
UNIVERSITEIT LEIDEN

MASTER THESIS

Solving Othello using BDDs

Author:
Stef VAN DIJK

First supervisor:
Dr. Alfons LAARMAN

Second supervisor:
Dr. Vedran DUNJKO

A thesis submitted in fulfillment of the requirements
for the degree of MSc

in the

Leiden Institute of Advanced Computer Science

July 12, 2019

http://www.universiteitleiden.nl
https://www.universiteitleiden.nl/en/staffmembers/alfons-laarman
https://www.universiteitleiden.nl/en/staffmembers/vedran-dunjko#tab-1
https://liacs.leidenuniv.nl/

iii

UNIVERSITEIT LEIDEN

Abstract
De Faculteit der Wiskunde en Natuurwetenschappen

Leiden Institute of Advanced Computer Science

MSc

Solving Othello using BDDs

by Stef VAN DIJK

Combinatorial games are deemed solved whenever the winner can be determined,
according to perfect play. A reliable method to achieve this, is by applying ret-
rograde analysis. In this thesis we focus on solving the combinatorial game Oth-
ello, using techniques originated in model checking. Symbolic model checking tech-
niques, using Binary Decision Diagrams (BDDs), pushed the state of the art enor-
mously. To determine if the field of combinatorial games also benefits from this
technique, we present multiple ways to implement retrograde analysis using BDDs.
Our best method turns out to reduce the peak of the BDD size by 99, 31%, compared
to the naive algorithm, making this technique less resource-consuming. Using this
technique, we are able to solve a small instance of Othello, up to a size of 4× 5. Thus,
for the first time, we realize retrograde analysis for a divergent game, which has been
deemed to be infeasible. For 4× 5 Othello, we can represent the set of immediately
winning states with BDDs, using 1.13 bytes per state. This number decreases when
increasing the size of the game, up to 0.0175 bytes per state for 5× 6 Othello. This
is less than the memory needed for perfect hashing (a current technique for solving
combinatorial games), for which a lower bound comes down to one bit per state. By
extrapolation, we estimate an order of 10−5, to be an upper bound for the number of
bytes required, to store a BDD representing the set of immediately winning states.

HTTP://WWW.UNIVERSITEITLEIDEN.NL
https://www.universiteitleiden.nl/wiskunde-en-natuurwetenschappen
https://liacs.leidenuniv.nl/

v

Contents

Abstract iii

1 Introduction 1
1.1 Retrograde Analysis . 1
1.2 State of the Art . 1
1.3 Our approach . 2
1.4 Contributions . 3
1.5 Overview . 3

2 Background 5
2.1 Othello . 5
2.2 Solving Two-Player Games . 7

2.2.1 Reachability . 9
2.2.2 Retrograde Analysis . 10

2.3 Binary Decision Diagram . 12
2.3.1 Boolean function . 13
2.3.2 Graphical representation . 13
2.3.3 Variable ordering . 15
2.3.4 Manipulating BDDs . 15

3 Related Work 17
3.1 Chess . 17
3.2 Connect Four . 17
3.3 Partitioned transition relation . 18
3.4 BDD packages . 18

3.4.1 CUDD . 18
3.4.2 Sylvan . 18

4 Encoding 19
4.1 Variables . 19
4.2 Encoding a State . 19
4.3 Encoding the Transition Relation . 21

4.3.1 Partitioned transition relation . 22
4.3.2 Encoding of complete relation using partitioned relations . . . 25

4.4 Encoding of the immediately winning states 26

5 Validation 27
5.1 Validation of the partitioned transition relation 27
5.2 Validation of the complete transition relation 30
5.3 Validation of the immediately winning states 30

vi

6 Algorithms for retrograde analysis 33
6.1 Retrograde analysis with BDDs . 33
6.2 Limit to reachable states by forward analysis 34
6.3 The sweep-line method . 35

7 Experimental Evaluation 37
7.1 Experiments . 37

7.1.1 Using the 3T-encoding for an empty field 38
7.1.2 Comparing Algorithms . 38
7.1.3 Variable ordering . 40

7.2 Extrapolating the BDD sizes . 43

8 Conclusions 45
8.1 Future work . 46

Bibliography 47

1

Chapter 1

Introduction

Solving games has always been a hot topic in computer science, since there have
always been harder games to solve when the simple ones had already been solved.
Maybe, some games, like chess, will never be solved. Research in games is done in
two different ways. In the field of Aritificial Intelligence, researchers try to make
game-playing computers which use heuristics to beat their opponent. These heuris-
tic methods are not exact and come with a trade-off between speed and accuracy.
Mainly the goal here is to beat human players or other computers playing the game.
An important example here is the neural network AlphaGo [24], which plays Go.
In this thesis, the focus lies on the other way of research in games, where the games
are solved exactly. This means that the winner of the game is determined, from
the perspective of the starting player, according to perfect play. This can only be
achieved in combinatorial games, which have perfect information, i.e. there exist no
chance elements (like dice) and no hidden information (like cards).

1.1 Retrograde Analysis

We try to solve the game Othello, using retrograde analysis. Retrograde analysis is a
technique for solving games, where a position of the game is called a state. By mak-
ing moves, the game traverses from one state to another, such that the state space is
explored. Retrograde analysis starts at a set of winning (or goal) states and reasons
backward.
When games are being solved using state space exploration, it is related to the field
of Model Checking. Model checking is an automatic method used to decide whether
a program meets its specification. It exhaustively checks every state that could oc-
cur in the model (the state space) for possible deviations from prescribed behavior.
This makes model checking a time and space consuming process, particularly when
during exploration, the state space gets too big and there must be dealt with state
space explosion. Since this is the case in many real-world problems, model checking
techniques exist which reduce this explosion. An example of such a technique is
introduced in Section 1.3.

1.2 State of the Art

In 2002, an overview of the solved games was given by van den Herik et al. [11],
where Othello is said to be not solved yet for the default version on an 8× 8 board.
However, smaller instances, such as the 6× 6 board, have been solved by Takeshita
et al. [26].
Heule et al. [12] state that the solvability of a game depends on whether procedures
could be applied to reduce the size of the state space to a reasonable complexity.

2 Chapter 1. Introduction

They say that if there is no such procedure, the game can only be solved if the state
space is below a reasonable complexity, such that it can be solved by simple tech-
niques. Nowadays, the state space complexity is reasonable whenever it is some-
where below 1020 states. Van den Herik et al. [11] show that Othello has a state
space of 1028 states. This would mean that without such a procedure to reduce the
size of the state space, Othello cannot be solved using modern computers. Van den
Herik et al. also state that Othello is immune to many retrograde analysis tech-
niques. Othello would be immune to these techniques since it is a divergent game.
In divergent games the state space grows during the game, since there exists a big
set of end states, where the game is immediately won by one player. Therefore,
knowledge-based techniques should be used. However, they also state that Othello
belongs to category 2 in Figure 1.1, which seems rather contradictory. This indicates
that Othello is hard to solve. Still, they expected Othello to be solved in 2010, which
has not been the case.

FIGURE 1.1: Double dichotomy of the game space, by van den Herik
et al. [11]

1.3 Our approach

In this thesis, we try the existing data structure Binary Decision Diagram (BDD) as
such a procedure that reduces the size of the state space. This data structure is being
used nowadays in the field of model checking and has led to celebrated results [6, 5],
where in the latter billions of states are represented by using only a few megabytes
of memory. A BDD is data structure that can efficiently represent and manipulate
Boolean functions. Since program states as well as program transitions can be encoded
as Boolean functions, the data structure has been successfully used for program ver-
ification. In particular in model checking, where the entire reachable state space of a
program can be computed in BDDs, sometimes leading to exponential reduction in
the state space.
Before this technique was used in model checking, the state space was mostly rep-
resented explicitly, where each state is represented individually, which led to state
space explosion in many cases when applied to big real-world problems. Using
BDDs the state space can be represented symbolically. Symbolic model checking
manipulates whole sets of states at once, by representing them in a BDD. Using ba-
sic set operations like intersection and union these sets can be easily modified by the
BDD representing them.
In this thesis, we combine retrograde analysis and symbolic model checking to try to
solve the board game Othello using BDDs and explain why it is so hard. We encode

1.4. Contributions 3

the move relation of Othello in a BDD and provide various methods to compute ret-
rograde analysis with BDDs for solving the game.
To check the effectiveness of this approach and to compare the different methods,
we perform various experiments. These experiments show differences in the sizes
of the BDDs (and thus speed of the algorithms used). This gives results in what vari-
able ordering works for Othello and what algorithm works best for solving Othello.
These results show evidence that we can solve a divergent game (4× 5 Othello) us-
ing retrograde analysis, while van den Herik et al. [11] state that divergent games are
deemed infeasible to solve using retrograde analysis. Also, we find big differences
in terms of BDD size for different search strategies.

1.4 Contributions

One of the main contributions this thesis has to offer, is combining the fields of ret-
rograde analysis and symbolic model checking. We give a thorough description on
both retrograde analysis for solving games and binary decision diagrams. Later, we
combine these two in order to solve the game Othello, where we also apply different
methods on top of our approach. We find that using both these methods, we can
reduce the needed memory by 99, 31%, such that we can solve Othello up to 4× 5
instances. This gives insights in how a game like Othello reacts to BDDs, such that in
the future 8× 8 Othello can maybe be solved by techniques introduced in this thesis.

1.5 Overview

This thesis maintains the following structure. Chapter 2 gives the preliminary knowl-
edge required for this thesis, such as an introduction to the game Othello and an
explanation of how BDDs work. Next, Chapter 3 gives related work to this topic, in
order to better understand the state of the art. Chapter 4 explains how we encode
a transition relation for Othello. Chapter 5 then validates the correctness of this en-
coding, using a counting argument. This chapter is followed by Chapter 6, where
the algorithms are introduced, used to solve Othello. Then, Chapter 7 shows the
experiments that are performed in order to gain knowledge on this topic, together
with their results. Finally, the conclusions are given in Chapter 8.

5

Chapter 2

Background

This chapter gives background information needed to understand this thesis. In case
the reader is highly familiar with the subjects described here, this chapter could be
skipped.

2.1 Othello

Othello is a combinatorial [23] board game played by two players, black and white who
alternately make moves. The game is played on a 8× 8 board, comparable to a chess
board. See Figure 2.1 for the initial board. All fields have unique identifiers, given
by a letter A−H followed by a number 1− 8. The row number is given by the letter,
while the column number is given by the number. For example: the left-most black
stone in the initial board is on D4 and the right-most black stone is on E5.

FIGURE 2.1: The initial position of a game of Othello, where black has
turn.

Player black owns the black stones, while player white owns the white ones. The
goal of the game is to possess more stones than the opponent when the game ends.
This is the case when both players are not able to make a move.
In a move the player must add exactly one stone to the board on an empty field. This
may only be one of the fields such that together with another stone of the same color,
this stone encloses one or more stones from another color, in any (may be more than
one) of the eight wind regions; North, North-east etc. We refer to these wind regions
as directions. All these stones that are enclosed, change color in all directions where

6 Chapter 2. Background

enclosure is introduced by the move.
Player black must always make the first move. In the initial board of Figure 2.1,
there are 4 possible moves for black which enclose (and turn) white stones in any
direction, see Figure 2.2.

FIGURE 2.2: The 4 possible moves at the initial board are given by the
black circles.

Then after placing the black stone on the east-most field, the board looks as in
Figure 2.3

FIGURE 2.3: The board after black played on D6 in its first move.

Whenever a player cannot make any legal move, the turn goes to the other player
without the board being changed. Lets call this move a null-move. If the other player
also cannot make a move, then the game ends. This can only happen whenever:

• All m · n fields of the board are filled with stones.

• All the stones on the board have the same color.

• None of the above, but neither of the players can place a stone that encloses
stones of the opponent.

2.2. Solving Two-Player Games 7

Let us introduce the term state of an Othello game, where all information of a
specific position is stored.

