
Universiteit Leiden

Computer Science

A New Approach Towards the Combined Algorithm

Selection and Hyper-parameter Optimization Problem

Name: Xin Guo

Date: 28/01/2019

1st supervisor: Dr. Bas van Stein
2nd supervisor: Prof. Dr. Thomas Bäck

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Machine learning algorithms often have many hyper-parameters that can be tuned

to improve empirical performance. However, manually exploring the complex hyper-

parameter search spaces is tedious and cannot guarantee to find satisfactory outcomes.

Recently, Bayesian optimization techniques for solving hyper-parameters optimization

problem have shown substantial improvements, while also exposing some limitations.

It is often the case that some hyper-parameters of a learning algorithm have a depen-

dency on the values of other hyper-parameters or some conditions. These are called

conditional hyper-parameters. Furthermore, this case can be expanded to include the

choice of algorithm, resulting in the so-called combined algorithm selection and hyper-

parameter optimization problem. In this thesis, we propose three strategies to extend

Bayesian optimization to deal with such a hierarchical search space with conditional

inputs, based on a state-of-the-art algorithm MiP-EGO [1]. We first evaluate MiP-EGO

without conditional inputs on benchmark problems, and then empirically compare our

proposed strategies with other methods on an algorithm configuration scenario. The

results show MiP-EGO and its new variants can compete with other state-of-the-art

methods, and they are promising for configuring and selecting learning algorithms in

practice.

i

Acknowledgements

First and foremost, I would like to thank my supervisors, Dr. Bas van Stein and Prof.

Dr. Thomas Bäck, for the patient guidance, encouragement and advice they have pro-

vided throughout my time doing this interesting project. Furthermore, I would like to

thank my boyfriend and all my friends in Leiden for providing spiritual support and for

distracting me from stress. Finally, I would like to thank my parents for their love and

their financial supports during these years in Leiden. The accomplishment of the thesis

would never be possible without any of you.

ii

Contents

Acknowledgements ii

1 Introduction 1

2 Problem Definitions and Comparison 5

2.1 Black-box Optimization Problem . 6

2.2 Algorithm Configuration Problem . 7

2.3 Comparison between BBO and AC . 9

2.4 Combined Algorithm Selection and Hyper-parameter Optimization 10

3 Related Approaches 12

3.1 Sequential Model-Based Methods . 12

3.2 Meta-Heuristic Methods . 13

3.3 Racing Procedures . 13

4 Bayesian Optimization 15

4.1 Initial Design . 16

4.2 Surrogate Models . 16

4.2.1 Kriging . 17

4.2.2 Random Forest . 22

4.3 Acquisition Function . 24

4.4 MiP-EGO . 25

4.4.1 Handling Mixed Integer Input . 26

4.4.2 A New Acquisition Function and Cooling Strategy 26

4.4.3 Parallel Execution . 27

4.5 SMAC . 27

4.5.1 Maximizing EI and Intensification 27

5 Extensions of MiP-EGO on Conditional Spaces 29

6 Experimental Evaluations 34

6.1 Artificial Test Problems . 34

6.1.1 Barrier Function . 34

6.1.2 Mixed Integer NK Landscapes . 36

6.2 Algorithm Configuration Scenario . 38

6.2.1 Results and Discussions . 40

iii

Contents iv

6.2.2 Visualization of Classifier Choices 41

7 Summary and Conclusions 45

Bibliography 47

Chapter 1

Introduction

Today, high-performance algorithms and models involve a large number of design choices

and parameter settings. Design choices include alternative models, pre-processing, vari-

able selection, value selection and so on. Many design choices have associated numerical

parameters. A typical example in machine learning is Neural Networks (NNs), which

have dozens of hyper-parameters (e.g. layer type, the total number of layers, the number

of units in each layer) that need to be configured before training. The other examples

include chemical plants optimization[2], engineering optimization [3, 4], computer sim-

ulation [5–7] and so on. The problem about parameter tuning and algorithm selection

is common in science, engineering, finance, and other fields.

Challenges for designing algorithms and models involve three aspects basically. First of

all, many alternative design choices are available but no one knows a prior which choice

is optimal for a given problem. It is almost impossible for domain experts to test all the

algorithms and it is also difficult for them to be familiar with all the specifics of existing

methods. Secondly, high-performance algorithms often consist of various components

but it is hard to figure out how these components and parameters interact with each

other. A common practice is to treat the algorithm as a black-box where the internal

working mechanism is unknown but inputs and outputs can be accessed. Thirdly, getting

outputs or evaluating the performance of algorithms might be computationally expensive

or resource intensive. This means that exhaustive enumeration or brute force search is

not possible.

1

Chapter 1 2

The traditional design approach is mainly based on trial-and-error which is guided by

expertise or intuition. This simple approach generally attempts to find a solution, not

the best solution and makes no attempt to generalize a solution to other problems.

To make this approach more systematical and automatic, a new concept called automatic

algorithm configuration arises. Its workflow is illustrated in Figure 1.1. Note that

this approach treats algorithm configuration as a black-box optimization problem. The

configuration procedure executes the target algorithm, which is configured by a specific

set of parameter settings, on one or more problem instances. And the configurator

receives feedback (namely solution cost in Figure 1.1) about the algorithm’s performance

using this set of parameter settings. The configurator uses this information to decide

which target algorithm runs to perform subsequently. The configurator does not have

access to any internal state of the target algorithm. This leads to a clean interface and

makes the configurator applicable to new target algorithms. In this thesis, we mainly

discuss this configuration procedure and focus on the design of configurators.

Figure 1.1: Visualization of automatic algorithm configuration proposed by Hutter
[8].

The notion of automatic algorithm configuration can be roughly divided into two parts

discussed in the following: hyper-parameter optimization and algorithm selection.

In machine learning, hyper-parameter optimization is the problem of choosing a set of

optimal hyper-parameters for a learning algorithm. For example, a powerful learning

algorithm, RBF-based support vector machine (SVM) [9] has two hyper-parameters that

require tuning, C and gamma. From Figure 1.2, we see the response surface (AUROC)

can be highly irregular for even simple learning tasks. It is non-smooth, non-convex

and has many local minima. This is a general observation in the hyper-parameter

optimization problems, and is one of the key reasons why we need a robust configurator.

Chapter 1 3

If there were no local minima, a simple numerical optimization technique could do the

trick.

Figure 1.2: Response surface (AUROC) of SVM’s hyper-parameters on a toy dataset.

Algorithm selection, sometimes also called per-instance algorithm selection or offline

algorithm selection can be stated as follow:

Given a computational problem, a set of algorithms for solving this problem, and a

specific instance that needs to be solved, determine which of the algorithms can be expected

to perform best on that instance. [10]

It is motivated by the observation that an algorithm has different performances on

many practical problems. That is, while one algorithm performs well on some instances,

it performs poorly on others. If we can identify when to use which algorithm, the

potential of algorithms can be maximized and problems can be solved effectively.

The remainder of the thesis is structured as follows: We first introduce the traditional

standard black-box optimization problem and the emerging algorithm configuration

problem, which emphasizes on costly objective function evaluations, randomness and

complex search spaces, and discuss their relation and difference. Then we introduce a

wide range of related approaches for solving the hyper-parameter optimization prob-

lems in chapter 3. In chapter 4, we introduce Bayesian optimization strategy to solve

these problems, and discuss two state-of-the-art implementations of this strategy. We

also extend MiP-EGO [11], in chapter 5, to solve the combined algorithm selection and

Chapter 1 4

hyper-parameter optimization problem by constructing hierarchical search space prop-

erly. The experimental results in chapter 6 show that our proposed methods perform

well and are not significantly worse than the other methods.

Chapter 2

Problem Definitions and

Comparison

An important topic of this thesis is clarifying the standard black-box optimization prob-

lem, and the algorithm configuration problem and their relations between the two. Before

we introduce these two problems formally, we first introduce some common notations

shared by both and some unique notations for the algorithm configuration problem.

Let A denote an algorithm with parameters θ = (θ1, . . . , θk), where θi ∈ Θi for i =

1, . . . , k. The domain of possible values of θi is denoted as Θi. These domains can be

finite and ordered (for continuous and integer parameters) or finite and unordered (for

categorical parameters). We use Θ ⊆ Θ1× . . .×Θk to represent the space of all feasible

parameter configurations, and A(θ) to represent the instantiation of algorithm A with

parameter configuration θ ∈ Θ.

Specifically for the algorithm configuration problem, let D denote a probability distri-

bution over a space Π of problem instances, and denote an element of Π as π, i.e., an

individual problem instance. D is usually defined as the uniform distribution over Π

[12].

5

Chapter 2 6

2.1 Black-box Optimization Problem

Mathematically, the deterministic black-box optimization (BBO) problem is for-

mulated as

min
θ∈Θ

f(θ)

where f : Θ → R is a “black-box” function, that means no analytical or derivative

information available. We can query f at arbitrary input θ ∈ Θ and the only information

we can get about f is its function value at this queried point. In typical BBO problems,

the domain is continuous, that is, Θ ⊆ R. Other common names for f which appear in

this thesis are objective function, performance measure, fitness function or cost.

In the stochastic BBO problem, the function f is replaced with a stochastic process

{Fθ|θ ∈ Θ}, a collection of random variables indexed by θ ∈ Θ. The goal of stochastic

BBO is to find the configuration that optimizes a given statistical parameter τ of Fθ’s

distribution. This statistical parameter might be the expected value or median. Let

P{θ} denote the distribution of Fθ, then the stochastic BBO problem is formulated, in

[8], as

min
θ∈Θ

τ(P{θ})

Specifically, in algorithm configuration, P{θ} is also called the configuration’s cost dis-

tribution, an observed sample from that distribution is called observed cost, o, and the

overall cost of a configuration is defined as c(θ) := τ(P{θ}) [8]. The optimal configuration

is thus defined as

θ∗ ∈ arg min
θ∗∈Θ

c(θ)

Since the objective varies for different applications, the so-called overall cost could be

defined as the median solution quality achieved within given computation time ,or as the

expected computation time required to reach an optimal solution. In this thesis, we will

consider the solution quality as the performance measure of a given target algorithm.

To intuitively illustrate notations in the stochastic BBO problem, we give an example

shown in Figure 2.1. Here, the black circle denotes the observed cost o of running A(θ)

on instance π ∈ Π. The cost of configuration θ is considered as a random variable Fθ

Chapter 2 7

and P{θ} is denoted as Fθ’s distribution. In this example, all of the observed cost values

on configuration θ are sampled from a normal distribution. A statistical parameter of

Fθ is denoted as τ . In this example, τ represents the expected value. If we connected

all values of τ in configuration space in this figure, we can get a curve representing the

objective function that we want to optimize, i.e. c(θ) := τ(P{θ}).

