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Abstract

This bachelor thesis describes the construction of a pipeline that calculates the volume and
surface area of a zebrafish larvae from its axial-view images from three already existing
components. These components perform the segmentation of the axial-view images, the
optimization of the initially guessed camera parameters and the creation of a 3d reconstruction
of the zebrafish larvae. The results from the pipeline seem to be within expectation and are
consistent. Different ways to optimize this pipeline were researched. The optimal format to
save the profiles for the profile based 3D reconstruction was determined to be compressed
numpy arrays. The segmentation of the axial-view images can be run on a multicore computer
cluster instead of on GPU with a low estimated slowdown. The biggest bottleneck in the
pipeline is the camera parameter optimization. To decrease runtime this step can best run
multiple zebrafish larvae parallel. A correlation seems to exist between zebrafish larvae volume
and total runtime though the significance of this correlation could not be proven.
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1 Introduction

1.1 The Optimization of the Zebrafish 3D Reconstruction Pipeline

Zebrafish larvae are often used as a model organism in biology thanks to their transparency, fast
development, the availability of the whole zebrafish genome and to zebrafish containing the majority
of genes known to be associated with human diseases [P+15]. Using the Vertebrate Automated
Screening Technology (VAST BioImager) it is possible to construct a 3D model and calculate the
volume and surface area of a zebrafish larvae. The VAST BioImager is a microscope mounted
system which contains a capillary that holds a zebrafish [G+17]. The capillary is rotated by a
stepper motor, which enables the system to take axial-view images of the zebrafish larvae (see
Chapter 2).
Reconstructing the 3D model, calculating the volume and calculating the surface area of the
zebrafish larvae is done in three steps: the segmentation, the camera parameter optimization and
the 3D reconstruction (see Chapter 3) [G+17]. The code which executes these three steps was
already written but still needed to be composed in a single pipeline.

1.2 Research Question

The aim of this bachelor research project is to compose this pipeline and to researche how the
generation of 3D models from VAST BioImager zebrafish images can be optimized in the different
steps of the pipeline on the LIACS Life Science Cluster (LLSC). Several experiments will be
conducted to determine what influences the total runtime of the pipeline. These experiments will
be focused around a number of sub questions:

• Are there situations in which it is feasible to run the segmentation step on CPU instead of on
GPU?

• What is the most efficient way to store the profiles of the zebrafish larvae images generated
in the segmentation?

• How can the different components of the pipeline run most efficiently on a distributed
computing environment?

• What are the bottlenecks in the pipeline?

• Does the developmental stage of the zebrafish larvae influence the total runtime of the
pipeline?

1.3 Thesis Overview

This bachelor thesis research was performed at The Leiden Institute of Advanced Computer Science
(LIACS) and supervised by Prof.dr.ir. F.J. Verbeek and Dr. K. F. D. Rietveld. Chapter 2 provides
an overview of the different materials used in this research. Chapter 3 gives an in depth explanation
of the different components of the pipeline and the modifications necessary to create the pipeline
from these components. Chapter 4 contains all the conducted experiments on the (components of
the) pipeline. In this chapter the efficiency of different options are explored. In Chapter 5 one can
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find the conclusions of the research questions, the discussion on the conducted research and the
suggestions for further research.
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2 Materials and Methods

2.1 The Zebrafish

Zebrafish (Danio rerio) is a freshwater fish native to South Asia [FB]. The zebrafish is an important
model for vertebrate development, genomics, physiology, behavior, toxicology, and disease [MP15].
Zebrafish are easy to breed in large quantities and the early embryonic stages are well suited for
study through microscopy [G+17]. The transparency of the zebrafish larvae also enables the use of
fluorescence marking.

2.2 The VAST BioImager

The VAST BioImager is a microscope mounted system which enables taking high resolution axial-
view images of a zebrafish larvae [G+17]. In this setup, the zebrafish larvae is contained in a
capillary that is rotated by a stepper motor (see Figure 1). The size step of the stepper motor can
be determined by the user, meaning that a range of axial-view images of the zebrafish larvae can be
captured in both 84 and 100 images for example. The VAST BioImager is capable of both bright
field microscopy and fluorescent microscopy.

Figure 1: Setup of the VAST BioImager [G+17]

2.3 Compute Infrastructure

2.3.1 The LLSC Environment

The Leiden Life Science Cluster consists of a file server with a capacity of 36 TB, ssh nodes and 20
multicore compute nodes. There are several type of compute nodes available: dual-core Intel Xeon
5150 CPUs at 2.66 GHz, quad-core Intel Xeon E5430 CPUs at 2.66GHz and quad-core Intel Xeon
X5450 CPUs at 3.00 GHZ, all with 16 GB RAM. At the start of this research there was no GPU
available within the LLSC. The cluster has a Linux operating system installed.
The software installed at the LLSC environment is outdated and is not able to run the scripts in
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the pipeline, in particular the segmentation step due to its dependence on Tensorflow. The LLSC
will be updated this year to a more recent Linux distribution.

2.3.2 LLSC2.0

Since the LLSC is currently not capable of running the pipeline, a test environment was set up by
Kristian Rietveld. This test environment contains two compute nodes, an Intel Xeon 5150 and an
Intel Xeon E5430, CPUs that are also in the LLSC.
The software on the LLSC2.0 is up to date. When the LLSC is updated, it will have the same
software as the LLSC2.0.

2.3.3 GPU Workstation

LIACS has a GPU workstation (in the department referred to as Puffskein) available that contains
two high-end GPUs, namely 2 Titan X GPUs and an Intel(R) Core(TM) i7-6950X at 3.00GHz.
The GPUs in this machine are going to be placed in the LLSC environment in the near future and
is therefore a suitable testbench for components requiring GPUs that will be deployed on LLSC in
the future. A Linux operating system is installed on this GPU workstation.