Definition 2.1. A state A in m× n Othello is a tuple (Vm·n, p). Here, Vm·n is an m× n
matrix, whose entries Vij represent fields, with Vij ∈ {B, W, E}. Here, B, W and E represent
a black, a white or no stone on Vij respectively. Besides this matrix, a state admits one
extra Boolean for the turn variable p ∈ {0, 1}, specifying which player is to move. For
convenience, we also refer to a field Vij, by using the term Aij.

Let us give definitions for the number of stones of a color in an Othello state.

Definition 2.2. We define the function #B(A), which maps an Othello state A to the num-
ber of black stones on A, as follows:

#B(A) , |{(i, j) | Aij = B}|

Dually, we define the function #W(A), which maps an Othello state A to the number of
white stones on A, as follows:

#W(A) , |{(i, j) | Aij = W}|

2.2 Solving Two-Player Games

In this section, we explain how to solve two-player games by the retrograde analysis
method, given the transition relation (over pairs of states) and the required sets of
states. We reason about two-player games, so we introduce Player 0 and Player 1 (P0
and P1) respectively.

Definition 2.3. A two-player game is a 4-tuple G , (S, I, T, E) with S the set of all states,
I the set of initial states, T the transition relation and E the set of immediately winning states
for either one of the players. The following properties hold for G:

1. S , S0] 1S1 [S consists of two disjoint sets where P0/P1 have turn]

2. I ⊆ S0 [P0 starts the game]

3. T , T0] T1 [T consists of two disjoint relations for P0/P1]

4. T0 ⊆ S0 × S1 [Transition relation from S0 state to S1 state]

5. T1 ⊆ S1 × S0 [Transition relation from S1 state to S0 state]

6. E , E0] E1 [E consists of two disjoint sets, immediately winning for P0/P1]

Besides E0 and E1, there exists one more set of states that immediately ends. This is the
set immediate draw, where the game has ended and both players do not win. This set is
disjoint with E, since neither player wins the game. Joined together, they form the set of all
immediately ending states.

Example 1 (Othello as a two-player game). See Section 2.1 for thorough a description
of Othello. Othello is a two-player game, where player 0 possesses the black stones
and player 1 the white. It is played on a m × n board, with the starting position
as in Figure 2.1. A player’s move consists of placing a stone of the player’s color
on a free field, such that any number of the opponent’s stones is enclosed by two

1 A] B denotes the union of two disjoint sets, such that A ∩ B = ∅

8 Chapter 2. Background

player’s stones. After a move, all enclosed stones are turned to the other color, as
in Figure 2.3. Whenever no such move is possible for the player, the other player
gets turn. The game ends whenever both players cannot make a legal move. Then,
the player with the most stones on the board wins. We can model 8 × 8 Othello
according to the definition of a two-player game as follows:

• Si , {A = (Vm·n, i)}, where Vij is a field ∈ {B, W, E} and p ∈ {0, 1},

• I , {A = (Vm·n, p)}, with Aij =

W, if (i = 4∧ j = 5) ∨ (i = 5∧ j = 4)
B, if (i = 4∧ j = 4) ∨ (i = 5∧ j = 5)
E, else

and p = 0, since I ⊆ S0,

• T , S0 × S1 ∪ S1 × S0 such that (s, s′) ∈ T0 if we take for instance the board
from Figure 2.2 as s and the board from Figure 2.3 as s′. A more detailed logic
encoding of T is described in Section 4.3,

• Ei , {A = (Vm·n, p) | A ∈ Si, p ∈ {0, 1},@A′′ ∈ Si : (∃A′ ∈ Sī : (A′′ 6= A ∧

(A, A′) ∈ T ∧ (A′, A′′) ∈ T)),

{
#B(A) > #W(A), if i = 0
#W(A) > #B(A), if i = 1

}, with i ∈ {0, 1}.

A game is solved whenever it’s determined which player can force a win from
the initial state(s), according to perfect play [23]. There exist three levels of game
solving [1]:

Ultra weakly solved For solving a game ultra weakly, there only needs to be deter-
mined to which of the three outcome classes the initial position belongs:

N First player (the Next player) can force a win.
P Second player (the Previous player) can force a win.
D Both players cannot force a win, thus the game will end in an immediate

draw.

Every state in a two-player game is in either one of these three classes. We
refer to states in N and P as winning (depending on the perspective of which
player), and to states in D as draw.

Weakly solved For solving a game weakly, also a strategy must be given by which
the player can guarantee that outcome class. However, it does not always guar-
antee the best move possible for any position. For example, in a draw position,
the strategy will never lose. However, when the opponent does not play per-
fectly, the position might be changed to a winning one. Here, it could be the
case that the strategy still plays to a draw.

Strongly solved In order to solve a game strongly, for any position (reachable when
the player with perspective plays optimal) the best move must be determined.
Solving the game strongly comes down to finding the partition 〈WP0 , WP1 , draw〉
of S, where WP0 is the set of states where P0 can force a win, WP0 is the set of
states where P1 can force a win and draw the set of states where both players
cannot force a win, given that P0 is the starting player. When this partition is
known, we only have to check in which subset of the partition the initial state
I is included. That subset determines which player wins the game in perfect
play.

2.2. Solving Two-Player Games 9

2.2.1 Reachability

Before we start focusing on retrograde analysis, let us first describe how we can
navigate through the states of a game, by treating a game as a graph. The relation T
is defined on the domain of S× S. This means that we can now treat the state space
as a directed acyclic graph (DAG) (S, T), where states are represented by nodes and
transitions between states by edges. The initial states I are the root nodes. There
exist also leaf nodes which have no successors in T. The states represented by those
nodes are called deadlocks. Thus, deadlocks are those states in a game where the
player cannot make any legal move. Often, deadlocks are immediately winning
for either one of the players (if not immediate draw). Our definition of two-player
games does not require deadlocks to be an immediately ending state. In this way,
the encoding given in Chapter 4, can remain as simple as possible. See Figure 2.4 for
an example of such a DAG, where the nodes represent states and the edges represent
transitions.

A B

C D E F

G H I J K

L M N

FIGURE 2.4: An example of a DAG representing a part of a game
with two initial states; A and B, both ∈ Sp, with p ∈ {0, 1}. The
nodes represent states and the edges represent transitions between
states. There are four leaf nodes in this example; L, M, N and K.
The graph is directed and contains no cycles, therefore it satisfies the

requirements of a DAG.

In Figure 2.4 we see that single states can have multiple successors according to
T. We can also find the successors of a set of states, by the image of that set.

Definition 2.4. Given a set of states A ⊆ S, the image of this set on a relation T, denoted
by ImageT(A), is the set of successor states B such that

ImageT(A) , {x′ ∈ S | ∃x ∈ A : (x, x′) ∈ T}

This way, by calculating successors of states, the reachability of a set of states can
be determined through the Reflexive Transitive Closure of T. Applying the reflexive
transitive closure of T on I, denoted by T∗, gives the set X ⊆ S of all states reachable
from the initial states, such that

X = {x ∈ S | ∃i ∈ I : (i, x) ∈ T∗}

Also, using the inverse of the relation, the set of predecessors (the preimage) of a set
of states can be determined.

10 Chapter 2. Background

Definition 2.5. Given a set of states B ⊆ S, the preimage of this set on a relation T, denoted
by PreimageT(B), is the set of predecessor states A such that

PreimageT(B) , {x ∈ S | ∃x′ ∈ B : (x, x′) ∈ T}

Note that PreimageT(B) will find all the states from which the player with turn
can end up in X. Using the preimage the state space can be explored backward,
which is called backward reachability.

2.2.2 Retrograde Analysis

For finding the sequence of moves that leads up to the best outcome for any game
state, Retrograde Analysis can be used. In Retrograde analysis, we try to find the set
of states WPp with p ∈ {0, 1} that is winning for Pp. In order to find this set, we start
with the goal states Ep, those immediately winning for Pp, and expand this set until
convergence by reasoning backward.
As an example, see Figure 2.5 and start with the set Ep, where p defines the player
and ¬p the opponent. We call X the set that we are expanding, so X starts as Ep and
ends as WPp . At any moment X represents the states where Pp can force a win. Then
predecessor states of X are found wherein the player can force a play to X. In the
first iteration, for a and b, Pp can directly play to X, so they are added to X. States
in which the opponent has turn are only added to X if all successors states are in X.
Thus, c is added to X, but d is not, since the opponent has a choice to move outside
X.

I Ep

ap

bp

c¬p

d¬p

S

FIGURE 2.5: Part of the state space S of any game in a Venn-diagram.
States are shown in yellow and sets of states are shown in gray. Ar-
rows represent legal moves, such that an arrow to a set of states rep-

resents a move to any arbitrary state in that set.

This is an iterative process, which eventually converges when no new states can
be added. Then the set X represents all states where the player can force a win. This
comes down to the following two properties for all states added by this retrograde
analysis technique:

1. ∀x ∈ X where the player has turn: ∃y : (y ∈ ImageT(x) ∧ y ∈ X).

2. ∀x ∈ X where the opponent has turn: ∀y : (y ∈ ImageT(x) =⇒ y ∈ X).

Here, states that obey to the first property can be found using the preimage function,
where for the second property we introduce another function, ∀∃preimageT. For
better understanding, let us first introduce ∀preimageT:

2.2. Solving Two-Player Games 11

Definition 2.6. Given a set of states B ⊆ S the ∀preimage of this set on a relation T, denoted
by ∀preimageT(B) is the set of states A such that

∀preimageT(B) , {x ∈ S | ∀x′ ∈ ImageT(x) : x′ ∈ B}

Then we can introduce ∀∃preimageT, where in contrast to ∀preimageT, deadlock
states are not found:

Definition 2.7. Given a set of states B ⊆ S the ∀∃preimage of this set on a relation T,
denoted by ∀∃preimageT(B) is the set of states A such that

∀∃preimageT(B) , {x ∈ S | ∀x′ ∈ ImageT(x) : x′ ∈ B, x ∈ Preimage(B)}

Note that ∀∃preimageT(B) will find all states such that no matter what move the
player with turn makes, after moving, the game ends up in a state in B.
Finding WP0 by expanding X is an iterative process where preimage and ∀∃preimage
are applied alternately (due to Definition 2.3, where two disjoint relations are de-
fined). This process stops when no new states can be found for which the properties
1 and 2 hold, then we speak of convergence. After this convergence the set X de-
fines a set of states where the player can force a win, which is the set WP0 , needed to
strongly solve the game.
Now, identifying WP0 comes down to fixpoint computation [27]. A fixpoint y of
a function f is defined to be an element within the functions domain, such that
y = f (y). In set computation we speak of a fixpoint of a function f whenever the
image on f of set of states is equal to the the set itself.

Definition 2.8. For any function on sets of states f : 2S → 2S, a fixpoint is a set of states
X ⊆ S such that f (X) = X, with S all states in the space.

In order to find WPp , with p ∈ {0, 1}, we need to find the least (smallest) fixpoint
X on f , containing Ep, such that f (X) = X, where f (X) is defined as

f (X) , Ep ∪ PreimageTp(X) ∪ ∀∃preimageT¬p(X) (2.1)

By the Knaster-Tarski Lemma [27], we know that this least fixpoint exists, since f is
a monotone function and 〈2S,⊆〉 is a complete lattice [2].
Note that, in retrograde analysis, f (X) returns exactly the set wherein all Sp nodes
can move to X and all S¬p nodes can only move to X, including the immediately
winning states for Pp. Then, a least fixpoint X of this function means that

• X contains Ep,

• X contains all states that are recursively found by either ∀a ∈ Sp : ∃b(b ∈
Image(a) ∧ b ∈ X) =⇒ a ∈ X or ∀a ∈ S¬p : ∀b(b ∈ Image(a) =⇒ b ∈
X) =⇒ a ∈ X, and

• X contains no other states.

It follows from the application of Knaster-Tarski [13, p. 241], that for any set S with
n elements and any function on the power set of S f : 2S → 2S, this least fixpoint of
f can be found by f n(∅), where f n means applying f consecutively n times.
Since the least fixpoint we need to find must contain Ep, we use Ep instead of ∅ here.

12 Chapter 2. Background

See Algorithm 1 for an outline on how to compute this fixpoint for p = 0.

