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Abstract

Quantum entanglement shared between remote nodes in a quantum network can be used as a resource

for numerous new quantum information applications, otherwise impossible on classical networks.

However, because of exponential losses in optical fibers, the distance over which this entanglement

can be generated directly is limited. Connecting the end nodes indirectly via quantum repeaters aims to

solve this problem. Such a chain of quantum repeater nodes can distribute entanglement between its end

nodes through probabilistic (but heralded) operations. Because these operations are probabilistic, it is

not immediately clear how long one would have to wait for this entanglement, which is the problem we

investigate. For this we assume that the entanglement distribution within these repeater chains follows

the commonly used BDCZ protocol. Aside from this waiting time, we also investigate the fidelity, or

quality, of the produced entanglement.

Previous work on this probabilistic waiting time in repeater chains has largely made use of

approximating assumptions to obtain an expression for the average waiting time. Exact solutions to this

problem have been found using Markov chains, but because these Markov chains grow exponentially

with the number of repeater nodes this approach can only be practically applied to repeater chains of

limited size (up to 17 nodes).

We present two methods for characterizing both this waiting time probability distribution as well

as the fidelity of the produced entanglement. The first method is a Monte Carlo simulation which can

be used to produce approximations of this waiting time distribution and the corresponding fidelities.

The second second method is an algorithm for numerically calculating this waiting time distribution,

and also compute fidelities under limited circumstances. Both these methods have a time complexity

which is polynomial in the number of repeater nodes, and allow for the analysis of repeater chains with

hundreds or even thousands of nodes.
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Chapter 1
Introduction

Quantum computation and communication Quantum computers and the ability to manipulate

quantum information offer the potential of efficiently solving problems which cannot be efficiently

solved on classical computers. This quantum information behaves fundamentally different than

classical information. Where classical bits are either 0 or 1, quantum bits (qubits) can exist in a

superposition of both 0 and 1 at the same time. It is also possible to entangle two qubits, which creates a

correlation between the qubits states while making it impossible to describe each of the qubits isolated

from the other.

Quantum networks are networks which allow for the exchange of quantum information between

remote parties, and open the door to numerous new applications, otherwise impossible on classical

networks. For one, exchanging quantum states between multiple remote quantum processors enables

distributed quantum computation [CEHM99] and secure cloud quantum computing [BFK09]. However

there are also network orientated applications which do not require (large) quantum computers to be

practically useful, the most well-known one being quantum key distribution [BB84, Eke91], which

allows two remote parties to agree on a secret cryptographic key while having high confidence no

eavesdropper intercepted this key. Other applications of a quantum network include, but are not limited

to, leader election [TKM05] and more accurate synchronization of clocks [KKB+14].

These quantum networks can be physically implemented by providing the ability to generate

quantum entanglement between the nodes in this network. Two nodes sharing entanglement can use

this entanglement as a resource to transmit arbitrary quantum information between them [BBC+93].

Quantum repeaters A major hurdle in creating this remote entanglement is that it requires the

remote qubits to (indirectly) interact. This indirect interaction can in practice be facilitated by

exchanging photons, particles of light, between the nodes in the network. The ability to carry quantum

information and the speed at which they travel makes these photons well suited for the task quantum

communication. However, when these photons are sent through optical fibers the probability of them

reaching their destination decreases exponentially with the length of the fiber. Because of this, for

increasing distances, it becomes practically unfeasible to connect these network nodes directly using

these fibers.

Quantum repeaters aim to solve this problem by dividing a single connection into multiple segments

connected via repeater nodes. While different kinds of quantum repeaters have been proposed, here we
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Introduction

focus exclusively on entanglement-based quantum repeaters following the protocol from [BDCZ98].

In these types of repeaters entanglement between neighboring repeater nodes is then generated, after

which local operations can connect this entanglement through a process called entanglement swapping,

the final result being entanglement between the end nodes of this repeater chain.

Waiting time for entanglement In many implementations of entanglement-based repeaters, the steps

in the process of distributing entanglement between two end nodes of a repeater chain are probabilistic,

and so also is the time it takes to distribute this entanglement. We are interested in obtaining information

about the probability distribution of this waiting time in relation to a set of parameters describing the

properties of the repeater chain. In our model these parameters consist of the probabilities that certain

basic operations in the repeater chain fail or succeed.

There are two things we hope to obtain from analyzing this waiting time. First is to gain a better

insight into how certain parameters affect the waiting time, and especially how this effect scales when

moving to longer (say intercontinental) repeater chains. The ability to characterize these waiting time

distributions for our model efficiently can also help simulations of more detailed models focus on more

narrow, interesting regions of the total parameter space. Secondly we want to use this waiting time

information to obtain some information about the fidelity, or quality, of the entanglement the repeater

chain produces. This fidelity can decrease over time when generated entanglement is idling, and the

waiting time probability distribution can tell us for how long the entanglement idles. The motivation

for including fidelity in our investigation is that waiting time alone does not give a complete picture of

the performance of a repeater chain. Often, trade-offs between fidelity and waiting time can be made,

and so obtaining information about both is useful.

State-of-the-art We have found that analytically evaluating the waiting time even of simple repeater

chain models is difficult. Most work on the waiting time for entanglement in repeater chains uses the so-

called 3-over-2 approximation for the average waiting time [SDRA+07]. However, methods have been

developed which are able to produce exact results using Markov chains [SSvL17]. The computational

cost of this approach grows exponentially with the number of nodes in the repeater chain. The authors

find that in practice this Markov chain approach can analyze the waiting time behavior of repeater

chains with up to 17 nodes. In more recently work [VK19], bounds on the fidelity of the produced

entanglement are obtained using a similar Markov Chain approach

Our contributions We present two methods with which we are able to characterize the waiting time

probability distributions, as well as the fidelity of the produced entanglement as a function of time.

The first method is a Monte Carlo simulation which produces numerical estimates on the mean

waiting time, as well as the complete probability distribution, with an average time complexity

polynomial in the number of repeater nodes. This method is also capable of obtaining numerical

estimates on the fidelity of produced entanglement as a function of time, while considering the effects of

state decay over time, probabilistic entanglement swapping, and (fidelity dependent) probabilistically

entanglement distillation.

The second method is a numerical approach with which we are able to numerically compute the

waiting time probability distribution exactly on a finite interval, and obtain tight bounds on the mean,

with a polynomial time complexity in the the number of repeater nodes. In practice this method is

much faster than the Monte Carlo approach and with this method we can produce the waiting time
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distribution for repeater chains with thousands of nodes with in the order of minutes of computation

time on consumer hardware. With this numerical approach we are also able to calculate fidelities as

a function of time while considering the effects of decay over time and deterministic entanglement

swapping.