Figure 2.1: An example of stochastic BBO problem.

2.2 Algorithm Configuration Problem

Roughly speaking, the algorithm configuration problem (AC) can be stated as follows:

given a parameterized algorithm A, a set of problem instances Π and an overall cost

metric c, find configuration θ of A that minimizes c on Π. We see that AC is similar to

the stochastic BBO. Both of them aim to find the value of a vector θ ∈ Θ that minimizes

a scalar-valued function F (θ). From this angle, AC can be viewed as a special type of

BBO problem.

Before we compare both of them in detail, it is necessary to introduce the formal defi-

nition of AC given in [8, 12].

Definition 2.1. (Algorithm configuration problem). An instance of the algorithm con-

figuration problem consists of a 6-tuple 〈A,Θ,D, κmax, o, τ〉, where:

• A is a parameterized algorithm;

• Θ is the parameter configuration space of A;

Chapter 2 8

• D is a distribution over problem instances with domain Π, usually assumed as

uniform distribution;

• κmax is a cutoff time (or captime), after which each run of A will be terminated if

still running;

• o is a function that measures the observed cost of running A(θ) on instance π ∈ Π

with captime κ ∈ R; and

• τ is a statistical population parameter to be optimized.

From this definition, we can see that the algorithm configuration problem for determin-

istic algorithms and single instances can be seen as the deterministic BBO problem,

while AC of randomized algorithms or AC on a set of instances Π would be a stochastic

BBO problem. The relation between AC and BBO are summarized in Figure 2.2. Note

that algorithm parameters can be discrete, so in the AC problems we have Θ 6= Rd.

Figure 2.2: The relation of AC and BBO

It turns out that the cost of a configuration, c(θ), can not be optimized directly because

we can not provide an analytical form for it. Instead we can only execute a sequence of

runs R of the target algorithm A with different parameter configurations, that means we

can only get empirical estimates of c(θ)’s value. This derives the notion of the empirical

cost estimate given in [8, 12].

Definition 2.2. (Empirical Cost Estimate). Given an algorithm configuration problem

instance 〈A,Θ,D, κmax, τ〉, an empirical cost estimate of c(θ) based on a sequence of runs

R = ((θ1, π1, s1, κ1, o1), . . . , (θn, πn, sn, κn, on)) is defined as ĉ(θ,R) := τ̂({oi|θi = θ)}),

where τ̂ is the sample statistic analogue to the statistical parameter τ .

Here si denotes the random number seed used in the run. If we denote Rθ as the

sequence of runs with configuration θ (i.e. all θi equals θ in these runs), we can see that

Chapter 2 9

Table 2.1: Differences in terminology between BBO and AC.

BBO AC

Parameter tuning Algorithm configuration

Best configuration seen so far The incumbent

A group of similar objective functions Instances

A deterministic function to be optimized
A statistical parameter of an observation
distribution to be optimized

the empirical estimate of c(θ) is solely based on Rθ. This definition suggests that, on

one hand, AC is exactly the stochastic BBO when configuring a randomized algorithm

on a single instance; on the other hand, a fair comparison between two configurations θi

and θj should be based on the same number of runs, i.e. |Ri| = |Rj |. With this notion

in mind, when executing a sequence of runs R, the configuration observed so far to have

the lowest cost, is called the incumbent configuration, shortly the incumbent, θinc.

2.3 Comparison between BBO and AC

From the definition above, we can see a big difference between AC and BBO is about how

the notion of runs is defined. In BBO problems, each function evaluation is assumed to

take the same amount of time on a given instance. Thus the ith run in R can be described

by three values: (θi, si, oi), that is, parameter configuration θi, the random number seed

si used in the run and the observed cost oi. In contrast, in the AC problem, the ith run is

described by five values: (θi, πi, si, κi, oi). Here, oi measures the observed cost of running

A(θi) on instance πi with captime κi. This implies multiple instances with various

hardness tend to be solved simultaneously in the overall configuring process. We are also

free to terminate any runs after any cutoff time κ ≤ κmax, to avoid poor configuration

wasting too much time on some difficult instances [8]. The different terminologies used

in BBO and AC are summarized in Table 2.1

Chapter 2 10

2.4 Combined Algorithm Selection and Hyper-parameter

Optimization

BBO and AC are concerned with the hyper-parameters optimization of a single algo-

rithm. However, it is also challenging to choose a suitable algorithm for a specific prob-

lem before tuning its hyper-parameters. It is infeasible to try all algorithms in practice,

and also, the rankings of algorithms depend on whether their hyper-parameters are

tuned properly. This dilemma is especially common when trying to select a suitable

classification algorithm. Fortunately, according to the work in [13], these two prob-

lems can efficiently be tackled as a single, structured, joint optimization problem, which

is formulated as the Combined Algorithm Selection and Hyper-parameters optimization

(CASH) problem [13]. Given a set of classification algorithmsA =
{
A(1), A(2), . . . , A(m)

}
with associated hyper-parameter spaces Θ1,Θ2, . . . ,Θm, the CASH problem is formally

defined as

A∗θ∗ ∈ argmin
A(j)∈A,θ∈Θj

1

k

k∑
i=1

L
(
A

(j)
θ ,D(i)

train,D
(i)
valid

)
,

where L
(
A

(j)
θ ,D(i)

train,D
(i)
valid

)
is the loss (i.e. misclassification rate) achieved by A(j)

with hyper-parameters θ when trained on D(i)
train and evaluated on D(i)

valid. K-fold cross-

validation is used for estimating generalization performance of the classification algo-

rithm A(j). The goal of the CASH problem is to find the joint algorithm and hyper-

parameter setting that minimize the average loss L on a dataset.

To make this problem easier to solve, we reformulate it as the following, by adding an

extra algorithm selection parameter θ0 ∈ Θ0 = { 1, 2, . . . ,m }. It is written as

θ∗0,θ
∗ = argmin

A(j)∈A,θ∈Θj

L
(
A

(j)
θ ,D

)
.

Here, the loss defined previously is simplified to be L
(
A

(j)
θ ,D

)
, denoting the cross-

validation error achieved by A
(j)
θ on a dataset D. We combine the hyper-parameters and

algorithm selector parameter all together. The resulting hybrid search space is written

as Γ = Θ0 ×Θ1 × · · · ×Θm. We say that hyper-parameters θj ∈ γ of A(j) are active

if parameter selector θ0 = j. The hierarchical structure of Γ is demonstrated in Figure

2.3.

Chapter 2 11

In Figure 2.3, the conditionality of hybrid configuration γ = (θ0,θ
ᵀ
1, . . . ,θ

ᵀ
m)ᵀ is defined

vertically in the graph, with subgroups separated by different values of root-level param-

eter. At any time, only a subset of γ is active, and the other hyper-parameters do not

take values. In this thesis, we propose several approaches to deal with the CASH prob-

lem with conditional parameter, and the experimental results are discussed in section

6.2.

Figure 2.3: Generic hyper-parameter space with hierarchical structure.

Chapter 3

Related Approaches

In general, every black-box optimization method can be applied to the hyper-parameter

optimization problem. Due to the non-convex nature of the problem, global optimiza-

tion algorithms are usually preferred, but some local optimization is useful in order to

make progress within a few function evaluations. In addition, some experimental design

methods, such as grid search and random search, have been shown to be sufficiently ef-

ficient on hyper-parameter optimization problems although they are unreliable in some

cases [14]. In this chapter, we first discuss sequential model-based optimization methods

and then discuss meta-heuristic methods and the racing procedure (known as sequential

statistical testing).

3.1 Sequential Model-Based Methods

Sequential model-based optimization, also known as Bayesian optimization, is a state-of-

the-art technique for solving the expensive black-box optimization problem. It is recently

widely used in tuning machine learning models for image classification [15, 16], speech

recognition [17] and so on. In a nutshell, Bayesian optimization is an iterative algorithm

with two key components: a probabilistic surrogate model which simulates the behaviour

of the target function, and an acquisition function derived from the surrogate model

to guide the location of next sample point. In each iteration, the promising sampling

location is evaluated by the actual target function, and the surrogate model is re-trained

on all observations of the target function made so far, then a new sampling position

12

Chapter 3 13

is generated through maximizing the acquisition function. Compared to the original

expensive target function, the acquisition function is much cheaper to be optimized.

Since searching promising candidate points is guided by a probabilistic model, Bayesian

optimization often outperforms other model-free methods, such as random search and

grid search, and is often able to find satisfactory result within a few function evaluation

budgets. However, a major drawback of Bayesian optimization is that updating the

surrogate model in each iteration can be costly, especially when the surrogate model

is Gaussian processes. The time of computing a posterior prediction distribution of

Gaussian processes grows cubically in the number of samples, as it needs to compute the

inversion of a dense covariance matrix. Considering this limitation, Gaussian processes

is replaced by other models in practice, such as deep neural networks [16] and random

forest [18], and both of them show success in improving the scalability and reducing the

computational cost of building the surrogate model.

3.2 Meta-Heuristic Methods

Meta-heuristic methods, such as genetic programming , evolutionary strategies, particle

swarm optimization and local search, have been applied to hyper-parameter optimiza-

tion for a long time and shown competitive performances [12, 19–23]. One of the best

known population-based methods is the covariance matrix adaption evolutionary strat-

egy (CMA-ES). It is a state-of-the-art variant of evolutionary strategy. New candidate

solutions are derived based on a multivariate Gaussian whose mean and covariance ma-

trix are updated in each generation according to the operation of recombination and

mutation of individuals. Recent research shows that it tends to perform best for larger

function evaluation budgets, while Bayesian optimization often performs best for small

function evaluation budgets [24].

3.3 Racing Procedures

The racing algorithm was first proposed by Maron et al.[25] in 1997 for solving the model

selection problem, after that, Birattari et al. [26, 27] improved the approach and applied

it to automatically configuring meta-heuristic algorithms such as ant colony optimization

Chapter 3 14

(ACO) on travelling salesman problem (TSP). The concept of racing procedure is based

on a simple but effective idea: given a number of candidate solvers for a given problem,

sequentially evaluate a set of candidates on one problem instance at once, and discard

solvers that are shown to perform significantly worse than the current best ones. As a

result, the computational overhead of evaluating solvers with different configuration will

gradually bias to those promising candidates instead of wasting on bad solvers. And the

final best candidate solvers will be evaluated most of times.

The racing algorithm has evolved many variants in recent years [28], such as F-Race,

Sampling F-Race and Iterative F-Race. However, even the most efficient method, I/F-

Race, still requires a relatively large evaluation budget. For example, optimizing an

algorithm with 22 parameters needs at least 500 algorithm runs, which might be time-

consuming for some expensive algorithms.

