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Abstract

The success of embedding spaces created by machine learning models
in natural language processing has raised the interest to use embedding
spaces in other fields. In this thesis, the application of a deep learning
model in the field of geoinformatics is explored. Using a convolutional
neural network, tensors representing geographical locations are mapped
to vectors, with the intention of keeping the location’s features and their
spatial properties. Using a triplet loss network, an embedding network
is trained using two different loss functions. Using a dimensionality re-
duction algorithm the embedding spaces of both networks are visually
inspected, which clearly shows that locations with similar features are
mapped to similar vectors, while different locations are mapped to dis-
tant vectors. Additionally, it is shown that vectors computed by the
embedding networks can preserve spatial properties of a location’s fea-
tures, in contrast to the location features frequency distribution where all
spatial information is lost. A practical application of the embedding net-
works is an application which finds similar locations using the distances
between their vectors in the embedding space as a measure of similarity.
Lastly, a simple machine learning model is deployed to predict whether
a location is residential or not based on the location’s embedding vector
alone. Without any fine-tuning, the model is able to do this classification
correctly in 73% and 78% of the cases, which demonstrates that geograph-
ical locations can be substituted by their much simpler embedding vector
representations when used as inputs for machine learning.
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1 Introduction

Over the past few years, many machine learning approaches have risen in the
field of natural language processing. One of these approaches is the use of a ma-
chine learning model to generate word embeddings, where a word is mapped to
a numerical, low-dimensional vector, while preserving the semantic relationships
between words. Vectors that represent words with a similar meaning are located
close to each other in the resulting embedding space and unrelated words are
mapped to distant vectors. Usually, such word embedding models are trained in
a semi-supervised manner, since it is hard to ‘measure’ the semantic similarity
or relationship between words. Therefore, there are no explicit word vectors
available that can be used as targets during training. Instead, the model is
not only given a word, but also a context, or sentence, that the word appears
in. This way, the model can learn which words are often used together and
are therefore probably related. This information can be used to train a model
that generates similar word vectors for words that are related. Popular word
embedding models are word2vec [20] and GloVe [26], which both show state-of-
the-art results on various natural language processing tasks while requiring less
processing compared to previous methods.

The impressive results in the field of natural language processing lead to the
interest of applying machine learning models to create embedding spaces in
other fields as well. Examples are the embeddings of graphs [23, 28], images [11],
medical concepts [5] or even emoji [10].

In this thesis, we explore the application of a convolutional neural network in
the field of geoinformatics. Comparing geographical locations regarding their
properties is difficult. Current approaches use visual comparison or quantita-
tively compare the features of the locations. However, visual comparison is
tedious for large amounts of locations and statistical methods only cover the
distribution of features in a location, not the spatial properties, or semantics,
among them.

With the help of a deep learning model, we capture the features and semantics
of geographical locations in an embedding space. In this embedding space,
the vector representations of similar locations are similar, while the vectors of
different locations are not. The distance between embedding vectors can be
used to measure similarity of the locations that they represent. The smaller the
difference, the bigger the similarity. This approach is inspired by a blog post
from Sentiance [31], where the embedding vectors are used to determine the
venue that a user is visiting, based on the surroundings.

The deep learning model that we deploy is a convolutional feed-forward neural
network, trained using a triplet loss network. The input of the network is a three-
dimensional tensor that describes a location, with two dimensions describing the
spatial components and one dimension describing the features that are present.
The network outputs a vector of fixed length, mapping the input tensor to a
location in an embedding space.

The embedding space that we create can be used for a vast amount of appli-
cations. In this thesis, two of them are demonstrated. In the first, a distance
metric is defined based on the distances between vectors in the embedding space,

6



which serves as a ‘similarity score’ between locations. We develop an application
that uses this distance metric to build a ranking system that ‘recommends’ lo-
cations that are similar to a location of the user’s choice. This application shows
that distances in the embedding space are a measure of similarity in terms of the
features of the locations, as well as their spatial properties. In the second appli-
cation, we show that the generated embedding vectors can function as inputs for
a machine learning model. With only the embedding vectors as input, a neural
network can predict whether a location is residential are not. This demonstrates
that the vectors can accurately preserve properties of locations.

This thesis is organized as follows. In Section 2, preliminary work is introduced.
Important concepts that are used in this thesis are described. In Section 3,
a general overview of the approach is given. First, the dataset that contains
the features of geographical locations is introduced and we explain how such
a location can be converted to a tensor that describes the location. Next, we
explain how this tensor is used by an artificial neural network to produce an
embedding vector, how such a network can be trained and how we can evaluate
the results. Section 4 details the experimental setup, including how the locations
are represented, what the embedding network’s architecture is and how the
network can be trained to generate representative embedding vectors. After the
embedding network has been trained, the quality of the embedding vectors that
it generates is assessed in Section 5. This includes the ability of the network to
preserve features, as well as the ability to preserve spatial properties of those
features. In Section 6, we take a look at how these embedding vectors can be
used as a replacement for the locations themselves in practical applications. Two
possible use cases of the created embedding space are demonstrated. First, we
use the vectors to rank locations by similarity. Secondly, the vectors are used as
inputs for a machine learning model. In the last section, Section 7, a conclusion
of the research is provided, concluded with possible future work.

7



2 Related research

This section describes some preliminary work that is used in this thesis. First,
the inspiration for the approach is outlined. Section 2.2 introduces briefly the
concept of embedding vectors, followed by Section 2.3 which introduces artificial
neural networks. A way to train these neural networks is using a triplet loss
network, as explained in Section 2.4. Finally, a dimensionality reduction algo-
rithm is introduced which is used to reduce high-dimensional vectors to lower
dimensions.

2.1 Sentiance’s venue mapping algorithm

In May 2018, a company called Sentiance released a blog post in which they
describe their approach to implement a venue mapping algorithm [31]. Their
goal is to develop an artificial neural network that learns an embedding space
that captures the similarity of locations. This neural network is trained using a
triplet loss network, that tries to cluster similar locations and separate distinct
locations. However, while the general approach is described, the description
of the neural network and its parameters is slim. The blog post provides a
starting point for the approach of this thesis, where we use a neural network
that is trained using a triplet loss network to describe an embedding space
that captures semantics of locations. This space can be used for numerous
applications. Sentiance uses their embedding space to classify venues by their
use. In this thesis, two applications are demonstrated. In the first, the similarity
of embedding vectors is used to find and rank similar locations based on a
location that is provided by the user. Secondly, the embedding vectors are
used as inputs for a machine learning model, showing that they can successfully
preserve the semantics of a location.

2.2 Embedding vectors

The input of the deep learning model is a location, which maps it to an em-
bedding vector. An embedding vector is a continuous vector representation of
discrete variables [17]. In our case, the discrete variables are a location’s fea-
tures and their layout. The model maps these to a vector representation, which
is the embedding vector for the location.

Using embedding vectors instead of the complex object they represent has some
advantages. Embedding vectors are a lot smaller and simpler than the original
objects. This dimensionality reduction makes them easier to use and manage.
A second benefit is that the use of embedding vectors allows us to create an
informed mapping. Instead of representing the complex objects by random
vectors, we assign vectors in a smart way. Similar objects can be given similar
vectors, with a small distance between them. This way, distances between the
embedding vectors act as a measure for similarity.

An example is shown in Figure 2.1. It is a possible three-dimensional embedding
space for word embeddings. The figure shows the mapping of six words to their
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Figure 2.1: Possible three-dimensional embedding space for words [27].

embedding vectors in this space using the original words as labels. Each word
is represented by a continuous vector of three numbers, instead of a representa-
tion where each word is a discrete variable. This is therefore a dimensionality
reduction. Additionally, the embedding vectors are assigned in a smart way,
such that similar words are represented by similar vectors. For example, the
capitals New York, Beijing and Paris are all close to each other, but relatively far
away from the other words, which are not related. The words Animal and Horse
are also related and therefore located near each other in the embedding space.
The word Airplane is not related to the other words and therefore the distance
between its embedding vector and those of the other words is fairly large.

2.3 Artificial neural networks

An artificial neural network is a computing concept based on the biological
neural networks that can be found in the central nerve system of the human
brain. By creating a number of ‘neurons’ and connecting them using ‘synapses’,
a network is created. In the human body, electrical signals are transferred from
neuron to neuron using the synapses. In artificial neural networks, information
is propagated from artificial neurons, called nodes, to other nodes using edges,
the artificial version of synapses.