Outline Here we briefly outline the content of the other chapters in this thesis. Chapter 2 covers some

general preliminaries, both regarding quantum information as well as probability theory. Chapter 3

explains the problem we investigate in detail, as well as all the assumptions we make for our model,

while Chapter 4 gives an overview of relevant literature which also tackles this problem or related

instances. Chapter 5 covers three different approaches towards finding the probability distribution of

waiting time: First in Section 5.1 we outline a method for obtaining numerical approximations using

a Monte Carlo simulation. Then Section 5.2 treats what we can (and cannot) learn about this problem

analytically, and after that Section 5.3 describes an exact numerical method which patches the holes in

our analytical capabilities. Chapter 6 shows how the calculation or estimation of the output fidelity can

be integrated in two of these methods. Finally Chapter 7 summarizes the results, and gives an outlook

for potential future work.
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Chapter 2
Preliminaries

Before going into more detail regarding our specific repeater chain problem, it is useful to explain and

formalize a number of basic concepts in both quantum information, as well as probability theory. These

are covered in Sections 2.1 and 2.2 respectively.

2.1 Quantum information

To give a full explanation of why quantum repeaters work the way they do, it is necessary to go into

some detail about quantum information in general. While Chapter 3 covers the specifics of quantum

repeater chains, this section covers the required quantum information theory leading up to that point.

Qubit states and measurements Similar to a classical bit, a quantum bit, or qubit, can be found in two

states when measured. For classical bits we call these states 0 and 1. For qubits we add a bit of notation

and call them |0〉 and |1〉. Qubits however can also exist in a superposition of |0〉 and |1〉 at the same

time. When a qubit is measured it is forced to give up this superposition and randomly “pick” either

|0〉 or |1〉. The probability of any given measurement outcome depends on the superposition before

the measurement. A qubit can for example be be in an equal superposition of |0〉 and |1〉, with both

outcomes having probability 50%, but it could also be in a state where it is 95% likely to be measured

as |0〉, and 5% likely to be measured as |1〉. When a qubit is measured multiple times in a row using

the same measurement, the following outcomes will not be probabilistic, but instead the it will same

as the first measurement. This means that the act of measuring a qubit in superposition changes, or

“collapses”, this superposition to a state which is definitively |0〉 or |1〉.

4



Preliminaries 2.1 Quantum information

Figure 2.1: A qubit can exist in a superposition of |0〉 and |1〉 at the same time. This superposition collapses when

the qubit is measured.

Entanglement Two or more qubits can, through interaction, become entangled with each other. This

entanglement means that the qubits are correlated in such a way that one qubit cannot be completely

described isolated from the other. For example, when two qubits A and B are in a super position of

|01〉AB and |10〉AB, we know exactly how they are correlated, i.e. if we measure qubit A to be some

value, we instantly know that qubit B must have the opposite value. However, writing the states of A

and B independently of each other will not give a complete description of the combined system.

This entanglement can, in theory, exist over any distance. In practice, because two qubits require

(indirect) interaction to get entangled, it can be difficult to generate this entanglement over long

distances. Here we illustrate two remote qubits sharing an entangled state by a (wavy) line connecting

them (see Fig. 2.2). Maximally entangled states of two qubits, i.e. entangled states where the qubits are

completely (anti)correlated, are often called Bell states or EPR pairs.

Figure 2.2: When Alice and Bob share a maximally entangled state, neither of them holds any information about

their individual qubits, however their measurement outcomes will always be perfectly correlated.

Quantum communication While it is possible to encode qubit information directly into a photon and

then send that photon between two parties, through for example an optical fiber, this is difficult to do

in practice. Individual photons are likely to get lost along the way, and if it was carrying the result

of a long quantum computation the entire computation needs to be done again. Instead, a quantum

communication channel can be implemented using a scheme called quantum teleportation [BBC+93],

where two parties use a shared EPR pair to teleport an arbitrary qubit state between them. Generating

these shared EPR pairs still requires photons to be sent between the two parties, but these photons are

more easily generated than the information which is to be transmitted, and hence trying again after

losing them is less of a problem. The generated EPR pairs are used up when they are used to teleport

quantum states, so they need to be constantly regenerated.
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Preliminaries 2.2 Probability theory

2.2 Probability theory

Our repeater chain model, outlined in Section 3.3, is build up out of probabilistic processes. This section

covers a number of definitions and lemmas needed to describe and analyze these processes.

Discrete random variables A discrete random variable is a variable which can take on values from a

totally ordered countable set. All the discrete random variables we discuss take on non-negative integer

values, that is from N>0 = {1, 2, 3, . . .}, which we will call count random variables and in our case these

will be counting the number of time steps until successful entanglement distribution. The probability

that a random variable X takes on some value is described by its probability function (Definitions 2.1

and 2.2). The set of values a random variable can take on we call its support (Def. 2.3).

Definition 2.1. The probability mass function (PMF) of some discrete random variable X is defined as the

probability that X takes on the value x. We denote

Pr(X = x).

Definition 2.2. The cumulative distribution function (CDF) of some random variable X is defined as the

probability that X takes on a value smaller or equal to x. We denote

Pr(X ≤ x).

Corollary 2.2.1. For a count random variable X, we can translate between its probability mass function and its

cumulative distribution function in the following manner:

Pr(X = x) = Pr(X ≤ x)− Pr(X ≤ x− 1)

and

Pr(X ≤ x) =
x

∑
k=1

Pr(X = k).

Definition 2.3. In general we define the support RX of a discrete random variable X as the set of elements x for

which Pr(X = x) > 0, i.e.

RX = {x ∈ R : Pr(X = x) > 0}.

The random variables we investigate count discrete events, and only take on values in N>0 = {1, 2, 3, . . .}. For

these random variables the support can also be defined as

RX = {x ∈N>0 : Pr(X = x) > 0}.

Definition 2.4. The expected value, also called the expectation, the mean, or the average, of a discrete random

variable X is defined as

E [X] = ∑
x∈RX

x · Pr(X = x)

where RX is the support (Def. 2.3) of X.

Lemma 2.5. The expected value of a count random variable X can be computed by summing over its

complementary cumulative distribution function:

E [X] =
∞

∑
x=1

Pr(X ≥ x).
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Preliminaries 2.2 Probability theory

Proof.

E [X] =
∞

∑
k=1

k · Pr(X = k)

=
∞

∑
k=1

k

∑
j=1

Pr(X = k)

= Pr(X = 1) +

Pr(X = 2) + Pr(X = 2) +

Pr(X = 3) + Pr(X = 3) + Pr(X = 3) +

...

The terms in this nested sum form a lower triangular matrix, and if we sum them over the columns first

instead of the rows we get:

=
∞

∑
j=1

∞

∑
k=j

Pr(X = k)

=
∞

∑
j=1

Pr(X ≥ j)

Geometric random variables A number of processes in our repeater chain model are described by

geometric distributions. A geometric distribution is the probability distribution of the number of

consecutive Bernoulli trials needed until the first success. These Bernoulli trials can be seen as coin

flips which land on the desired side with a fixed probability p. In Definition 2.6 we define a geometric

distribution as the total number of Bernoulli trials until the first success. Note that this distribution

sometimes is defined as the number of failures instead, which would be the total number of trials minus

1.