2.4 Datasets

The LLSC has different datasets containing zebrafish larvae image datasets available for testing.
For the experiments conducted in this bachelor thesis zebrafish larvae image datasets from three
datasets were used (see Table 1). The raw data dataset was used to train the classification for the
segmentation (see Chapter 3). The wasabi1610 dataset is a result from an experiment on wasting,
where starved larvae consume themselves and grow slower as a result.

name zebrafish image datasets images/dataset ages classification
raw data 60 84 3dpf to 5dpf yes

raw new data 123 100 3dpf to 5dpf no
wasabi1610 10 100 unknown (starved) no

Table 1: The datasets used in this bachelor research project

2.5 The Slurm Workload Manager

Slurm (formerly known as Simple Linux Utility for Resource Management or SLURM) is an open
source cluster management and job scheduling tool for Linux systems [slu]. Slurm is installed on
LLSC2.0 and will be installed on the LLSC environment when it is updated. The version installed
on the LLSC2.0 is slurm 16.05.9.
In this bachelor thesis slurm will be used to conduct several experiments on the cluster computer.
The final pipeline will be constructed as a Slurm jobscript.
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2.6 The Pipeline

Three scripts have been written that each execute a part of the 3D reconstruction. In this bachelor
thesis, the scripts will be referred to as the segmentation step, the camera parameter optimization
step and the 3D reconstruction step (see Figure 2). The script for the segmentation step was written
by Wilco de Boer [dB19] in python3 and is an extension of earlier work on the segmentation of
zebrafish larvae by Wilco Verhoef [Ver18]. The other two scripts were originally written by Yuanhao
Guo [G+17] in matlab and were translated by Juliëtte Meeuwsen to python2 [Mee17]. Kristian
Rietveld ported the python2 code to python3 code.

INPUT DATA
(.tif)

SEGMENTATION

segmented 
images (.npz)

metadata 
(.json)

CAMERA PARAMETER 
OPTIMIZATION

3D RECONSTRUCTION

volume
surface area

metadata 
(.json)

Figure 2: Flowchart of the pipeline construction
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3 Implementation

3.1 Segmentation

In the segmentation step of the pipeline, the profile of each axial-view zebrafish larvae image in the
given data is calculated. This step is visualized in Figure 3(B). The script takes n zebrafish larvae
images in tif format as input and delivers the n segmented images (the format of the output is
.png).
The script uses a convolutional neural network that was trained to predict the edges of the zebrafish
larvae. The python3 package keras is utilized for generating the segmented images with a model.
This model was made with the segmented images from three different available datasets. These
datasets include raw data (see Chapter 2) in addition to the datasets raw new data good and
raw new data manual [dB19]. The first two of these datasets were segmented using the matlab

code, the third dataset was traced manually.

Figure 3: Different stages in the zebrafish larvae 3D reconstruction [G+17]

3.2 Camera Parameter Optimization

The camera parameter optimization step formulates a transformation matrix for every image of
the zebrafish larvae in the dataset. This matrix translates every point in the 2D segmented image
to a point in 3D space. Every transformation matrix in a single dataset is calculated with the
same intrinsic camera matrix. This intrinsic camera matrix is constructed using the focal length of
the camera (f), scaling factors, the image center and the skew factor of the camera. Mapping a
point in 3D space with coordinates X, Y and Z to a point in 2D with coordinates x and y is done
using the formulas x = (fX)/Z and y = (fY )/Z [G+17]. This way the initial guess of the camera
configurations are optimized. The optimized parameters are returned in a JSON file.
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3.3 3D Reconstruction

The 3D reconstruction and the volume and surface area are generated using the segmented images
and the corresponding transformation matrices once the camera parameters are known. It thus uses
the JSON file generated in the camera parameter optimization. In the current implementation one
fourth of the segmented images are used to create the 3D reconstruction. The 3D representation
is generated by back-projecting the segmented images to the 3D world frame so as to obtain the
intersections [G+17]. The corresponding 3D representation is built from the collection of voxels
visible from the view of every segmented image (see Figure 3(D)). This method was based on the
space-carving theorem.
The 3D voxel object is rendered by the marching cubes algorithm so that its surface is made up out
of polygons. After this step, the irregularities of the surface are smoothed out using the package
PyPoisson [Mee17]. The 3D voxel object is used to calculate the volume and surface area.

3.4 Constructing the Pipeline

In order to construct a pipeline from these three components, a number of modifications to the
existing components were required.

3.4.1 Modifications to Segmentation

The segmentation script was modified so that it can save the segmented images to disk as numpy
arrays and compressed numpy arrays (.npy and .npz). It was also modified to create a JSON file
containing certain meta data. This meta data includes the data type of the segmented images and
the path to the segmented images. An option was added to force the script to run on a limited
amount of CPU cores for experimentation purposes.

3.4.2 Modifications to Camera Parameter Optimization and 3D Reconstruction

The camera parameter optimization script was modified to not create a JSON file, but use the
already existing JSON file created by the segmentation step. A numpy array dataloader and a
compressed numpy array dataloader were implemented which are used in both the camera parameter
optimization and the 3D reconstruction. This allows these subsequent steps to read the segmented
images stored by the segmentation step. The existing JSON dataloader was modified to make it
compatible with the .npy and .npz data types.