A typical artificial neural network consists of layers of nodes. At least two
layers are required: the input layer and the output layer. The input layer of a
neural network is a set of nodes that describes the data and serves as input for
the network. The input layer is connected to zero or more hidden layers. The
last hidden layer is connected to the output layer. The output layer produces
the result of the computation performed by the neural network, based on the
features supplied to the input layer. If there is a single output node, the result
is a single number in R, usually in the range [0, 1] or [−1, 1]. When there are
more output nodes, the output can be viewed as a vector of values in Rn, where
n is the number of output nodes.
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A neural network node consists of three components: the input function, the
activation function and the output. The input of a node is the weighted sum
of all its inputs, which are the outputs of nodes in the previous layer. Each
edge between nodes of two consecutive layers has a weight which resembles
how import the output of the previous layer is for the node in the next layer.
The weighted sum is then fed into an activation function, which determines the
output of the node [7]. In theory, each mathematical function can be used to
do this. However, there are some commonly used functions, such as the sigmoid
function, the hyperbolic tangent or, more recently introduced, the ReLU [22]
and Leaky ReLU [18]. The latter is used in this thesis. The activation function
maps the input of the node, the weighted sum, to a desired range. This is the
output of the node, which is then used as input for the nodes in the next layer.
This way, the information is propagated through the network.

The main idea of artificial neural networks is that a network can be trained to
produce a certain output based on the input. This is done by supplying a target
value for each set of inputs and adjusting the weights of the network such that
its output value gets closer to the target value. By supplying the neural network
with many samples of inputs and corresponding target values, the network can
‘learn’ a function that maps the input samples to the target values by adjusting
the weights of the edges.

The most popular algorithm used for training a neural network is the backprop-
agation algorithm [24]. It uses a so called loss, which indicates the difference
between the target value and the current output value of the network. For each
training sample, the algorithm tries to change the weights of the edges in the
network in such a way that this loss is minimized. This is done using the gradi-
ent descent method [29]. By minimizing the loss over all training samples, the
network learns what it should output, based on the current inputs.

A common type of artificial neural network is the feed-forward network [30],
where information only flows forwards, from input layer to output layer, without
connections going back. This means that the network has no cycles. A schematic
overview of a feed-forward network is shown in Figure 2.2.

Figure 2.2: A simple feed-forward neural network [8].
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In this feed-forward network, there is a single input and output layer, as well as
two hidden layers between them. The nodes from the input layer are connected
to all nodes of the first hidden layer, therefore the hidden layer is said to be
a dense layer. The second hidden layer and the output layer are dense layers
as well, since every node of the previous layer is connected to all nodes in the
next layer. The trainable parameters for a dense layer are the weights of the
edges.

Nodes in a neural network layer can be arranged in a special order to represent
a certain multidimensional shape. For example, a layer that represents an im-
age can consist of h × w × d nodes, each representing a value in a pixel. Here,
h and w correspond to the height and width of the image in pixels and d is
the number of channels that the image has. We can therefore think of the lay-
ers as three dimensional blocks, two-dimensional planes and single-dimensional
vectors, illustrated in Figure 2.3.

Figure 2.3: A neural network with layers arranged in shapes. Adapted from [16].

A special class of neural network layers are convolutional layers. In contrast to
dense layers, the nodes of convolutional layers are not connected to all nodes
from the previous layer, but to only a few. A convolutional layer consists of
filters, represented by tensors or matrices. They have the same dimensions as
the previous layer, but are generally smaller. Each filter is moved across the
height and width of the inputs from the previous layer and at each location
the dot product between the values of the inputs and the values of the filter is
computed. This generates a feature map for each filter, which are then stacked
together and an activation function is applied to each entry. This is the output
of the convolutional layer. Figure 2.4 shows schematically how a filter is applied
to a region of the input, resulting in a value in the feature map of that fil-
ter. A neural network with convolutional layers is called a convolutional neural
network.

A filter in a convolutional layer acts as a feature detector. Depending on its
values, a filter can react to certain features in the input of the layer, such as
edges or straight lines. When the network is trained, the values of the filters are
adjusted to detect useful features. Because the values of a filter do not change
when it is moved across the inputs, the feature it detects does not depend on the
exact location of the feature in the inputs. This makes convolutional layers very
useful for image processing. A filter can detect a feature at a location where
it had never appeared during training of the network. This property is called
translation invariance.
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Figure 2.4: Applying a filter to some of the inputs of a convolutional layer [9].

The trainable parameters of a filter are the values in the filter, possibly com-
plemented by the weight of an edge to a bias node. The number of trainable
parameters in a convolutional layer therefore depends on the amount and size
of the filters. Because many edges between inputs and outputs are shared, this
number is very small compared to a dense layer.

Another neural network layer type is the max-pooling layer [16]. They are often
inserted between convolutional layers to reduce the number of nodes and thereby
the complexity of the network. Each max-pooling node is locally connected to a
few nodes from the previous layer, but instead of computing the weighted sum,
the node simply selects the highest value among its inputs and propagates this
value. Since out of all the max-pooling node’s inputs only one is propagated,
the number of nodes in the next layer is reduced.

The dense, convolutional and max-pooling layers are all used in the convo-
lutional feed-forward network used to implement the location mapping as de-
scribed in Section 3.3. Its implementation is described in detail in Section 4.2.

2.4 Triplet loss network

The concept of triplet loss networks was proposed by Ailon and Hoffer [2]. It
provides a way to train a feed-forward neural network using a dataset that
does not contain target values. Instead, it uses a relative measure of similarity
between input samples. This is useful when training a network that describes
an embedding space, since there are no direct target values available. However,
there is a notion of similarity, because ‘similar’ inputs should have ‘similar’
output vectors.

In the concept of triplet loss networks, three input samples are processed inde-
pendently by the feed-forward neural network that is supposed to be trained.
These input samples can be denoted as a triplet (x, x+, x−), where:

• The anchor instance of the triplet x.

• The positive instance of the triplet x+, which is ‘similar’ to x.

• The negative instance of the triplet x−, which is ‘different’ from x.

12



The positive instance x+ represents a sample that should be close to the anchor
x in the embedding space. This is often a slight variation on the anchor instance,
making it similar but not equal. When working with images, this variation is
often a rotation, shift, change in brightness or sheer transformation. In natural
language processing, this might be a shortened or extended version of the anchor
sentence and in audio processing the timing, speed and pitch of a sample can
be varied to create a positive instance.

In contrast, the negative instance x− is selected or created to be very different
from the anchor x. The goal when training the network is to increase the
distance between x and x− in the embedding space. x− can be carefully selected
from the set of anchors samples or can be created specifically to be different from
the anchor.

This is the main idea of triplet loss networks. Section 3.4 describes how this
concept can be applied to our location mapping, Section 4.3 describes triplet
loss networks in more detail.

2.5 Dimensionality reduction

Neural network outputs are often vectors in high-dimensional space Rn. While
single-, two- or three-dimensional vectors can be visualized relatively easily, this
gets harder and more difficult to understand for larger values of n. To visualize
vectors with a high dimensionality more easily, we can apply a dimensionality re-
duction algorithm, which maps the high-dimensional vectors to low-dimensional
vectors.

One popular algorithm to do this is t-Distributed Stochastic Neighbor Embedding
(t-SNE) [19]. t-SNE is a variation of Stochastic Neighbor Embedding (SNE) [15]
that models high-dimensional vectors by a low-dimensional vector in R2 or R3. It
does this as follows. First, a probability distribution is constructed over all pairs
of high-dimensional vectors. Vectors that are close to each other in the vector
space have a high probability to be selected, while distant vectors are unlikely to
be selected. In the second step, t-SNE creates another probability distribution
over the low-dimensional vectors. It then modifies these vectors to minimize
the relative entropy between both distributions. This way, the low-dimensional
vector space is aligned with the high-dimensional vector space.
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3 Overview of our approach

This section describes a general overview of the approach. First, the Open-
StreetMap dataset is introduced which provides the data source for the loca-
tions. Then, a module is described that converts the objects from the database
to location tensors, which can be used by the artificial neural network that im-
plements the mapping function. This network, introduced in Section 3.3, maps a
location to a vector in the embedding space. However, this network needs to be
trained for this task. The fourth part explains how we do this. The last section,
Section 3.5, describes how the trained embedding networks are evaluated.

3.1 OpenStreetMap dataset

In the past, it was hard for end users to obtain geographical data. The agencies
that gathered these data were often governmental or commercial. While they
did provide data, a high fee and a restrictive licence was demanded in return.
Therefore, access to geographical data was limited to a small group of users. In
2004, a project was started to challenge this business model, called the Open-
StreetMap project. The goal of the project is to provide geographical data to
anyone in the world, without any fees and with a very open licence [14, 25]. The
project is a success. Many parts of the world have been mapped by volunteers
in great detail.

The input of the embedding network is a tensor of features that represents a
geographical location. This information is retrieved from a relational database
containing OpenStreetMap data obtained from GeoFabrik [12], limited to geo-
graphical objects within The Netherlands. Even though it is a small country,
this dataset contains over 24 million objects. Table 3.1 shows an overview of
the objects in the dataset, ordered by shape type.