Definition 2.6. We define a geometric distribution as the number of independent, identically distributed (i.i.d.)

Bernoulli trials (coin flips) needed until the first success. For a random variable X which is geometrically

distributed we write

X ∼ geom(p),

where p is the success probability of a single Bernoulli trial. Because for the first success at least one trial is needed,

the support of X is given by

RX = {1, 2, 3, . . .} = N>0.

For x ∈N>0, the probability mass function of X is given by

Pr(X = x) = (1− p)x−1 p,

and the cumulative distribution function of X is given by

Pr(X ≤ x) = 1− (1− p)x.

The expected value of X is

E [X] =
1
p

.
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Preliminaries 2.2 Probability theory

Sums of random variables When looking at waiting time, it is possible for multiple random processes

to need to run sequentially. In order to learn something about the probability distribution of when

the last of these sequential processes finishes we look at sums of random variables. Lemma 2.7 shows

how the PMF of the sum of two independent count random variables can be computed. Lemma 2.8

shows how the PMF can be computed for the sum of a fixed number of i.i.d. random variables, while

Lemma 2.9 shows how the PMF can be computed if the length of this sum is also a random variable.

Lemma 2.7. Given Z = X + Y, with X and Y independent, count random variables, the probability mass

function of Z is given by the convolution of the probability mass functions of X and Y:

Pr(Z = z) =
z

∑
y=0

Pr(X = z− y)Pr(Y = y).

Lemma 2.8. Given Zn = X1 + X2 + · · ·+ Xn, with Xk i.i.d. count random variables, and n some fixed value in

N>0, the probability mass function of Zn can be computed iteratively through repeated convolutions (Lem. 2.7),

starting with

Pr(Z1 = z) = Pr(X = z)

for n = 1, and

Pr(Zn = z) =
z

∑
j=0

Pr(Zn−1 = z− j)Pr(Z1 = j)

for n ≥ 2.

Proof.

Pr(Zn = z) = Pr(Zn−1 + Z1 = z) using Lem. 2.7:

=
z

∑
j=0

Pr(Zn−1 = z− j)Pr(Z1 = j)

Lemma 2.9. Given Z = X1 + X2 + · · ·+ XN , with Xk i.i.d. count random variables, and N a discrete random

variable with support N>0, independent of Xk, the probability mass function of Z is given by

Pr(Z = z) =
z

∑
n=1

Pr(N = n)Pr(Zn = z)

where Zn the sum over a fixed number of Xk as in Lemma 2.8. This sum over the possible values of N only needs

to range from 1 to z because for n < 1 we have

Pr(N = n) = 0

since the support of N is N>0, and for n > z we have

Pr(Zn = z) = 0

because the support of Xk is N>0 and therefor the lowest value Zn can take on is n.

8



Preliminaries 2.2 Probability theory

Maximum of random variables When looking at waiting time, it is possible for multiple random

processes to run in parallel, and we might be interested in the probability distribution of when all

of these processes have finished. To this end we look at the properties of the maximum of multiple

independent random variables. Lemma 2.10 shows how the probability distribution of the maximum

of n independent random variables can be computed from their cumulative distribution functions,

while Lemma 2.12 shows how of the maximum of two random variables can be stochastic ordered

(see Def. 2.11) and how its mean can be bound.

Lemma 2.10. Given Z = max{X1, . . . , Xn}, with all Xk independent random variables, the CDF of Z is given

by the product of the CDF’s of all Xk:

Pr(Z ≤ z) = Pr(X1 ≤ z)Pr(X2 ≤ z) . . . Pr(Xn ≤ z).

Proof.

Pr(Z ≤ z) = Pr(max{X1, . . . , Xn} ≤ z)

= Pr(X1 ≤ z, X2 ≤ z, . . . Xn ≤ z) all Xk independent:

= Pr(X1 ≤ z)Pr(X2 ≤ z) . . . Pr(Xn ≤ z)

Corollary 2.10.1. When all Xk in Lem. 2.10 are, aside from independent, also identically distributed, the result

becomes:

Pr(Z ≤ z) = Pr(X ≤ z)n .

Definition 2.11. For two random variables X and Y, we call X stochastically greater than Y if

∀k, Pr(Y > k) ≤ Pr(X > k).

We can also write Y ≤st X.

Lemma 2.12. The maximum of two non-negative, i.i.d. random variables Xk can be stochastically ordered as

X1 ≤st max{X2, X3} ≤st X4 + X5,

i.e.

∀x, Pr(X1 > x) ≤ Pr(max{X2, X3} > x) ≤ Pr(X4 + X5 > x).

Proof. First the left inequality:

Pr(max{X2, X3} > x) = 1− Pr(max{X2, X3} ≤ x)

= 1− Pr(X ≤ x)2 (using Corollary 2.10.1)

Pr(X1 > x) = 1− Pr(X ≤ x)

Since ∀x, 0 ≤ Pr(X ≤ x) ≤ 1, we have that

∀x, Pr(X ≤ x) ≥ Pr(X ≤ x)2,

9



Preliminaries 2.2 Probability theory

and so

∀x, Pr(X1 > x) ≤ Pr(max{X2, X3} > x).

For the inequality on the right, consider two sets Smax and Ssum of tuples (a, b), for a and b being elements

in the support RX of X.

Smax(x) = {(a, b) : a, b ∈ RX , max{a, b} > x}

Ssum(x) = {(a, b) : a, b ∈ RX , a + b > x}

Since all the elements in the support of X are non-negative, for any tuple for which max{a, b} > x holds,

a + b > x will also hold, so

Smax(x) ⊆ Ssum(x).

We can compute the probabilities in the inequality like

Pr(max{X2, X3} > x) = ∑
(a,b)∈Smax

Pr(X2 = a)Pr(X3 = b),

Pr(X4 + X5 > x) = ∑
(a,b)∈Ssum

Pr(X4 = a)Pr(X5 = b).

And since Pr(X2 = a) = Pr(X4 = a), and Pr(X3 = b) = Pr(X5 = b), and Smax ⊆ Ssum we have that

Pr(max{X2, X3} > x) ≤ Pr(X4 + X5 > x).

Corollary 2.12.1. From Lemma 2.12 follows, using Lemma 2.5, that

E [X1] ≤ E [max{X2, X3}] ≤ E [X4 + X5] .

10



Chapter 3
Problem specification

This section defines the exact problem we investigate, i.e. finding waiting time probability distributions

for entanglement distribution in quantum repeater chains. Section 3.1 explains how a single quantum

repeater can be used to generate entanglement between two nodes, after which Section 3.2 outlines a

protocol [BDCZ98] which can be used to create this end-to-end entanglement when many intermediate

repeaters are involved. Finally, in Section 3.3 we define the waiting for entanglement distribution in a

repeater chain by making specific assumptions about the hardware on which the protocol in Section 3.2

would run.