3.4.3 Slurm Jobscripts

The final version of the pipeline is a bash script that runs three slurm jobscripts (see Figure 4). There
is a jobscript for each step in the pipeline. The latter two jobscripts are submitted immediately
after their respective predecessor is submitted to the job queue of slurm. The input for the final
bash script is a path to a folder containing the zebrafish larvae that need to be processed. This
input is passed on to the three jobscripts. The latter two jobscripts also recieve the job-id of the
predecessing job in the pipeline so that job dependencies are created (job dependencies will be
explained below). At the start of the pipeline, the correct python environment is activated, which
is deactivated at the end of the pipeline. Each jobscript produces log files containing dates, output
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and possibly errors. The log files of the last jobscript, which handles the 3D reconstruction, contain
the calculated volume and surface area.

input

pipeline 

segmentation 3D 
reconstruction 

camera 
parameter 

optimization 

etc...

zebrafish 2

zebrafish 1

waits for
segmentation

waits for
camera parameter
optimization

                            - adds metadata
                            (JSON format)
                       to input folder
- adds segmentation folder
       (with profile images)
to each zebrafish folder

JOB ARRAY

JOB ARRAY
PARALLEL

Figure 4: Overview of the bash script calling the slurm jobscripts

Job Dependencies

The 3D reconstruction step of a zebrafish larvae image set can only start when both the segmentation
step and the camera parameter optimization have finished. Job dependencies were used to ensure
that each step in the pipeline starts when the former has finished without errors. Job dependencies
are easily implemented using slurm. This is done by passing on the job-id of the first job to the
dependent job as a parameter in the slurm command that submits the job to the job queue (see
a simplified example in Figure 5). In the example code in Figure 5, sbatch is the command that
submits a job to the slurm job queue. As can be seen in line 5, the job-id of the segmentation
step is saved in the variable jid1. The camera parameter optimization is dependent on this job-id
finishing without errors (line 6). The 3D reconstruction is dependent on the camera parameter
optimization step in the exact same way (line 7).

1 #!/bin/bash

2

3 input=$1

4

5 $jid1=$(sbatch segmentation.job $input)$

6 $jid2=$(sbatch --dependency=afterok:$jid1 cameraparam.job $input)

7 $jid3=$(sbatch --dependency=afterok:$jid2 reconstruction.job $input)

Figure 5: Simplified batch script showing how the slurm job dependencies are implemented
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Parallel Jobs

The camera parameter optimization step is not multithreaded. This means that when multiple
camera parameter optimization processes need to be run, they are optimally run parallel. In
the slurm jobscript that handles the camera parameter optimization this is handled with GNU
Parallel [par]. The input for this jobscript is the folder containing all zebrafish larvae to process.
The camera parameter optimization for each zebrafish larvae is then submitted to GNU Parallel
(see the example code in Figure 6). In the example code in Figure 6, the srun is the command used
to run executables in slurm. Line 5 shows how GNU parallel executes several camera parameter
optimization scripts with different zebrafish larvae json files.

1 #!/bin/bash

2

3 CAM="path/to/camera/parameter/optimization/script"

4

5 parallel "srun $CAM -j " ::: $set_of_all_zebrafish_json_files_to_process

Figure 6: Simplified example of how multiple camera parameter optimization processes are run
parallel

Job Arrays

The segmentation step and the 3D reconstruction step are both multithreaded and thus multiple
processes should not run parallel. One wants to be able to submit a number of zebrafish larvae as
one segmentation job to ensure that the job dependencies stay intact, since the camera parameter
optimization step is, thanks to its parallel nature, a single job. The multithreaded segmentation
(and 3D reconstruction) jobs for different zebrafish larvae are thus submitted as a single job array.
This array contains the jobs for all the zebrafish larvae (see the example code in Figure 7). On
line 5 of Figure 7 one can see that the sbatch command is given an array parameter. This array
parameter determines that instead of one job, an array of jobs should be submitted to the slurm
queue. Within segmentation.job the array task id is used to determine which zebrafish larvae is to
be processed.

1 #!/bin/bash

2

3 input=$1

4

5 jid1=$(sbatch --array=1-$number_of_zebrafish --parsable segmentation.job $input)

Figure 7: Example of how job arrays are implemented in the pipeline
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4 Experiments

In this chapter the experiments conducted on (steps of) the pipeline are described. These experiments
include the validation of the results, the feasability of running the segmentation step on CPU, the
most efficient datatype for the output of the segmentation step, how many parallel processes of the
camera parameter optimization are optimal and the possible correlation between zebrafish volume
and total runtime.

4.1 Assembling the Pipeline

After implementing the minor changes necessary to turn the three programs into one pipeline (see
Chapter 3), two experiments were conducted to test whether the pipeline functions as expected.
These experiments were run on the GPU workstation (see Chapter 2). Firstly the volume and
surface area for nine different zebrafish larvae image datasets were generated. Secondly three of
these datasets were run multiple times to check the consistency of results in between datasets.

Experiment and Results

Ten different zebrafish larvae image datasets have been used (see Chapter 2). This ensures that
images that have been used to train the classifier and images that have not been used to train the
classifier are tested. From the raw data and raw new data where the age of the zebrafish larvae are
known all three age groups were tested. The results can be seen in Table 2.

dataset id amount of images age (days) volume (µm3) surface (µm2)
raw data 3dpf s003 84 3 2.498 ∗ 108 3.395 ∗ 106

raw data 4dpf s030 84 4 2.654 ∗ 108 3.521 ∗ 106

raw data 5dpf s022 84 5 2.992 ∗ 108 3.729 ∗ 106

raw new data 3dpf s104 100 3 2.383 ∗ 108 3.107 ∗ 106

raw new data 4dpf s111 100 4 2.314 ∗ 108 3.173 ∗ 106

raw new data 5dpf s110 100 5 1.918 ∗ 108 2.461 ∗ 106

raw new data 5dpf s113 100 5 2.430 ∗ 108 3.126 ∗ 106

wasabi1610 2 1 100 unknown 9.517 ∗ 107 1.403 ∗ 106

wasabi1610 4 1 100 unknown 1.264 ∗ 108 1.545 ∗ 106

wasabi1610 9 1 100 unknown 1.439 ∗ 108 2.124 ∗ 106

Table 2: Different datasets of zebrafish larvae image data and the results generated by the pipeline