Algorithm 1: Finding the set WP0 of winning states for P0 by fixpoint computa-
tion.

Result: WP0

1 WP0 ← E0
2 old← ∅
3 while WP0 6= old do
4 old←WP0

5 WP0 ←WP0 ∪ PreimageT0(WP0)
6 WP0 ←WP0 ∪ ∀∃preimageT1(WP0)

7 end

See Figure 2.6 for a visual representation of Algorithm 1 in a Venn-diagram. We
initialize WP0 with E0. In iteration 1, first the S0 states are added which have a suc-
cessor in WP0 . Next, the S1 states are added which have a successor in WP0 . Note that
WP0 is already expanded within the first iteration. The second iteration the same
happens. This proccess keeps iterating until no new states are found, then the least
fixpoint is found.

I Ep

It. 1, S0 states

It. 1, S1 statesIt. 2, S0 states

It. 2, S1 states
S

FIGURE 2.6: Venn-diagram in which Algorithm 1 is visualized, where
in every iteration, the colored states are added to WP0 . Before the first
iteration, Ep is added to WP0 . States are colored and sets of states are
shown in gray. Arrows represent legal moves, such that an arrow to

a set of states represents a move to any arbitrary state in that set.
.

The computation for finding the set of winning states of the other player (WP1)
works similarly and the set of states where both players cannot force a win (draw) is
equal to S \WP0 \WP1 . Using this we can find the partition 〈WP0 , WP1 , draw〉.

2.3 Binary Decision Diagram

Binary Decision Diagrams (BDDs) were introduced by Bryant [3] as an efficient way
of representing Boolean functions. Briefly, the BDD is a tree-shaped data structure

2.3. Binary Decision Diagram 13

that always has a maximum of 2 distinct leaf nodes, labeled true and false, or 0 and 1.
All other nodes represent a variable that can be either true or false, which is specified
in the tree by the two outgoing edges every node has: the high edge when the vari-
able is true and the low edge when the variable is false. Starting from the root node,
this tree can have multiple paths ending in the true leaf. All these paths are called
satisfying assignments, where every variable has a value, determined by its outgoing
edge in the path. All satisfying assignments make the function represented by the
BDD evaluate to true, where all other paths make the function evaluate to false.
The following subsections give formal definitions of Boolean functions and the graph-
ical representation of BDDs. For a more thorough introduction to BDDs, see the
work of Somenzi [25].

2.3.1 Boolean function

Since BDDs represent Boolean functions f : Bn → B, we assume the domain of
such a function to be the set of n variables x1, . . . , xn. In Ordered BDDs (OBDDs),
this set of variables is ordered from x1 to xn. In this thesis, we only speak about
OBBDs and refer to them as BDDs. Boolean functions evaluate to 0 or 1 for any
given configuration of the variables. When assigning one of the variables xi in the
domain of the function f a value b (0 or 1, since the function is Boolean), the function
gets restricted. We then speak of the cofactor of f , written by: fxi=b. Thus, we have
either fxi=0 or fxi=1 which are defined as follows.

f (x1, . . . , xi−1, 0, xi+1, . . . , xn) (2.2)

and
f (x1, . . . , xi−1, 1, xi+1, . . . , xn) (2.3)

Since f is a function, it can be seen as the set of configurations of its variables, for
which f evaluates to 1. We call this set of configurations the set of satisfying assign-
ments s f , with

s f , {(x1, . . . , xn)| f (x1, . . . , xn) = 1} (2.4)

We interpret BDDs as sets and formulas dually. Therefore, we do not use the con-
vention s f , but instead write the A and B to denote the set of satisfying assignments
for the BDDs A and B, where A and B are BDDs representing f . Therefore, we write
A ∪ B of A ∨ B to denote the union of the set of satisfying assignments of BDDs A
and B, depending on the context.

2.3.2 Graphical representation

This subsection focuses on how Boolean functions are represented by the graphi-
cal structure of a BDD. A BDD can be reduced (RBDD), ordered (OBDD) or both
(ROBDD). The concept of reducing BDDs will be explained later.

Definition 2.9. An Ordered Binary Decision Diagram is a directed acyclic graph G ,
(V, E), with nodes V and edges E over an ordered set of variables xn = {x1, x2, . . . , xn}.
The following properties hold for G.

• G has a single root node r.

• Root node r, with l(r) = x1, is called the first level of the tree, where its children are
level 2, etc.

14 Chapter 2. Background

• There exist two terminal nodes; True and False. All other nodes v are non-terminal
and represent a specific variable x ∈ xn, specified by the label function l(v).

• All nodes of the same level represent the same variable x.

• For every node v, holds that every child of v is either a terminal node, or a node u, such
that l(v) < l(u) in the ordered set of variables.

• Every node v has exactly two outgoing edges; high(v) represents the path where v is
assigned true, where low(v) represents the path where v is assigned false.

• Every path in the OBDD which leads to the terminal-node true, represents exactly one
satisfying assignment of the variables for the function. All other paths lead to false.

See Figure 2.7 for an example of a OBDD. The low edges are usually given by a
dotted line while the high edges are given by a solid line.

x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

x1

x2 x2

x3 x3 x3 x3

0 0 0 1 0 1 0 1

FIGURE 2.7: An example of a OBDD representing the function f , to-
gether with its corresponding truth table.

OBDDs can be reduced in terms of number of nodes, pretty easily, while still
keeping the exact same information. An OBDD is called a reduced OBDD whenever
low(xi) 6= high(xi) holds for all nodes with label xi, for all i and all nodes are unique
(there exists no pair of nodes a and b such that l(a) = l(b), low(a) = low(b) and
high(a) = high(b)). These two requirements are called non-redundancy and unique-
ness respectively. In order to force non-redundancy, nodes are deleted, while in order
to force uniqueness, nodes are collapsed. For deleted nodes, the OBDD acts as if the
variable can have both values. See Figure 2.8 for the reduced variant of the OBDD
of Figure 2.7, by deleting and collapsing nodes.

x1

x2 x2

x3 x3

0 1

x1

x2

x3

0 1

FIGURE 2.8: Reducing the OBDD of Figure 2.7, by collapsing nodes
(left) and subsequently deleting nodes (right).

In the left OBDD of Figure 2.8, the terminal nodes and three x3 nodes are col-
lapsed. In the right part, one x2 node and one x3 node are deleted, yielding the

2.3. Binary Decision Diagram 15

reduced OBDD. For the remainder of this thesis, we refer to a ROBDD with the term
BDD.

2.3.3 Variable ordering

The order in which the variables appear in a BDD, can make difference in terms
of their sizes. Note that this only holds for reduced BDDs, since unreduced BDDs
always contain 2d+1 − 1 nodes, with d the depth of the BDD, which is equal to the
number of variables.
Take for example the BDD of Figure 2.8. If we change the variable ordering of this
BDD to x1-x3-x2, the BDD would contain 4 nodes instead of 3 to represent the same
formula. See Figure 2.9 for that BDD.

x1

x3 x3

x2

0 1

FIGURE 2.9: The BDD of Figure 2.8 with another (worse) variable
ordering

2.3.4 Manipulating BDDs

BDDs alone merely provide the ability to efficiently represent boolean functions. The
true power of BDDs comes from their ability to also manipulate these boolean func-
tions in polynomial time in the number of BDD nodes. When manipulating BDDs,
new BDDs are created by applying connectives, such as disjunction, conjunction and
negation, on the operand BDDs. The given connectives are the most frequently used
in this thesis. The disjunction of two BDDs A and B can be seen as the union A ∪ B
(or A ∨ B, by the dual interpretation of sets and formulas, see equation 2.4) on the
sets of satisfying assignments represented by those BDDs. Dually, conjunction of
two BDDs A and B can be seen as the intersection A ∩ B (or A ∧ B) on the sets of
satisfying assignments represented by those BDDs. The connective negation (¬A),
has only an arity of one, which means that it operates on a single BDD. The result
of negation comes down to interchanging the set of satisfying assignments with the
set of non-satisfying assignments. Bryant [3] found that these three BDD operations
can be executed in a time linear to the size of the operand BDDs, by using dynamic
programming.
Besides these three operations, there exist two more ways to manipulate BDDs that
are relevant to mention here: existential quantification and universal quantification [25].
Existential quantification ∃xi on f , over ~x = {x0, . . . , xi, . . . , xn}, removes all nodes
with variable label xi and makes all paths skip this variable, such that the value of
this variables doesn’t matter anymore while the rest of the function represented is
still preserved.

16 Chapter 2. Background

Definition 2.10. ∃xi on f , over ~x = {x0, . . . , xi, . . . , xn}, equals the smallest function
independent of xi, containing f :

∃xi f , fxi=0 ∪ fxi=1

Dually, we let’s introduce the universal quantification ∀xi f , which gives the BDD
where all nodes with variable label xi are removed such that for all values of xi, f is
true.

Definition 2.11. ∀xi on f , over ~x = {x0, . . . , xi, . . . , xn}, equals the largest function inde-
pendent of xi, contained in f :

∀xi f , fxi=0 ∩ fxi=1

In practice, BDD manipulation is used for the following two purposes.

• The encoding of behavior of systems, such as the relation that is built in Chap-
ter 4.

• Determining the reachability of systems, where the BDDs represent sets, as
done in Chapter 7.

17

Chapter 3

Related Work

3.1 Chess

Kristensen [17] showed that BDDs are a useful data structure to represent a big set
of states of a specific board game; Chess. He used BDDs to represent all 2-4 piece
endgames using only 30 MB memory, which is close to the state of the art from
Nalimov et al. [21], but the BDD approach has a significant advantage in the speed
for requesting this memory.

3.2 Connect Four

Edelkamp et al. [9], focused on finding the reachable states for the game Connect
Four, using BDDs. They found a variable ordering (see Subsection 2.3.3) for which
the BDDs representing all reachable states were only polynomial in the board size.
Their work also shows that overestimating the set of satisfying assignments can lead
to smaller BDDs. When representing all reachable states, they compared stopping
the search at immediately winning (terminal) states to ignoring terminal states and
found that ignoring them (and thus representing more states), leads to smaller BDD
sizes. See their corresponding results in Figure 3.1, where in every layer l, the BDD
represents all states with l stones, i.e. after I moves in the game. For any layer l ≥ 30,
the number of states when ignoring terminal states is higher than when not ignoring
them, but the number of nodes representing those states is smaller.

FIGURE 3.1: Results from edelkamp et al. for representing all connect
four states using BDDs.

18 Chapter 3. Related Work

In 2008, Edelkamp et al. found the exact number of reachable Connect Four
states within 15 hours, while later the exact same number was found using explicit
search (without BDDs) in 10.000 hours. This shows that BDDs can be useful for
representing states of a game.

3.3 Partitioned transition relation

Sometimes, in symbolic model checking, a transition relation can be too big in terms
of BDD size. One way to reduce the size of the transition relation is by partitioning
it into smaller BDDs. This method was introduced by Burch et al. [4], where they
distinguish two kinds of transition relations: synchronous and asynchronous. Syn-
chronous transition relations consist of various smaller relations which are applied
consecutively, whereas asynchronous transition relations, simultaneously apply var-
ious smaller relations. Therefore, Burch et al. decided to partition the transition
relation into smaller relations. For synchronous systems they found that the com-
plete transition relation would remain intact when it is expressed as a conjunction
of the partitioned relations, where for asynchronous systems that same holds using
disjunction instead of conjunction. The benefit of this partitioning is that the con-
juncted (or disjuncted) partitioned transition relation can have a smaller BDD size
than the complete transition relation. Burch et al. were able to validate models using
partitioned relations, where they were not able to validate the same models using the
complete relation. For example, a BDD representing the complete transition relation
of a synchronous system consisting of 340.000 nodes, consisted of only 2.500 nodes
when using the partitioned transition relation. This is a reduction of factor 140.

3.4 BDD packages

Tools have been developed for creating and manipulating BDDs. These tools can
be used to implement models using BDDs and manipulate (as described in Subsec-
tion 2.3.4, but there are more possible manipulations) those BDDs. We introduce two
widely-used tools for BDD manipulation here.