3.1 Quantum repeaters

A classical network, e.g. the current internet, is a collection of classical machines which can exchange

classical information between themselves. Similarly, a quantum network is a collection machines which

can exchange quantum information. Quantum information between two nodes in the network can

be exchanged via quantum teleportation [BBC+93] if these nodes share entanglement. This shared

entanglement is generally generated by exchanging photons between the nodes through optical fibers.

Because of exponential losses of photons in optical fibers it is not feasible to connect two distant

quantum nodes directly. A solution to this problem is to divide the communication channel between

these nodes into multiple segments, connected to each other via quantum repeaters. These quantum

repeaters serve as intermediate nodes between the end nodes which are to be connected. Entanglement

is then generated between the neighboring nodes in this chain of repeaters. Figure 3.1a shows this for

a repeater chain with one repeater node. In order for these repeaters to improve the probability that

two end nodes successfully generate entanglement in a given amount of time, it is necessary to be able

to store the generated entangled states over a period of time. This means that not all the entanglement

covering the entire repeater chain needs to be generated at the same time. Being allowed to generate

some entanglement on the first attempt, some more on the next, etc., decreases the overall number of

attempts required compared to a direct channel where the probability of success decreases exponentially

with the distance.
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Problem specification 3.1 Quantum repeaters

Connecting all the nodes individually does not yet constitute a connection between the end nodes.

This individual entanglement can be tied together by means of entanglement swapping, also called

entanglement teleportation, as depicted in Figure 3.1b. The quantum part of these swaps can be executed

locally on the nodes, however still requiring some classical communication between the repeater and its

neighbors.

(a) The qubits in the network nodes of Alice (A) and Bob (B) first generate entanglement with the repeater node (containing two

qubits) in the middle.

(b) A local operation on the repeater node allows the entanglement to be “swapped” such that Alice and Bob are now entangled

with each other. Classical communication is still required for this operation.

Figure 3.1: A quantum repeater connecting Alice and Bob.

For many physical implementations of repeaters, like [DLCZ01] where qubits interact using linear

optics, neither generating entanglement between neighboring nodes nor performing swaps are

deterministic operations. For the entanglement generation this means it is necessary to keep trying

until there is a success. What we are interested in is (the probability distribution of) the number of

required attempts. For the entanglement swapping, aside from the number of swap attempts, there is

an additional thing to take into account: if a swap fails all involved entanglement is lost, and before

the swap can be attempted again, the entanglement needs to be regenerated. We assume the successful

events for both the entanglement generation, as well as the entanglement swapping are heralded. This

means that even though the operations succeed probabilistically, it is announced (and known to the

repeater protocol) when they do succeed.

Because of the probabilistic nature of this system, it is not immediately clear how long it will take

before entanglement between the end nodes is generated. We are interested in characterizing the

probability distribution describing this waiting time, or latency, as a function of the number of repeater

segments, as well as the probability that entanglement generation between neighbors succeeds, and

the probability an entanglement swap succeeds. To that end we specify next how this entanglement

swapping works in longer repeater chains.
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3.2 The BDCZ protocol

The idea of generating entanglement and performing entanglement swapping as shown in Figure 3.1

could, in theory, simply be extended to repeater chains of arbitrary numbers of nodes: first generate

entanglement between all neighboring nodes, then perform swaps on all the repeaters. It would not

really matter in which order the swaps happen, as long as there is some coordination with regard to the

classical communication.

There is however a problem with this in practice. Because none of the physical operations are perfect,

the quality, or fidelity, of the entanglement link resulting from a swap (Fig. 3.1b) will be lower than

either of the fidelities of the original two links (Fig. 3.1a), and when there are many repeater nodes these

imperfections would stack up quickly. It is possible to create a single higher fidelity link from two or

more lower fidelity links. This process is called entanglement distillation, and is also probabilistic. Just

like with entanglement swapping, if a distillation attempt fails, all involved entanglement is lost. The

success probability of this entanglement distillation depends on the fidelity of the input links. If these

fidelities are too low, it becomes impossible to distill entanglement of useful quality. For long repeater

chains the fidelity of the final entanglement would be far too low to be usable for distillation.

A solution to this problem is provided by the repeater chain protocol proposed in [BDCZ98,

DBCZ99]. Here it is proposed to perform the entanglement swaps in a nested structure. Figure 3.2

gives an overview of this structure. Layer 0 in this structure represents the physically neighboring

repeater nodes, between which entanglement is generated directly. Entanglement swapping, just as in

Figure 3.1, is performed on every second node, with the result that the nodes as in layer 1 are now

“neighbors” in the sense that they share entanglement. The repeater chain on layer 1 behaves very

similar to the repeater chain at layer 0, except now generating links between “neighbors” is a more

complicated process. From this a recursive structure can be recognized , shown in Figure 3.3. This

recursive structure continues until finally the end nodes are entangled directly. For simplicity we assume

that the repeater chain has exactly 2n segments, for some positive integer n, and entanglement swapping

is always performed on pairs of two links in every transition from layer k to layer k + 1.

The reason for doing the swaps in this nested structure is to allow for entanglement distillation steps

to happen between the different nesting layers of the protocol, in order to keep the fidelity of the links

high enough for them to remain of sufficient quality. Figure 3.4 shows how these distillation steps are

integrated in the nested swapping structure. For every link to be used in a swap, two or more links are

first generated and distilled. Entanglement swapping is then done using the the distilled, higher fidelity

links, which results in a new link with lower fidelity. This is done for all the swaps happening on all the

nesting layers of the protocol, keeping the entanglement fidelity from becoming too low.

13
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Figure 3.2: An overview of the swapping in the protocol for a repeater chain with 23 = 8 segments. The numbers

on the left indicate the nesting layers. At layer 0 the nodes (e.g. A and C1) are physical neighbors. After C1 has

successfully generated entanglement with its neighbors A and C2, an entanglement swap is performed by node C1,

which (if successful) results in nodes A and C2 now being entangled with each other. This process continues for all

the nodes, on all the layers, until eventually A and B share entanglement.

Figure 3.3: The recursive structure present in the BDCZ protocol. The waiting time for entanglement at layer n + 1

can be described as a function of the waiting at layer n.

Figure 3.4: The distillation steps happen between the swap steps in the protocol. In this case two links with lower

fidelity (dotted) are first generated (n′) and then probabilistically distilled into a single higher fidelity link (n). The

obtained link after the swap, (n + 1)′, has again a lower fidelity.

3.3 Waiting time model

As mentioned before, we are interested in the waiting time for distributing entanglement between the

end nodes of a repeater chain. Towards solving this problem we first specify a basic model of the BDCZ

protocol running on physical hardware. after which we show an extension to this model in the form of

entanglement timeouts.