Chapter 4

Bayesian Optimization

In this chapter, we will introduce a powerful strategy, Bayesian optimization (BO), to

solve the algorithm configuration problem, which can be seen as noisy and costly BBO

problem in general. To adapt BO to more complex situations, two implementation of

BO are proposed, namely SMAC and MiP-EGO. We will discuss their differences and

experimentally test both of them.

Bayesian optimization is a powerful strategy for optimizing computationally expensive

functions with small evaluation budget [29]. The efficiency of this approach comes from

two aspects: estimate the original expensive function with a cheap surrogate model, and

use a cheaper so-called acquisition function to decide where to sample next.

Algorithm 1 Bayesian Optimization

1: Generate the initial samples X = {xi }pi=1.
2: Evaluate X and collect results to the data set D = { (xi, yi) }pi=1.
3: Construct the surrogate model M on D.
4: for t = 1,2,· · · do
5: Select new xt by maximizing the acquisition function α:

xt = argmax
x

α(x;M,D1:p+t−1)

6: Evaluate xt: yt = f(xt).
7: Augment the data D1:p+t = {D1:p+t−1, (xt, yt) }.
8: Update the surrogate model M.
9: end for

The generic BO procedure (see Algorithm 1) starts with an initial evaluation data set

and an initial surrogate model. In the following loop, a promising point xt is selected by

15

Chapter 4 16

maximizing the acquisition function α, and then evaluate xt using the objective function

f , finally update evaluation history data and corresponding surrogate model. Each step

is explained in more detail in the following subsections.

4.1 Initial Design

To construct the surrogate model, some initial samples, X = {xi }pi=1 are generated via

a certain sampling technique, such as uniform random sampling and Latin Hyper-cube

sampling (LHS) [30], and then evaluated by objective function or target algorithm in

the algorithm configuration scenario. The number of the initial samples p may affect

the beginning phase of optimization process. A small p may result in poor fitting of

surrogate model and consequently a suboptimal point is selected by maximizing the

acquisition function which is derived from that surrogate model. On the other hand, a

large design may waste too many evaluations on those poor samples and optimization

stage is forced to shorten within limited evaluation budget. In practice, obtaining an

evaluation of a sample point x is usually expensive and time-consuming. In this case,

the initial design size p can be set as 1 (only applicable for random forest surrogate

model), so that optimization stage can be started as soon as possible.

4.2 Surrogate Models

When obtaining a function value is costly, it is natural to consider looking for a model

to simulate the input-output relation of that function efficiently, and the output of this

model should be as close to the function as possible. Some models in the machine

learning community are good choices, which usually map an input to an output based

on a set of data pairs. Since BO is a numerical iterative algorithm, where new input-

output pairs are generated in each iteration, the surrogate model (also called response

surface model or meta-model) needs to update itself in each iteration as well in order to

simulate the function more and more accurately. In this subsection, we will elaborate

two most commonly used surrogate models, Kriging and Random Forest (RF).

Chapter 4 17

4.2.1 Kriging

Kriging is a spatial estimation method originated from Geostatistics, which is named

after a South African engineer Krige in 1950s. Kriging is modeled by a stochastic

process and gives the best linear unbiased prediction at an unsampled location. It has

been widely used in spatial statistics, environmental science and computer simulation

experiments, and is still important today [29].

The general aim of Kriging is to predict the value of an underlying random function

(also called stochastic process or random field) Z = Z(x) at an unsampled location of

interest x0, based on a set of observations. In Kriging, the random function can be

characterized by two major components, large scale variation (trend) and small scale

error random function, represented as Z(x) = µ(x) + Y (x).

Suppose a random function Z = Z(x) with x ∈ D ⊆ Rd, where Z(x) also denotes a ran-

dom variable for ∀x ∈ D. We assume that there are n distinct data locations x1, . . . ,xn

and associated data values Z(x1), . . . , Z(xn) evaluated by the underlying random func-

tion. The random vector is thereby defined as Z := (Z(x1), . . . , Z(xn))T ∈ Rn, i.e. a

collection of values of random variable Z(xi). Based on proper prior assumption and

random vector, Kriging is able to predict the value of random variable Z(x0) at an

arbitrary location x0 ∈ D.

The main idea of coefficient estimation in Kriging is that the observations which are

close to the location being estimated tend to get more weight in the prediction so as to

improve the accuracy of the estimate. In other words, Kriging relies on the Euclidean

distances of observations and test location of interest, which are modeled by covariance

of the underlying random function Z(x).

Model Assumptions

(i) Assume that Z(x) can be decomposed into a deterministic trend function µ(x), and

a residual (random function) from the trend Y (x), such that Z(x) = µ(x) + Y (x) [31].

(ii) Y (x) is typically assumed to be intrinsically stationary with zero mean [31], namely

E[Y (x)] = 0 , ∀x ∈ D

Chapter 4 18

and the covariance function Cov(Y (xi), Y (xj)) only depends on xi−xj . The covariance

function is required to be a positive-definite kernel. We take Gaussian kernel as an

example in this section.

k (xi,xj) := b2 exp

(
−

d∑
k=1

(xik − xjk)2

2a2k

)
for |xi − xj | ≥ 0

According to Assumption (i), we have

E[Z(x)] = E[µ(x)] + E[Y (x)]︸ ︷︷ ︸
=0

= µ(x)

(iii) Let f0, f1, ..., fL be known basic function of x. We assume µ(x) to be a linear

combination of these functions evaluated at x:

µ(x) =
L∑
l=0

βlfl(x)

with unknown coefficients βl ∈ R\{0} for l = 0, . . . , L. Here f0(x) = 1 by convention.

In fact, the trend function µ(x) depends on the type of Kriging. The assumption (iii)

actually defines universal kringing. If the global mean µ ∈ R of the random function

Z(x) is known and constant, the model is called simple Kriging ; if the global, constant

mean µ is unknown, it is called ordinal Kriging.

According to the assumptions above, Cressie observed [32]

Z (xi) = µ (xi) + Y (xi) =

L∑
l=0

βlfl (xi) + Y (xi) = (Fβ + Y)i, i = 1, . . . , n

Hence, we obtain a matrix form for the random vector Z:

Z =

Z (x1)

...

Z (xn)

 =

f0 (x1) · · · fL (x1)

... · · ·
...

f0 (xn) · · · fL (xn)

︸ ︷︷ ︸

=F

β0
...

βL

︸ ︷︷ ︸

=β

+

Y (x1)

...

Y (xn)

︸ ︷︷ ︸

=Y

= Fβ + Y

Chapter 4 19

Kriging Predictor

The Kriging predictor is essentially a best linear unbiased predictor (BLUP) which means

it is unbiased and has minimal prediction variance among all linear unbiased predictors

[33]. The Kriging predictor Z∗ω (x0) of the value of Z(x) at the test point x0 is the linear

combination of Kriging weights and random vector:

Z∗ω (x0) :=
n∑
i=1

ωiZ (xi) = ωTZ

with ω := (ω1, . . . , ωn)T ∈ Rn. Combining this definition with Z = Fβ + Y, we obtain

Z∗ω (x0) = ωT (Fβ + Y)

Unbiasedness Condition

Once we obtain our linear predictor Z∗ω (x0), we need to make sure that it is unbiased in

any situation, i.e. E [Z∗ω (x0)− Z (x0)] should equal to 0. Following the work of Cressie

[32] and Wackernagel [34], we can get:

E [Z∗ω (x0)− Z (x0)] =
n∑
i=1

ωi

E [µ (xi)] + E [Y (xi)]︸ ︷︷ ︸
=0

−
E [µ (x0)] + E [Y (x0)]︸ ︷︷ ︸

=0

=
n∑
i=1

ωiµ (xi)− µ (x0)
!

= 0

⇔
L∑
l=0

βl

(
n∑
i=1

ωifl (xi)− fl (x0)

)
= 0

Together with βl 6= 0 in model assumption (iii) and f0 := (1, f1 (x0) , . . . , fL (x0))
T , the

general unbiasedness of Z∗ω (x0) is satisfied if and only if

n∑
i=1

ωifl (xi) = fl (x0) for l = 0, . . . , L⇔ F Tω = f0

which are called universality conditions [35].

Chapter 4 20

Variance of the Prediction Error

The variance of the prediction error can be used as a measurement of the accuracy of

the predictor Z∗ω (x0). Based on the work of Cressie [32], it is derived as:

σ2E := Var (Z∗ω (x0)− Z (x0)) = E
[
(Z∗ω (x0)− Z (x0))

2
]

= E

(n∑
i=1

ωiZ (xi)− Z (x0)

)2

=
n∑
i=1

n∑
j=1

ωiωjE [Y (xi)Y (xj)]− 2
n∑
i=1

ωiE [Y (x0)Y (xi)] + E
[
(Y (x0))

2
]

= b2 + ω>Kω − 2k>0 ω

Here k(x0,x0) = b2, k0 = k(x0, ·) = (k (x0,x1) , k (x0,x2) , . . . , k (x0,xn))>and

K(b2,a) =

k (x1,x1) k (x1,x2) . . . k (x1,xn)

k (x2,x1) k (x2,x2) . . . k (x2,xn)
...

...
. . .

...

k (xn,x1) k (xn,x2) . . . k (xn,xn)

Minimal Prediction Variance

In order to minimize the prediction error variance σ2E , we have to solve the following

constrained optimization problem given by

minimize b2 + ω>Kω − 2k>0 ω subject to ωTF = fT0

This optimization problem can be solved using Lagrange Multipliers, so we get

 K F

F> O

 ω
λ

 =

 −k0

f0

with Lagrange parameter vector λ := (λ0, λ1, . . . , λL)T ∈ RL+1.

Chapter 4 21

Solving this linear system, we have

ω = K−1 (k0 − Fλ)

λ =
(
F>K−1F

)−1 (
F>K−1k0 − f0

)
Plugging ω back, we have the Kriging predictor:

Z∗ω (x0) = ωTZ =

[
k0 − F

(
F>K−1F

)−1 (
F>K−1k0 − f0

)]>
K−1Z

and corresponding Kriging estimate z∗ω (x0) at the location of interest x0:

z∗ω (x0) = ωT z =

[
k0 − F

(
F>K−1F

)−1 (
F>K−1k0 − f0

)]>
K−1z

We can also get the minimal prediction variance through inserting ω and λ to σ2E .

Estimation of Trend Function Coefficients and Residual Covariance

(i) First of all, we have to estimate the coefficients of the trend function µ(x) = Fβ, since

we do not have it at hand. This could be done using, for instance, the generalized-

least-squares estimator. It turns out that the estimate of the coefficient vector β can

be derived as β̂ =
(
F>K−1F

)−1
F>K−1Z (cf. [32])

(ii) Furthermore, the hyper-parameters of k (xi,xj), such as b and a in Gaussian kernel

defined previously can be fixed or estimated from the data.