3.4.1 CUDD

CUDD stands for Colorado University Decision Diagram, and is a package for the
manipulation of BDDs and some other decision diagrams. This BDD package was
introduced in 1997 by Somenzi [7].

3.4.2 Sylvan

In 2012, van Dijk et al. [8] introduced a multi-core BDD package for parallel symbolic
model checking, called Sylvan. In constrast to CUDD, Sylvan performs its manipula-
tions in parallel. For instance, sylvan is embedded in the LTSMIN model checker [16],
which achieved some great results the past few years. For instance, LTSMIN par-
ticipated in the RERS challenges [22] of 2012, 2013 and 2014, winning several first
prizes.

19

Chapter 4

Encoding

For this thesis we apply retrograde analysis on Othello in order to solve the game.
The algorithms used are described in Chapter 6. In this chapter, we explain how
Othello states and the relations that are needed to apply retrograde analysis are en-
coded into BDDs.

4.1 Variables

In this section, variables are introduced that we refer to in other sections. All vari-
ables stated here, are introduced in the definition of an Othello state in Section 2.1.

m
The length of an Othello board (i.e. the number of fields vertically stacked
which is equal to the number of rows).

n
The width of an Othello board (i.e. the number of fields horizontally stacked
which is equal to the number of columns).

Aij
This variable needs two parameters 0 ≤ i < m and 0 ≤ j < n and represents
the corresponding field on the board.

B, W and E
The three possible values a field Aij can have, black, white and empty respec-
tively.

p
The player to turn, with p ∈ {0, 1}.

4.2 Encoding a State

Recall the definition of a state from Section 2.1. A state consists of m · n fields, that all
have one out of three possible values: Black, White or Empty. This means we cannot
encode one field using only one Boolean variable, since this would allow us to only
distinguish between two values. Therefore, one field is encoded by two variables,
X0 and X1, yielding four possible outcome values. The first variable distinguishes
between empty or not empty and the second between black or white. See Figure 4.1.

20 Chapter 4. Encoding

x0

x1 x1

Black White Impossible Empty

FIGURE 4.1: The encoding of the four possible values of a single field
by a BDD.

Note that the value impossible is not needed here, and can easily be discarded
by deleting the rightmost X1 node and putting the terminal node with label empty
at its place, as in Figure 4.2. This encoding (called 3T-encoding) reduces the size of
the BDD representing the value of a single field.

x0

x1

Black White

Empty

FIGURE 4.2: A different encoding (3T-encoding) of the three possible
values of a single field by a BDD.

In order to represent a complete state (or set of states), for all m · n fields, the
BDDs representing them must be connected into a bigger BDD. See Figure 4.3 for
how this BDD representing a complete state is structured. This BDD uses the 3T-
encoding, as described in Figure 4.2, but it is not a reduced BDD, as explained in
Section 2.3.2. Reducing this BDD would remove many nodes. The first variable (p),
determines which player has turn. Then two variables (x00a and x00b) are used to
determine the value of field A00. Whereas in every next level, two variables xija and
xijb determine the value of the next field Aij, such that xija distinguishes between E
and ¬E and xijb distinguishes between B and W, until the leaf nodes 0 and 1.

4.3. Encoding the Transition Relation 21

p

x00a x00a

x00b

x01a x01a x01a

x01b x01b x01b

...

. . .

0 1

Turn

A00

A01

A02
...

Amn

FIGURE 4.3: The structure of a BDD representing a complete (set of)
state(s). The dots mean that the same pattern is repeated, for all Aij,
with 0 ≤ i < m and 0 ≤ j < n. This BDD is uses the 3T-encoding
and is not (yet) reduced, as it does not represent any particular set of

states.

With the structure of the BDD of Figure 4.3, we can represent any set of states by
evaluating the paths that represent those states to true and all other paths to false.
The size of this BDD is fully dependent on the similarity of these states. For example,
the set of all states S can be represented by a BDD with one node; true.
Next to the values of all m · n fields, a state also describes the next player to move.
Since there are only two possibilities, only one Boolean variable is needed. This
variable is now shown as the uppermost variable of the BDD, but in Chapter 7, we
experiment with its location. This comes down to a total of m · n · 2 + 1 variables to
describe a set of states.

4.3 Encoding the Transition Relation

Let x be state variables describing the Othello state, as defined in the previous sec-
tion. In this section, we describe how to encode Othello moves in BDDs. Concretely,
we show how to build a BDD T over variables x and x′ , where x′ are the primed
copies of x and where all satisfying assignments of T represent tuples of states (y, z)
in the move relation. Therefore, a pair of states (y, z) is called satisfied by the tran-
sition relation whenever the combination of all their variable assignments yields a
satisfying assignment in the BDD.
We explain the construction of a BDD T by giving the logic formulas that represent T.
Note that T is exactly the disjunction T0 and T1, thus we define these formulas over
p ∈ {0, 1}, such that we construct Tp. Moreover, we use the variables introduced in
Section 4.1, together with their primed versions. We use p′ to indicate which player
has turn in the next state (z) and A′ij for referring to a field in the next state. We
introduce the variable cp which equals B when p = 0 and W when p = 1. When
we say that Aij = cp, we mean that there is a stone of player p’s color on that field.
The negation, c¬p, means the opponents color. Besides these variables, also the term
encloser is used for describing the encoding of the transition relation.

22 Chapter 4. Encoding

Definition 4.1. For placing a stone with color cp on an empty field Aij, an encloser for that
field is another field Akl in any of the eight directions from Aij, with color cp and all stones
between them with color c¬p.

An example of a eastern encloser (i.e. an encloser east of Aij) is given in Figure 4.4.
An eastern encloser of Aij is a field Aid, with j + 2 ≤ d ≤ n − 1, that is cp and all
fields Aie, with j < e < d, are c¬p.

FIGURE 4.4: On this board, the red field is an eastern encloser for
player black playing on the yellow field, since it encloses two white

stones and turn them.

4.3.1 Partitioned transition relation

For simplicity, firstly the partitioned transition relation Tpij is defined, which encodes
a single move from a state y to a state z, playing on field Aij. Playing on Aij means
putting a stone on that field. Thus, the partitioned relation Tpij represents tuples
(y, z) such that playing on Aij is a legal move from state y to state z. When playing on
Aij, there is only a subset Hij of fields that is relevant to the legality of the placement
of a stone on Aij. That is, the fields in the double cross through that Aij, such that
these are the fields in the eight directions from Aij. Relevance here means that the
value these fields matter to determine whether or not there exists an encloser for
Aij. All other field are only relevant in the way that they need to remain unchanged,
whatever their value is. Thus, the partial relation Tpij is defined over all variables
xijk, with k ∈ {a, b}, while the relevant fields Hij are those needed to determine the
presence of an encloser. See Figure 4.5 for more information about the set Hij.

4.3. Encoding the Transition Relation 23

FIGURE 4.5: The double cross H34, where all relevant fields for plac-
ing a (black) stone on A34 have been marked red. Relevant fields are

those needed to determine the presence of an encloser.

Now, Tpij can be built up step-by-step. In other words, we first focus on encoding
all semi-legal moves, which we constrain later in this chapter, such that all illegal
moves are removed from the encoding. Since playing on Aij requires this field to be
empty before the move and filled with cp after the move and the turn must change,
we start with

Tpij = p ∧ ¬p′ ∧ (Aij = E) ∧ (A′ij = cp) (4.1)

What now needs to be checked is that in all of the eight directions, either there exists
an encloser, or the complete direction remains unchanged. When there exists such an
encloser, the relation should only satisfy the pair of states (y, z) if in z the enclosed
states are turned to cp and the encloser remains cp. So we extend Tpij for all eight
directions as follows.

Tpij = p ∧ ¬p′ ∧ (Aij = E) ∧ (A′ij = cp)

∧eastpij ∧ southpij ∧ westpij ∧ northpij ∧ northeastpij ∧ southeastpij ∧ southwestpij ∧ northwestpij

(4.2)
where eastpij is defined as

∃ encloser︷ ︸︸ ︷∨
j+2≤d≤n−1

Aid = cp ∧ A′id = cp ∧
∧

j<e<d

(
Aie = c¬p ∧ A′ie = cp

)∨
unchanged︷ ︸︸ ︷∧

j+1≤d≤n−1

(
Aid = A′id

)
(4.3)

southpij defined as

∃ encloser︷ ︸︸ ︷∨
i+2≤d≤m−1

(
Adj = cp ∧ A′dj = cp ∧

∧
i<e<d

(
Aej = c¬p ∧ A′ej = cp

))
∨

unchanged︷ ︸︸ ︷∧
i+1≤d≤m−1

(
Adj = A′dj

)
(4.4)

24 Chapter 4. Encoding

southeastpij defined as

∃ encloser︷ ︸︸ ︷∨
i+2≤d≤m−1
∧j+d−i≤n−1

(
Ad(j+d−i) = cp ∧ A′d(j+d−i) = cp ∧

∧
i<e<d

(
Ae(j+e−i) = c¬p ∧ A′e(j+e−i) = cp

))

∨

unchanged︷ ︸︸ ︷∧
i+1≤d≤m−1
∧j+d−i≤n−1

(
Ad(j+d−i) = A′d(j+d−i)

)
(4.5)

and all other directions can be constructed similarly. In the three equations above,
∃ encloser denotes the part of the formula which enforces that there exists an encloser
(and the enclosed stones are turned) in that direction and unchanged denotes the part
of the formula which enforces that the complete direction remains unchanged.
Now, every time there exists an encloser in a certain direction, we want to enforce
that the rest of that direction (beyond the encloser) remains unchanged. This means
that for every direction, another clause must be added inside ∃ encloser in each for-
mula. The formula for eastpij now becomes

∨
j+2≤d≤n−1

Aid = cp ∧ A′id = cp ∧
∧

j<e<d

(
Aie = c¬p ∧ A′ie = cp

)
∧

∧
d< f≤n−1

(
Ai f = A′i f

)
∨

∧
j+1≤d≤n−1

(
Aid = A′id

)
(4.6)

where for southeastpij it becomes

∨
i+2≤d≤m−1
∧j+d−i≤n−1

(
Ad(j+d−i) = cp ∧ A′d(j+d−i) = cp ∧

∧
i<e<d

(
Ae(j+e−i) = c¬p ∧ A′e(j+e−i) = cp

)

∧
∧

d< f≤m−1
∧j+ f−1≤n−1

(
A f (j+ f−i) = A f (j+ f−i)′

) ∨ ∧
i+1≤d≤m−1

(
Ad(j+d−i) = A′d(j+d−i)

)
(4.7)

We still need to constrain the relation more. The current encoding always sat-
isfies an unchanged direction. Instead, this must only be satisfied if there exists no
encloser. Otherwise, the encoding of the relation satisfies pairs of states (y, z) where
there exists an encloser in y, but in z nothing is changed in that direction. For exam-
ple, the board in Figure 4.4 shows an eastern encloser for placement on A31. Using
the current encoding of the transition relation, both the board where the white stones
are flipped, as the board where they remain unchanged, are satisfied. So we add the
constraint

∧ ¬
∨

j+2≤d≤n−1

Aid = cp ∧
∧

j<e<d

(
Aie = c¬p

) (4.8)

to unchanged in the formula for eastpij . The formula for eastpij now becomes

4.3. Encoding the Transition Relation 25

∨
j+2≤d≤n−1

Aid = cp ∧ A′id = cp ∧
∧

j<e<d

(
Aie = c¬p ∧ A′ie = cp

)
∧

∧
d< f≤n−1

(
Ai f = A′i f

)
∨

 ∧
j+1≤d≤n−1

(
Aid = A′id

)
∧ ¬

∨
j+2≤d≤n−1

Aid = cp ∧
∧

j<e<d

(
Aie = c¬p

)
(4.9)

Again, for the other directions a similar encoding is applied. At this point, there is
only one more thing we need to enforce. Since any unchanged direction is satisfied,
it is possible that all directions remain unchanged, which would always satisfy the
pair of states where no field changes, no matter the values of the fields. To prevent
this from happening, an extra constraint is added. In this constraint, we copy the
formula for unchanged for every direction and index these formulas with Udirection.
Then,