14



Problem specification 3.3 Waiting time model

3.3.1 Basic model

As a basis for our waiting time model we take the nested entanglement swapping structure of the

BDCZ protocol covered in Section 3.2, where swaps are performed on 2 segment at each time. For

simplicity we limit the number of repeater chain segments to some integer power of 2. We assume a

single entanglement generation attempt between neighbors succeeds with probability pgen, which is set

beforehand and remains constant during the execution of the protocol. The same goes for the probability

that a swap succeeds, which we call pswap, and the probability a distillation attempt succeeds pdist. Table

3.1 gives an overview of these parameters. We also assume that the repeater nodes have the ability to

generate links to both neighbors in parallel, as opposed to needing to generate them one after the other.

Because in our model the nested structure of distillation is exactly the same as that for entanglement

swapping, distillation does not fundamentally add any complexity to the problem. In fact when doing m

distillation rounds for every layer of swaps (a total of n layers), the problem of finding the waiting time

could be rephrased as doing no distillation rounds and having (m + 1)× n layers of swaps. Because of

this we generally assume the number of distillation rounds m = 0 in the analysis of this problem.

number of equal size repeater chain segments N = 2n

number of swap layers n

entanglement generation probability pgen

swap success probability pswap

distillation success probability pdist

number of distillation rounds per swap layer m

Table 3.1: Overview of the model

When it comes to the waiting time of generating entanglement we count in discrete number of timesteps.

On each repeater segment a single entanglement generation attempt can be made at each timestep.

This effectively means that each discrete timestep corresponds to the amount of time a single heralded

entanglement generation attempt takes: L0/c, where L0 is the distance between two neighboring

repeater nodes and c is the speed with which they can exchange information (i.e. the speed of light).

We assume entanglement swapping is done instantly when both the required links are available, and

does not take any time. By doing this we are ignoring the classical communication time between nodes

required for a swap operation. This is a valid approximation when pgen is small (more specifically

p−1
gen � n [BS08], see also Section 4.1), which it often is in practice, however our main reason for leaving

out this communication time is so that we can streamline the problem to a minimal problem statement

which still captures the core difficulties of this problem.

From these assumptions we can extract a recursive definition of the waiting time for such repeater

chains. This recursive recursive definition is given in Definition 3.3.1. Below follows a more detailed

motivation of this definition.

Let the random variable Tn be the waiting time for a repeater chain with 2n segments. Let us first

look at T0, the waiting time for a repeater chain with 20 = 1 segment, so no repeater nodes. The

probability of generating entanglement between the end nodes in this repeater chains on the first attempt

is pgen. The probability of the first success to be on the second attempt (and therefore not on the first)

is (1− pgen)pgen. For the first success to be on the third attempt we get (1− pgen)2 pgen, etc. We can see

that T0 is geometrically distributed with parameter pgen.

15



Problem specification 3.3 Waiting time model

Let the random variable T′k describe the waiting time needed in order to have the entanglement

ready to perform a swap operation to move from layer k to layer k + 1. Under the assumption that

both required links can be generated in parallel, T′k is the maximum of two random variables giving the

waiting time on layer k, Tk. Once the entanglement for the swap is ready the swap needs to be done. As

specified before, this is an operation which succeeds with probability pswap at each attempt. Just like for

T0, the number of times we need to try a specific swap in the protocol before it succeeds is a geometric

random variable, this time with parameter pswap. When the swaps fails the involved entanglement

needs to be regenerated, and so the waiting times are added.

Definition 3.3.1. Let Tn denote the waiting time for a repeater chain with 2n segments, entanglement success

probability pgen, swap success probability pswap, and no distillation. Tn has the following recursive definition:

Tn+1 = (T′n)1 + (T′n)2 + · · ·+ (T′n)S

T′n = max{(Tn)1, (Tn)2}

T0 ∼ geom(pgen)

S ∼ geom(pswap)

3.3.2 Entanglement timeouts

In the model described in the previous section, one assumption we make is that entanglement can

be stored for however long is necessary while waiting for other parts of the protocol to finish. In

reality however, the storage of these entangled states is not perfect, and the quality of the generated

entanglement reduces over time. To limit the effect of this decay, entanglement timeouts, or cut-offs,

can be introduced [RGR+18]. What this means is that when an earlier generated link has been stored

in memory for a while we assume its fidelity has decreased to the point where it is not useful anymore,

and throw the link away and generate a new one from scratch.

Fixed timeout bins A simple way to model entanglement timeouts is with fixed bins. Intuitively, one

could think of this as starting a timer, and needing to generate two entanglement links before the timer

reaches some predetermined cut-off value τ. If both links have been generated before this time a swap

is attempted when the cut-off time has been reached. If either one or both links are missing everything

is discarded and restarted from scratch. Figure 3.5 illustrates this idea. Waiting to do the swap at time

τ is not the most efficient with respect to waiting time or the quality of the state because we potentially

spend a lot of time idling, but it makes it easier to deal with analytically, as we will see in Section 5.2.3.

Figure 3.5: Fixed bin entanglement timeouts. Two links are attempted to be generated before some time τ. At time

τ, if both links have been generated, an entanglement swap is attempted. If one (or both) of the links are missing,

all the current entanglement is discarded and the process starts from scratch. This guarantees that links which have

been generated will never spend more than τ time steps in memory waiting for other links.
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3.4 Fidelity model

Aside from computing waiting times, we would also like to predict the fidelity, or quality, of the

entanglement produced by the repeater chain. In order to model the fidelity of the entanglement

links we make two assumptions. First we assume all our two-qubit states are Werner states, and

secondly we assume all our noise is depolarizing noise. A more detailed description and motivation

of these assumptions can be found in Appendix A. From these assumptions we create three functions

for updating fidelities.

• swap(F1, F2) gives the fidelity after a successful swap on two links with fidelities F1 and F2,

according to Lemma A.4.

• distill(F1, F2) gives the fidelity after a successful distillation attempt on two links with fidelities F1

and F2, as well as the probability of success, according to Lemma A.3.

• decay(F, ∆t) gives the fidelity after a link with initial fidelity F has spent ∆t timesteps in memory,

by applying a depolarizing channel with parameter p = e−λ∆t according to Lemma A.6. Here λ−1

is the mean lifetime and needs to be set as predetermined parameter to the model.

In Chapter 6 we show how these functions can be used to calculate the average fidelity of produced

entanglement, conditioned on the generation time.
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Chapter 4
Literature overview

The original proposal of the BDCZ protocol also includes an analysis of the amount of time needed to

entangle the end nodes of a repeater chain [BDCZ98, DBCZ99]. This analysis relies on a number of

simplifying assumptions and serves mostly to show how different types of entanglement distillation

schemes behave in terms of generation time as well as required resources. Since then, there have been

numerous works on repeater chains which include an analysis of the end-to-end entanglement rate.