Kriging and Gaussian Processes

The Gaussian process (GP) is a stochastic process with infinite dimensions where any

finite set of random variables follows a multivariate Gaussian distribution [36]. The GP

is specified by its mean function and covariance function. The simple Kriging with zero

mean is exactly the same as GP with zero mean.

The Kriging estimator can also be derived via Bayesian inference [37]. From the per-

spective of Bayesian statistics, it turns out that Kriging and Gaussian process regression

Chapter 4 22

are so closely related that they are often used interchangeably. There are some key dif-

ferences in practice, though, in terms of model assumption and fitting method. For a

more in-depth introduction to Kriging and GP, see, i.e.[29, 38, 39].

4.2.2 Random Forest

An alternative surrogate model is Random Forest, which can be used for both classifica-

tion and regression. It enables us to explore the complex input-output dependency with-

out any prior assumption on the data or any limitation on variable type. This means it is

a non-parametric model and can handle both numerical and categorical input variables.

It is an ensemble method, consisting of several independent base estimators (Decision

Trees) and using their average as a prediction. We first briefly introduce Decision Tree

and then discuss how to build a Random Forest for regression task.

The general but infeasible goal of Decision Tree Regression is to choose a collection of

regions {RM }Mm=1 to

min
{RM }Mm=1

1

Nm

∑
i∈Rm

(yi − ȳm)2

where region (also called group) Ri has Nm data points and ȳm is the average values of

the dependent variable in region Ri.

This problem is NP-hard, because there are
(
N
M

)
possible groups in total. A feasible

problem solution is that we do not search over all possible groups, instead only group

on hyper-cubes using recursive binary splits. The idea of this method is demonstrated

graphically and geometrically in Figure 4.2 and Figure 4.1 respectively.

At the root node we start with whole training set and we ask a question which partition

divides the data into two subsets. The aim of splitting is to achieve more homogeneous

partitions. We iteratively continue splitting until we obtain good enough partitions or

reach the corresponding leaf nodes. There are various metrics for measuring goodness of

a split. For classification, we can use information gain or Gini impurity. For regression

task, a widely-used metric is mean squared error (MSE):

MSE =
1

Nm

∑
i∈Rm

(yi − ȳm)2

Chapter 4 23

Figure 4.1: An example of deci-
sion tree demonstrating recursive

binary splitting geometrically.

Figure 4.2: Another graphical exam-
ple of decision tree.

Once we can build one decision tree, it is easy to repeat that process to build a random

forest. An algorithm of a random forest for regression can be found in [40]:

1. For b = 1 to B:

(a) Draw a bootstrap sample Z∗ of size N from the training data.

(b) Grow a random-forest tree Tb to the bootstrapped data, by recursively repeat-

ing the following steps for each terminal node of the tree, until the minimum

node size nmin is reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb }B1

3. To make a prediction at a new point x: f̂Brf (x) = 1
B

∑B
b=1 Tb(x)

Here bootstrapping is a re-sampling method. The basic idea is to randomly draw N

samples with replacement from the training set. This is done B times, producing B

bootstrap data sets. We notice that the randomness of this random forest algorithm

comes from two aspects. One is concerned with bootstrapped data, that is, each tree

sees a different data set. Another involves only m variables can be considered when

looking for the best split. Randomness of trees turns out to be very useful and makes

random forest work well. Each tree is correct but missing a lot of information because

each tree only sees a little bit of data in a little bit of features. Therefore we consider each

Chapter 4 24

tree to be a predictor with very high variance and low bias. One common technique

to reduce variance of low-bias predictors is bagging. When making a prediction at a

new point, the predictions of all trees are combined and averaged to form an overall

prediction.

Note that when using random forest under Bayesian optimization framework, a pre-

dictive uncertainty estimate needs to be computed. However, random forest does not

provide such uncertainty estimate of predictions. An alternative method is using em-

pirical variance of predictions across all trees in the ensemble. This simple method

works well in practice, because intuitively, if the individual tree predictions y1, . . . , yB

get closer, we are more certain about the overall prediction.

4.3 Acquisition Function

The global optimum is approached by iteratively maximizing a so-called acquisition

function. An acquisition function (also called infill-criterion) can be seen as measuring

the usefulness (or utility) of candidate points. It incorporates mean and standard devi-

ation of surrogate model prediction and it is able to trade-off between exploitation and

exploration. One of popular acquisition function is Expected Improvement (EI). The

expected improvement can be defined as

EI(x) = E(I (x)),

where the random variable I (x) represents the possible improvement evaluating at x

over the current optimum. In minimization problem, I (x) is defined as [41]

I(x) = max {ymin − Y (x|D), 0} ,

where ymin = min {yi| (xi, yi) ∈ D}, and Y (x|D) is a random variable representing the

posterior predictive distribution at x. When using Gaussian Process as surrogate,

Y (x|D) follows a Gaussian distribution, i.e., Y (x|D) ∼ N
(
µ̂(x|D), ŝ2(x|D)

)
. There-

fore, EI can be expressed as

EI(x) = (ymin − Y (x|D)Φ

(
ymin − µ̂(x|D)

ŝ(x|D)

)
+ ŝ(x|D)φ

(
ymin − µ̂(x|D)

ŝ(x|D)

)
,

Chapter 4 25

where Φ(·) and φ(·) denote the cumulative distribution function and probability density

function of the standard normal random variable. It turns out that EI is highly effec-

tive and well-balanced among all of the existing acquisition functions, and it can even

ensure global convergence [42]. The other popular acquisition functions include the gen-

eralized expected improvement (GEI) [43], the probability of improvement (PI) [44], the

lower confidence bound (LCB) [45], the moment-generating function of the improvement

(MGFI) [46], and so on.

To propose the next point for evaluation, the acquisition function needs to be optimized.

Since the acquisition function is much cheaper to evaluate than the original objective

function, we can use various optimization techniques. For example, the branch and

bound algorithm [47], the multi-start approach [48], mixed-integer evolutionary strategy

[11], local search [18], and so on.

4.4 MiP-EGO

Kriging has been applied to the field of Design and Analysis of Computer Experiments

(DACE), which is developed by Sacks et al .[7, 49]. The efficient global optimization

(EGO) algorithm, proposed by Jones et al. [47], is the combination of Kriging with the

sequential expected improvement acquisition criterion in the context of DACE . The

goal is to find a design point or points that optimizes a black-box function of interest.

EGO and Bayesian optimization share the exact same idea but derived from different

fields, so in this section they will be used interchangeably for the sake of simplicity.

EGO is limited in optimizing noise-free functions with real-valued input, and it only

selects one sample point to evaluate in each step. However, in the context of algorithm

configuration, randomized algorithms often have mixed categorical/numerical parame-

ters and a considerably large search space of parameter settings, and multiple parameter

settings are expected to be evaluated simultaneously in each step in order to speed up

the automatic tuning procedure. In this case, the Mixed-Integer Parallel Efficient Global

Optimization (MiP-EGO) [11] is proposed, as an extension of EGO, to overcome these

limitations.

Chapter 4 26

4.4.1 Handling Mixed Integer Input

Random forest is used as surrogate model in MiP-EGO and Mixed-Integer Evolution

Strategy (MI-ES) [50] is adopted to optimize the infill-criterion, considering that MI-ES

is well-suited for finding multiple local optima from a complicated multimodal infill-

criterion function. Although MI-ES has shown a significant strong performance on

parameter tuning tasks, it is still limited to the demand of large evaluation budget.

Therefore,it is better to apply MI-ES on acquisition function optimization than on the

original algorithm configuration problem.

4.4.2 A New Acquisition Function and Cooling Strategy

In MiP-EGO, a novel acquisition function based on the moment-generating function

(MGF) of the improvement [46] is adopted. A real-valued parameter t (called “tem-

perature”) is introduced to explicitly control the exploration-exploitation trade-off. For

detailed introduction and complete mathematical expression of this acquisition func-

tion, see [46]. Here we use a general expression of an acquisition function, i.e. u(x; t) =

µ(x) + tσ(x), to describe its working mechanism. When t goes up, the prediction error

σ(x) of the model is assigned more weight so that u(x; t) tends to explore the region with

high uncertainty; when t decreases, u(x; t) prefers to exploit the region with high predic-

tion expectation µ(x). Notice that the functionality of parameter t is analogous to that

of the temperature in simulated annealing [51]. Thus the idea of temperature cooling

strategies are borrowed from simulated annealing to improve the Bayesian optimization.

The cooling strategy is applied on parameter t, this means, t goes down when iteration i

increases. One of commonly used cooling strategies is the exponential strategy, written

as ti+1 = αti , 0 < α < 1, where α denotes the cooling speed. It is required to pre-specify

the initial temperature t0 and cooling speed α manually, as well as the maximal number

of iterations Nmax, for this iterative strategy. Since α = (tf/t0)
1/Nmax is given in [51],

actually we only need to set t0 and tf (the temperature at the final iteration of BO) by

hand and then α will be automatically determined during optimization procedure. It

tuns out the cooling strategy makes the Bayesian optimization more explorative in the

beginning and more exploitative in the final convergence stage [46].

Chapter 4 27

4.4.3 Parallel Execution

Due to the typically large execution time of a black-box function or a randomized algo-

rithm, parallelized execution is preferred. In other words, multiple different candidate

points are required to propose in each iteration of Bayesian optimization. In MiP-

EGO, q (q > 1) different temperatures t are sampled from the log-normal distribution

Lognormal(0, 1) and q different acquisition functions {ui(x; ti)}qi are instantiated using

corresponding temperatures. Consequently, q candidate points can be generated by si-

multaneously optimizing those q acquisition functions. Since log-normal is a long-tailed

distribution, most of sample values of t are relatively small and few of them are large.

This leads to most of u(x; t) being exploited and a few of them being very explorative

[1].

4.5 SMAC

Sequential Model-based Algorithm Configuration (SMAC) method is another state-of-

the-art implementation of Bayesian optimization for solving algorithm configuration

problem. It also uses random forest as surrogate model to handle with mixed cat-

egorical/numerical input. Although SMAC has other characteristics, such as solving

algorithm selection problems with multiple instances, in this thesis, we will only focus

on its novel approach to maximizing the infill-criterion function.

4.5.1 Maximizing EI and Intensification

In SMAC, the expected improvement (EI) is not directly optimized by a systematic

algorithm, but by an ad hoc strategy. Concretely, the procedure of finding promising

configurations θ with large EI(θ) is as follows: (1) It computes EI for all configurations

used in previous target algorithm runs, and picks 10 configurations with maximal EI,

and initializes a local search at each of them. If there were less than 10 configurations in

running history, all of them are picked. In local search, discrete/numerical variables are

treated separately. The discrete variable is “mutated” by a randomized one-exchange

neighbourhood, while the numerical variable v has four “neighbouring” values which are

sampled from a univariate Gaussian distribution with mean v and standard deviation 0.2.