Shape # Objects Example objects
Points 9.8× 106 Venues, schools, pubs, shops
Lines 2.1× 106 Roads, railways, rivers, country borders
Polygons 12.3× 106 Buildings, forests, grass, lakes

Table 3.1: Summary of the OpenStreetMap extract of The Netherlands.

For each object, the database stores a unique identifier, shape, list of attributes
and coordinates. The field with coordinates can be a single (x, y) point, but can
also be a list of points, depending on the shape of the object. Locations of point
objects are described by a single coordinate, but line and polygon objects have
multiple coordinates. An extract from the database is shown in Table 3.2.

ID Shape Attributes Coordinates
295362 Line path, footway (52.080, 5.134), (52.081, 5.126)
150882 Point traffic signals (52.081, 5.123)
691065 Polygon tennis court, sports (52.080, 5.101), (52.080, 5.100), . . .

Table 3.2: Three database entries from the OpenStreetMap dataset.
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3.2 Location tensors generation

In this thesis, location tensors of OpenStreetMap objects are used as inputs for
the deep learning model. To convert a location to a tensor, a custom tensor
generation module is implemented.

As input, the module uses a pair of coordinates that specify a point within The
Netherlands, which is used to compute the boundaries of the corresponding
geographical location. With this bounding box, the module uses a rendering
engine to convert the location into images. The rendering engine queries the
database with OpenStreetMap data for the objects that appear in the location.
It converts these objects into image tiles and returns these to the module which
converts the images to a three-dimensional tensor. An overview of this process
is shown in Figure 3.1. Section 4.1 describes in detail how the tensor generation
module works.

Figure 3.1: Converting a location specified by coordinates to a tensor.

3.3 Mapping locations to vectors

The generated location tensors are used as inputs for the convolutional feed-
forward neural network introduced in Section 2.3. The network consists of
convolutional, max-pooling and dense layers. The output of the network is a
vector, the embedding vector, that belongs to the input location.

The convolutional neural network we train maps locations to embedding vectors,
with the idea that similar input locations should map to similar embedding
vectors. We define similar embedding vectors as vectors that are near each other
in the high-dimensional space that they live in. Input locations are similar when
they have similar features, but these features should also have similar spatial
properties, see Figure 3.2.

Figures 3.2a and 3.2b have similar features and the features have the same spa-
tial properties. Both locations are areas with a lot of grass and long ditches. The
embedding network should map these locations to similar embedding vectors.
Figure 3.2c is a location that does not have similar features. There is almost no
grass or water, but there are a lot of houses. Therefore, its embedding vector
should be very different from the vectors of the first two locations.
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(a) Grass and ditches (b) Similar semantics

(c) Different features (d) Spatially different

Figure 3.2: Four locations in OpenStreetMap representation.

The location of the last figure, Figure 3.2d, contains the same features as the
first two figures. The amount of water and grass is approximately the same.
However, the spatial properties are quite different. The water in the first two
figures resembles long, parallel ditches, but in the location of Figure 3.2d, the
water is a river and a small lake with houses. While the features are similar,
their semantics are different. The neural network should generate an embedding
vector that is somewhat similar to the first two locations because the features are
similar, but at the same time it should be different because the spatial properties
are different. Therefore, the embedding vector generated by the neural network
should be less similar to the vector of the location in Figure 3.2b, but not as
distinct as the vector generated for the location of Figure 3.2c.

3.4 Training using a triplet loss network

Triplet loss networks were introduced briefly in Section 2.4. It is a method to
train an artificial neural network, when the network cannot be trained directly.
This is the case for our embedding network from Section 3.3, since there are
no explicit vectors for the input locations. Instead of using direct targets to
train the network, the triplet loss network allows us to use relative measures.
Section 4.3 describes the concept of triplet loss networks in more detail.
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The input of a triplet loss network is a triplet that consists of an anchor instance,
a positive instance and a negative instance. The positive instance represents a
sample that is ‘similar’ to the anchor instance, the negative instance should
represent a sample that is ‘different’ from the anchor. Each of these instances
is processed by the neural network that is being trained. In our case, the triplet
instances are tensors that represent geographical locations.

Anchor locations are selected based on random points within The Netherlands.
For each anchor location, a positive and negative location is selected. The loca-
tions are converted into tensors using the tensor generation module introduced
in Section 3.2. This way, many triplets are created for the triplet loss network
that trains the embedding network. Section 4.4 describes in detail how the
anchor, positive and negative instances for the triplets are generated.

The triplets are processed by the embedding network and combined by a loss
function. Section 4.5 introduces two loss functions: the margin loss and SoftPN
loss. The embedding network is trained twice using two triplet loss networks,
once using the margin loss and once using the SoftPN loss function. This results
in two copies of the embedding network that have been trained differently.

Figure 3.3: Training the embedding networks using a triplet loss network.

An overview of the training process for one embedding network is shown in Fig-
ure 3.3. Section 4.6 describes the technical setup and implementation, including
the software and hardware used.

3.5 Evaluation

After the copies of the embedding network have been trained using the triplet
loss network with the two loss functions, they are evaluated in Section 5. Similar
locations should be mapped to similar vectors and different locations should re-
sult in two distant embedding vectors. Unfortunately, it is hard to measure the
quality of the embedding vectors generated by the networks, since there is no
objective way to define ‘semantic similarity’. However, it is possible to subjec-
tively check the results using intuition and human knowledge about locations,
something the embedding networks should have learned.
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In Section 5.1 the quality of the embeddings is assessed using visual inspec-
tion. The dimensionality reduction algorithm from Section 2.5 is applied to
the embedding vectors generated by the embedding networks. This way, the
vectors can be reduced to two dimensions, making it possible to visualize them.
By plotting the locations by their vector in the lower dimensional space, the
locations embeddings can be compared visually.

An important requirement of the location mapping is that spatial properties
should be preserved. In Section 5.2 we check whether this is the case. Given
a location, we can find locations that are similar according to their vectors
generated by the embedding network that was trained using the SoftPN loss
function. These locations should have similar spatial properties. Additionally,
we try to find similar locations based on their frequency distribution of features.
These similarities are independent on the spatial properties of the features and
should therefore yield different results.

Next, we take a look at how useful the embedding networks are. The embedding
vectors that they generate should contain enough information about the loca-
tions that they represent such that they can be used in practical applications.
In Section 6, two applications of the embedding vectors are explored.

In Section 6.1, the vectors that the embedding networks compute are used to
find similar locations, based on an input location. The input of the application
is a location, of which the embedding vector is computed. Then, the distance
from this vector is computed to a large number of known embedding vectors.
The vectors that are closest in the embedding space are returned. The locations
that they represent should be similar to the input location. By comparing these
locations, we can assess whether distances between the vectors in the embedding
space provide a good measure of similarity of the actual locations.

As a second application, the embedding vectors are used as an input to a ma-
chine learning algorithm. In Section 6.2, a neural network is trained to predict
whether a location represents a residential area or not, using as an input the
vectors generated by the embedding networks alone. This is possible only if
the embedding vectors contain information about housing and other residential
features.
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4 Experimental setup

Section 3 has provided a general overview of the approach. In this section,
the experimental setup is described, including technical details on how location
tensors can be generated in Section 4.1. The convolutional embedding network
architecture is described in Section 4.2. The next section details how the triplet
loss network works and how it can train the embedding networks. To do this,
triplets of anchor, positive and negative instances are required, described in Sec-
tion 4.4, as well as loss functions to update the embedding networks, described
in Section 4.5. Finally, in Section 4.6, the technical details on the software and
hardware configuration used to run the triplet loss network are provided.

4.1 Generating location tensors

The locations that are used to train the embedding space are randomly selected.
This is done as follows. First, a bounding box of size h× w of the map of The
Netherlands is computed. Points within this bounding box can be represented as
a pair (x, y), with (0, 0) representing the most south-west point of the bound-
ing box and (h,w) representing the most north-east point. This is shown in
Figure 4.1.

(0, 0)

(0, h) (w, h)

(w, 0)

Figure 4.1: The Netherlands (white) within its bounding box (gray rectangle)
with valid (green) and invalid (red) points.
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Two coordinates, x and y, are sampled from uniform random distributions,
x ∼ U(0, w) and y ∼ U(0, h). However, not all points in the bounding box
are contained within The Netherlands. Therefore, a sampled point is filtered
depending on whether the point is within the boundaries of The Netherlands. In-
valid points, outside the boundaries, are discarded. Figure 4.1 shows some valid
and invalid points. A valid point is used to generate an anchor location.