The pipeline is supposed to yield the same volume and surface for the same zebrafish larvae dataset.
Therefore one zebrafish larvea image set was chosen from raw data, raw new data and wasabi1610
and run three additional times. For this experiment the results were not rounded to three decimals,
but were left precisely the way the pipeline returned them, so that the slightest deviation in results
can be detected, as can be seen in Table 3.
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id run volume (µm3) surface (µm2)
4dpf s030 1 2.65395723 ∗ 108 3.5205945 ∗ 106

4dpf s030 2 2.65395723 ∗ 108 3.5205950 ∗ 106

4dpf s030 3 2.65395723 ∗ 108 3.52059475 ∗ 106

4dpf s030 4 2.65395723 ∗ 108 3.52059425 ∗ 106

5dpf s113 1 2.43041719 ∗ 108 3.1264265 ∗ 106

5dpf s113 2 2.43041719 ∗ 108 3.12642525 ∗ 106

5dpf s113 3 2.43041719 ∗ 108 3.1264255 ∗ 106

5dpf s113 4 2.43041719 ∗ 108 3.1264255 ∗ 106

2 1 1 9.517135366412354 ∗ 107 1.4030285 ∗ 106

2 1 2 9.517135366412354 ∗ 107 1.403028375 ∗ 106

2 1 3 9.517135366412354 ∗ 107 1.4030285 ∗ 106

2 1 4 9.517135366412354 ∗ 107 1.4030285 ∗ 106

Table 3: Different datasets of zebrafish larvae image data and the results generated by the pipeline

4.1.1 LLSC2.0

A subset of the first experiment was repeated on the LLSC2.0 (see Chapter 2) to ensure that the
pipeline gives the same results on different systems. For this second experiment all the previously
used zebrafish larvae image datasets from raw data and three of the previously used zebrafish larvae
image datasets from raw new data were used. The results can be seen in Table 4.

id amount of images age (days) volume (µm3) δ (∗105) surface (µm2) δ (∗103)
3dpf s003 84 3 2.499 ∗ 108 1 3.395 ∗ 106 0
4dpf s030 84 4 2.654 ∗ 108 0 3.521 ∗ 106 0
5dpf s022 84 5 2.992 ∗ 108 0 3.729 ∗ 106 0
3dpf s104 100 3 2.383 ∗ 108 0 3.107 ∗ 106 0
4dpf s111 100 4 2.314 ∗ 108 0 3.172 ∗ 106 1
5dpf s113 100 5 2.431 ∗ 108 1 3.126 ∗ 106 0

Table 4: Different datasets of zebrafish larvae image data and the results generated by the pipeline
in the LLSC2.0 environment with the difference (δ) for volume and surface compared to the results
generated in Table 2

Validation Conclusion

To validate the results from the first experiment, Figure 8 is used, where the expected volume and
surface of three, four and five day old zebrafish larvae is shown.
The three zebrafish larvae image datasets from raw data are all within or very close to the expected
results for both the volume and the surface.
The three and four day old zebrafish larvae from raw new data are also within or very close to the
expected results for both the volume and the surface. The five day old zebrafish larvae are both
smaller than they are supposed to be, but both their tails are cut of partly from the picture. This
might explain the decreased volume and surface.
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The results from the wasabi1610 dataset cannot be validated with Figure 8, since the age of the
zebrafish larvae are unknown. The observed results are all however significantly smaller than the
expected results for the youngest zebrafish larvae. The zebrafish larvae in this dataset are however
starved, meaning that they do not have the resources to grow the way a normal zebrafish would.
This means that these zebrafish larvae being smaller than normal zebrafish larvae is to be expected.

The volume calculated in the second experiment is always constant. The surface area does vary
slightly in the different runs. This is unexpected, however the biggest difference that occurred in
this experiment was 1.0 µm2, which is insignificantly small. When run on the LLSC2.0 environment,
the results are mostly the same as on the GPU workstation. Three results were found that deviated
from the results found on the GPU workstation, but only by 1 ∗ 105µ3 (volume) and 1 ∗ 103µ2

(surface area).
From this experiment can be concluded that the pipeline works as expected, though some results
are just outside the margin given by Figure 8. Zf 3dpf s104 and zf 4dpf s111 were both slightly
below the expected volume margin and zf 4dpf s030 was slightly above the expected surface area
margin. The ages of the zebrafish larvae are however not very precise, which probably caused this
deviation from the set margins.
The calculated results are consistent when running the pipeline with the same dataset multiple
times and are the same on the GPU workstation and the LLSC2.0.
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Figure 8: Expected volume and surface of zebrafish larvae aged three to five days [G+17]

4.2 Segmentation: GPU vs CPU

The classifier used in the segmentation step of the pipeline is trained on a machine with GPU,
however the segmentation of the images itself does not necessarily need a GPU. The feasibility of
running the segmentation on CPU was tested since the GPUs, whether they are included in the
LLSC or not, might not always be available because the LLSC is used for many projects beside
this pipeline.

4.2.1 Feasibility

In order to test whether it is feasible to consider the use of CPUs for generating segmented images,
several tests were run on the GPU workstation (see Chapter 2) that has both a powerful enough
GPU to run the segmentation program.
The results from this small experiment will determine whether further more elaborate experiments
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will be conducted in LLSC2.0 (see Chapter 2) comparable to the computer cluster (LLSC) where
the system will eventually run.