Chapter 4 28

Each numerical variable is normalized to [0, 1] in advance, so new values outside the inter-

val [0, 1] will be rejected. EI for all configurations are computed at once; each local search

stops, once none of the neighbours has larger EI. (2) It computes EI for 10,000 randomly-

sampled configuration and then sort all 10,010 configurations in descending order of EI.

The ten results of local search typically had larger EI than all randomly sampled config-

urations [18]. (3) SMAC alternates between configurations from the list, which contains

10,010 sorted configurations, and another 10,000 configurations sampled uniformly at

random. The resulting list (denoted as Θnew in [18]) of 20,010 configurations would look

like Θnew = [θsorted,1, θrand,1, θsorted,2, θrand,2, . . . , θsorted,10010, θrand,10000]. This means,

SMAC generates a sequence of new configurations, instead of one or multiple promising

configurations using infill-criterion (e.g. in MiP-EGO and general Bayesian optimiza-

tion).

Next, the best configuration so far (called the incumbent), are “compared” with element

in Θnew one by one in order to determine new incumbent. This special comparison

procedure is called intensification in SMAC, i.e. racing challengers against an incumbent.

The aim of intensification is to guarantee two configurations being compared fairly in

the sense of statistics, since they assume the objective black-box function is noisy. The

side effect is that more runs are required for evaluating configurations which will greatly

increase the computational overhead. For detailed introduction of intensification, see

[18, 52].

Chapter 5

Extensions of MiP-EGO on

Conditional Spaces

Since MiP-EGO can only solve hyper-parameter optimization so far, it is useful to extend

MiP-EGO to solve the combined algorithm selection and hyper-parameter optimization

problem. We propose three variants of MiP-EGO for searching on conditional spaces,

abbreviated as EGO-impute, EGO-ss and EGO-ws respectively. The basic idea is to

construct individual surrogate model for each learning algorithm.

First of all, we define the black-box objective function, which will be optimized assisted

by a surrogate modelM, as f(θ). Here, θ = (θ1, . . . , θd)
ᵀ denotes a vector containing d

hyper-parameters of a machine learning algorithm and f(θ) represents a specific metric

to evaluate the algorithm, which might be cross-validation error, F1 score, AUROC or

so on.

In order to optimize m learning algorithms simultaneously and let MiP-EGO select the

best algorithm, we simply combine their hyper-parameters all together and introduce

an additional parameter θ0 which indicates the choice of the learning algorithm. For

simplicity, θ0 is represented by an integer ranging from 1 to m, namely, θ0 ∈ Θ0 =

{ 1, . . . ,m }. The resulting hybrid configuration is denoted as γ = (θ0,θ
ᵀ
1, . . . ,θ

ᵀ
m)ᵀ and

its corresponding search space is Γ = Θ0 ×Θ1 × · · · ×Θm. The dimensionality of γ is

m + 1. For a specific hybrid configuration γ, we call θi ∈ γ active when θ0 = i, while

the others in γ are called inactive, and the so-called performance of γ is the value of

fi(θi).

29

Chapter 5 30

Now we can say the input of EGO-X algorithm includes γ’s search space (Γ) and a

collection of black-box functions, that is, { fi }mi=1, while the output is expected to be

the vector γ.

The simplest strategy, EGO-impute, is based on imputation, as was done in [53, 54].

In statistics, imputation is a process of replacing missing data with an estimated value.

Here, we make an analogy between missing values in a dataset and inactive hyper-

parameters in a hybrid configuration γ. Before training a single surrogate model based

on the data of hybrid configuration and its associated performance, we give some default

values to those inactive hyper-parameters in γ. Typically, each default value is taken

from the middle of its range. The overall optimization procedure of EGO-impute is

similar with MiP-EGO, but the way of evaluating a sample γ is changed, as shown in

Algorithm 2 as well as Algorithm 3 and 4. Specifically, if there was a sample point γ =

(1,θᵀ1, . . . ,θ
ᵀ
m)ᵀ with active hyper-parameter θ1 and associated evaluation y1 = f1(θ1),

then the data of γimputed = (1,θᵀ1,θ
ᵀ,(default)
2 , . . . ,θ

ᵀ,(default)
m)ᵀ and y1 are used to train

the surrogate model. As the amount of data grows, the surrogate model will fit better

theoretically. This can be interpreted that forcing inactive parameters as fixed values

actually helps the surrogate model, especially random forest, to pick the most important

features from γ, that is, active parameters. Just as imputing missing values in statistics

helps reducing the bias, imputing inactive hyper-parameters in Bayesian optimization

also conduces to obtaining properly behaving surrogate models.

Algorithm 2 EGO-impute

1: Generate the initial samples {γi }
p
i=1;

2: for i = 1, . . . , p do
3: gi,γi ← partially evaluate (γi, { fi }

m
i=1);

4: γimputed,i ← impute (γi);
5: end for
6: Construct the surrogate model M on D = { (γimputed,i, gi) }

p
i=1

;
7: while the stopping criterion is not fulfilled do
8: Maximize the infill-criterion using MI-ES :

γ ← argmax
γ∈Γ

M(γ)

9: g,γ ← partially evaluate (γ, { fi }mi=1);
10: γimputed ← impute (γ);
11: Augment D with (γimputed, g);
12: Update the surrogate model M on D.
13: end while
14: Return γimputed, g

Chapter 5 31

Algorithm 3 Function partially evaluate (γ, { fi }mi=1)

1: for i = 1, . . . ,m do
2: if i = θ0 ∈ γ then
3: g ← fi(θi);
4: end if
5: end for
6: Return g;

Algorithm 4 Function impute (γ)

1: for i = 1, . . . ,m do
2: if i = θ0 ∈ γ then
3: Replace θj , j 6= i, with the default values;
4: Generate a new hybrid configuration: γimputed;
5: end if
6: end for
7: Return γimputed;

The other two strategies, EGO-ss and EGO-ws, have the common idea shown in Algo-

rithm 5, except for the way of determining a new candidate point. The overall opti-

mization procedure tends to construct m surrogate models for corresponding learning

algorithms. In this case, we need to get the evaluation value for each θ in γ, and main-

tain m sub-datasets Di, i = 1, 2, . . . ,m. Also, we need to keep a dataset that records γ

and its associated performance value in each iteration. Here the so-called performance

value is just minimum among { yi = fi(θi) }mi=1 for θi ∈ γ. The process of initializing and

updating an individual surrogate model can be reflected by two for-loops in Algorithm

5.

The difference between EGO-ss and EGO-ws depends on the way of determining a

new sample point γ. More specifically, the internal optimization algorithm (MI-ES)

has distinct input in these two strategies. In EGO-ss (shown in Algorithm 6), MI-ES

behaves in the standard way. It searches on a single search space Θ using one associated

infill-criterion function at one time. And the algorithm selector θ0 is determined by the

maximum among m EI values in each iteration. While, in EGO-ws (shown in Algorithm

7), the inputs of MI-ES are the search space Γ of the hybrid configuration, and a set of

the infill-criterion function. In order to adapt MI-ES to this conditional search space,

we modify the evaluation procedure in MI-ES, as shown in Algorithm 3. In MI-ES, the

fitness of γ is determined by the infill-criterion value of associated active parameters.

Notice that it is not necessary to impute inactive parameters in this evaluation procedure,

Chapter 5 32

because a new population of γ will be sampled from the entire search space Γ in each

iteration of MI-ES. The procedure of MI-ES in EGO-ws is shown in Algorithm 8.

Algorithm 5 The common framework of EGO-ss and EGO-ws.

1: for i = 1, . . . ,m do // Initialize each surrogate model.
2: Generate the initial samples {θki }

p

k=1;
3: Construct surrogate model Mi on data set Di = { (θki , y

k
i) }pk=1;

4: end for
5: Initialize D = ∅;
6: while the stopping criterion is not fulfilled do
7: Select a new hybrid configuration using:

γ ← argmax SingleSpace({Mi }mi=1)

or γ ← argmax WholeSpace({Mi }mi=1);

8: g ← partially evaluate(γ, { fi }mi=1);
9: Add (γ, g) to D;

10: for i = 1, . . . ,m do // Re-train respective surrogate model.
11: Evaluate θi ∈ γ: yi = fi(θi);
12: Augment Di with (θi, yi);
13: Re-train model Mi on Di;
14: end for
15: end while
16: Return γ, g

Algorithm 6 Function argmax SingleSpace({Mi }mi=1)

1: Initialize umax ← 0, i∗ ← 1;
2: for i = 1, . . . ,m do
3: Construct the infill-criterion function Ui ← EI(θi;Mi);
4: θ∗i , u

∗
i ← MI-ES (θi’s search space Θi, Ui);

5: if u∗i > umax then
6: umax ← u∗i and i∗ ← i ;
7: end if
8: end for
9: γ ← (i∗,θ∗1, . . . ,θ

∗
m);

10: Return γ;

Algorithm 7 Function argmax WholeSpace({Mi }mi=1)

1: for i = 1, . . . ,m do
2: Construct the infill-criterion function Ui ← EI(θi;Mi);
3: end for
4: γ ← MI-ES(γ’s search space Γ, {Ui }mi=1);
5: Return γ;

Chapter 5 33

Algorithm 8 MI-ES in EGO-ws

1: t← 0
2: Initialize population Pt, including µ individuals randomly generated within the

space Γ
3: Partially evaluate Pt
4: while termination criterion not fulfilled do
5: Generate λ offspring
6: Partially evaluate λ offsping
7: Select the µ best individuals for Pt+1 from λ offspring
8: t = t+ 1
9: end while

Chapter 6

Experimental Evaluations

In this chapter, we will empirically evaluate the performance of MiP-EGO and SMAC on

two artificial test problems, and test the performance of three variants of MiP-EGO on

a algorithm configuration scenario where several machine learning models are configured

on a set of datasets, furthermore comparing them to other existing methods.

6.1 Artificial Test Problems

In this section, empirical results demonstrate the convergence behaviour of both MiP-

EGO and SMAC on two parameterized problems. Both algorithms are allowed to

perform maximal 200 evaluations and have 15 input variables. They both use EI as

infill-criterion and select one point at each step.

6.1.1 Barrier Function

Barrier function is a parameterized multi-modal problem generator where the degree of

ruggedness (problem difficulty) is controlled by parameter C through constructing an

integer array A. Higher values of C result in more rugged landscapes with many barriers.

Algorithm 9 [50] shows the construction procedure of barrier function with respect to

one input variable.