A tensor for a location is created using a custom tensor generation module. The
input of the module is a valid point within The Netherlands. This coordinate
pair specifies the center of a tile with a width and height of 128 × 128 pixels,
which is approximately 275×275 metres in the real world. The OpenStreetMap
database from Section 3.1 is queried to retrieve the objects in this tile, their
coordinates and their attributes. However, some of the objects in the database
are very related. For example, there are objects with the attribute path and
footpath, both resembling the same feature. Therefore, attributes are grouped
by the module using a manually defined attribute-feature mapping, described in
Section 4.1.1, creating 136 tensor features. These features are used to generate
the boolean tensor that represents the location. It has a shape of 128 × 128 ×
136, where (x, y, l) is true when feature l is present at pixel (x, y) and false

otherwise. The tensor can be viewed as an image with a height and width of
128 pixels, where each pixel consists of 136 boolean channels.

4.1.1 Attribute-feature mapping

An object in the database has a list of OpenStreetMap attributes that is as-
sociated with it. For this thesis, 411 relevant attributes are selected. Each
of the 136 tensor features consists of multiple OpenStreetMap attributes. For
example, the tensor feature attraction is a combination of the OpenStreetMap
attributes attraction, museum, zoo, gallery and theme park. Another tensor fea-
ture is parking, which is composed of the attributes parking and parking space.
These attribute-feature-mappings are visualized in Figure 4.2.

attraction

parking

gallery

zoo
museum

parking space

theme park

attraction

parking

OpenStreetMap attributes Tensor features

Figure 4.2: Two tensor features composed of seven OpenStreetMap attributes.
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The 411 OpenStreetMap attributes that are extracted from the database map
to 136 tensor features. The attributes are selected based on the number of
appearances in the OpenStreetMap data. Only attributes that appear at least
100 times are used. Therefore, not all OpenStreetMap attributes are mapped to
a tensor feature and are not present in any tensor. The attributes that are not
mapped are often errors caused by contributors, like fictitious attributes that
do not exist in the OpenStreetMap specification, attributes with spelling errors
or non-English attributes.

4.1.2 Rendering tensor features

When a location tensor is being created by the tensor generation module, the
database needs to be queried to retrieve the objects that describe any of the
136 tensor features in that location. However, the locations of these objects are
described by one or multiple coordinates, which need to be converted to a pixel
in the tensor. Using a rendering engine, the objects of each feature are rendered
into a 128×128 binary image, where each pixel indicates the presence or absence
of a feature in a pixel. For example, the binary image for the feature motorways,
renders only the motorways that appear in the location. When all 136 binary
images are rendered, they can be stacked to create the boolean 128× 128× 136
location tensor.

However, querying each feature separately and converting them to a binary
image is computationally expensive. To reduce the rendering time, multiple
non-overlapping features are queried and rendered at the same time. To do
this, the features are split into five categories, as listed in Table 4.1.

Category Features

Roads
All roads: Motorways, residential roads, cycle ways,
sidewalks, service roads, etc.

Buildings
All buildings: Industrial and educational buildings,
houses, recreational centers, etc.

Residential areas
Areas that are dedicated to housing, opposed to
industrial and commercial areas.

Landuse
Terrain usage: grass, forests, playgrounds, water,
military terrain, allotments, etc.

Venues
All venues: bus or tram stops, memorials, restaurants,
shops, religious venues, schools, etc.

Table 4.1: Feature categories.

These five categories are defined in such a way that the overlap of features in
a category is minimized. At most one feature per category is present in each
pixel. This way, all features in a category can be queried and rendered at the
same time. Since they do not overlap, they do not overwrite one another. Each
feature gets rendered in its own color, so they can be distinguished from other
colors and converted to a binary plane after rendering. Only five images have
to be rendered for each location, one for each category, which is a lot quicker
than 136 images. An example is shown in Figure 4.3, where a location’s landuse
category is rendered.
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Figure 4.3: A location’s landuse render. The three features grass (green), forest
(red) and commercial (blue) do not overlap.

This location contains three landuse features, which do not overlap and can
therefore be queried and rendered in the image at the same time. Where grass
is, there cannot be forest. All features in a category are mutually exclusive.
From this image, the presence or absence of these features at a pixel in the
location tensor is easily derived by separating the different colors.

By using feature categories, the number of database queries and rendered images
for each location is reduced from 136 to 5. Unfortunately, it is not possible
to reduce this number further, since there are some combinations of features
that can appear in one location at the same pixel. For example, a bakery and
commercial area can appear together, which makes it impossible to render them
in the same image. Therefore, the five categories are necessary and five renders
are required to obtain the features for a location.

4.2 Embedding network configuration

A location tensor is mapped into the embedding space using a mapping function
f . Given tensor x as input, the function outputs a vector f(x). In our case,
we use an 128 × 128 × 136 boolean tensor of features as input that describes
a location, as described in Section 4.1. The function maps this to a vector
f(x) ∈ R16. The choice of a 16-dimensional vector is an arbitrary choice, but it
was also used by Sentiance in their venue mapping algorithm [31].

A convolutional feed-forward neural network is used to implement this mapping
function. It consists of several convolution layers, each followed by a max-
pooling layer. These layers are followed by a fully connected layer which is
connected to the output layer. All nodes in the layers use a Leaky ReLU acti-
vation function [18], except for the output layer which has a linear activation
function. Figure 4.4 shows the embedding network schematically.
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Figure 4.4: Condensed schematic of the embedding network with layers as blocks
of nodes, their shapes (top) and applied operations (bottom).

Table 4.2 shows the complete architecture in detail. For each layer, the shape
of the input and output tensor is shown. In the case of a convolutional or
max-pooling layer, the last dimension specifies the number of filters or strides
respectively. The filter size used for the convolutional and max-pooling layers
are listed in the fourth column. Convolutional and dense layers have an acti-
vation function, which is a Leaky ReLU except for the last dense layer which
is the output of the network. The last column shows the number of trainable
parameters for each layer.

Layer Input shape Output shape Filter Act. func. Params
Conv1 128× 128× 136 126× 126× 32 3× 3 L. ReLU 39200
Pooling1 126× 126× 32 63× 63× 32 2× 2 0
Conv2 63× 63× 32 61× 61× 32 3× 3 L. ReLU 9248
Pooling2 61× 61× 32 30× 30× 32 2× 2 0
Conv3 30× 30× 32 28× 28× 64 3× 3 L. ReLU 18496
Pooling3 28× 28× 64 14× 14× 64 2× 2 0
Conv4 14× 14× 64 12× 12× 64 3× 3 L. ReLU 36928
Pooling4 12× 12× 64 6× 6× 64 2× 2 0
Conv5 6× 6× 64 4× 4× 128 3× 3 L. ReLU 73856
Conv6 4× 4× 128 4× 4× 64 1× 1 L. ReLU 8256
Reshape 4× 4× 64 1024 0
FC1 1024 64 L. ReLU 65600
FC2 64 16 Linear 1040

Table 4.2: Embedding network architecture.
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The idea behind this architecture that the convolution layers learn distinctive
spatial features that are typical for a location. The pooling layer that follows
a convolution layer is used to reduce the width and height of the tensor while
maintaining a good representation. A fully connected layer combines the output
from the last convolution layer. This layer connects to the last layer, which has
16 nodes to reduce the output to R16.

The embedding network is initialized with random weights, using a Glorot
uniform initialization scheme [13]. Therefore, the mapping that it represents
projects a location tensor to a random vector in R16 initially. The network
needs to be trained to produce embedding vectors where similar locations are
close to each other, while different locations are further away. One way to do
this is using a triplet loss network.

4.3 Training using a triplet loss network

As introduced in Sections 2.4 and 3.4, a triplet loss network can be used to
train an artificial neural network on a set of samples that have no clear target
value, but where a relative notion of similarity is known among the samples. By
providing a triplet (x, x+, x−), with an anchor, positive and negative instance
respectively, the triplet loss network can train the neural network that is being
considered. The positive instance is assumed to be an instance that is ‘similar’
to the anchor instance and therefore the output vectors should be ‘similar’ as
well. In contrast, the negative instance is assumed to be ‘different’ from the
anchor instance, so the output vectors should be ‘different’. The triplet loss
networks tries to quantify these properties in a loss function, which is then
propagated to the neural network. This way, the neural network is trained to
yield similar output vectors for similar inputs and different output vectors for
inputs that are different.

Unfortunately, generating location triplets for the training of our embedding
network is not easy. While anchor locations can be selected randomly, it is not
trivial to select a similar and a non-similar location for the positive and negative
instances. Section 4.4 describes our approach to generating triplets.