∧ ¬
∧

∀d∈directions

(Ud) (4.10)

is added to the formula describing the partitioned transition relation. We now rede-
fine the partitioned relation to Tij as the union of the partitioned relations T0ij and
T1ij .
Since in the partitioned relation only the fields in Hij were relevant, we must add
the constraint such that all irrelevant fields remain unchanged. So the last clause we
add to Tij is:

∧
∧

Aij /∈Hij

(
Aij = A′ij

)
(4.11)

4.3.2 Encoding of complete relation using partitioned relations

With the encodings for the partitioned relations as described in the previous subsec-
tion, BDDs can be constructed (using the connectives described in Subsection 2.3.4)
that represent these partitioned relations. Now, using the BDDs representing the
partitioned relations Tij, we can encode the complete relation by one disjunction
over all these BDDs, as explained in Section 3.3 and [4].
However, there is one more possible move to make in Othello which could not be
encoded in any partitioned relation. That is the null-move; whenever a player can-
not make any move, it can make a move by doing nothing. Then the only thing that
changes in the state is that the turn variable p swaps. Since in order to make such a
move, it must be the case that playing on any other field is impossible, all fields be-
come relevant for this move. Thus, this move cannot be encoded in the partitioned
relations, since we need all partitioned relations to check if the null-move is legal.
In order to add this null-move to the formula, we first introduce a technique to find
deadlock states. Deadlocks are states that have no successor in a relation. This tech-
nique works as follows: if we use ∀preimageTij(∅) (the application of ∀preimage on
BDDs specifically, is introduced in Equation 6.3) and conjunct this for all i and j, we
get the states x where either all successors are in the empty set, or there exist no suc-
cessors in x. Since it cannot be the case that a state has a successor in the empty set,
we find all states that have no successors, i.e. the deadlocks states.
Now, we can conjunct the BDD representing the deadlocks to the BDD reperesenting
the states where no field changes and disjunct this with the union of all partitioned

26 Chapter 4. Encoding

relations to obtain the complete relation T:

∨
0≤i≤m−1

 ∨
0≤j≤n−1

(
Tij
)∨

 ∧
0≤i≤m−1

 ∧
0≤j≤n−1

(
∀preimageTij(∅)

) ∧ ∧
0≤i≤m−1

 ∧
0≤j≤n−1

(
Aij = A′ij

) ∧ p ∧ ¬p′

(4.12)

which can be simplified to:

∨
0≤i≤m−1

 ∨
0≤j≤n−1

(
Tij
)∨

 ∧
0≤i≤m−1

 ∧
0≤j≤n−1

(
∀preimageTij(∅) ∧ Aij = A′ij

) ∧ p ∧ ¬p′

(4.13)

given that Tij are the BDDs representing all partitioned relations as described in Sub-
section 4.3.1. Note that deadlock relation encodes solely the deadlock relation, which
can also be seen as a partitioned relation, yielding a total of m · n + 1 partitioned
relations.

4.4 Encoding of the immediately winning states

For retrograde analysis, the transition relation as well as the immediately winning
states are needed. The immediately winning states for player Pi (with i ∈ {0, 1})
equals the set Ei, where the game has ended and player i possesses more stones than
its opponent. To encode this set of states we use the transition relation T, whose
encoding is defined in Section 4.3. By the existence of the null-move, a state can
only be in E if the player with turn can only play the null-move and afterwards the
opponent also can only play the null-move. So we are looking for the set of states
where both players cannot place any stone if it would be their turn.
This set can be found by taking the BDD representing all deadlocks, as described
in Equation 4.12, and applying universal quantification (see Subsection 2.3.4) on the
variable p, in order to get the BDD representing E together with the set immediate

draw. Then, within this set we have Ep = {A ∈ E |
{

#B(A) > #W(A), if p = 0
#W(A) > #B(A), if p = 1

},

with p ∈ {0, 1}.

27

Chapter 5

Validation

In Chapter 4, we described how the transition relation can be represented in a BDD
or logic formula. In this chapter, we validate this representation by calculating the
number of states we expect in these representations by theory and comparing it to
the numbers found by testing our encoded representations. We test this by encoding
the relation in a BDD and counting the number of satisfying assignments. Compar-
ing this number to the theoretical number then tells us if the encoding is correct.

5.1 Validation of the partitioned transition relation

Here, we calculate eij, the theoretical number of pairs of states (y, z) that is satisfied
by the partitioned relation Tij. Later, we can compare this number to the number of
satisfying assignments in the BDD representing the Tij. Recall that the partitioned
transition relation Tij is defined as the relation for solely placing a stone on the field
Aij, over all variables xijk, with k ∈ {a, b}. First, note that some of the partitioned
relations have a different value for e, since different positions Aij in the grid lead
to different sets of relevant fields Hij. There are also different Aij for which eij is
equal, by the fact that the their positions in the grid are symmetrical (i.e. mirrored
or rotated). Take for example the four corners fields. We expect T00, T07, T70 and T77
to have an equal value for e, since for any pair of boards that is satisfied by T00, there
exists another symmetric pair of boards that is satisfied by the other corner relations
and vice versa. This way, there are more groups of fields which are symmetric with
regard to the location on the grid. These groups are given in Figure 5.1, where fields
with the same number have the same value of e.

FIGURE 5.1: An empty Othello board where mirrored or rotated fields
have the same number.

28 Chapter 5. Validation

Let’s start the validation at the corner states. Recall that for validation we com-
pute the number of pairs (y, z) that are satisfied by Tij. Since we are validating the
partitioned relation, any state y, has at most one state z such that (y, z) is satisfied
by Tij (since the relation is deterministic). Thus, in order to find the number of pairs
(y, z), we only need to find the number of states y that have a successor z under Tij.
These are exactly the states where all of the following conditions hold.

C1 The board contains in at least one direction an encloser, such that ∃(k, l) : Akl =
cp ∧ ∀(i, j) < (r, s) < (k, l)Ars = c¬p, with p the player with turn ∈ {0, 1}.

C2 All relevant fields (part of Hij as in Figure 4.5) can have any value V ∈ {B, W, E}.

C3 All irrelevant fields (not part of Hij as in Figure 4.5) can have any value V ∈
{B, W, E}.

Now, take the relation T00. Here, there exist three directions in which there can
be an encloser. Any valuation of the set of fields of such a direction is called a partial
board. See Figure 5.2 for those relevant fields.

FIGURE 5.2: The relevant fields for computing e00. For A00 there exist
three directions with relevant fields.

In order to satisfy C2, there exist for a single direction 37 different partial boards.
We have 37 different partial boards, since any of the seven fields in the direction can
have one out of three possible values. This gives us (37)3 valuations of the relevant
fields (the green fields in Figure 5.2).
By C1, it cannot be the case that in all three directions, there is no encloser. Thus,
in order to satisfy C1, we must subtract the number of valuations of the relevant
fields, where in all three directions, this encloser is absent. For a single direction,
the number of partial boards with an encloser is ∑0≤w≤5 3w. This is true since for
any encloser (there can only be six different locations per direction), there is a single
possibility for the fields until the encloser and three possibilities for all fields after
the encloser. See Figure 5.3.

5.1. Validation of the partitioned transition relation 29

FIGURE 5.3: A partial board where the yellow field is the encloser for
A00. All fields after the yellow one are in V ∈ {B, W, E}. Also, on A00
(red) a stone must be placed with color equal to that of A02 (yellow)

en opposite to that of A01

If the encloser is on A02, there are five fields after the encloser, which comes down
to 35 possibilities.
Now we can compute the number of partial boards for one direction where there is
no encloser: 37 − ∑0≤w≤5 3w. Then, the number of partial boards where in all three
directions there is no encloser becomes: (37 − ∑0≤w≤5 3w)3. Note that the upper
bound for w in this summation, must be equal to the number of fields in the direc-
tion (7) minus 2, since the first two positions after the encloser are always part of the
enclosement and cannot be any V.
Still, C3 is not taken into account here. In order to satisfy this condition, all other 42
fields can have any value.
Also note that the state also contains a turn variable p. If we flip all stones in all
computed partial boards and flip the turn variable, we get twice as many possible
states y. Therefore, we multiply the formula by 2 at this point.
Thus, to reason over the number of complete states instead of the number of valua-
tions for all fields in Hij, the formula that satisfies all three conditions becomes the
following.

e00 = ((37)3 − (37 − ∑
0≤w≤5

3w)3) · 342 · 2 = 8.803 85× 109 (5.1)

Now we have calculated the theoretical value of the number of pairs (i, j) in Tij
(eij) for the corner fields, let’s calculate this number for one other group of relations:
those with a 10 in Figure 5.1. These relations are never used in a normal game of
Othello, since the game starts with stones on those fields en they can never be re-
moved. However, in retrograde analysis they can be used in the search for states,
such that a backward play is done on one of those fields, removing the stone. In
Chapter 7, we evaluate this and test whether constraints can be made to reduce the
size of the state space. For now, checking the value of e for these fields still gives us
information on the correctness of our encoding for the partitioned relation. When
doing the same as for calculating e00, we get:

e33 = ((33)5 · (34)3 − (33 − ∑
0≤w≤1

3w)5 · (34 − ∑
0≤w≤2

3w)3) · 336 · 2 = 1.681 60× 1030

(5.2)
This may look very different to the equation for e00, but it is not. For calculating e00,
there were three relevant directions of length 7, where now there are five relevant
directions of length 3 and three relevant directions of length 4. That is why both the
left and the right side of the subtraction are splitted into two powers instead of one.
A general formula for validating partitioned relations can be constructed as follows:

eij =

(
∏
d∈D

(
3ld
)
− ∏

d∈D

(
3ld − ∑

0≤w≤ld−2
(3w)

))
· 3h · 2 (5.3)

where

d a partial board for a relevant direction,

30 Chapter 5. Validation

D the set of all relevant directions,

ld the length of direction d (in number of fields),

h the number of irrelevant fields (those not in Hij).

For those relations Tij for which we calculated eij, we compared this number to
the number of satisfying assignments in the BDDs that are built using our encod-
ing. This concerns the the relations T00, T07, T33, T34, T43, T44, T70 and T77. For their
BDDs, the number of satisfying assignments matches the excpected number. All
other encoding are constructed similarly, and we have validated the corner field and
the middle fields. This gives us high confidence that the encoding is correct, based
on our counting argument and the tests on our implemented encoding.

5.2 Validation of the complete transition relation

Since the complete transition relation is built up by calculating and intersecting the
deadlock states for all partitioned relations, we cannot simply count the theoretical
number of pairs of states (y, z) that is satisfied by the complete relation T, as done
before with the partitioned relations. This counting cannot be done since an inter-
section of sets of states cannot be efficiently counted, given only the number of states
per set. However, T can be validated as follows. For this, we look closely at how T is
built up. From Subsection 4.3.2 follows that besides some minor subformulas (con-
cerning fields to remain unchanged and swapping the turn variable), the correctness
of T is solely dependent on the correctness of all partitioned transition relations Tij
and the function ∀preimage. In the previous section we validated the correctness
of the encoding of all Tij and we can assume that the ∀preimage function is defined
correctly. Therefore we are convinced that the encoding of T is correct.

5.3 Validation of the immediately winning states

The set of immediately winning states can be partitioned into three categories:

1 Those states where there exist no empty fields.

2 Those states where one player has no stones on the board.

3 Those states which are non of the above, but are immediately winning for one
player (see Figure 5.4).

5.3. Validation of the immediately winning states 31

FIGURE 5.4: Immediately winning state for player white. This is an
ending of a European Grand Prix game between Hassan and Ver-

stuyft.

The first two categories of immediately winning states can be efficiently counted,
but the third cannot. So for validating the winning states, we again lay our trust that
∀preimage is defined correctly and together with the validation of the partitioned
transition relation this is sufficient to show the correctness of the computation of the
set of immediately winning states.