34

Chapter 6 35

Algorithm 9 Barrier Function

1: A[i] = i, i = 0, . . . , 19
2: for k ∈ {1, . . . , C} do
3: j ← uniform random number out of {0, . . . , 18}
4: swap values of A[j] and A[j + 1]
5: end for

To deal with mixed discrete/numerical input variables, we can apply array A on each

variable and make a summation:

f barrier (r, z,d) =

nr∑
i=1

A [bric]2 +

nz∑
i=1

A [zi]
2 +

nd∑
i=1

Bi [di]
2 → min

r ∈ [0, 19]nr ⊂ Rnr , z ∈ [0, 19]nz ⊂ Znz , d ∈ {0, . . . , 19}nd ⊂ Dnd

nr = nz = nd = 5

Here, Bi (i = 1, . . . , nd) denotes a set of i permutations of the sequence 0, . . . , 19. The

random permutation of Bi is controlled by a random seed and is fixed before the run.

This construction prevents the value of nominal variable di from being quantitatively

correlated with the value of objective function f .

6.1.1.1 Results

We tested MiP-EGO and SMAC on multiple barrier functions identified by parameter

C. Since barrier function is stochastic, in the empirical experiments, we created 10

problem instances (by using 10 random seeds) for each control parameter C, and we let

the algorithm perform 20 repeated runs on each instance. That is, 20 × 10 = 200 runs

for each value of C.

Figure 6.1(a) shows averaged best function values found by MiP-EGO and SMAC, and

corresponding standard deviation represented by shaded area. We can see, it is more

difficult for both MiP-EGO and SMAC to find the global optimum on barrier functions

with a higher C value. If we zoom Figure 6.1(a) and ignore shaded area, in Figure

6.1(b) and Figure 6.1(c), we can see MiP-EGO perform better than SMAC on all five

classes of problems identified by C. Especially on relatively simple problems (where

C = 20, 100, 300), the overall performance of MiP-EGO is significantly better than that

Chapter 6 36

(a)

(b) Zoom ignoring shaded area. (c) Zoom into the last 50 evaluations.

Figure 6.1: Comparison between average error values found by MiP-EGO, SMAC,
random search for problem C = 20, 100, 300, 500, 1000.

of SMAC. The corresponding box plot for best function values in the last evaluation

found by MiP-EGO, SMAC and pure random search is shown in Figure 6.3.

6.1.2 Mixed Integer NK Landscapes

Mixed integer NK landscapes [55] are test functions where correlation between variables

of different types can be controlled by parameter K. Similar to experiments for barrier

functions, we generated 10 problem instantiations for each K ∈ {1, 3, 5, 10, 14}. Each

Chapter 6 37

generated problem consists of N = 15 variables, defined as:

r ∈ [−10, 10]nr ⊂ Rnr , z ∈ [0, 19]nz ⊂ Znz , d ∈ { 0, 1 }nd ⊂ Dnd

nr = nz = nd = 5

We ran both MiP-EGO and SMAC 20 times on each problem instance, that is, each

algorithm performs 20 × 10 = 200 runs for each value of K. Note that the global

minimum of NK landscape can be obtained through brute force search beforehand, so

the objective function value is represented by error rather than fitness value, where error

= best found fitness - best possible fitness.

6.1.2.1 Results

The results are shown in Figure 6.2. As can be seen, when the problem difficulty increases

with K, errors of both algorithms increase. And MiP-EGO perform better than SMAC

on 4 classes of problems with K = 1, 3, 5, 10. The corresponding box plot for the last

evaluation’s errors of both algorithms can be seen in Figure 6.4. Note that the horizontal

line at the beginning of run history of MiP-EGO indicates 5 samples in the initial design.

Figure 6.2: Comparison between average error values found by MiP-EGO, SMAC,
random search on mixed integer NK landscapes problems K = 1, 3, 5, 10, 14.

Chapter 6 38

Figure 6.3: Box plot for function
value on the last evaluation of bar-
rier functions with different control
parameter C = 20, 100, 300, 500, and
1000 by using MiP-EGO, SMAC, and

random search.

Figure 6.4: Box plot for er-
ror value on the last evaluation of
mixed integer NK landscape prob-
lems with different control parameter
K = 1, 3, 5, 10, 14 by using MiP-EGO,

SMAC, and random search.

6.2 Algorithm Configuration Scenario

In order to assess the performance of proposed variants of MiP-EGO, we test them

on 7 learning algorithms which have 14 hyper-parameters in total, with an additional

parameter as algorithm selection indicator. That means the search space of variants

of MiP-EGO consisting of 15 hyper-parameters and one level of conditionality. The

learning algorithms and their hyper-parameters, as well as default values, implemented

in the scikit-learn library [56] include the following:

• K nearest neighbours (knn): the number of neighbours n neighbours (default=5)

in {1, 2, . . . , 30}.

• RBF SVM (svm): the penalty C (default=1.0) logarithmically scaled in
[
10−5, 105

]
,

the width of the RBF kernel γRBF (default=1/n features) logarithmically in
[
10−5, 105

]
.

• Linear SVM (linsvm): the penalty C (default=1.0) logarithmically scaled in[
10−5, 105

]
.

• Decision tree (dt): the maximal depth max depth (default=None 1) in {1, 2, . . . , 10},

the minimum number of samples required to split an internal node min samples split

(default=2) in {2, 3, . . . , 100}, the minimum number of samples required to be at

a leaf node. min samples leaf (default=1) in {2, 3, . . . , 100}.

Chapter 6 39

• Random forest (rf): the number of trees n estimators (default=10) in {1, 2, . . . , 30},

the domain of max depth, min samples split and min samples leaf are same as those

in decision tree.

• AdaBoost (adab): the number of weak learners n estimators (default=50) in

1, 2, . . . , 30.

• Quadratic Discriminant Analysis (qda): the regularization reg param (de-

fault=0.0) logarithmically in
[
10−3, 103

]
.

The algorithm selection hyper-parameter that determines which underlying hyper-parameter

should be active or inactive, is represented as an integer.

All of the learning algorithms are used to solve a series of 14 classification problems

taken from UCI and OpenML 2. The size of those data sets ranges from 500 to 60K and

the feature dimension range from 3 to 256. All the data sets were pre-processed to have

zero mean and unit standard deviation 3. The performance of chosen hyper-parameters

is measured with 5-fold cross-validation. Each optimization trial is repeated 10 times

with different random seeds.

As for the experimental setup of the optimization algorithms that will be compared, we

use the expected improvement as the infill-criterion and allocate a total of 200 obser-

vations for each method. In addition to three variants of MiP-EGO introduced in the

previous chapter, we design another two strategies for comparison. The first one is called

EGO-baseline, that means, hyper-parameters of each learning algorithm are optimized

by MiP-EGO separately within b200÷ 7c = 28 evaluation budgets, and the best result

among all learning algorithms is recorded. In this case, the algorithm selection procedure

is replaced by a manual implementation, instead of introducing an extra parameter. The

second one is Sklearn, that is, we run all learning algorithms with scikit-learn default

hyper-parameters and record their best result. Repeat this procedure 10 times because

3From UCI: Adult (adlt), Bank (bnk), Letter (ltr), Magic (mgic), Page-blocks (p-blk), Pima (pim),
Semeion (sem), Spambase (spam), Stat-german-credit (s-gc), Stat-image (s-im), Stat-shuttle (s-sh), Ti-
tanic (tita). Datasets identified by numbers were taken from OpenML, the numbers represents their ID
in the OpenML database.

3All UCI datasets are already processed by Delgado et al. [57], so Lévesque et al. [54] and we use the
exact same UCI data for algorithms comparision. For OpenML dataset, we just use same preprocessing
technique.

3“If None, then nodes are expanded until all leaves are pure or until all leaves contain less than
min samples split samples.” (see https://scikit-learn.org/stable/modules/generated/sklearn.

tree.DecisionTreeClassifier.html)

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Chapter 6 40

algorithms are stochastic. The complete codes and experimental data of each method

can be found in the github 4.

The other class of methods which we will compare are denoted as GP-X-(ls), proposed

by [54]. They are GP-based Bayesian optimization, combined with imputation strategy

for inactive values in conditional search space. Each method is different in terms of

kernel type, whether using local search (ls) to optimize EI and applying imputation or

not. Their GP-based methods include the use of priors on GP hyper-parameters (i.e.

length-scales `, the kernel amplitude σf and the noise σn), which are then tuned with

slice sampling.

In the work of Lévesque et al. [54], random search (RS), Spearmint [15], SMAC, CMA-

ES [58] are also taken into account for comparison, so we will keep comparing them with

our proposed methods. As for random search, hyper-parameters are sampled uniformly

in the search space. For SMAC, inactive hyper-parameter is imputed to a default value

(which is roughly the middle value of each space). For CMA-ES, the population size

used is λ = 4 + 3 log d, which is suggested as a rule of thumb in [59]. No imputation of

inactive parameters is performed.

Based on the work of Demšar et al. [60], we use a set of robust non-parametric tests for

statistical comparisons of all methods: the Wilcoxon signed ranks test for comparison of

two methods and the Friedman test with the corresponding post-hoc tests for comparison

of more methods over multiple data sets. Results of the latter will also be presented

with CD (critical difference) diagrams.

6.2.1 Results and Discussions

Table 6.1 shows the empirical validation error rate of each method on the dataset,

averaged over 10 repetitions. The best performance per dataset is highlighted in bold,

and for each dataset the methods that are significantly worse than the best according

to a Wilcoxon signed-rank test with p < 0.05 are underlined.

4https://github.com/guoxin1122/EGO-X

Chapter 6 41

We can see that GP-cond-ls is only significantly worse than the best on 3 datasets, while

the member of EGO-X is worse on at least 6 datasets. From this perspective, GP-cond-

ls seems better than the others. With respect to average ranks, we can see the best

method is EGO-ss (5.11), followed by EGO-baseline (5.18), and GP-cond-ls (5.39).

When compared all together, the methods are significantly different according to a

Friedman’s test (p = 3.67 × 10−6). In this case, a post-hoc multiple comparisons test

need to be performed. Figure 6.5 shows the result of a post-hoc Nemenyi test with the

significance level p = 0.05. The performance of two methods is significantly different if

the corresponding average ranks differ by at least CD (which is computed based on the

formula in [60]).

From these tests, we can only conclude that four methods (i.e. EGO-ss, EGO-baseline,

GP-cond-ls, EGO-ws) all perform significantly better than Spearmint. Methods which

are linked by one bold line seem to have equivalent performances. The data is not suffi-

cient to conclude whether methods crossed by two bold lines are equivalent to Spearmint

or the best four methods. Similarly, it is not sufficient to conclude that SMAC’s per-

formance is same as that of EGO-ss or Spearmint. It should be pointed out that the

Nemenyi test is rather conservative in its estimates.