When a neural network is being trained using a triplet loss network, it computes
output vectors y = f(x), y+ = f(x+) and y− = f(x−) for each of the input
samples in a triplet respectively, which combined gives the triplet (y, y+, y−).
These outputs are used to compute two values: the distance between y and y+,
denoted by d(y, y+), and the distance between y and y−, denoted by d(y, y−).
Often, the distance metric used is the Euclidean distance, computed as shown
in Equation 1, where ya = f(a) and yb = f(b) are output vectors with both
n elements. Other distance metrics could be used as well [1], for example the
Manhattan distance. In this thesis, the Euclidean distance is used.

d(a, b) = ||f(a)− f(b)||2 = ||ya − yb||2 =

√√√√ n∑
i=1

(
yai − ybi

)2
(1)
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The distance measures are combined in a loss function of the triplet loss net-
work, which is used to train the neural network f . The loss is minimized when f
minimizes the distance between the anchor and positive instances d(y, y+), and
maximizes the distance between the anchor and the negative instances d(y, y−).
Let ∆+ denote the anchor-positive distance and ∆− the anchor-negative dis-
tance. Then the loss function is a function L(∆+,∆−) that the triplet loss
network tries to minimize, which is used during the backpropagation in the em-
bedding network. There are different approaches to combine the distances in
such a loss function. In this thesis, two loss functions are explored, as described
in Section 4.5.

The anchor, positive and negative instance are processed by the considered
neural network independently. This means that we can implement them in
parallel. In that case, three neural networks are used, but they are effectively
the same network because their weights are shared. Figure 4.5 shows how the
triplets are processed and how their embedding vectors are combined into a
single loss value.

f f f

d(y, y+) d(y, y−)

L(∆+,∆−)

x+ x x−

y+ y y y−

∆+ ∆−

loss

shared weights shared weights

Figure 4.5: Processing triplets and combining them into a single loss value.

In this overview, the triplet (x+, x, x−) is processed by the neural network f
that is being trained. It computes the output vectors y+ = f(x+), y = f(x) and
y− = f(x−). Then, the Euclidean distance between the output vectors of the
anchor-positive pair ∆+ = d(y, y+) and the anchor-negative pair ∆− = d(y, y−)
are computed. L(∆+,∆−) is a loss function that combines these distances into
a single loss that is used during backpropagation.
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4.4 Generating triplets

The triplet loss network from Section 4.3 can be used to train the location em-
bedding network. To do this, triplets of anchors, positives and negative instances
are required. The next sections detail how these instances can be obtained and
how many were used to train the convolutional embedding networks using the
triplet loss network.

4.4.1 Anchor instances

Let x be a 128 × 128 × 136 location tensor that represents a random location
within The Netherlands. This is the anchor of a triplet. For training using
the triplet loss network, 100, 000 locations were randomly sampled from points
within The Netherlands as described in Section 4.1. These 105 locations are
used as anchor instances x for the triplets.

4.4.2 Positive instances

A positive instance x+ should have features similar to the corresponding anchor
instance. These are locations that are small variations on the anchor instance.
Therefore, positive instances can be created by shifting the center of the anchor
locations a few metres or by rotating them. This way, x and x+ are similar
and have overlapping features, but the rotation or shift ensures some variation.
For each anchor, a positive instance is created by shifting the center the anchor
Sv ∼ U(−80, 80) metres vertically (north or south) and then Sh ∼ U(−80, 80)
horizontally (east or west). These two shifts are sampled from a continuous
uniform distribution. The resulting location is then rotated by 90r degrees,
with r ∈ {0, 1, 2, 3}.

For example, a vertical shift Sv = 10, horizontal shift Sh = −50 and r = 2
results in a positive instance that is created by shifting the anchor location 10
metres to the north, 50 metres to the west and rotating it 180 degrees. For
each anchor a, ten positive instances are created this way, resulting in a set of
positives X+

a = {x+
a,1, x

+
a,2, . . . , x

+
a,10}. Since 105 anchors are sampled, the sets

of positive instances are X+
a with a ∈ [0, 105]. Therefore, a total of 10·105 = 106

positive instances is generated.

4.4.3 Negative instances

Negative instances are locations with features that are different from their cor-
responding anchor and positive instances. Unfortunately, the locations are not
associated with a class, so it is not trivial to select a negative instance x− for
a triplet. Therefore, we make use of an assumption known as Tobler’s first law
of geography [32]. It tells us that locations that are close to one another are
similar, while distant locations are, in general, different. Since the locations
are randomly sampled within The Netherlands, it is very likely that a random
other location is distant and different. Therefore, the negative instance of a
triplet can be generated by selecting a random positive instance. While there
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is a probability that the randomly selected location is close and very similar to
the anchor and the positive, this is in general not the case and the number of
these ‘bad’ triplets is very slim, which makes them not significantly influence
the training process.

4.4.4 Number of triplets

Each triplet consists of an anchor, a positive and a negative instance. There are
105 anchor images, with each 10 associated positives. This makes the number of
(x, x+) pairs 106. These pairs can be complemented by any of the 106 positives
that serve as a negative instance. Therefore, 105 · 10 · 106 = 1012 (a trillion)
distinct triplets can be generated.

4.5 Loss functions

Other than the triplets, the triplet loss network needs a loss function that trains
the distances between the instances. There are multiple ways to combine the
anchor-positive distance ∆+ = d(y, y+) and the anchor-negative distance ∆− =
d(y, y−) in a loss function. We compare the embedding spaces generated by
two copies of the embedding network. One of them is trained using a triplet
loss network with a margin loss, while the other is trained using a SoftPN loss
function.

4.5.1 Margin loss

The goal of the triplet loss network is to reduce the anchor-positive distance
∆+ in the embedding space, while increasing the anchor-negative distance ∆−.
The margin loss function uses a margin parameter α, which specifies the min-
imal distance that ∆− should be greater than ∆+. Let (x, x+, x−) be a single
triplet with embedding vectors (y, y+, y−), the margin loss Lm is defined as in
Equation 2.

Lm(∆+,∆−) = max
[
∆+ −∆− + α, 0

]
= max

[
d(y, y+)− d(y, y−) + α, 0

] (2)

First, the difference between the anchor-positive and anchor-negative distances
are computed and the margin is added. This is minimized when the anchor-
positive distance is pushed to 0 and the anchor-negative distance is as large as
possible. Then, the loss is clipped to be at least 0, which is required in the case
that ∆− > ∆+ + α. Otherwise, an anchor-negative distance that is already
sufficiently large enough would result in a negative loss.

Three types of triplets can be distinguished based on this margin loss defini-
tion [21]. Easy triplets are triplets where the distance between the anchor and
the negative instances is already greater than the distance between the anchor
and the positive instances, by at least the margin α. In this case, ∆− ≥ ∆+ +α
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and the loss will be clipped to 0. Since Lm = 0, these triplets do not benefit
the training of the embedding network.

Triplets where the negative instance is closer to the anchor than the positive
instance are hard triplets, so ∆− < ∆+. In this case, the loss is always positive
and at least the margin. It contributes to training the embedding network,
punishing it for embedding the negative instance closer to the anchor instance
than the positive instance, while it should embed it further.

The third triplet type are semi-hard triplets. A triplet falls into this category
when the positive instance is closer to the anchor instance than the negative
instance, but the specified margin is not met. This is the case when ∆+ <
∆− < ∆+ + α. Even though the positive-anchor distance is smaller than the
negative-anchor distance, the loss is positive. The network is punished since
the negative instance is not far enough away from the anchor, or the positive
distance is not close enough to the anchor instance.

Figure 4.6: Easy, hard and semi-hard triplets. Adapted from [21].

Figure 4.6 shows a schematic overview of the easy, hard and semi-hard triplet
types in a two-dimensional space. Here, a represents the anchor, p the positive
instance and the colored areas represent the triplet type depending on where
the negative instance is located.

4.5.2 SoftPN loss

In their blogpost, Sentiance uses a different loss function [31]. It is a variation on
the SoftMax ratio [2]. It uses the softmax function, which maps a an arbitrary
vector x to a vector y where each element is greater than 0: yi > 0 and the
sum of the entries equals 1, so

∑
i yi = 1. For a single triplet and its embedding

(y, y+, y−), let (∆+,∆−) be the distance vector. The softmax of the distance
vector (S+, S−) is then defined as shown in Equation 3.
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S+ =
e∆+

e∆+ + e∆− and S− =
e∆−

e∆+ + e∆− (3)

This results in the softmax distance vector (S+, S−). Since ∀k : ek > 0, we get

that e∆+

> 0 and e∆−
> 0. Then e∆+

+ e∆−
> e∆+

and e∆+

+ e∆−
> e∆−

.
Therefore, 0 < S+ < 1 and 0 < S− < 1 hold. Also, the elements of the softmax
distance vector sum to 1, as shown in Equation 4

S+ + S− =
e∆+

e∆+ + e∆− +
e∆−

e∆+ + e∆− =
e∆+

+ e∆−

e∆+ + e∆− = 1 (4)

The softmax ratio Lr is computed using the softmax distance vector (S+, S−)
as defined in Equation 5.