Experiments and Results

For this experiment three zebrafish larvae image datasets were used, one from raw data, one from
raw new data and one from wasabi1610. These sets were chosen so that both data that was used to
train the classifier and data that has not been used to train the data was represented. Different
aged zebrafish larvae were also selected from each dataset, as can be seen in Table 5.

dataset GPU CPU multicore CPU single core
zf 3dpf s003 0.049 1.251 6.697
zf 4dpf s136 0.049 1.277 6.689

2 1 0.049 1.281 6.692

Table 5: Average time (s) it takes to segmentate single image without the first image of the dataset

The average time it takes to segment a single image on GPU and different CPU configurations
was calculated (see Table 6), where the time it takes to segment the first image was not taken
into account, since it takes considerably longer than the rest of the images. These results were
calculated using the same three datasets from the experiment in Table 5.

hardware option single image stdev first image
GPU 0.049 0.000 2.128

CPU multicore 1.270 0.025 1.678
CPU single core 6.693 0.032 7.183

Table 6: Average time (s) it takes to segment a single image, the first image and the average
standard deviation for the results of Table 5

Based on these results, an estimate was calculated for the average time needed to run a dataset
consisting of 100 images on the LLSC (see Table 7).

GPU CPU cluster with 20 cores
time (s) 100 image dataset 6.979 33.490 (estimation)

slowdown 1.0x 4.8x

Table 7: Extimate of the expected runtime of a 100 image dataset on a cluster with 20 cores

Feasibility Conclusion

From this experiment it has become clear that it is significantly slower to run the segmentation
on CPU than it is to run it on GPU. However, the expected runtime for a dataset of 100 images
is still relatively low, especially when keeping in mind that the camera parameter optimization
takes about half an hour. Therefore performing segmentation on the CPU is certainly feasible and
further tests on the LLSC test environment will be conducted.
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4.2.2 LLSC2.0

On the LLSC2.0 (see Chapter 2) the time it takes to run the segmentation on the same CPUs as
in the actual LLSC needs to be measured. In this test environment the possibility of distributed
computing for the segmentation will also be explored.

Experiments and Results

For this experiment the average time per image was measured on both available compute nodes
using the same datasets as in the first experiment of Section 4.2.1. Again, the segmentation of the
first image was measured separately since this image takes significantly longer than the rest. The
results can be seen in Table 8.

single image stdev first image
compute node 1 (multicore) 9.561 0.004 10.122
compute node 2 (multicore) 5.990 0.009 5.487

Table 8: Average time (s) it takes to segmentate single image without the first image of the dataset

The segmentation step is a multithreaded script. In a second experiment a single zebrafish larvae
image set from raw data (3dpf) was segmented three times on both LLSC2.0 nodes using different
amount of cores (as can be seen in Figure 9). The default bar in this figure is the maximum amount
of threads, which is selected when no amount of threads is determined by the user.
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Figure 9: Average time (s) it takes to segmentate zf 3dpf s003 on different cores on compute node 1
and compute node 2
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The speedup of using multiple threads compared to using one thread was calculated for both
compute nodes, as can be seen in Table 9 and Table 10.

compute node 1 1 core 2 cores 4 cores default
average time (s) 2478.23 1333.83 813.62 812.67

speedup 1.0x 1.9x 3.0x 3.0x

Table 9: Speedup when using more threads when segmenting zf 3dpf s003 on compute node 1

Zf 3dpf s003 was also segmented three times on two 10-core Intel Xeon Silver 4114 CPUs at 2.20
GHz (see Table 11), available at the LLSC (see Chapter 2).

compute node 2 1 core 2 cores 4 cores 8 cores default
average time (s) 1819.34 1003.99 625.95 466.54 467.93

speedup 1.0x 1.8x 2.9x 3.9x 3.9x

Table 10: Speedup when using more threads when segmenting zf 3dpf s003 on compute node 2

compute node 1 compute node 2 Intel Xeon 4114
average time (s) 812.67 467.93 22.27

stdev (s) 1.29 0.70 2.28

Table 11: Average time (s) it takes to segmentate zf 3dpf s003 on different CPUs

Based on these results, an estimation was made on how long the segmentation of a 84 image dataset
takes on a cluster computer consisting of 20 x compute node 1 and on a cluster computer consisting
of 20 x compute node 2 (see Table 12). The results are compared to the time it takes to run this
dataset on GPU.

GPU node 1 node 2 node 1 x 20 node 2 x 20
average or estimated time (s) 6.29 812.67 467.93 40.63 23.40

slowdown 1.0x 129.2x 74.4x 6.5x 3.7x

Table 12: Average time (s) it takes to segmentate an 84 image dataset

Conclusion CPU vs GPU

The segmentation step of the pipeline was designed on run on GPU, though it can run on CPU. At
the start of this bachelor research project, the LLSC did not have acces to GPUs, however it now
has the GPUs from the GPU workstation (see 2). These GPUs might not always be available for
the segmentation step since the LLSC is used for many purposes by many users. Therefore the fea-
sibility of running the segmentation of the segmentation on CPU instead of on GPU was investigated.

Looking at the average time to perform the segmentation of a single zebrafish image it is very clear
that running the segmentation step on CPU is much slower than on GPU (see Table 6 and Table 8).
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The runtime of a total dataset varies enormously between different CPUs however, where CPUs
that have more cores available are considerably faster (see Table 11). This is to be expected, since
the segmentation step is multi-threaded, and means that when enough high quality (modern) CPUs
are utilized to segment a number of zebrafish larvae, this might be more efficient than using a single
GPU. As can be seen in Table 9 and Table 10, there is a significant speedup when more cores are
made available. When comparing the single core performance of the two compute nodes and the
single core performance from the CPU from the GPU workstation (see Table 6) one can see that
not only the amount of available cores, but also the overall quality of the CPU makes a significant
difference in speed. As one can see in Table 12, the expected slowdown when utilizing a complete
cluster is not very significant. A more extensive estimation on using different amount of nodes
in a computer cluster will be conducted in a dedicated section on distributed computing on the LLSC.