Table 6.2 shows the result of pairwise Wilcoxon signed-rank tests. Methods highlighted

in bold show a significant difference between row and column, and underlines highlight

when the method on the corresponding row performs worse than the method in the

corresponding column. From these tests, it is interesting to note that EGO-ss signifi-

cantly outperforms 8 methods and it is never worse than any of the others. From this

perspective, we can say EGO-ss is the best, and the second best is GP-cond-ls which is

significantly outperformed by only two methods, while the worst is Spearmint which is

significantly outperformed by all others.

6.2.2 Visualization of Classifier Choices

The frequency of the final sampled classifier choice can provide insights into the be-

haviour of combined algorithm selection and hyper-parameter optimization, once the

optimization procedure is over. Here we look at the results for a single optimization

method for simplicity, EGO-ss. Figure 6.6 shows the distribution of classifier choices

Chapter 6 42

Figure 6.5: Comparison of all methods against each other with the Nemenyi test.
Groups of methods that are not significantly different (p > 0.05) are connected. The

average ranks of methods are drawn on the axis. Here CD=6.17 .

Table 6.1: Average validation error (%) of each method. Boldface highlights the best
performing method per dataset, and underlined methods highlight methods that are
significantly different from the best method according to a Wilcoxon signed-rank test

(p < 0.05).

389 772 adlt bnk ltr mgic p-blk pim s-gc s-im s-sh sem spam tita Rank

Sklearn-default 17.15 44.44 14.0 10.44 5.42 13.07 4.0 22.68 23.28 2.93 0.03 4.71 7.22 26.26 9.25
RS 14.20 46.61 14.44 10.70 3.14 12.76 3.34 23.83 23.25 3.77 0.09 6.07 5.67 24.06 11.25
Spearmint 20.32 44.63 15.53 10.83 8.81 13.61 3.17 23.44 23.10 4.52 0.86 9.47 6.86 21.50 12.39
SMAC 14.22 44.63 14.42 10.59 2.83 12.66 3.48 23.38 23.45 3.31 0.08 4.40 5.84 22.70 9.04
CMA 14.26 44.66 14.48 10.64 3.04 12.66 3.09 23.96 23.75 3.66 0.07 6.10 5.69 23.74 10.75
GP-matern-noimpute 17.52 44.63 14.50 10.61 3.87 12.40 3.05 23.51 23.50 3.42 0.08 8.98 5.87 23.79 10.93
GP-matern 14.10 45.32 14.36 10.72 3.16 12.53 2.55 23.70 23.35 3.51 0.05 4.98 5.27 21.36 8.18
GP-cond 15.48 44.91 14.33 10.51 3.47 12.44 2.50 24.29 23.75 2.84 0.04 4.89 5.28 21.77 8.0
GP-laplace 17.08 44.89 14.39 10.51 8.18 13.03 2.72 24.68 23.45 3.27 0.09 7.43 5.28 20.93 10.57
GP-matern-ls 20.10 45.60 14.39 10.35 3.48 12.49 2.60 24.61 23.10 2.71 0.03 5.29 5.01 21.52 7.96
GP-cond-ls 14.12 44.56 14.34 10.45 2.62 12.22 2.54 23.70 23.05 2.64 0.57 4.74 4.86 21.72 5.39
GP-laplace-ls 14.68 44.89 14.38 10.20 4.19 12.72 2.49 23.51 23.30 3.23 0.04 7.59 5.17 20.45 7.75
EGO-baseline 14.02 43.53 14.3 10.07 2.42 12.46 3.9 22.04 22.01 2.82 0.07 4.69 7.04 21.65 5.18
EGO-impute 14.01 43.48 14.35 10.27 3.29 13.06 3.97 22.08 22.54 2.85 0.1 6.28 7.04 22.16 8.32
EGO-ws 14.17 43.47 14.35 10.07 2.38 12.45 3.92 21.99 21.99 2.72 0.09 4.32 7.3 22.04 5.93
EGO-ss 14.17 43.49 14.35 10.04 2.38 12.35 3.87 21.73 21.72 2.7 0.09 4.3 7.24 21.87 5.11

over all datasets and repetitions. We can see that the best performing classifier found

by EGO-ss is SVM with an RBF kernel. Other classifiers are picked far less than SVM.

Figure 6.7 provides further details, showing the classifier choices for each dataset in the

benchmark. In this case, each column represents the 10 final classifier choices made for a

single dataset. It is interesting to note that there are 6 out of 14 datasets only benefiting

from SVM classifier, while others benefit from at least two types of classifiers. It should

not be surprising that SVM does perform competitively well on a big proportion of

UCI datasets, according to the work of Delgado et al [57]. They evaluate 179 classifiers

belonging to a wide collection of 17 families on 121 UCI datasets, and conclude that the

best and most general classifiers are random forest and SVM.

Chapter 6 43

Table 6.2: Pairwise Wilcoxon signed-rank tests. Boldface indicates statistical sig-
nificant difference between row and column, while underline indicates row worse than

column.

RS Spearmint SMAC CMA
GP-
matern-
noimpute

GP-
matern

GP-
cond

GP-
laplace

GP-
matern-
ls

GP-
cond-
ls

GP-
laplace-
ls

EGO-
baseline

EGO-
impute

EGO-
ss

EGO-
ws

Sklearn-
default

RS 0.16 0.07 0.36 0.83 0.01 0.20 0.86 0.14 0.00 0.20 0.02 0.25 0.02 0.02 0.64
Spearmint 0.16 0.04 0.05 0.04 0.01 0.02 0.02 0.04 0.00 0.00 0.00 0.01 0.00 0.00 0.10
SMAC 0.07 0.04 0.05 0.06 1.00 0.92 0.42 0.88 0.06 0.88 0.07 0.71 0.04 0.04 0.25
CMA 0.36 0.05 0.05 0.88 0.03 0.31 0.68 0.35 0.01 0.30 0.03 0.32 0.03 0.03 0.55
GP-matern-noimpute 0.83 0.04 0.06 0.88 0.10 0.06 0.51 0.30 0.01 0.05 0.02 0.07 0.02 0.03 0.92
GP-matern 0.01 0.01 1.00 0.03 0.10 0.88 0.16 0.43 0.08 0.73 0.16 0.92 0.25 0.33 0.40
GP-cond 0.20 0.02 0.92 0.31 0.06 0.88 0.06 0.59 0.01 0.55 0.14 0.97 0.14 0.25 0.27
GP-laplace 0.86 0.02 0.42 0.68 0.51 0.16 0.06 0.31 0.02 0.01 0.06 0.18 0.07 0.07 0.35
GP-matern-ls 0.14 0.04 0.88 0.35 0.30 0.43 0.59 0.31 0.05 0.88 0.20 0.92 0.16 0.22 0.58
GP-cond-ls 0.00 0.00 0.06 0.01 0.01 0.08 0.01 0.02 0.05 0.17 0.36 0.47 0.43 0.51 0.12
GP-laplace-ls 0.20 0.00 0.88 0.30 0.05 0.73 0.55 0.01 0.88 0.17 0.18 0.78 0.18 0.27 0.47
EGO-baseline 0.02 0.00 0.07 0.03 0.02 0.16 0.14 0.06 0.20 0.36 0.18 0.01 0.33 0.97 0.01
EGO-impute 0.25 0.01 0.71 0.32 0.07 0.92 0.97 0.18 0.92 0.47 0.78 0.01 0.02 0.04 0.05
EGO-ss 0.02 0.00 0.04 0.03 0.02 0.25 0.14 0.07 0.16 0.43 0.18 0.33 0.02 0.01 0.01
EGO-ws 0.02 0.00 0.04 0.03 0.03 0.33 0.25 0.07 0.22 0.51 0.27 0.97 0.04 0.01 0.01
Sklearn-default 0.64 0.10 0.25 0.55 0.92 0.40 0.27 0.35 0.58 0.12 0.47 0.01 0.05 0.01 0.01

Figure 6.6: Resulting classifier choices for an optimization with EGO-ss over all 14
datasets and 10 repetitions.

Chapter 6 44

Figure 6.7: Resulting classifier choices for an optimization with EGO-ss. Each column
represents the distribution of classifier choices across the 10 repetitions on a single

dataset.

Chapter 7

Summary and Conclusions

We have investigated the difference and relation between the black-box optimization

problem and algorithm configuration problem in the context of automatically tuning

algorithm parameters. And we empirically evaluate two state-of-the-art algorithms,

MiP-EGO and SMAC, which are originated from the field of black-box optimization

and algorithm configuration, respectively, on some artificial test problems. Our results

show that MiP-EGO outperforms SMAC on mixed integer search spaces within a small

evaluation budget, and both algorithms cost roughly the same amount of time to ap-

proach respective near-optimum.

Not just optimizing parameters of one single algorithm, we extend our scope to include

the choice of the algorithm, in order to solve the problem about automatically select-

ing the best one from a large number of highly optimized algorithms, for an unknown

practical application. We combine the algorithm selection procedure and parameter op-

timization on a hierarchical search space, and propose three extensions of MiP-EGO to

solve this hybrid problem.

We apply the variants of MiP-EGO, namely EGO-X, on a algorithm configuration sce-

nario where a best highly optimized learning algorithm is determined automatically

for solving a classification task. We use EGO-X to tune 7 learning algorithms simul-

taneously and test them on 14 classification datasets. In multi-comparison with other

methods, the results show that EGO-ss, EGO-ws and EGO-baseline are not significantly

worse than the state-of-the-art. In pairwise comparison, our results show that the best

one is EGO-ss, which is never outperformed by all others, followed by EGO-baseline,

45

Chapter 7 46

GP-cond-ls and EGO-ws. The better performance of EGO-ss can be explained by the

ability of sufficiently and thoroughly optimizing hyper-parameters of learning algorithm

before selection.

Although EGO-ss outperforms others on most datasets and has highest ranking, we do

not tend to use these results for claiming a general presumed superiority of EGO-ss

against the other algorithms. Rather, we wish to present the idea of applying MiP-EGO

on hierarchical search space, and we want to interpret our results as an evidence that this

idea is promising for configuring and selecting learning algorithms, and can be further

applied on more extensive and practical problems.

Bibliography

[1] Bas van Stein, Hao Wang, and Thomas Bäck. Automatic configuration of deep

neural networks with EGO. arXiv preprint arXiv:1810.05526, 2018.

[2] Michael Emmerich, Monika Grötzner, Bernd Groß, and Martin Schütz. Mixed-

integer evolution strategy for chemical plant optimization with simulators. In Evo-

lutionary Design and Manufacture, pages 55–67. Springer, 2000.

[3] Yolanda Mack, Tushar Goel, Wei Shyy, and Raphael Haftka. Surrogate model-based

optimization framework: a case study in aerospace design. In Evolutionary compu-

tation in dynamic and uncertain environments, pages 323–342. Springer, 2007.