Often an approximation for the average waiting time is used, which is discussed in detail in Section 4.1.

However exact results have been produced, both for the model we define in Section 3.3.1, as well as for

variations, which are discussed in Sections 4.2 and 4.3 respectively.

4.1 3-over-2 approximation

The 3-over-2 approximation for the average generation time, first appearing in [SDRA+07], has been

used in the analysis of entanglement generation rate for quantum repeaters by many [SDRA+07,

SSM+07, SSZ+08, BS08, SDS09, SSDRG11, BPvL11, MATN15, ALW+17]. The following is the 3-over-2

approximation stated in terms of the parameters defined for the model in Section 3.3.1.

E [Tn] ≈
1

pgen
·
(

3
2pswap

)n
(4.1)

Model This approximation is used for models similar to the model we describe in Section 3.3.1, with

repeater chains with 2n segments and probabilistic entanglement generation and swapping. These

models also take the entanglement generation and swapping probabilities to be fixed, although often

allow for the swapping probability to be different for different nesting levels. The main difference

is that these models take the communication time for entanglement swapping into account. This

communication time increases for swaps at higher nesting levels of the protocol because the repeater

nodes involved in the swaps will be further apart, and the speed at which they can communicate over

distance is limited by the speed of light (c). However, as we will see in the next paragraph, under certain

approximating conditions this communication time on higher nesting levels can be neglected, leaving

only the communication time between neighboring nodes. When this communication time between

neighbors (L0/c) (plus the amount of time it takes to prepare and measure states) is set to 1, the analysis

becomes the same as for the random variable given in Definition 3.3.1.
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Approximation In order to obtain the result in Eq. (4.1) two approximating assumptions are used.

First of all, as stated in [BS08], the communication time for entanglement swapping can be neglected

if p−1
gen � n. The intuition here is that when the average amount of attempts to generate a single link

on the lowest nesting level (E [T0] = p−1
gen) is much higher than the number of swaps that link will be

involved in (at most n), the time spent on these swaps becomes insignificant compared to the time spent

on generating the elementary links. The subsequent analysis of the average waiting time in most of

these works is similar and can be summarized as

E [Tn] ≈
1

pgen
·
(

1
pswap

)n
· ν0ν1 · · · νn−1 (4.2)

where

νk =
E [max {(Tk)1, (Tk)2}]

E [Tk]
.

This result can also be obtained by expanding the recursive expression for Tn found in Definition 3.3.1.

Since Tk are non-negative random variables we get

E [Tk] ≤ E [max {(Tk)1, (Tk)2}] ≤ E [(Tk)1 + (Tk)2]

and so, as also mentioned in [SSDRG11], for all νk we have

1 ≤ νk ≤ 2.

The second approximation is made when setting the values of νk. Since T0 ∼ geom(pgen), for ν0 we

have that when pgen → 0, ν0 = 3
2 . Although ν1 has been computed analytically [SSvL17], no general

expression for νk is known. However empirical results [JTL07] suggest that, in the regime of small pgen

and pswap, setting all νk = 3
2 is a good approximation. Setting all νk = 3

2 in Eq. (4.2) produces the

approximation given in Eq. (4.1).

Limitations While the approximation in Eq. (4.1) is good for small pgen and pswap, it has also been

shown in [SSvL17] that, in comparison with exact results, for larger pgen, pswap, or n this approximation

becomes increasingly worse (up to a factor 5 too high for pgen = pswap = 1 and 2n = 16). Currently,

in many physical implementations these success probabilities are low, making this approximation

applicable. However, physical implementations of quantum repeaters where these probabilities are

higher are possible. A method allowing for near-deterministic entanglement swapping using linear

optics is presented in [BRP+10], and while solutions have been obtained in the case of deterministic

swapping (see Section 4.3), it might also be desirable to have accurate solutions for systems which are

still probabilistic, but which have higher success probabilities for operations.

4.2 Exact results with Markov chains

Exact results for waiting times have been obtained by modeling the random process of entanglement

generation and swapping using Markov chains [SSvL17].

Markov chains are used to model random processes and are often described by directed graphs. The

vertices in these graphs represent the state of the system, in this case the state of the repeater chain,

while directed weighted edges describe the probability of transitioning from one state to another. Often

there is one state (or possibly multiple states) which represent the random process being finished, and
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has no outgoing edges. Such a state is called an absorbing state. In [SSvL17] the states making up the

Markov chain capture which repeaters share entangled pairs, with the state where the end nodes of the

repeater chain share entanglement as the absorbing state of the Markov chain. These are discrete-time

Markov chains, which means that transitioning from one state to a directly connected state takes exactly

one time step.

From such a Markov chain the waiting time probability distribution can be extracted, as well as

the mean and higher order moments. Closed form expressions for the mean waiting time for up to 4

repeater segments are obtained, while numerically the mean and probability distribution can be found

for up to 16 segments.

The number of vertices |V| in these Markov chains (and therefore also the computational complexity)

grows exponentially (|V| = 2N) with the number of repeater segments N = 2n. Exploiting symmetries

and lumping together equivalent states reduces the size of the Markov chains but the growth remains

exponential in the number of repeater segments (|V| ≈ 2 · 1.346N). This exponential growth makes this

approach practically unsuitable for analyzing waiting time for longer repeater chains.

More recent work [VK19] shows how the complexity of computing the probabilities P(Tn = t) can

be improved by a factor |V| by computing these via the corresponding so-called probability generating

function rather than directly from the Markov matrix, but this method still remains exponential in the

number of repeater segments N. In addition, they are also able to produce tighter bounds on secrete key

rates (a function of both waiting time and fidelity) than were previously available. Their methods for

obtaining bounds on fidelity can be summarized as follows: First upper bounds on the waiting time for

each link are obtained, and then using this waiting time the average fidelity for each layer are computed

under very similar assumptions we make (see Appendix A) with regard to how operations and decay

over time changes the fidelity.

4.3 Different models

Variations on the model described in Section 3.3.1 have been investigated which simplify the analysis of

the average waiting time. Here we take a look at two of them.

Deterministic swapping When analyzing a model in which entanglement swapping succeeds

deterministically and takes no time, and distillation is omitted, finding the average waiting time reduces

to finding the mean of N = 2n i.i.d. geometric random variables. The following expression for this

average waiting time is obtained in [BPvL11]:

E
[

Tdet
n

]
=

N

∑
k=1

(
N
k

)
(−1)k+1

1− (1− pgen)k . (4.3)

Expressions which reduce to Eq. (4.3) are also obtained in [VK17, Eq.(5)] and in [KMSD19, Eq.(7)]. This

expression can also be tightly bounded by expressions of which the behavior for large N is easier to

analyze (see Section 5.2.2, Eq. (5.5)). The probability distribution of Tdet
n , found in [KMSD19], is given

by

Pr
(

Tdet
n = t

)
=
(
1− (1− pgen)

t)N −
(

1− (1− p)t−1
)N

. (4.4)
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Entanglement timeouts In [SJM18] it has been shown that it is possible to introduce entanglement

timeouts to the protocol, i.e. discarding entangled states after a certain period of time, in such a way

that the analysis of the average waiting time can be done completely analytically. These timeouts serve

to limit the amount of time generated entangled states can spend in memory, and so also the amount

their fidelity decreases over time, but discarding entanglement also has an effect on the waiting time.