When the LLSC is set up completely, with up to date software and slurm (see Chapter 2) installed,
the best way to handle the segmentation step would be as follows. The script will be run on GPU
when either one of the GPUs is not used at that moment in time, this would be most efficient since
the average time per zebrafish image is smallest when run on GPU. To enable this, either in the
bash script, the slurm jobscript or the python3 script itself a check must be implemented that can
see GPU usage. When both GPUs are being used, the script is run on CPU.

4.3 Data Types of the Segmented Images

The output of the segmentation step of the program is a JSON file containing meta data and a
folder containing the segmented images. There are three potential ways in which these images can
be saved: png, as a numpy array (file extention .npy) or as a compressed numpy array (file extention
.npz). Saving the images in as small as possible files has two advantages. The first is storage space.
For the final application of the pipeline there is no need to keep all the segmented images, however
when further optimization will be conducted on the pipeline keeping the images for experimentation
might be necessary. The second advantage is that it takes less time to send small files to different
nodes in the distributed computer cluster.

Experiments and Results

This experiment was run on the GPU workstation (using GPU for the segmentation step).
In order to test the efficiency of each approach, the elapsed time for each step in the program was
measured three times with three different datasets. These datasets are all different in the way that
the zebra fish larvae are different ages. The first datasets was used to train the classifier, the other
two were not used to train the classifier. The results can be seen in Table 14 and Figure 10.
The average size of a single image in different formats can be seen in Table 13. The average size
was determined with the first 10 contour images of zf 3dpf s003.
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average size stdev
.png 3.4 kB 0.048
.npy 4.1 MB 0.000
.npz 2.0 kB 0.032

Table 13: Average size of a single image for each format

The calculated volume and surface area are consistent between data types.

 0

 200

 400

 600

 800

 1000

 1200

 1400

zf_4dpf_s030 zf_5dpf_s113 2_1

tim
e 

(in
 s

ec
on

ds
)

npy
npz
png

Figure 10: Average time (in seconds) for the whole pipeline

.npy stdev .npz stdev .png stdev

SEG zf 4dpf s030 18.70 0.08 18.73 0.58 18.83 0.04
SEG zf 5dpf s113 20.83 0.03 21. 35 0.16 21.30 0.08

SEG 2 1 20.85 0.06 21.30 0.09 20.83 0.11

CAM zf 4dpf s030 936.30 3.58 946.40 3.46 944.64 1.30
CAM zf 5dpf s113 1334.61 0.53 1332.84 1.64 1331.11 2.19

CAM 2 1 619.87 0.44 630.97 1.74 630.52 0.23

REC zf 4dpf s030 10.48 0.79 10.53 0.71 10.68 0.90
REC zf 5dpf s113 8.86 0.10 8.85 0.37 8.88 0.16

REC 2 1 6.26 0.10 6.20 0.03 6.30 0.03

Table 14: Average time and standard deviation (in seconds) for the segmentation (SEG), camera
parameter optimization (CAM) and 3D reconstruction (REC) for the different supported file formats
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LLSC2.0

This experiment was repeated on the second computer node of the LLSC2.0 (see Chapter 2). The
results can be seen in Table 15 and Figure 11.
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Figure 11: Average time (in seconds) for the whole pipeline on the LLSC2.0

.npy stdev .npz stdev .png stdev

SEG zf 4dpf s030 471.48 1.84 466.45 0.28 455.61 0.55
SEG zf 5dpf s113 559.18 0.29 554.81 0.54 540.44 0.31

SEG 2 1 558.57 0.52 553.447 1.35 540.60 0.31

CAM zf 4dpf s030 2251.97 13.91 2214.54 36.20 2311.52 151.38
CAM zf 5dpf s113 3084.96 15.08 3149.96 36.30 3097.96 2.46

CAM 2 1 1473.43 37.78 1517.14 24.44 1512.35 29.12

REC zf 4dpf s030 22.97 0.08 22.48 0.13 22.91 0.46
REC zf 5dpf s113 20.55 0.31 19.80 0.30 19.99 0.60

REC 2 1 15.25 0.09 15.16 0.05 14.87 0.62

Table 15: Average time and standard deviation (in seconds) for the segmentation (SEG), camera
parameter optimization (CAM) and 3D reconstruction (REC) on the LLSC2.0 for the whole pipeline
on the LLSC2.0
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Conclusion Data Types

All data types yield the same volume and surface result (within a very small range of error). The
smallest data type is the compressed numpy array (file extension .npz) which is only 2 kB’s large.
In Figure 10 one can see that the average time difference when running the entire pipeline on
the GPU workstation is negligible. There do not seem to be significant differences in the time
measurements separate parts of the pipeline either, see Table 14.
On the LLSC2.0 the segmentation step is run on CPU instead of on GPU, this does however not
have an effect on the runtime for different datatypes, as can be seen in Table 15. In this case too,
there are no significant differences and there is no clear overall best performing data format.
Saving the segmented images in an as small as possible way has two advantages. Firstly the files
take less storage space and secondly it takes less time to send the files to different nodes in the
distributed computing cluster. Therefore it is the most efficient to use the compressed numpy
arrays.

4.4 Camera Parameter Optimization on LLSC2.0

Both the segmentation step and the reconstruction step are multithreaded. It is therefore optimal
to give a single zebrafish larvea image set going through one of these steps exclusive use to one CPU
node with multiple cores, even when there are several zebrafish larvae image sets to be processed.
The camera parameter optimization step is not multithreaded however. When multiple zebrafish
larvea image sets are to be processed, it is more efficient to run the camera parameter optimization
on these sets in parallel. The optimal amount of sets to run in parallel needs to be determined, as
running a lot of sets in parallel can also result in loss of efficiency due to CPUs lacking enough
memory bandwith to efficiently running all these processes at the same time.

