, and S. Blumsack. Comparing the

topological and electrical structure of the North American electric power infrastruc-

ture. IEEE Systems Journal, 6(4):616–626, 2012.

[7] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly detection and descrip-

tion: A survey. Data Mining and Knowledge Discovery, 29(3):626–688, 2015.

[8] G. Stringhini, C. Kruegel, and G. Vigna. Detecting spammers on social networks.

In Proceedings of the 26th Annual Computer Security Applications Conference, AC-

SAC, pages 1–9. ACM, 2010.

[9] S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, C. Wee,

R. Yip, and D. Zerkle. In Proceedings of the 19th National Information Systems

Security Conference, NISSC, pages 361–370. CSRC.

[10] C. Cortes, D. Pregibon, and C. Volinsky. Communities of Interest. Intelligent Data

Analysis, pages 105–114, 2002.

56

https://en.wikipedia.org/wiki/Normal_distribution


Bibliography 57

[11] R. Hu, C. C. Aggarwal, S. Ma, and J. Huai. An embedding approach to anomaly de-

tection. In Proceedings of the 32nd International Conference on Data Engineering,

ICDE, pages 385–396. IEEE, 2016.

[12] J.H.M. Janssens. Outlier selection and one-class classification. Van Lankveld, 2013.

[13] E. Casey. Handbook of Digital Forensics and Investigation. 2010.

[14] J. T. Wells, V. Kanhere, and D. Ph. Principles of Fraud Examination. Information

Systems Journal, pages 1–2, 2006.

[15] R. Tillman. Reputations and corporate malfeasance: Collusive networks in financial

statement fraud. Crime, Law and Social Change, 51(3-4):365–382, 2009.

[16] M. S. Beasley, J. V. Carcello, D. R. Hermanson, and T. L. Neal. Fraudulent Finan-

cial Reporting. Committee, 12:60, 2010.

[17] M.D. Kohn, M.M. Eloff, and J.H.P. Eloff. Integrated digital forensic process model.

Computers & Security, 38:103–115, 2013.

[18] R. Albert and A. Barabási. Statistical mechanics of complex networks. Reviews of

Modern Physics, 74(1):47–97, 2002.

[19] J. Travers and S. Milgram. An Experimental Study of the Small World Problem.

Sociometry, 32(4):425, 1969.

[20] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks.

Nature, 393(6684):440–442, 1998.

[21] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75 – 174,

2010.

[22] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of

communities in large networks. Journal of Statistical Mechanics: Theory and Ex-

periment, 10008(10):6, 2008.

[23] M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks reveal

community structure. 105(4):1118–1123, 2008.

[24] M. Rosvall and C. T. Bergstrom. Multilevel compression of random walks on net-

works reveals hierarchical organization in large integrated systems. PLOS ONE, 6:

1–10, 2011.

[25] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in

networks. Phys. Rev. E, 69, 2004.



Bibliography 58

[26] U. Brandes, D. Delling, M Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wag-

ner. On modularity clustering. IEEE Transactions on Knowledge and Data Engi-

neering, 20(2):172–188, 2008.

[27] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing

community detection algorithms. Phys. Rev. E., 78(4), 2008.

[28] F.Y. Edgeworth. Xli. on discordant observations. Philosophical Magazine Series 5,

23(143):364–375, 1887.

[29] G. Münz, S. Li, and G. Carle. Traffic anomaly detection using k-means clustering.

In GI/ITG Workshop MMBnet, 2007.

[30] P. V. Bindu and P. Santhi Thilagam. Mining social networks for anomalies: Meth-

ods and challenges. Journal of Network and Computer Applications, 68:213–229,

2016.

[31] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and N. F. Samatova.

Anomaly detection in dynamic networks: A survey. WIREs Comput. Stat., 7:223–

247, 2015.

[32] R. Hassanzadeh, R. Nayak, and D. Stebila. Analyzing the effectiveness of graph

metrics for anomaly detection in online social networks. In Proceedings of the

13th Conference on Web Information Systems Engineering, WISE, pages 624–630.

Springer, 2012.

[33] H. Tong and C. Lin. Non-Negative Residual Matrix Factorization with Application

to Graph Anomaly Detection. In Proceedings of the 2011 International Conference

on Data Mining, SIAM, pages 143–153, 2011.

[34] R. Kaur and S. Singh. Detecting anomalies in Online Social Networks using graph

metrics. In Proceedings of the 12th Annual IEEE India Conference, INDICON,

pages 1–6. IEEE, 2015.

[35] Deepayan Chakrabarti. Autopart: Parameter-free graph partitioning and outlier

detection. In Proceedings of the 2004 Knowledge Discovery in Databases, PKDD,

pages 112–124. Springer, 2004.

[36] G. Wang, S. Xie, B. Liu, and P. S. Yu. Review graph based online store review

spammer detection. In Proceedings of the 11th International Conference on Data

Mining, ICDM, pages 1242–1247. IEEE, 2011.

[37] D. Koutra and Faloutsos C. Vogelstein, J. T. DELTACON: A principled massive-

graph similarity function. In Proceedings of the 2013 International Conference on

Data Mining, volume 10 of SIAM, pages 162–170, 2013.



Bibliography 59

[38] M. Berlingerio, D. Koutra, T. Eliassi-Rad, and C. Faloutsos. NetSimile: A Scalable

Approach to Size-Independent Network Similarity. In Workshop on Information in

Networks, WIN, 2012.

[39] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking:

Bringing Order to the Web. World Wide Web Internet And Web Information

Systems, 54(1999-66):1–17, 1998.

[40] X. Xu, N. Yuruk, Z. Feng, and T. Schweiger. SCAN: A Structural Clustering

Algorithm for Networks. In Proceedings of the 13th International Conference on

Knowledge Discovery and Data Mining, SIGKDD, pages 824–833. ACM, 2007.

[41] L. Tang, H. Liu, J. Zhang, and Z. Nazeri. Community evolution in dynamic multi-

mode networks. In Proceedings of the 14th International Conference on Knowledge

discovery and data mining, SIGKDD, pages 677–685. ACM, 2008.

[42] Y. Wang, A. Chakrabarti, D. Sivakoff, and S. Parthasarathy. Hierarchical change

point detection on dynamic networks. In Proceedings of the Conference on Web

Science, WebSci, pages 171–179. ACM, 2017.

[43] D. Koutra, T. Ke, U. Kang, D. H. Chau, H. K. K. Pao, and C. Faloutsos. Unifying

guilt-by-association approaches: Theorems and fast algorithms. In Proceedings

of the Conference on Machine Learning and Knowledge Discovery in Databases,

PKDD, pages 245–260. Springer, 2011.

[44] T. L. Fond, J. Neville, and B. Gallagher. Designing size consistent statistics for

accurate anomaly detection in dynamic networks. ACM Trans. Knowl. Discov.

Data, 12(4):46:1–46:49, 2018.

[45] T. J. Helling, J. C. Scholtes, and F. W. Takes. A community-aware approach

for identifying node anomalies in complex networks. In Proceedings of the 7th

International Conference on Complex Networks, CI, pages 244–255. Springer, 2019.

[46] C. Peng, W. Xiao, P. Jian, and Z. Wenwu. A survey on network embedding.

Transactions on Knowledge and Data Engineering, 2018.
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