Lr(S+, S−) = (S+)2 + (S− − 1)2 (5)

Lr is the mean squared error on the softmax distance vector, compared to the
(0, 1) vector. It can be used as a loss function to train the embedding network.
Lr is minimized when S+ → 0 and S− → 1, which is the case when ∆+ → 0
and ∆− →∞. These are the properties that we want in our embedding space:
the anchor-positive distance is minimized, while the anchor-negative distance is
maximized.

However, when using Lr loss, there are also soft triplets that do not, or barely,
contribute to learning. This is the case when the anchor-positive distance is
smaller than the anchor-negative distance. In this case, ∆+ < ∆−, which
means that the Lr loss is very small. However, it could still be the case that the
positive and the negative are very close. This is illustrated in Figure 4.7. ∆∗

denotes the positive-negative distance d(y+, y−). Ideally, the ∆+ is small and
both ∆− and ∆∗ are large.

Figure 4.7: 2-dimensional embedding of a triplet with a low Lr loss, even though
∆∗ is low. Adapted from [31].

To take into account this positive-negative distance ∆∗, a variation on the soft-
max ratio was proposed by Balntas et al [3], called the SoftPN loss. In the case
that the positive-negative distance is smaller than the anchor-negative distance,
we compute S− using the positive-negative distance instead. Effectively, the
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roles of the anchor and positive instances are swapped when ∆∗ < ∆−. The
updated softmax distance vector is shown in Equation 6.

S+
pn =

e∆+

e∆+ + emin(∆−,∆∗)
and S−

pn =
emin(∆−,∆∗)

e∆+ + emin(∆−,∆∗)
(6)

Computing the SoftPN loss Lpn is still performed by computing the mean
squared error compared to the (0, 1) vector, as illustrated in Equation 7.

Lpn(S+
pn, S

−
pn) = (S+

pn)2 + (S−
pn − 1)2 (7)

Now, during training of the embedding network, either the anchor or the positive
is ‘pushed’ away from the negative instance, whichever is closer. Still, the anchor
and the positive are ‘pulled’ together. This method fits the triplets quicker
in the embedding space and should reduce the convergence of the embedding
network [3].

4.6 Technical details

Most components are written from scratch. A tensor generation module, intro-
duced in Section 3.2, is developed to sample the locations, extract their features
from the database and converts this information to location tensors. This mod-
ule is used to produce training triplets automatically. The neural networks and
their training are implemented using a library. The code used to assess the
quality of the vectors generated by the embedding networks and to build the
applications is also custom. This section will cover the software and hardware
used to do this, as well as the specific parameters that are used to train the
embedding networks.

4.6.1 Software and hardware

The OpenStreetMap data for the location features is retrieved from GeoFab-
rik [12] and stored in a PostgreSQL database. Sampling location and extracting
their features is implemented in Python. The embedding network is imple-
mented in Keras [6], a neural network API for Python. All training was per-
formed on a desktop PC with an AMD Ryzen Threadripper 1950X Processor,
64 GB of RAM memory and an NVIDIA GeForce GTX 1080 Ti GPU. The
experiments and applications to assess the embedding network’s performance is
implemented in Python as well.

4.6.2 Embedding network training

Both embedding networks, one with margin loss, the other with SoftPN loss,
are trained using triplet loss networks. As specified in Section 4.4, the anchor
instances for the triplets are sampled randomly. For each anchor, 10 positive
instances are created. When creating a triplet for training, an anchor and one of
its positives are selected randomly. This pair is complemented with a randomly
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selected anchor, which serves as a negative instance. This way, triplets are
generated ‘on the fly’.

Both embedding networks are initialized with random weights using a Glorot
uniform initialization scheme [13] and are trained using batches of 128 triplets
at a time. Instead of updating the weights in the network after each triplet,
they are updated after each batch. This allows all triplets in a batch to be
propagated through copies of triplet loss network in parallel. The 128 separate
losses are combined to a single loss which is used to update the embedding
network weights. The embedding network with the margin loss and the network
with the SoftPN loss are both trained using these batches for 48 hours. For the
network with margin loss, the margin parameter is set to α = 0.25. The SoftPN
loss function has no parameters that can be tuned.

After the 48 hours of training, each embedding network had processed approx-
imately 82500 batches, which corresponds to 82500 × 128 = 1.056 × 107, or
approximately 10 million, triplets. These trained networks and the mappings
that they implement are used in Section 5 and 6 to assess the quality of the
embedding vectors that they compute.
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5 Results

To assess the quality of the trained embedding networks, several experiments
are conducted. In the first experiment, dimensionality reduction algorithms are
applied to the embedding vectors generated by the embedding networks, which
allows visualization of the embedding spaces in two dimensions. In the second
experiment, the embedding networks’ ability to preserve spatial properties is
assessed. This is done by comparing locations that are similar according to
their embedding vectors to locations that are similar according to their feature
distribution.

5.1 Visualizing embeddings

The embeddings generated by the embedding networks are vectors in R16. To
visualize this, we can apply a dimensionality reduction algorithm. One of
these algorithms is t-NSE [19], introduced in Section 2.5. t-SNE models high-
dimensional vectors by low-dimensional vectors.

In our case, the high-dimensional space is the embedding space described by one
of the embedding networks. To model this with t-SNE, the embedding vectors of
all anchor instances are used. The t-SNE algorithm produces a two-dimensional
vector for each anchor, where anchors that were close in the embedding space
are also close in the two-dimensional space. Therefore, t-SNE creates a mapping
from R16 to R2, which allows the embeddings to be visualized.

5.1.1 Margin loss

First, the high-dimensional embedding vectors of the anchors are computed us-
ing the embedding network with the margin loss function from Section 4.5.1.
Then, the anchor vectors in two-dimensional space according to t-SNE are
computed. To visualize this space, each anchor is represented by their Open-
StreetMap representation, as if the location would have been cut from the Open-
StreetMap map. This results in Figure 5.1, which shows all of these represen-
tations as small images. Note that many overlap. The horizontal and vertical
position of each anchor location is its position in the two-dimensional t-SNE
space.

At a first glance, the two-dimensional representation of the embedding space
looks decent. There are distinct clusters, which vary in size. The north-west
quadrant is mostly occupied by locations with a lot of grass. The locations in
the north-east quadrant are mostly farmland. Between these quadrants, there
is a reasonably smooth transition: starting in the cluster with grassy locations,
moving to the east will increase the amount of farmland until there is no grass
left. To the north of the grass and farmland locations, there is a cluster of
locations consisting only of water. Since water is the only feature that appears
in these locations, there is no transition to other clusters.

In the south-east quadrant, two distinct clusters are shown. More to the east,
there is a cluster with inhabited locations. To the east of this cluster, there
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Figure 5.1: Two-dimensional space according to t-SNE of the embedding vectors
computed by the embedding network trained using margin loss.

are locations that only consists of roads and residential areas, like city centers.
Going to the west of this cluster, more greenery appears and the locations
become more rural. The other cluster in the south-east quadrant consists of
mostly forestry. Moving towards the center of the t-SNE space, this turns into
locations with additional features, like grass, water and roads.

The center of the t-SNE space contains multiple types of locations. The center
mainly seems to function as a way to transition between different clusters. It also
contains a lot of roads, which can by explained by the fact that roads appear in
different types of areas. They appear in residential areas, grasslands, farmlands
and can even cross water. Therefore, it is logical that locations with roads are
embedded in the embedding space where all types of areas meet.

Other small clusters can be found on the edge of the embedding representation
in the south-west quadrant. Along this edge, we can see a group of industrial
areas, followed by clusters of cemeteries, sand, swamp and dunes. There does not
seem to be a transition among them, although some of these clusters transition
fairly smoothly to grassland.
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The triplet loss network with margin loss seems to have trained the embedding
network fairly well. It is clear that similar locations have been clustered to-
gether, while locations that are distinct do usually not appear together. The
embedding space often provides a smooth transition between clusters of loca-
tions of different features. For example, a location that consists of both grass
and farmland appears between the grass and farmland clusters. However, the
t-SNE representation does not indicate that this is the case for all clusters and
that there might be some hard boundaries between clusters, where no smooth
transition is possible.

5.1.2 SoftPN loss

The embedding network with SoftPN loss maps the location tensors differently.
The embedding vectors are also computed using this network and t-SNE is
applied again to map them to a two-dimensional representation. The resulting
visualization is shown in Figure 5.2.

Figure 5.2: Two-dimensional space according to t-SNE of the embedding vectors
computed by the embedding network trained using SoftPN loss.
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The two-dimensional space of the vectors generated by the embedding network
that was trained with SoftPN loss looks somewhat like the one generated by the
margin loss network. Again, locations that mostly consist of grass or farmland
occupy most of the space. The north-west quadrant is mostly dedicated to
grassy areas and moving to the south-west quadrant shows a smooth transition
to farmland. This was also the case for the margin embedding space.