33

Chapter 6

Algorithms for retrograde analysis

In this Chapter, we give multiple algorithms for implementing retrograde analysis
using BDDs. These algorithms can reduce the needed space of the search, by using
methods which store different intermediate results.
We distinguish two main approaches for searching the state space: forward analysis
and backward analysis. For solving Othello, we need retrograde analysis and thus
apply backward analysis. The main idea of retrograde analysis is already described
in Subsection 2.2.2, where also an outline of an algorithm for finding a fixpoint is
given in Algorithm 1. Although forward analysis itself cannot be used to solve a
game, it can be useful to find all the reachable states, starting from the initial states.
Besides knowing the size of the state space, this can be useful in the way that during
retrograde analysis, we can limit ourselves to the reachable states only. Next to this,
also the use of a sweep-line is described, where at any moment during the analysis,
we only keep the states with i stones on the board, with i any monotone increasing
or decreasing number such that 0 ≤ i ≤ m · n. The goal of these methods is to save
memory, by obtaining smaller intermediate results.
As described in Subsection 2.3.1, in this chapter, we interpret BDDs as sets of states.
Therefore, in the algorithms presented here, we use the operators union and inter-
section (∪ and ∩) to denote operations on the sets of satisfying assignments of the
operator BDDs.

6.1 Retrograde analysis with BDDs

As described in Section 2.2.2, retrograde analysis is a way of solving games by start-
ing at the goal states and reasoning backward. Then a set of states is constructed in
which a player can force the play to stay in that set. Since the set of states winning
for that player (which were the goal states) are also in that set, this set represents
exactly all winning states for that player.
Recall Algorithm 1, where preimage and ∀∃preimage are applied alternately on the
set WP0 , expanding this set until convergence. This algorithm can be applied using
BDDs to represent sets of states. Using BDD operations as union, WP0 can be initial-
ized and modified as supposed to. Since these operations only work on BDDs, we
need every set or state we use, to be represented by a BDD. Therefore we consider
the transition relation T as a BDD, with the encoding as described in Chapter 4. Also
the partitioned relations Tij are represented by BDDs Tij, for all 1 ≤ i, j ≤ 8.
Also, the functions image, preimage, ∀preimage and ∀∃preimage have to be rede-
fined as BDD operations. The image of A under T is computed by the BDD operation
ImageT(A):

ImageT(A) , (∃~x : (A ∩ T))[~x′ := ~x] (6.1)

34 Chapter 6. Algorithms for retrograde analysis

and the preimage is defined in a similar way:

PreimageT(A) , ∃~x′ : (A[~x := ~x′] ∩ T) (6.2)

where A is a BDD on variables ~x = x1, . . . , xn, T is the transition relation and ∃~x is
the BDD operator existential quantification (see Section 2.3.4). The substitution and
existential quantification are only applied on the relevant variables, i.e. those in both
A and T. McMillan [19] shows that the quantification algorithms are NP-complete,
by proving that it belongs to NP , and giving a reduction from the problem 3-SAT,
which is also NP-complete.
In the above equations, the function is given by three consecutive operations. How-
ever, in Sylvan, this image function is computed by one single traversal through the
BDD, instead of three, which makes it more efficient, since it does not store interme-
diate results.
A single BDD operation for ∀preimage, is introduced by Huybers et al. [14] as fol-
lows:

∀preimageT(A) , ¬∃~x′ : (Ā[~x := ~x′] ∩ T) (6.3)

A BDD operation for ∀∃preimage can be obtained by using both the preimage and
the ∀preimage operation:

∀∃PreimageT(A) , ∀PreimageT(A) ∩ PreimageT(A) (6.4)

When using the partitioned relations Tij instead of the complete relation, the opera-
tions Image, Preimage and ∀preimage are slightly different, since existential quan-
tification is only applied on those variables that are in Hij.

6.2 Limit to reachable states by forward analysis

Limiting the search to only the reachable states can reduce the BDD sizes, since fewer
states have to be represented. Finding all reachable states from the initial states can
be done with forward analysis by taking the initial states and consecutively add the
image to the set of reachable states. This process stops when in a certain iteration,
no new states are added to the set. We then speak of convergence. See Algorithm 2
for an outline for finding all reachable states R.

Algorithm 2: Finding the set of states reachable from the initial states
Result: R

1 R← I
2 old← ∅
3 while R 6= old do
4 old← R
5 R← R ∪ ImageT(R)
6 end

Combining Algorithm 1 and 2 gives us a retrograde analysis algorithm for find-
ing WP0 , while the search space is limited to the reachable states only, as in Algo-
rithm 3.

6.3. The sweep-line method 35

Algorithm 3: Retrograde analysis limited to the reachable states
Result: WP0

1 R← I
2 old← ∅
3 while R 6= old do
4 old← R
5 R← R ∪ ImageT(R)
6 end
7 WP0 ← E0 ∩ R
8 old← ∅
9 while WP0 6= old do

10 old←WP0

11 WP0 ←WP0 ∪ PreimageT0(WP0)
12 WP0 ←WP0 ∪ ∀∃preimageT1(WP0)
13 WP0 ←WP0 ∩ R
14 end

In Chapter 7, we compare algorithms where the search space is constrained to
those where all states are considered, in terms of BDD size.

6.3 The sweep-line method

Often, in model checking, the size of the state space shows a peak when plotted
against iteration number. This means that the size of the state space is bigger some-
where during the algorithm then after the algorithm. Therefore, techniques have
been developed to reduce this peak, such as the sweep-line method [15]. This method
can reduce the memory usage by dividing all states into layers with the same amount
of progress, where at any moment, only one layer is stored. In order to make this
work, the given model needs to make progress in any way, when moving through
the state space. This progress is defined by the progress measure as defined below,
where T is the transition relation of the model and s and s′ are states.

Definition 6.1. A progress measure is a tupleP , (O,v, ψ) such that O is a set of progress
values, v is a total order on O, and ψ : S → O is a progress mapping. P is monotonic if
∀(s, s′) ∈ T : ψ(s) v ψ(s′). Otherwise, P is non-monotonic.

Then if there can be found a monotonic progress measure for the model, then the
sweep-line method can be applied, where each layer represents the states which all
have the same progress value O. The sweep-line method traverses the state space
in a least-progress-first order. Starting with the layer with the least progress value, the
next layer will be explored when all states of the current layer are explored. Then,
if this next layer is also explored, all the states of the current layer will be deleted
from the memory. This way, all necessary states will be explored, while the memory
usage can remain low.
Kristensen et al. [18] considered to use the sweep-line method on symbolic model
checking, but since there is no correlation between the number of states and the size
of the BDD representing it, they haven’t applied it yet.
In Chapter 7, we experiment on this, by using the sweep-line method on our retro-
grade analysis algorithms in order to solve Othello. As a progress measure, we use
a function which essentially counts the number of stones on a board. In a game of

36 Chapter 6. Algorithms for retrograde analysis

Othello, this function is monotone, since a move does not allow to remove stones.
We take P = (O,v, ψ) as progress measure, with

O ∈ {0, . . . , m · n}, the number of stones on the board,

v the relation ≥ and

ψ the mapping S→ O, such that ∀s ∈ S : ψ(s) = #B(s) + #W(s),

which is monotone. Note that we take ≥ instead of ≤, since for retrograde analy-
sis we start with the goal states and we have to obey the least-progress-first order.
Our algorithm for retrograde analysis using the sweep-line method is comparable
to Algorithm 1, but in contrast to Algorithm 1, WP0 is initialized to the immediately
winning states with m · n stones on the board. Also, we iterate always exactly m · n
times, where in each iteration only all states with the i + 1 stones are stored, and
replaced by all boards with i stones on the board, with i ∈ {4, . . . , m · n − 1}. The
outline can be found in Algorithm 4, where PT represents the union of all partitioned
relations and DT represents solely the null-move relation, such that PT ∪ DT = T.
Also, we define psi(X, i) = {x ∈ X | ψ(x) = i} as the BDD representing all states in
X for which the progress measure equals i.

Algorithm 4: Retrograde analysis using a sweep-line on the number of stones
on the board.

Result: sweepline1
1 sweepline1← E0 ∩ psi(S, m · n)
2 for i = m · n− 1 to 4 do
3 sweepline2← PreimagePT0(sweepline1)
4 sweepline2← sweepline2∪ ∀∃preimagePT1(sweepline1)
5 sweepline2← sweepline2∪ PreimageDT(sweepline2)
6 sweepline1← sweepline2∪ (E0 ∩ psi(S, i))
7 end

In the above algorithm, in every iteration, sweepline1 represents the states with i
stones on the board. Therefore, sweepline1 represents the set of winning states with
four stones on the board, after termination. Then the winning player for Othello can
be determined, by intersecting this set with the initial state. Note that this method
solves the game ultra weakly, instead of strongly (see Section 2.2).
Every iteration, the set of winning states with i stones, are calculated and represented
by sweepline2, while sweepline1 represents all winning states with i + 1 stones. In
order to make both sweeplines always represent a set of states with a single progress
value, the transition relation is partitioned into PT and DT. This way, we can force
the algorithm to only find null-moves in Line 5.

37

Chapter 7

Experimental Evaluation

The main goal of our experiments is to come as close as possible to solving Othello.
Their are multiple board sizes that can be solved, which indicate how far we are
in solving the 8× 8 instance of Othello. With our techniques, we are able to solve
instances of Othello up to 4× 5 boards. Thus, we analyze the algorithms introduced
in Chapter 6 and compare the corresponding BDD sizes with each other. We also
experiment on possible encodings, such as different variable orderings and the 3T-
encoding of a field.
Since solving a game is bounded by the computation time and available memory,
we try to keep the memory usage as low as possible. The memory usage is fully
dependent on the sizes of the BDDs. The moment in an algorithm where the BDD
sizes are the biggest, is called the peak of the algorithm. Thus, we try to keep the
size of this peak low, in order to come closer to solving Othello. Also, we use these
experiments to gain knowledge on our techniques, such that they can be reused for
other purposes (e.g. solving other combinatorial games).

7.1 Experiments

In order to perform the experiments in this chapter, we implemented a tool in c++
which operates on the BDD package Sylvan (Subsection 3.4.2. This tool applies the
algorithms of Chapter 6 on the encoding of Othello, described in Chapter 4. The
source code of this tool can be found on Github: https://github.com/Stefvandijk/
Othello_BDD.git. The encoding in Chapter 4, is used to construct BDDs for:

• the initial state,

• all m · n + 1 partitioned transition relations,

• the complete transition relation,

• the set of winning states.

Together with the implemented algorithms described in Chapter 6, these BDDs can
be used to perform retrograde analysis on Othello. Now, we introduce and evaluate
the experiments that might gain knowledge on how to solve Othello (and maybe
other similar games). The experiments we perform in this chapter, compare BDD
sizes and are only applied to Othello on 4 × 4 and 4 × 5 grids, since bigger grids
require more resources than we have available. For all experiments performed in
this chapter on 4× 5 a board, we fixed the location of the four non-empty fields in
the initial state as in Figure 7.1.

https://github.com/Stefvandijk/Othello_BDD.git
https://github.com/Stefvandijk/Othello_BDD.git

38 Chapter 7. Experimental Evaluation

FIGURE 7.1: The initial state in 4 × 5 Othello, where we fixed the
location of the non-empty fields this way.

7.1.1 Using the 3T-encoding for an empty field

In Section 4.2, we introduced a different encoding for BDDs representing states. In
this 3T-encoding, an empty field is encoded by one variable instead of two, as in the
standard encoding. In this section, we validate if this 3T-encoding results in smaller
BDDs, compared to the standard encoding. In this experiment, we compare the BDD
sizes for both encodings on three (arbitrary) BDDs, which represent: the initial state,
the complete relation and the set of immediately winning states for one player. See
table 7.1 for the results for 4× 4 Othello.

BDD #nodes using standard encoding #nodes using 3T-encoding compression
Initial 34 22 35.29%

Relation 215801 192422 10.83%
Winning 45478 32636 28.24%

TABLE 7.1: Comparison between the standard encoding and the 3T-
encoding, for three (arbitrary) BDDs.

These results show that using a single variable for encoding an empty field re-
sults in smaller BDDs. It also shows that the percentage of saved space is fully de-
pendent on the BDD itself, since it is dependent on the number of empty fields in
the represented BDDs.