Experiments and Results

In this experiment the most efficient way to run the camera parameter optimization in parallel
was investigated. This was done by running the camera parameter optimization eight times (using
zf 3dpf s003) on different amount of cores. This experiment was conducted on compute node 1 (see
Table 16) and on compute node 2 (see Table 17). In these tables each core can run one process at
once. When one core is used, there is no parallelism, when four cores are used, four processes run
parallel.

1 core 2 cores 4 cores
average time (s) per dataset 2085.75 2215.53 3473.84

stdev 28.23 18.73 17.24
total runtime 16686.45 8874.76 6968.83

speedup 1.0x 1.9x 2.4x

Table 16: Average and total time (s) for zf 3dpf s003 eight times with different levels of parallelism
on compute node 1
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1 core 2 cores 4 cores 6 cores 8 cores
average time (s) per dataset 1920.66 2093.64 2659.75 3313.87 4804.27

stdev 32.61 125.05 2.00 702.45 17.81
total runtime 15365.67 8410.30 5324.34 5815.31 4820.51

speedup 1.0x 1.8x 2.9x 2.6x 3.2x

Table 17: Average and total time (s) for zf 3dpf s003 eight times with different levels of parallelism
on compute node 2

Conclusion Camera Parameter Optimization

In this experiment it was investigated how many camera parameter optimization processes could
optimally run parallel on both the available computer nodes in the LLSC2.0 (see Chapter 2). The
average time it takes to optimize the camera parameters increases when the parallelism increases
(see Tables 16 and 17), except when six parallel processes are run. The standard deviation is
extremely large when six parallel processes are run, because the last two jobs took a significantly
smaller amount of time to execute than the first six. This is to be expected, since the average time
increases when parallelism increases. The first six processes thus take longer than the last two.
The total runtime keeps decreasing with an increase of parallelism however, both on compute node
1 and compute node 2. Every time the amount of parallel processes is doubled, this decrease in
runtime is smaller though. From this we can conclude that it is most efficient to run different
camera parameter optimizations in parallel on as many cores as the CPUs have. For the third type
of CPU that is available in the LLSC and not in the LLSC2.0, this experiment might need to be
repeated, since the speedup is not consistent inbetween both nodes.

4.5 Distributed Computing on LLSC

With the conducted experiments on the segmentation and camera parameter optimization, one can
calculate the expected runtime for the pipeline on a multicore computer cluster for a large number
of zebrafish larvae to process.
Before the total expected runtime can be calculated, some additional data on the 3D reconstruction
is needed.

3D Reconstruction on LLSC2.0

To test the time it takes to execute the 3D reconstruction of a single zebrafish larvae on both
compute nodes using all threads, zf 3dpf s003 was run three times on both compute nodes (see
Table 18).

compute node 1 compute node 2
average time (s) 26.17 22.45

stdev (s) 0.09 0.11

Table 18: Average time (s) it takes to execute the 3D reconstruction of zf 3dpf s003 on compute
node 1 and compute node 2
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Expectancy Tables

In this section two expectancy tables (see Table 19 and Table 20) will be constructed with the
expected runtime for a job of 50 3 day old zebrafish larvae (based on results of zf 3dpf s003) on a
16-node cluster. The expected total runtime is calculated for different amounts of available nodes.
In the first table the cluster consists of nodes with four cores, in the second table the cluster consists
of nodes with eight cores (based on compute node 1 and compute node 2).

nodes segmentation camera param 3D reconstruction total runtime speedup
1 node 40700 90597 1300 132597 1.0x

2 nodes 20325 48783 650 69758 1.9x
4 nodes 10569 27876 338 38783 3.4x
8 nodes 5691 13938 182 19811 6.7x

16 nodes 3253 6969 104 10325 12.8x

Table 19: Average time (s) it is expected to take to process 50 three day old zebrafish larvae on a
computer cluster consisting of 16 x compute node 1

nodes segmentation camera param 3D reconstruction total runtime speedup
1 node 23350 33747 1100 58197 1.0x

2 nodes 11675 19284 550 31509 1.8x
4 nodes 6071 9642 286 15999 3.6x
8 nodes 3269 4821 154 8244 7.1x

16 nodes 1868 4821 88 6777 8.6x

Table 20: Average time (s) it is expected to take to process 50 three day old zebrafish larvae on a
computer cluster consisting of 16 x compute node 2

Distributed Computing on LLSC Conclusion

To get an overview of distributed computing on LLSC two expectancy tables were constructed using
the experiments conducted on the LLSC2.0. These expectancy tables (see Table 19 and Table 20)
simulate the processing of 50 three day old zebrafish larvae on a computer cluster containing 16
nodes. Table 19 assumes this computer cluster contains 16 x compute node 1 and Table 20 assumes
this computer cluster contains 16 x compute node 2.
Looking at the results, it is clear that the camera parameter optimization step is the biggest
bottleneck in the system. The segmentation also takes a long time when compared to the 3D
reconstruction step. There is a significant speedup when more nodes are utilized. The reason the
last increase of nodes in Table 20 does not lead to a large increase in speedup is because the
camera parameter optimization does not increase. The camera parameter optimization is run in
eight parallel processes, meaning that 50 processes go equally fast on 8 and 16 nodes, since only 7
nodes are used. A speedup could be achieved if an equal distribution of parallel processes could be
implemented. With a decrease of parallel threads, the individual time per dataset decreases too as
was proven in an earlier experiment.
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4.6 Time Measurements for Different Age Groups

Zebrafish larvae of different age and developmental stages have different volumes and surface areas.
It is not implausible that smaller zebrafish larvae take less time to create a 3D reconstruction of
than larger zebrafish larvae. If that is the case, older zebrafish larvae take more time to reconstruct
than younger zebrafish larvae if these zebrafish larvae have grown up in the same circumstances.