[4] Andrew J Booker, JE Dennis, Paul D Frank, David B Serafini, and Virginia Tor-

czon. Optimization using surrogate objectives on a helicopter test example. In

Computational Methods for Optimal Design and Control, pages 49–58. Springer,

1998.

[5] Sigrún Andradóttir. Simulation optimization. Handbook of simulation: Principles,

methodology, advances, applications, and practice, pages 307–333, 1998.

[6] Timothy W Simpson, Timothy M Mauery, John J Korte, and Farrokh Mistree.

Kriging models for global approximation in simulation-based multidisciplinary de-

sign optimization. AIAA journal, 39(12):2233–2241, 2001.

[7] Jerome Sacks, William J Welch, Toby J Mitchell, and Henry P Wynn. Design and

analysis of computer experiments. Statistical science, pages 409–423, 1989.

[8] Frank Hutter. Automated configuration of algorithms for solving hard computational

problems. PhD thesis, University of British Columbia, 2009.

[9] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

47

Bibliography 48

[10] Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. Auto-

mated algorithm selection: Survey and perspectives. Evolutionary computation,

pages 1–47, 2018.

[11] Bas van Stein, Hao Wang, and Thomas Bäck. Automatic configuration of deep

neural networks with EGO. CoRR, abs/1810.05526, 2018. URL http://arxiv.

org/abs/1810.05526.

[12] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. Paramils:

an automatic algorithm configuration framework. Journal of Artificial Intelligence

Research, 36:267–306, 2009.

[13] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Auto-

weka: Combined selection and hyperparameter optimization of classification al-

gorithms. In Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 847–855. ACM, 2013.

[14] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms

for hyper-parameter optimization. In Advances in neural information processing

systems, pages 2546–2554, 2011.

[15] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimiza-

tion of machine learning algorithms. In Advances in neural information processing

systems, pages 2951–2959, 2012.

[16] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish,

Narayanan Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable

Bayesian optimization using deep neural networks. In International Conference on

Machine Learning, pages 2171–2180, 2015.

[17] George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving deep neural

networks for LVCSR using rectified linear units and dropout. In Acoustics, Speech

and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages

8609–8613. IEEE, 2013.

[18] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based

optimization for general algorithm configuration. In International Conference on

Learning and Intelligent Optimization, pages 507–523. Springer, 2011.

http://arxiv.org/abs/1810.05526
http://arxiv.org/abs/1810.05526

Bibliography 49

[19] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic pro-

gramming approach to designing convolutional neural network architectures. In

Proceedings of the Genetic and Evolutionary Computation Conference, pages 497–

504. ACM, 2017.

[20] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-

matsu, Jie Tan, Quoc Le, and Alex Kurakin. Large-scale evolution of image classi-

fiers. arXiv preprint arXiv:1703.01041, 2017.

[21] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink,

Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy,

et al. Evolving deep neural networks. In Artificial Intelligence in the Age of Neural

Networks and Brain Computing, pages 293–312. Elsevier, 2019.

[22] Pablo Ribalta Lorenzo, Jakub Nalepa, Michal Kawulok, Luciano Sanchez Ramos,

and José Ranilla Pastor. Particle swarm optimization for hyper-parameter selection

in deep neural networks. In Proceedings of the Genetic and Evolutionary Compu-

tation Conference, pages 481–488. ACM, 2017.

[23] Shih-Wei Lin, Kuo-Ching Ying, Shih-Chieh Chen, and Zne-Jung Lee. Particle

swarm optimization for parameter determination and feature selection of support

vector machines. Expert systems with applications, 35(4):1817–1824, 2008.

[24] Ilya Loshchilov and Frank Hutter. CMA-ES for hyperparameter optimization of

deep neural networks. arXiv preprint arXiv:1604.07269, 2016.

[25] Oden Maron and Andrew W Moore. The racing algorithm: Model selection for lazy

learners. Artificial Intelligence Review, 11(1-5):193–225, 1997.

[26] Prasanna Balaprakash, Mauro Birattari, and Thomas Stützle. Improvement strate-

gies for the F-Race algorithm: Sampling design and iterative refinement. In Inter-

national workshop on hybrid metaheuristics, pages 108–122. Springer, 2007.

[27] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varrentrapp. A racing

algorithm for configuring metaheuristics. In Proceedings of the 4th Annual Confer-

ence on Genetic and Evolutionary Computation, pages 11–18. Morgan Kaufmann

Publishers Inc., 2002.

Bibliography 50

[28] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle. F-Race

and iterated F-Race: An overview. In Experimental methods for the analysis of

optimization algorithms, pages 311–336. Springer, 2010.

[29] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on Bayesian opti-

mization of expensive cost functions, with application to active user modeling and

hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[30] Michael D McKay, Richard J Beckman, and William J Conover. A comparison of

three methods for selecting values of input variables in the analysis of output from

a computer code. Technometrics, 42(1):55–61, 2000.

[31] Richard Webster and Margaret A Oliver. Geostatistics for environmental scientists.

John Wiley & Sons, 2007.

[32] Noel Cressie. Statistics for spatial data. Terra Nova, 4(5):613–617, 1992.

[33] Michael L Stein. Interpolation of spatial data: some theory for kriging. Springer

Science & Business Media, 2012.

[34] Hans Wackernagel. Multivariate Geostatistics: An Introduction with Applications.

Springer Science & Business Media, 2013.

[35] G Matheron. The theory of regionalised variables and its applications. Les Cahiers

du Centre de Morphologie Mathématique, 5:212, 1971.

[36] Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced

lectures on machine learning, pages 63–71. Springer, 2004.

[37] Carla Currin, Toby Mitchell, Max Morris, and Don Ylvisaker. Bayesian prediction

of deterministic functions, with applications to the design and analysis of computer

experiments. Journal of the American Statistical Association, 86(416):953–963,

1991.

[38] Michael James Sasena. Flexibility and efficiency enhancements for constrained

global design optimization with kriging approximations. PhD thesis, Citeseer, 2002.

[39] Hao Wang et al. Stochastic and deterministic algorithms for continuous black-box

optimization. PhD thesis, 2018.

Bibliography 51

[40] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical

learning, volume 1. Springer series in statistics New York, NY, USA:, 2001.

[41] Jonas Močkus. On Bayesian methods for seeking the extremum. In Optimization

Techniques IFIP Technical Conference, pages 400–404. Springer, 1975.

[42] Emmanuel Vazquez and Julien Bect. Convergence properties of the expected im-

provement algorithm with fixed mean and covariance functions. Journal of Statis-

tical Planning and inference, 140(11):3088–3095, 2010.

[43] Matthias Schonlau, William J Welch, and Donald R Jones. Global versus local

search in constrained optimization of computer models. Lecture Notes-Monograph

Series, pages 11–25, 1998.

[44] Antanas Žilinskas. A review of statistical models for global optimization. Journal

of Global Optimization, 2(2):145–153, 1992.

[45] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal

of Machine Learning Research, 3(Nov):397–422, 2002.

[46] Hao Wang, Bas van Stein, Michael Emmerich, and Thomas Back. A new acquisition

function for Bayesian optimization based on the moment-generating function. In

2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC),

pages 507–512. IEEE, 2017.

[47] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global opti-

mization of expensive black-box functions. Journal of Global optimization, 13(4):

455–492, 1998.

[48] Daniel James Lizotte. Practical Bayesian optimization. University of Alberta, 2008.

[49] Thomas J Santner, Brian J Williams, and William I Notz. The design and analysis

of computer experiments. Springer Science & Business Media, 2013.

[50] Rui Li, Michael TM Emmerich, Jeroen Eggermont, Thomas Bäck, Martin Schütz,

Jouke Dijkstra, and Johan HC Reiber. Mixed integer evolution strategies for pa-

rameter optimization. Evolutionary computation, 21(1):29–64, 2013.

[51] Hao Wang, Michael Emmerich, and Thomas Bäck. Cooling strategies for the

moment-generating function in Bayesian global optimization. In 2018 IEEE

Congress on Evolutionary Computation (CEC), pages 1–8. IEEE, 2018.

Bibliography 52

[52] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Kevin Murphy. Time-

bounded sequential parameter optimization. In International Conference on Learn-

ing and Intelligent Optimization, pages 281–298. Springer, 2010.

[53] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel

Blum, and Frank Hutter. Efficient and robust automated machine learning. In

Advances in Neural Information Processing Systems, pages 2962–2970, 2015.

[54] Julien-Charles Lévesque, Audrey Durand, Christian Gagné, and Robert Sabourin.

Bayesian optimization for conditional hyperparameter spaces. In Neural Networks

(IJCNN), 2017 International Joint Conference on, pages 286–293. IEEE, 2017.

[55] Rui Li, Michael TM Emmerich, Jeroen Eggermont, Ernst GP Bovenkamp, Thomas

Bäck, Jouke Dijkstra, and Johan HC Reiber. Mixed-integer NK landscapes. In

Parallel Problem Solving from Nature-PPSN IX, pages 42–51. Springer, 2006.

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[57] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do

we need hundreds of classifiers to solve real world classification problems? The

Journal of Machine Learning Research, 15(1):3133–3181, 2014.

[58] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-

adaptation in evolution strategies. Evolutionary computation, 9(2):159–195, 2001.

[59] Nikolaus Hansen. The CMA evolution strategy: A tutorial. arXiv preprint

arXiv:1604.00772, 2016.

[60] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal

of Machine learning research, 7(Jan):1–30, 2006.

	Acknowledgements
	1 Introduction
	2 Problem Definitions and Comparison
	2.1 Black-box Optimization Problem
	2.2 Algorithm Configuration Problem
	2.3 Comparison between BBO and AC
	2.4 Combined Algorithm Selection and Hyper-parameter Optimization

	3 Related Approaches
	3.1 Sequential Model-Based Methods
	3.2 Meta-Heuristic Methods
	3.3 Racing Procedures

	4 Bayesian Optimization
	4.1 Initial Design
	4.2 Surrogate Models
	4.2.1 Kriging
	4.2.2 Random Forest

	4.3 Acquisition Function
	4.4 MiP-EGO
	4.4.1 Handling Mixed Integer Input
	4.4.2 A New Acquisition Function and Cooling Strategy
	4.4.3 Parallel Execution

	4.5 SMAC
	4.5.1 Maximizing EI and Intensification

	5 Extensions of MiP-EGO on Conditional Spaces
	6 Experimental Evaluations
	6.1 Artificial Test Problems
	6.1.1 Barrier Function
	6.1.2 Mixed Integer NK Landscapes

	6.2 Algorithm Configuration Scenario
	6.2.1 Results and Discussions
	6.2.2 Visualization of Classifier Choices

	7 Summary and Conclusions
	Bibliography