7.1.2 Comparing Algorithms

We hypothesize that the algorithms in Chapter 6 behave very differently when ap-
plied on Othello. However, we have no a priori criteria to decide which works best
for solving the game. Therefore, we compare the performance of these methods by
comparing the sizes of the peak BDDs. The performance is mostly limited by the size
of the peak BDD, since the memory usage is particularly dependent on the biggest
BDD size throughout the algorithm. Thus, this also concerns intermediate BDDs,
instead of only the result BDD.
In Chapter 6, we gave several modifications to the standard retrograde analysis al-
gorithm introduced in Subsection 2.2.2. We introduce the following algorithms and
refer to these algorithms with Alg.

7.1. Experiments 39

Alg 1 Finding the reachable states by forward analysis (Algorithm 2)

Alg 2 Retrograde analysis (Algorithm 1)

Alg 3 Retrograde analysis limited by the reachable states (Algorithm 3)

Alg 4 Retrograde analysis with using the sweep-line method (Algorithm 4)

Alg 5 Retrograde analysis limited by the reachable states us-
ing the sweep-line method

Not yet defined

Most of the algorithms introduced here are introduced before, but are now renum-
bered. Alg 5 is a combination of Alg 3 and Alg 4, where both the sweep-line method
as well as the limitation to the reachable states are applied.
In order to gain knowledge on what algorithm works best for solving Othello, we
compare the Alg 2 to Alg 5 with each other in terms of BDD size. Since Alg 3 and
Alg 5 are bounded by finding the reachable states, we take the result of algorithm 1
also into account. Note that Alg 1 is not able to solve Othello, but Alg 3 and Alg 5 are
limited by this forward search. We keep track of the BDD size per iteration of the
algorithm and plot the results for these five algorithms in Figure 7.2.

FIGURE 7.2: BDD sizes per iteration for the five algorithms, on a log-
scaled y-axis. The left figure gives the sizes on a 4× 4 board and the
right figure gives the sizes on a 4× 5 board. Later, we explain why

the different algorithms terminate at different points.

These figures are plotted on a log-scaled y-axis, since the differences are too big
for a linear y-axis. Comparing these figures directly shows their similarity. All algo-
rithms behave the same in both 4× 4 and 4× 5 Othello. Therefore, we expect that
scaling up to bigger variants of Othello (for instance 8× 8 Othello) would yield sim-
ilar trends, with of course larger BDD sizes in general.

40 Chapter 7. Experimental Evaluation

What stands out in each figure, is the differences in the length between the lines of a
figure. The length of a line represent the number of iterations performed in the algo-
rithm, which equals the longest sequence of moves from one of the states that are in
the initial set of the algorithm. These differences exist because the algorithms have
different termination criteria. Alg 4 and Alg 5, use the sweep-line method. Therefore,
they perform m · n− 4 iterations, which results in 12 and 16 iterations respectively,
as visible in the graphs. The blue lines, representing Alg 1, terminate at convergence.
This algorithm performs forward search. Then, the occurrence of each null-move in
a sequence of moves, lengthen the number of iterations, since most sequences termi-
nate whenever the board is full. Thus, by the fact that not every move adds a stone
to the board, the forward search can have more than m · n− 4 iterations. For both
the orange as the green lines, representing Alg 2 and Alg 3, in one iteration, a move
is applied for both players. Both algorithms terminate at convergence, after 20 and
14 moves respectively, for 4× 4 Othello. What also stands out in both figures, is that
the four algorithms for retrograde analysis show big differences in their BDD sizes.
These figures tell us that both limiting the search to the reachable states as well as
the sweep-line method reduce the BDD size during every iteration of the algorithm,
where combining these two methods delivers an even better reduction. See Table 7.2
for the exact numbers of the reductions for 4× 4 Othello.

Algorithm Peak BDD size Reduction compared to algorithm 2
Alg 2 2279148 N/A
Alg 3 37298 98.36%
Alg 4 620067 72.79%
Alg 5 15656 99.31%

TABLE 7.2: Comparison of the four retrograde analysis algorithms,
with regard to their peak BDD size, for 4× 4 Othello.

7.1.3 Variable ordering

As described in Subsection 2.3.3 and 3.2, an optimal variable ordering can reduce
the BDD sizes. We therefore try to find this optimal ordering in order to solve bigger
instances of Othello. The standard variable ordering used so far (called VOa), starts
at the upper left field (A00 and is followed by the field right of it (A01), row by row,
as shown in Figure 7.3 for a 4× 5 board.

FIGURE 7.3: The standard variable ordering used so far (VOa), given
on a 4× 5 board.

We now introduce two different variable orderings, for which the BDDs might
be smaller. We think that it could be the case that the fields in the center of the board

7.1. Experiments 41

have a higher dependence on each other, as well as for the fields located more to the
edges of the board. We came up with two variable orderings: one where the fields
that are occupied earlier in the game, are lower in the BDD and one the other way
around. For these two variable orderings, called and VOb and VOc respectively, see
Figures 7.4 and 7.5.

FIGURE 7.4: Variable Ordering VOb, where the grid is split up in
rings, such that the corners of each ring are higher in the BDD than

the rest.

FIGURE 7.5: Variable Ordering VOc, where the grid is split up in
rings, such that the corners of each ring are lower in the BDD than

the rest. This ordering is the opposite of VOb.

We experiment with these variables orderings on a 4× 5 board, and compare the
BDD sizes when performing the best algorihm we found so far: retrograde analysis
using the sweep-line method and limiting the search to the reachable states (Alg 5).
The results of this experiment are in Figure 7.6.

42 Chapter 7. Experimental Evaluation

FIGURE 7.6: The results of comparing the three different variable or-
derings.

Figure 7.6 shows that VOa and VOc perform equally good, while VOb constantly
performs worse (VOb is factored by 1.13 compared to VOa at their top). Although
we did not find a better variable ordering than the standard one, we now know that
different orderings can have effect on the BDD sizes throughout the algorithms. We
know that there exist one or more optimal variable orderings, but we still do not
know what they are.
In these three variable orderings, there is one variable that we haven’t taken into
account: the turn variable, at the top of each BDD representing states. Next, we
experiment on putting this turn variable at the bottom of the BDD instead of at the
top. Again, we experiment on the best algorithm for 4× 5 Othello. The result is in
Figure 7.7.

7.2. Extrapolating the BDD sizes 43

FIGURE 7.7: The results of locating the turn variable at the top of each
BDD to at the bottom of each BDD.

This shows us that the location of the turn variable makes a negligible difference.
Note that placing the turn variable at the bottom of the BDD takes the complete rela-
tion from 1.4 million nodes, to over two million nodes. This can force the algorithms
to consume more time, since the operations on the relations are more complex. This
makes the approach of placing the turn variable at the bottom less attractive.

7.2 Extrapolating the BDD sizes

In order to evaluate if we can solve Othello using BDDs and retrograde analysis,
once our resources are powerful enough, we calculate the number of bytes, needed
to store a single state in the set of immediately winning states. This number shows
the memory efficiency of the BDDs for that specific size of Othello. We can than
extrapolate this number to bigger instances, such as 8× 8 Othello, to evaluate the
needed memory for solving this instance of Othello. See table 7.3 for the results.

Othello size #states #bytes bytes per state factor
4× 4 901,134 1,072,054 1.1397 N/A
4× 5 1.517 22× 107 7,012,428 0.46219 0.4055
5× 5 4.6418× 108 35,523,524 0.0765 0.1655
5× 6 1.556 36× 1010 272,472,389 0.0175 0.22

TABLE 7.3: Calculation of the number of bytes per state in the BDD
representing the immediately winning states, for different Othello
sizes. The column factor gives the multiplication factor from an Oth-

ello instance one size smaller. This is needed for extrapolation.

44 Chapter 7. Experimental Evaluation

First note that we cannot solve 5× 5 and 5× 6 Othello, but we can find the set
of immediately winning states. In order to estimate the needed memory to solve the
game, we should extrapolate for the peak of the algorithm, instead of for the set of
immediately winning states. However, we chose to extrapolate for the immediately
winning states, since we can find this number for four sizes of Othello, which gives
a more precise estimation.
These results show that the number of bytes per state decreases when increasing
the board size. We have some evidence that the number of bytes per state de-
creases faster than linear. However, we assume linear regression in our estima-
tion, to find an upper bound. We therefore take the average factor per increase
of the size (0.2637), and extrapolate with this number on the extra fields added.
When taking the average factor for extrapolation, we roughly estimate (as an up-
per bound) the BDD representing the set of winning states for 8× 8 Othello, to use
0.0175 · 0.26375 = 2.23× 10−5 bytes per state. With the lower bound estimation
of Takeshita et al. on the number of final positions (1022), we estimate the lower
bound for the number of bytes needed to solve 8 × 8 Othello with BDDs, to be
1022 · 2.23× 10−5 = 2.23× 1017 bytes, which comes down to 2.23× 108 gigabytes.

45

Chapter 8

Conclusions

In this thesis, we gave a thorough description on the topics of Othello, retrograde
analysis and BDDs. We encoded Othello in a BDD and validated that this encoding
is correct. In Chapter 7, we experimented with this encoding of Othello. The main
results these experiments show, concern the different algorithms that can be used to
solve Othello. All of these algorithms involve retrograde analysis, but we compared
the use of two methods: limiting the search to the reachable states and the sweep-
line method. From these experiments, we can conclude that both methods reduce
the size of the search, in terms of number of BDD nodes. The biggest improvement
can be gained by using both methods simultaneously. This showed a reduction of
99.31% of the biggest BDD size throughout the algorithm, compared to the standard
retrograde analysis algorithm. We found the same results for using a bigger instance
of Othello, namely 4× 5 Othello, and believe that scaling up the size of the board
would give the same results. Therefore we are convinced that both methods have a
positive effect on solving Othello using retrograde analysis.
We also experimented on the variable orderings, which gave us the insight that some
orderings perform better than others, although we did not find any best variable or-
dering. Locating the turn variable at the top or at the bottom of a BDD representing a
set of Othello states, does not show any significant differences in the size of the BDD
representing the winning states for one player, during retrograde analysis. How-
ever, the size of the transition relation was smaller when locating the turn variable
at the top of the BDDs.
Using the encoding and algorithms introduced in this thesis, we were able to solve
the instances of Othello on a 4× 4 board and a 4× 5 board. Bigger instances turned
out to be too big to solve yet, given our resources and techniques. We believe the
main reason for this is that different Othello states are hard to represent using a
BDD, since one move can swap many stones. Then, the resemblance between the
set of boards can get too low, making the BDD representing it too big. With state
resemblance, we mean that the states in the set, are almost the same, such that they
differ only a small amount of bits in their representations. Some of those structural
problems yield small BDDs, for instance symmetric functions. In the extreme, the
set of all boards is expressed with the True BDD leaf. Another set with high state re-
semblance is the set of boards with only white stones, which yields a small BDD. We
are convinced that the power of the work of Edelkamp et al. [9] (see Section 3.2), lies
in the fact that they increase their state resemblance by adding more states to the set.
This resemblance is absent in our BDDs, and we do not see a way of overestimating
our sets of states more than we do.
By being able to solve instances of Othello using our techniques, our results show
some evidence, that divergent games are not immune to retrograde analysis, which
contradicts to work of van den Herik et al. [11]. There can be discussed on whether
we were only able to solve the instances of Othello because they are small, or that

46 Chapter 8. Conclusions

divergent games are indeed not immune to retrograde analysis. Although BDDs do
not seem to scale very well for computing fixpoints for a game like Othello, they
can efficiently represent many states of a game where the state resemblance is high.
Therefore, we believe that our methods might be useful for solving other combina-
torial games.
By extrapolation, we estimated a lower bound on the number of gigabytes needed to
solve Othello using BDDs. This number turned out to be 2.23× 108, which is more
than the current memory available. This indicates that Othello is still impossible
to solve nowadays, although our techniques gave an efficient way of representing
states. The extrapolation also gave an upper bound estimation for 8× 8 Othello, that
the BDD representing all immediately winning states uses only 2.23× 10−5 bytes
per state. This is less than the current techniques applied for solving combinato-
rial games, where hashing methods are used, for instance the work of Edelkamp et
al. [10]. Perfect hashing requires one bit per state, which is a lower bound for tech-
niques based on explicit methods. Probably, this lower bound does not even hold for
solving Othello, since perfect hashing does not work for Othello, where many states
are not reachable. Then, a hash table might be a solution, which requires log2(n) bits
per bucket, with n the number of states in the state space.