The south-east of the SoftPN t-SNE space is occupied by forest. There is a
decent transition from this forest cluster to farmland and grass locations. In
the margin space, this is not the case. Next to the forest cluster, smaller clusters
are present. Again, there is a cluster with cemeteries, sand and swamp without
smooth transitions between them. However, there appears to be a transition
between swamp and forest.

Where in the margin space the most chaos appeared to be in the center, the
most clutter appears in the north-east quadrant of the SoftPN t-SNE space. In
the north, there is a large cluster of locations that consist mostly of water. The
residential areas are located in the east, where there is somewhat of a transi-
tion to grassy areas by going to the west. Between the water and residential
clusters, there appears to be a mixture of residential, industrial and aqueous
locations.

5.1.3 Comparison

Both two-dimensional representations of the embedding networks trained using
the triplet loss network with margin loss and SoftPN loss are decent. Both
spaces feature a smooth transition between locations consisting of farmland and
grass. Also, both representations show large clusters dedicated to water, forest
and residential areas. Smaller clusters are industrial areas, cemeteries, sand and
dunes.

There are also differences. In the case of the SoftPN loss, there is a smooth
transition between forest and farmland or grass. The margin loss does not
show this, as its center is dedicated to transitions between different clusters.
Additionally, in the SoftPN representation, the industrial areas are close to the
residential areas, with a reasonable transition between them. However, with the
margin loss, these clusters appear on opposite sites.

5.2 Preservation of spatial properties

The embedding network architecture consists mostly of convolution and pooling
layers, with the idea that these learn to recognize shapes and other spatial
properties that characterize a location. This includes for example the distinction
between straight and curvy roads. In this experiment, we take a look at some
examples to verify whether the spatial properties of the input locations are
actually somewhat preserved in the embedding space. We do this by comparing
the neighbors of some locations in the embedding space to the neighbors that
have the most similar frequency distribution of features.
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If the embedding network would take the spatial properties into account, vectors
that are close in the embedding space should not only represent locations with
the same features, but also the spatial properties of these locations. To test this,
we use the anchor locations from the triplets that were used during training.
Given one of these locations, the embedding network generates an embedding
vector. We compare this to the embedding vectors of all other anchors and
generate the OpenStreetMap tiles that correspond to those locations. These
can then be visually inspected to compare the similarity in features and their
spatial properties.

Additionally, we compare locations without taking the spatial properties into
consideration. To do this, we need to represent the locations in a different way,
since their tensor representations contain these spatial relations. One way of
doing this is by simply counting the occurrences of each feature in the tensor.
For each feature, the number of pixels that they appear in is counted. Since there
are 136 features, the result is a vector c = {c1, c2, . . . , c136} where an element
ci is the number of pixels that contain feature i, or simply the frequency of
feature i. By creating this frequency distribution, the 128 × 128 × 136 tensor
that represents the input location is mapped to a 136-dimensional vector. In
this vector, the features and their occurrences are preserved, but their spatial
properties are not.

As a distance measure in the embedding spaces and the frequency distributions,
the Euclidean distance is used. If this distance between two locations is small,
they are considered similar. In the embedding space, this should mean that
the locations are similar in the features that appear, but also in their spatial
properties. When the distance between two frequency distributions is small, the
frequencies of the features that appear in their locations are very similar, but
no spatial information is considered.

Figure 5.3 shows an anchor location. This location is characterized by a lot of
grass and straight waterways. There is also a bit of track and sidewalk to use for
pedestrians. We will use this as the source image and find its neighbors.

Figure 5.3: An anchor location in OpenStreetMap representation.
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5.2.1 Embedding network

Figure 5.4 shows the four closest anchor locations of the source location in the
embedding space generated using the embedding network that was trained using
the SoftPN loss function. They are ranked by distance and the distance in the
embedding space is shown below each location as D/Emb.

Figure 5.4: Neighbors of the source location in the SoftPN embedding space.

It seems like the neighbors in the embedding space are indeed similar to the
source location. All four neighbors show a lot of grass and straight waterways.
Additionally, there is some track for pedestrians to walk on. However, there is
also a difference. The first neighbor shows some houses in the north, which did
not appear in the source location.

5.2.2 Frequency distribution

The source location in Figure 5.3 contains only four features: grass, water, track
and a sidewalk. In the frequency distribution of the features, these features have
a positive value, all other features are 0. Figure 5.5 is a visual representation
of the source’s frequency distribution. Only the four occurring features are
shown.

Figure 5.5: Frequency distribution of the source location.

We can now compute the distance between the frequency distribution vector of
the source and those of all other anchor locations. Figure 5.6 shows the closest
four anchor locations. The location that is ranked first has the most similar
frequency distribution. Below each anchor location, the distance to the source’s
frequency distribution is denoted by D/Freq.
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Figure 5.6: Neighbors of the source location by frequency distribution.

The most similar locations by frequency distribution are very different from the
locations that were ranked using the SoftPN embedding space. Clearly, the
locations are similar to the source location regarding the amount of grass and
water. However, the spatial properties of the features are mostly gone. While
the source location had straight waterways, the most similar locations do not
show these patterns.

This experiment shows that the embedding network successfully maps locations
from a 128 × 128 × 136 tensor to a 16 dimensional vector, while maintaining
the features and the spatial properties that they have. The most similar lo-
cations according to the network have similar features as the input location,
comparable to the performance of a 136 dimensional frequency distribution of
features. However, the latter is not able to preserve spatial properties, while
the network is able to mostly preserve these even though the embedding vector
is much smaller.
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6 Applications

The two embedding networks that were trained using the triplet loss networks
are functions that take a tensor that represents a location and map it to a
vector in an embedding space. The goal was to create a mapping where similar
locations map to similar vectors. To assess this, two applications were developed
that use these embedding vectors as inputs. The first application takes a location
as input and finds similar locations using the distance in the embedding space as
a similarity measure. In the second application, the embeddings are used as an
input to a neural network, which is trained to predict the number of inhabitants
that live around the location that the input embedding represents.

6.1 Recommending similar locations

First, an application is developed that can, given a target location, find locations
that are similar. Both embedding networks, one trained using margin loss, the
other using SoftPN loss, are used independently to generate recommendations.
These recommended locations can then be compared.

6.1.1 Approach

The application uses the set of anchor instances from the triplets that were used
during training of the embedding networks. For each anchor, the embedding
vector was computed using the networks, resulting in a set of 105 location vectors
for each network. The input, a location specified by the user, is passed through
the networks creating two target vectors. In each embedding space, a distance
metric is used to retrieve the closest n embedding vectors. These suggested
locations are ranked by distance in the embedding space and displayed to the
user using their OpenStreetMap representation, along with information on their
embedding distance and the physical distance.

The similarity of a pair of vectors in the embedding space is measured using
the Euclidean distance. This measure is used because it was also used to train
the networks. The loss of the triplet loss networks was minimized when the
Euclidean distance between the anchor and the positive instances ∆+ was small
and the anchor-negative distance ∆− (or sometimes the positive-negative dis-
tance ∆∗ when the SoftPN loss was used) was large.

6.1.2 Results

Consider the location shown in Figure 6.1. This is one of the locations that
functions as an anchor in the triplets for the triplet loss network training. The
figure shows the OpenStreetMap representation.

We use this image as input for the application to find similar locations. First, the
embedding of the input image is computed using the embedding networks. This
is the input embedding vector. Then, the Euclidean distance between the input
vector and all other embedding vectors are computed. Figure 6.2 shows the
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Figure 6.1: An anchor location in OpenStreetMap representation.

closest 8 locations in the embedding space for the embedding network trained
using the margin loss. D/Emb denotes the distance in the embedding space to
the input location, D/Spat is the spatial distance in the real world.

Figure 6.2: Closest 8 locations according to the margin embedding space.

The features in the input locations and the closest 4 locations are very similar.
All of these locations contain houses, roads with right angles, some grass and
some water. In the embedding spaces, these locations have a pairwise distance
of at most 15.227. The locations ranked 5 up to 8 are still similar, but have some
different features than appear in the input location. For example the location
with rank 5 does not feature any water, but includes some railway.

The real world distances to the input location vary a lot. The closest anchor
location in the embedding space, with rank 1 is not the closest location in the real
world. This is the location with rank 3. Figure 6.3 shows the real locations of
the 8 most similar locations. The green dot is the location of the input location,
the red dots show the locations of the 8 closest location in the embedding space.
The larger the dot, the lower the rank. There seems to be no relation of the
distance or physical locations in relation to the input location.
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Figure 6.3: Physical location of the closest 8 margin locations.