The entanglement timeouts used in [SJM18] are similar to the fixed timeout model described in

Section 3.3.2. It differs from these fixed timeouts in that the number of steps τn before a timeouts happens

at level n is a function of the output times of level n− 1, rather than being fixed to the same value for

every level. Because of these timeouts the probability of producing an entangled pair at nesting layer n

is given by

p(n)out = pswap ·
(

1−
(

1− p(n−1)
out

)τn)2
(4.5)

where p(0)out = pgen. From this it follows that the average time to generate entanglement while using

these timeouts is given by

E
[

Ttimeout
n

]
=

1

p(n)out

τnτn−1 · · · τ0 (4.6)

In their comparison with the BDCZ protocol without timeouts they again use an expression equivalent

to the 3-over-2 approximation given in Eq. (4.1).
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Chapter 5
Results: waiting time

In order to characterize the waiting time distribution we take three different approaches. The first

approach, presented in Section 5.1, uses a Monte Carlo simulation and is the most flexible when it

comes to handling changes or extensions to the repeater chain model. The drawback of this approach

is that by simulating the random processes in the repeater chain directly, it lends little insight into how

the ultimate waiting time distribution comes to be, and how we might calculate it more efficiently. In

Section 5.2 we describe an analytical approach which, on its own, does not result in a complete solution

to our problem, but does however provide a foundation for the numerical approach, which is presented

in Section 5.3.

5.1 Monte Carlo simulation

A straightforward way of characterizing the waiting time random variable as defined in Definition 3.3.1

is to generate samples from this random variable, and from these samples extract a numerical

approximation of the probability distribution. Generating these samples can be done by means of a

Monte Carlo simulation. In general a Monte Carlo simulation starts by generating random samples from

a known distribution, and then performs some (deterministic) operations on these samples, producing

some output. For us the random inputs are the initial waiting times of generating links between

neighbors, as well as coin flips determining when a swap is successful. The operations performed on

these inputs are given by the repeater chain protocol our model assumes (Section 3.2).

Sampling from T0 As input for this Monte Carlo method we have waiting time samples of the

generation time between neighboring repeater nodes, which are samples from the random variable

T0. Since the distribution of T0 is known, i.e. T0 ∼ geom(pgen), samples from this distribution can be

obtained by taking uniform random samples from [0, 1], and transforming these into samples from a

geometric distribution by using the inverse transform method [Dev86, Ch. 2].

Sampling from Tn Equation (5.1) is a recursive function T(n) describing how a single waiting time

sample can be obtained from the random variable as in Definition 3.3.1. Algorithm 1 shows how this

can be implemented. For n ≥ 1, the swap from layer n− 1 to layer n succeeds with probability pswap.

If this swap succeeds the waiting time is the maximum of two waiting time samples of a repeater
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chain with half the number of segments (2n−1), which are given by T(n − 1). If the swap fails all

involved entanglement is lost, which means we count the time for the failed attempt and (recursively)

try again until success. Determining whether a swap succeeds can be done via a virtual coin flip: a

uniform random number from [0, 1] is drawn, and if this number is lower than pswap (which occurs with

probability pswap) the swap is considered successful, and the algorithm proceeds accordingly.

T(n) =

sample from T0 ∼ geom(pgen), if n = 0.

Tswap(n), if n ≥ 1.
(5.1)

Tswap(n) =

max{T(n− 1), T(n− 1)}, with prob. pswap.

max{T(n− 1), T(n− 1)}+ Tswap(n), with prob. 1− pswap.

Algorithm 1: Function T(n), generates waiting time sample from Tn.
Input : Probabilities pgen, pswap, n = log2(repeater chain segments)

Output: Single sample from Tn

if n = 0 then
return sample from T0

else if n ≥ 1 then
left← T(n− 1)

right← T(n− 1)

r ← uniform random sample from [0, 1]

if r ≤ pswap then

return max(left, right) // swap was successful

else

return max(left, right) + T(n) // swap failed, retry

end

end

Computational complexity For deterministic entanglement swapping (i.e. pswap = 1) the function

T(n) would make exactly two recursive calls T(n − 1), each of which would make another two, etc,

until T(0). This would ultimately result in 2n samples being drawn from T0. However, because a swap

fails with probability pswap, on average the function T(n) would need to redo these two calls p−1
swap

times. This ultimately results in (2p−1
swap)

n samples being drawn from T0 on average. Because samples

from T0 can be obtained in constant time, the average time complexity of this method is proportional to

number of samples ·
(

2
pswap

)n
,

which is polynomial in the number of repeater segments N, as n = log2 N.

Error bounds We can use the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality to create confidence

bands on for the empirically obtained cumulative distribution function, as can be seen in Lemma 5.1.

We can also use the bound in Lemma 5.1 to determine how many samples we need to achieve a desired

precision. For example, if we want the empirical CDF to be within ε = 0.01 of the actual CDF for all t

with 1− α = 99% confidence, we would need approximately k = 27,000 samples. Figure 5.1 illustrates

these confidence bands on the empirical CDF.
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Lemma 5.1. Given some empirical CDF F̂n(t) obtained from k samples, and the actual CDF Fn(t) = Pr(Tn ≤ t),

the probability that the difference between F̂n(t) and Fn(t) is greater than some ε can be bounded using the

Dvoretzky-Kiefer-Wolfowitz inequality [Was06, p.14] as follows:

∀t, Pr
(

F̂n(t)− ε ≤ Fn(t) ≤ F̂n(t) + ε
)
≤ α,

where

ε =

√
ln(2/α)

2k
.

(a) 2,700 samples (ε = 0.03) (runtime ≈ 20 sec. for N = 64) (b) 27,000 samples, (ε = 0.01) (runtime ≈ 200 sec. for N = 64)

Figure 5.1: The empirical cumulative distribution functions of the waiting time generated from samples produced

by Algorithm 1 for different number of repeater segments N. Confidence bands from Lemma 5.1 are shown (dotted)

for α = 0.01 for different sample sizes. The repeater chain parameters here are pgen = 0.1, pswap = 0.5, and no

distillation. The given runtimes are for single-threaded computations on commodity hardware.

5.2 Analytical approach

In this section we investigate how far we can get with solving our probabilistic waiting time problem

with analytical methods alone. While we are not able to obtain a complete expression for the entire

probability distribution, the results obtained in Section 5.2.1 are useful components for our numerical

approach later in Section 5.3. What we are able to obtain through analytical means are bounds on

the average waiting time (in Section 5.2.2), as well as an expression for the waiting time probability

distribution for a modification to the model where entanglement timeouts are applied (in Section 5.2.3).