8.1 Future work

With the contributions of this thesis, future work can be performed, where BDDs to-
gether with retrograde analysis are applied to other combinatorial games. For solv-
ing Othello, more work can be done by trying new methods, such that less memory
is needed. An examples of such a method is to apply Property Directed Reachabililty
(PDR) using SAT solvers, as done by Morgenstern et al. [20].

47

Bibliography

[1] V Allis. “Searching for Solutions in Games and Artificial Intelligence”. PhD
thesis. Jan. 1994.

[2] G. Birkhoff. Lattice Theory. Colloquium publications. American Mathematical
Society, 1948. ISBN: 9780821889534. URL: https://books.google.nl/books?
id=o4bu3ex9BdkC.

[3] Randal E. Bryant. “Graph-Based Algorithms for Boolean Function Manipula-
tion”. In: IEEE Trans. Computers 35.8 (1986), pp. 677–691. DOI: 10.1109/TC.
1986.1676819. URL: https://doi.org/10.1109/TC.1986.1676819.

[4] Jerry R. Burch, Edmund M. Clarke, and David E. Long. “Symbolic Model
Checking with Partitioned Transistion Relations”. In: VLSI. 1991, pp. 49–58.

[5] Jerry R. Burch et al. “Symbolic Model Checking: 10ˆ20 States and Beyond”. In:
Inf. Comput. 98.2 (1992), pp. 142–170. DOI: 10.1016/0890-5401(92)90017-A.
URL: https://doi.org/10.1016/0890-5401(92)90017-A.

[6] Sagar Chaki and Arie Gurfinkel. “BDD-Based Symbolic Model Checking”. In:
Handbook of Model Checking. 2018, pp. 219–245. DOI: 10.1007/978- 3- 319-
10575-8_8. URL: https://doi.org/10.1007/978-3-319-10575-8_8.

[7] CUDD: Colorado University Decision Diagram Package. https://github.com/
ivmai/cudd. Last accessed: 2019-07-03.

[8] Tom van Dijk, Alfons Laarman, and Jaco van de Pol. “Multi-core and/or Sym-
bolic Model Checking”. In: ECEASST 53 (2012). DOI: 10.14279/tuj.eceasst.
53.773. URL: https://doi.org/10.14279/tuj.eceasst.53.773.

[9] Stefan Edelkamp and Peter Kissmann. “On the Complexity of BDDs for State
Space Search: A Case Study in Connect Four”. In: Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco, California,
USA, August 7-11, 2011. 2011. URL: http://www.aaai.org/ocs/index.php/
AAAI/AAAI11/paper/view/3690.

[10] Stefan Edelkamp, Damian Sulewski, and Cengizhan Yücel. “GPU Exploration
of Two-Player Games with Perfect Hash Functions”. In: Proceedings of the Third
Annual Symposium on Combinatorial Search, SOCS 2010, Stone Mountain, Atlanta,
Georgia, USA, July 8-10, 2010. 2010. URL: http://aaai.org/ocs/index.php/
SOCS/SOCS10/paper/view/2088.

[11] H. Jaap van den Herik, Jos W. H. M. Uiterwijk, and Jack van Rijswijck. “Games
solved: Now and in the future”. In: Artif. Intell. 134.1-2 (2002), pp. 277–311. DOI:
10.1016/S0004-3702(01)00152-7. URL: https://doi.org/10.1016/S0004-
3702(01)00152-7.

[12] M. J. H. Heule and Léon J. M. Rothkrantz. “Solving games: Dependence of
applicable solving procedures”. In: Sci. Comput. Program. 67.1 (2007), pp. 105–
124. DOI: 10.1016/j.scico.2007.01.004. URL: https://doi.org/10.1016/
j.scico.2007.01.004.

https://books.google.nl/books?id=o4bu3ex9BdkC
https://books.google.nl/books?id=o4bu3ex9BdkC
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1007/978-3-319-10575-8_8
http://dx.doi.org/10.1007/978-3-319-10575-8_8
https://doi.org/10.1007/978-3-319-10575-8_8
https://github.com/ivmai/cudd
https://github.com/ivmai/cudd
http://dx.doi.org/10.14279/tuj.eceasst.53.773
http://dx.doi.org/10.14279/tuj.eceasst.53.773
https://doi.org/10.14279/tuj.eceasst.53.773
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3690
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3690
http://aaai.org/ocs/index.php/SOCS/SOCS10/paper/view/2088
http://aaai.org/ocs/index.php/SOCS/SOCS10/paper/view/2088
http://dx.doi.org/10.1016/S0004-3702(01)00152-7
https://doi.org/10.1016/S0004-3702(01)00152-7
https://doi.org/10.1016/S0004-3702(01)00152-7
http://dx.doi.org/10.1016/j.scico.2007.01.004
https://doi.org/10.1016/j.scico.2007.01.004
https://doi.org/10.1016/j.scico.2007.01.004

48 BIBLIOGRAPHY

[13] Michael Huth and Mark Dermot Ryan. Logic in computer science - modelling and
reasoning about systems (2. ed.) Cambridge University Press, 2004.

[14] Richard Huybers and Alfons Laarman. “A Parallel Relation-Based Algorithm
for Symbolic Bisimulation Minimization”. In: Verification, Model Checking, and
Abstract Interpretation - 20th International Conference, VMCAI 2019, Cascais, Por-
tugal, January 13-15, 2019, Proceedings. 2019, pp. 535–554. DOI: 10.1007/978-3-
030-11245-5_25. URL: https://doi.org/10.1007/978-3-030-11245-5_25.

[15] Kurt Jensen, Lars Michael Kristensen, and Thomas Mailund. “The sweep-line
state space exploration method”. In: Theor. Comput. Sci. 429 (2012), pp. 169–
179. DOI: 10.1016/j.tcs.2011.12.036. URL: https://doi.org/10.1016/j.
tcs.2011.12.036.

[16] Gijs Kant et al. “LTSmin: High-Performance Language-Independent Model
Checking”. In: Tools and Algorithms for the Construction and Analysis of Systems -
21st International Conference, TACAS 2015, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings. 2015, pp. 692–707. DOI: 10.1007/978-3-662-46681-0_61.
URL: https://doi.org/10.1007/978-3-662-46681-0_61.

[17] Jesper Torp Kristensen. “Generation and compression of endgame tables in
chess with fast random access using OBDDs”. Master’s Thesis. U. of Aarhus,
Dept. of Computer Science, 2005.

[18] Lars Michael Kristensen and Thomas Mailund. “Efficient Path Finding with
the Sweep-Line Method Using External Storage”. In: Formal Methods and Soft-
ware Engineering, 5th International Conference on Formal Engineering Methods,
ICFEM 2003, Singapore, November 5-7, 2003, Proceedings. 2003, pp. 319–337. DOI:
10.1007/978-3-540-39893-6_19. URL: https://doi.org/10.1007/978-3-
540-39893-6_19.

[19] Kenneth Lauchlin McMillan. “Symbolic Model Checking: An Approach to the
State Explosion Problem”. UMI Order No. GAX92-24209. PhD thesis. Pitts-
burgh, PA, USA, 1992.

[20] Andreas Morgenstern, Manuel Gesell, and Klaus Schneider. “Solving Games
Using Incremental Induction”. In: Integrated Formal Methods, 10th International
Conference, IFM 2013, Turku, Finland, June 10-14, 2013. Proceedings. 2013, pp. 177–
191. DOI: 10.1007/978-3-642-38613-8_13. URL: https://doi.org/10.
1007/978-3-642-38613-8_13.

[21] E. V. Nalimov, G. M. Haworth, and E. A. Heinz. “Space-efficient indexing of
endgame tables for chess.” In: Advances in Computer Games 9. IKAT, University
of Maastricht, 2001.

[22] RERS – Rigorous Examination of Reactive Systems. http://rers- challenge.
org/. Last accessed: 2019-07-03.

[23] A.N. Siegel. Combinatorial Game Theory. Graduate studies in mathematics. Amer-
ican Mathematical Society, 2013. ISBN: 9780821851906. URL: https://books.
google.nl/books?id=VUVrAAAAQBAJ.

[24] David Silver et al. “Mastering the game of Go with deep neural networks and
tree search”. In: Nature 529.7587 (2016), pp. 484–489. DOI: 10.1038/nature16961.
URL: https://doi.org/10.1038/nature16961.

[25] Fabio Somenzi. “Binary decision diagrams”. In: NATO ASI SERIES F COM-
PUTER AND SYSTEMS SCIENCES 173 (1999), pp. 303–368.

http://dx.doi.org/10.1007/978-3-030-11245-5_25
http://dx.doi.org/10.1007/978-3-030-11245-5_25
https://doi.org/10.1007/978-3-030-11245-5_25
http://dx.doi.org/10.1016/j.tcs.2011.12.036
https://doi.org/10.1016/j.tcs.2011.12.036
https://doi.org/10.1016/j.tcs.2011.12.036
http://dx.doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-662-46681-0_61
http://dx.doi.org/10.1007/978-3-540-39893-6_19
https://doi.org/10.1007/978-3-540-39893-6_19
https://doi.org/10.1007/978-3-540-39893-6_19
http://dx.doi.org/10.1007/978-3-642-38613-8_13
https://doi.org/10.1007/978-3-642-38613-8_13
https://doi.org/10.1007/978-3-642-38613-8_13
http://rers-challenge.org/
http://rers-challenge.org/
https://books.google.nl/books?id=VUVrAAAAQBAJ
https://books.google.nl/books?id=VUVrAAAAQBAJ
http://dx.doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961

BIBLIOGRAPHY 49

[26] Yuki Takeshita et al. “Perfect Play in Miniature Othello”. In: Genetic and Evo-
lutionary Computing - Proceedings of the Ninth International Conference on Genetic
and Evolutionary Computing, ICGEC 2015, August 26-28, 2015, Yangon, Myanmar
- Volume II. 2015, pp. 281–290. DOI: 10.1007/978-3-319-23207-2_28. URL:
https://doi.org/10.1007/978-3-319-23207-2_28.

[27] Alfred Tarski. “A lattice-theoretical fixpoint theorem and its applications.” In:
Pacific J. Math. 5.2 (1955), pp. 285–309. URL: https://projecteuclid.org:
443/euclid.pjm/1103044538.

http://dx.doi.org/10.1007/978-3-319-23207-2_28
https://doi.org/10.1007/978-3-319-23207-2_28
https://projecteuclid.org:443/euclid.pjm/1103044538
https://projecteuclid.org:443/euclid.pjm/1103044538

	Abstract
	Introduction
	Retrograde Analysis
	State of the Art
	Our approach
	Contributions
	Overview

	Background
	Othello
	Solving Two-Player Games
	Reachability
	Retrograde Analysis

	Binary Decision Diagram
	Boolean function
	Graphical representation
	Variable ordering
	Manipulating BDDs

	Related Work
	Chess
	Connect Four
	Partitioned transition relation
	BDD packages
	CUDD
	Sylvan

	Encoding
	Variables
	Encoding a State
	Encoding the Transition Relation
	Partitioned transition relation
	Encoding of complete relation using partitioned relations

	Encoding of the immediately winning states

	Validation
	Validation of the partitioned transition relation
	Validation of the complete transition relation
	Validation of the immediately winning states

	Algorithms for retrograde analysis
	Retrograde analysis with BDDs
	Limit to reachable states by forward analysis
	The sweep-line method

	Experimental Evaluation
	Experiments
	Using the 3T-encoding for an empty field
	Comparing Algorithms
	Variable ordering

	Extrapolating the BDD sizes

	Conclusions
	Future work

	Bibliography