Experiments and Results

Six zebrafish larvae image sets were selected from raw data, two for each age group (three days, four
days and five days). Two additional zebrafish larvae image sets were selected from wasabi1610, which
contains images from mutant zebrafish larvae. From all available datasets, wasabi1610 contains the
smallest zebrafish larvae. Each selected image set was processed by the pipeline twice, where the
time was measured for each step in the pipeline. Per age group the averages were calculated for each
step and for the total runtime of the pipeline. This experiment was run on the GPU workstation
(see Chapter 2).

mutant three days old four days old five days old
Segmentation 21.22 19.17 19.18 19.21

Camera Parameter Optimization 722.47 813.05 883.075 1099.95
3D reconstruction 7.24 10.74 10.82 10.07

Total time 750.92 843.00 913.07 1129.23
Standard deviation total time 107.94 3.93 61.26 37.32

Table 21: Average time (in seconds) it takes to run the pipeline for different age groups

In Table 21 one can clearly see an increase in the total runtime with increasing developmental stage.
This increase is not apparent in the segmentation step and the 3D reconstruction step, it is the
camera parameter optimization step that noticeably increases with size.
In order to get a better understanding of the potential correlation between the volume and the
total runtime, another nine additional datasets from raw data were measured. The results can be
seen in Figure 12. The wasabi1610 zebrafish larvae images are not included in this graph.
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Figure 12: Fifteen zebrafish larvae of different volumes and the corresponding runtime (3dpf: green,
4pdf: blue, 5dpf: purple)

Different Age Groups Conclusion

In this experiment the possibility that runtime increases with volume is explored. In Table 21 one
can see the average runtime of zebrafish larvae of different age groups, where older zebrafish have
presumably larger volumes. This first experiment was conducted with eight different zebrafish
larvae from raw data and two underfed zebrafish larvae from wasabi1610, which were all run twice.
From this experiment a notable increase in runtime was seen.
In Figure 12 one can see the relation between volume and runtime of the second conducted
experiment, using only zebrafish larvae images from raw data. The null-hypothesis is that there
is no linear correlation between the volume and the runtime. The chosen p-value is 0.05. Using
SPSS [sps] a significance of 0.194 was achieved. This exeeds the chosen p-value, which means that
the null-hypothesis, which states that there is no linear correlation between the volume and the
runtime, cannot be rejected.

24



5 Conclusions and Further Research

In this bachelor research project a pipeline was constructed and investigated from three already
existing scripts based on research [G+17] which takes axial-view images from zebrafish larvae and
calculates the volume and surface area of the zebrafish larvae. The axial-view images of the ze-
brafish larvae are generated by the Vetrebrate Automated Screening Technology (VAST BioImager).
The pipeline consists of a segmentation step, a camera parameter optimization step and a 3D
reconstruction step. Experiments were conducted with the pipeline to validate the obtained results,
to identify the potential bottlenecks in the system, to test the stability of the runtime for different
situations, such as zebrafish image volume and data type of segmented images, to test whether
running one step of the program on CPU is a valid possibility and to research the possible gain of
using distributed computing.

The results generated by the pipeline were compared to an indication of what size belong to
what age groups of zebrafish [G+17]. For the images that were depicting the complete zebrafish
larvae, the calculated volume and surface area were close to or within the expected range of the
sizes belonging to their respective age groups. The pipeline can therefore be considered to function
as expected.
The segmentation step generates a set of segmented images which are used in the 3D step of the
pipeline. These images can be saved in different formats. Three potential formats, .png, .npy and
.npz were evaluated to check if the writing and reading time is different for different formats. No
difference in efficiency was found for the three formats. The format selection was therefore only
based on size. .npz result in the smallest images.
The segmentation step can be run on both CPU and GPU. Running the segmentation step on
GPU is significantly faster than running it on CPU. The runtime of the segmentation greatly
increases when run on a CPU with more cores however since it is multithreaded. When 20 multi-core
compute nodes are used, the slowdown is approximately between 6.5x and 3.7x. Therefore running
segmentation on CPU is a viable option for when the GPU is not available.
The camera parameter optimization is the only step in the pipeline that is not multithreaded. The
efficiency of running multiple processes parallel was tested for both the compute nodes available
in the LLSC2.0. On both nodes, running highest amount of possible processes parallel was most
efficient, however the average time per datasets increases for every time the amount of parallel
processes was doubled. The speedup gained by adding more parallel processes was not consistent
between both nodes, therefore if the camera parameter optimization is to be run on different CPUs
this experiment must be repeated to determine what amount of processes is most efficient.
An estimate of running the pipeline on the LLSC was calculated. From this estimate it became
clear that running the pipeline on as many nodes as possible with as many threads as possible is
most efficient. It also became clear that the camera parameter optimization takes the longest time
and that the 3D reconstruction is by far the shortest process.
The hypothesis that total runtime increases with zebrafish volume was tested. The runtime of the
part of the pipeline that seemed to increase with volume was the camera parameter optimalization.
After running fifteen datasets of various volumes no significant correlation was found however.
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Further research

The largest bottleneck in the system is the camera parameter optimization step. The camera param-
eter optimization step is the only step in the pipeline that is not yet multithreaded. Investigating a
different optimization method, that is able to run multithreaded, is a necessary next step in order
to further improve the efficiency of the pipeline.
In order to finalize the pipeline, a system needs to be designed to automatically send the axial-view
images from the VAST BioImager to the LLSC. This can be done with a webserver running at the
LLSC, which, after storing the axial-view images to the LLSC, can submit a sequence of dependent
jobs to run the pipeline with these images to slurm, the job scheduler.
If of interest, the experiment concerning the possible correlation between volume and runtime could
be redone with a larger sample set. The sample size used in the experiment in this bachelor research
project is relatively small.
When the pipeline is implemented on the LLSC, the experiment conducted on running the camera
parameter optimization step parallel needs to be repeated on the CPU type that was not yet tested.
The results from that experiment might possibly vary depending on the CPU.
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