The recommended places are different for the embedding vectors generated by
the embedding network trained with SoftPN loss. The closest 8, ranked by
distance, in this embedding space is shown in Figure 6.4.

Figure 6.4: Closest 8 locations according to the SoftPN embedding space.
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The most similar locations in the SoftPN embedding space are different from
the recommendations from the margin embedding space. The recommended
locations are still residential areas, but also show a lot of different features. The
location with rank 1 has less houses than the input image and no water, but
it is the only recommendation with a communication tower. The other similar
locations have similar features to the input location, but in different proportions.
The amount of greenery is a lot larger in the locations with rank 6 and 8.

Also a difference is the distance in the embedding space. In the margin em-
bedding space, the most similar location had a distance of 13.280, while for
the SoftPN embedding space the distance to the closest location is 3.706. This
shows that the embedding spaces have different notions of what is ‘close’ and
what is ‘distant’.

Figure 6.5: Physical location of the closest 8 SoftPN locations.

Again, as Figure 6.5 shows, there does not seem to be a relationship between
the input location and the real distance or locations of the 8 closest location in
the SoftPN embedding space. Similar locations can be found far away from and
close to the input location.

6.1.3 Application summary

In general, the distances in both the embedding space of the embedding network
trained with margin loss, as well as the space of the SoftPN trained embedding
network, are a measure of similarity. Similar locations live closely together, while
the distance between a location pair increases with the amount of features that
they differ.
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Also, both spaces do not appear to have a bias for physical location. Similar
locations are distributed randomly throughout The Netherlands and there does
not appear to be a relationship between distances between locations in the
embedding space and the real world distances.

6.2 Embedding vectors as machine learning inputs

The embedding vectors computed by the embedding networks are supposed to
accurately represent a location. Vectors of similar locations are supposed to be
similar and distant from others. This means that they must contain information
about the amount of grass, farmland, water, industry and housing. To test this,
as a second application, we develop a neural network model with the goal of
extracting information about housing from the embedding vectors. The goal of
the model is to predict whether a location, given its R16 embedding vector, is
residential or not. This is a binary classification problem.

6.2.1 Dataset

The Dutch national statistical office, Statistics Netherlands (CBS), was estab-
lished to provide independent and reliable information. One of their annual
publications is a map of The Netherlands, divided into small areas [4]. Each
area is a square of 500×500 metres with information about demography, energy
and accessibility of facilities. One of these features is the number of inhabitants,
or population, per square. Since people live in residential areas, the population
can be used to tell whether a square is residential or not.

The dataset for the classification problem was created as follows. For each an-
chor and positive location from the triplet loss training set, the corresponding
square that this location is located in is determined. The population from this
square is used to determine the target t, where t = 1 when the population is
positive and t = 0 otherwise. This generates a dataset consisting of embedding
vector-target pairs. Note that not all squares appear in this dataset, because
there are squares without any embedding vector locations in them. The loca-
tions were randomly sampled within the boundaries of The Netherlands. This
also means that a square can appear multiple times in the dataset, which is the
case when multiple locations were sampled in that square. Also, not all anchor
or positive locations appear in the dataset, since the CBS square dataset does
not contain information on all of the sampled locations. The resulting dataset
has 1, 067, 991 vector-target pairs.

6.2.2 Approach

For both embedding networks, one trained with margin loss, the other with
SoftPN loss, a feed-forward network is trained. The input is an embedding
vector in R16. The target is a binary value that indicates whether the square
that the vector is in is inhabited. The architecture of the networks is simply a
stack of 3 fully connected (dense) layers, as shown in Table 6.1.
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Layer Input shape Output shape Activation Params
FC1 16 64 ReLU 1088
FC2 64 32 ReLU 2080
FC3 32 1 Sigmoid 33

Table 6.1: Architecture of the population prediction neural networks.

85% of the anchor and positive locations were used to train the population
prediction networks. For each example, the embedding vector was computed
according to the embedding networks trained with margin loss and SoftPN loss
and fed into the corresponding population prediction networks to train it. The
other 15% of locations was used to evaluate the networks. The final prediction of
the network is based on the output of the last node, which has a value 0 < p < 1.
When p > 0.5, we interpret this as a prediction of t = 1 and a prediction of t = 0
otherwise. The accuracy A of the network is simply the proportion of correctly
predicted targets. When all locations in the test set are correctly predicted to
be inhabited or not, the accuracy A = 1, which is the goal. When the network
predicts all examples incorrectly, A = 0. The networks were trained for 30
epochs, with batch sizes of 512 samples.

6.2.3 Results

Before training and after each epoch, the accuracy of the population prediction
networks was computed. This is shown in Figure 6.6.

Figure 6.6: Accuracy of the prediction networks at each epoch.

The population prediction network trained using the margin loss embedding
vectors has a lower accuracy, of about 73% on the test set. Meanwhile, the
network trained using the SoftPN vectors has an accuracy of 78%. Initially,
both networks predict randomly, but the accuracy quickly increases, after a
single epoch. Then, for both networks, the prediction accuracy hardly increases
with the number of epochs.

44



The lower final accuracy of the network trained with the margin loss embeddings
could be explained by the quality of the embedding. The vectors generated by
this embedding network may contain less information about residential areas in
the locations that it describes. If this is the case, this information is encoded
more effectively in the SoftPN embedding vectors.

To see some predictions made by one of the population prediction networks, we
can plot some of its predictions. First, we aggregate the predictions by square.
When there are no embedding vectors that represent a location in a square, the
square is ignored, since there are also no predictions for this square. In case
there are multiple embedding vectors for a square, the mean of their predictions
is taken. The resulting image, for the network trained with SoftPN embedding
vectors, is shown in Figure 6.7.

Figure 6.7: Map of predictions by square for the SoftPN prediction network.

The image shows that this population prediction network can predict where
people live very well. Large cities, like Amsterdam, Utrecht, The Hague, Rot-
terdam and Groningen can easily be identified from the predictions. Also places
where no people live, nature reserves in Flevoland and the Veluwe are predicted
to be free of any population.
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6.2.4 Application summary

With results of 73% and 78% on the test sets, it is clear that the vectors gen-
erated by the embedding networks contain a vast amount of information about
the residential areas in the locations that they describe. However, the SoftPN
vectors seem to preserve this information a bit better. From the population
network predictions, inhabited areas like cities can easily be identified. It also
predicts well that certain areas, like nature reserves, are uninhabited.
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7 Discussion

In this section, the research conducted in this thesis is summarized. A recap
of the approach is given, followed by the results. Finally, some suggestions are
made on how to proceed with further research on this topic.

7.1 Conclusion

Inspired by the application of machine learning models to create embedding
spaces for words, graphs, images and other concepts, this thesis shows that a
convolutional neural network can be used to map geographical locations to em-
bedding vectors. This mapping meets the requirement that similar locations
should be mapped to similar embedding vectors. Since there is no objective
measure for describing similarity of geographical locations, the neural network
is trained using a triplet loss network, which allows training using relative sim-
ilarities. Two loss functions for the triplet loss network are explored, each of
them generating a different embedding network.

The results show that the two embeddings networks successfully satisfy the
requirement. Locations with similar input locations are mapped to similar em-
bedding vectors, while different locations result in distant vectors. This was
verified visually by mapping the embedding vectors in two-dimensional space
after applying a dimensionality reduction algorithm. The ability of the net-
works to preserve spatial properties was also shown. Locations were ranked by
similarity according to their embedding vectors and using the frequency distri-
bution of their features. While the embedding vector approach was able to take
spatial properties into account, the frequency distribution ranking failed to do
so.

In the last section, the embedding networks were used in practical applications.
First, an application was developed that is able to ‘recommend’ locations that
are similar to an input location. The embedding vector of the input location
was used to compute its nearest neighbors in the embedding space, which were
then returned to the user. In the second application, the embedding vectors
were used as inputs for a machine learning model, with the goal of predicting
whether a location is residential or not. This can be done in 73% and 78% of
the cases, which shows that the vectors computed by the embedding network
can encode vast amounts of information.

7.2 Further research

During design of the embedding network and its training, many arbitrary choices
were made. This includes the number of features in the input tensor, the length
of the output vector, the number of layers of the embedding network and the
margin used by the margin loss triplet loss network. It would be interesting to
see whether changing these parameters can increase the embedding network’s
performance and how this relates to its ability to encode the location’s features
versus the spatial properties of those features.
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Another interesting topic to look into in the future is the use of embeddings
network for ‘specialized’ locations. Instead of selecting random locations, the
input data can be specifically selected based on a topic. As an example, the
embedding network can be trained on traffic intersections, like roundabouts or
roads with traffic lights. Interesting would be to see whether such a network is
able to describe similar intersections as similar embedding vectors. Using these
vectors, it might be possible to identify dangerous intersections or the vectors
can be used for infrastructure planning purposes.
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