5.2.1 Analysis of the waiting time distribution

The recursive expression given in Def. 3.3.1 (restated below) contains two distinct operations: Taking

the maximum of two random variables, and a sum of i.i.d. random variables where the length of the

sum is also a random variable. In the next two paragraphs we analyze these operations.
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Definition 3.3.1. Let Tn denote the waiting time for a repeater chain with 2n segments, entanglement success

probability pgen, swap success probability pswap, and no distillation. Tn has the following recursive definition:

Tn+1 = (T′n)1 + (T′n)2 + · · ·+ (T′n)S

T′n = max{(Tn)1, (Tn)2}

T0 ∼ geom(pgen)

S ∼ geom(pswap)

Waiting for parallel processes As stated before, we assume that a single repeater node can generate

entanglement with both its neighbors in parallel. In order to determine what happens to the total

waiting time when waiting for two parallel random processes to finish, we want to find the distribution

of the maximum of two i.i.d. random variables. This is straightforward to do when describing the

random variables in terms of their cumulative distribution functions. Using Corollary 2.10.1 we find

that if we know the CDF of the waiting time of a process, we can compute the CDF of the maximum of

any number of such processes. This gives us the distribution of when the last process of a number of

parallel processes will finish. So in terms of the variables in Def. 3.3.1, where exactly two links need to

be generated before a swap can be performed, we have that

Pr
(
T′n ≤ t

)
= Pr(Tn ≤ t)2. (5.2)

Probabilistically succeeding operations After having generated the required entanglement a swap

can be attempted. When a swap operation fails all involved entanglement is lost and needs to be

regenerated. The waiting time for every failed swap attempt is added to the total waiting time, and

so the need arises to compute the distribution of sums of random variables. The probability distribution

of the sum of two random variables can be computed through the convolution of their probability

mass functions (Lem. 2.7). It is however not enough to compute the distribution of the sum of two

random variables. Since entanglement swapping succeeds probabilistically, the length of this sum is

also a random variable, S. Using Lemma 2.9 we can express the probability mass function of Tn+1 as

Pr(Tn+1 = t) =
t

∑
s=1

Pr(S = s)Pr

(
s

∑
k=1

(T′n)s = t

)
. (5.3)

If T′n were to be geometric, like S already is, Tn+1 would also be a geometric random variable. However,

in our case T′n is not geometric and this expression fails to be simplified. In terms of analytically solving

this problem these convolutions do not provide the results we would hope for.

It turns out that this random sum can be expressed more simply when writing it in terms of the

so-called probability generating functions of S and T′n. However, this approach (see Appendix B) yields

no solution to our problem, as there is no expression for the maximum of random variables in terms of

their probability generating functions.

5.2.2 Bounds on the mean waiting time

Having difficulty analytically evaluating the waiting time of a repeater chain as in Def. 3.3.1, we look at

bounding the average waiting time. It turns out we can find an upper and lower bound on the mean

waiting time. These bounds, given in Lemma 5.2, are rather wide, but especially the upper bound is of

practical use in the numerical approach later on.

25



Results: waiting time 5.2 Analytical approach

Lemma 5.2. The mean waiting time E [Tn] can be bounded as(
1

pswap

)n 1
pgen

≤ E [Tn] ≤
(

2
pswap

)n 1
pgen

. (5.4)

Proof. We consider two random variables, Yn and Zn, related to Tn, as given in Definitions 5.3 and 5.4.

In Corollary 5.5.1 we find that

E [Zn] ≤ E [Tn] ≤ E [Yn] .

The means of Yn and Zn can be computed analytically. Starting with E [Zn] we can simplify Zn’s

definition to

Zn = (Zn−1)1 + (Zn−1)2 + · · ·+ (Zn−1)S.

Using Wald’s identity [Wal45] for the expectation of the sum of a random number of i.i.d. random

variables, we find that

E [Zn] = E [S] · E [Zn−1] = E [S]n · E [Z0] =

(
1

pswap

)n 1
pgen

.

For E [Yn] we get

E [Yn] = E [S] · E
[
Y′n−1

]
= E [S] · (E [Yn] + E [Yn])

= E [S] · 2 · E [Yn−1]

= (2 · E [S])n · E [Y0]

=

(
2

pswap

)n 1
pgen

.

Definition 5.3. Let the random variable Yn denote the total number of entanglement attempts for the same

repeater chain as in Def. 3.3.1. Yn is similar to Tn, but where Tn counts parallel entanglement attempts as single

waiting time time-steps, Yn counts the total number of entanglement attempts, with parallel attempts counted

separately, resulting in the following recursive definition:

Yn =
(
Y′n−1

)
1 +

(
Y′n−1

)
2 + · · ·+

(
Y′n−1

)
S

Y′n = (Yn)1 + (Yn)2

Y0 ∼ geom(pgen)

S ∼ geom(pswap)

Definition 5.4. Let Zn be a random variable similar to Tn in Def. 3.3.1, but where Tn would need two (in parallel

generated) links to perform a swap, for Zn we imagine we would only need one link. This does not have any

physical meaning, but we can write a recursive definition regardless:

Zn =
(
Z′n−1

)
1 +

(
Z′n−1

)
2 + · · ·+

(
Z′n−1

)
S

Z′n = Zn

Z0 ∼ geom(pgen)

S ∼ geom(pswap)
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Lemma 5.5. For Tn, Yn, Zn as in Definition 3.3.1 and Defs. 5.3 and 5.4 respectively, we have that

Zn ≤st Tn ≤st Yn,

i.e.

∀t, Pr(Zn > t) ≤ Pr(Tn > t) ≤ Pr(Yn > t).

Proof. The recursive definition of Yn replaces T′n = max{(Tn)1, (Tn)2}with Y′n = (Yn)1 + (Yn)2, while Zn

replaces it with Z′n = Zn. Because the rest of the definition is the same, we have that, using Lemma 2.12

Zn ≤st Tn ≤st Yn.

Corollary 5.5.1. From Lemma 5.5 follows, using Lemma 2.5, that

E [Zn] ≤ E [Tn] ≤ E [Yn] .

Another upper bound on the waiting time would be obtained by first generating all entanglement,

followed by all the swaps, and if one of the swaps fails discard all the entanglement in the entire repeater

chain. This is formalized in Definition 5.6. Discarding all entanglement if any swap fails is described

by a geometric distribution, where the probability of a successful event is the probability that all 2n − 1

swaps succeed in a single attempt, which is p2n−1
swap. We still assume all the required entanglement, in this

case 2n links, can be generated in parallel.

Definition 5.6. For a repeater chain of length 2n, let random variable W ′n be the waiting time to prepare all

entanglement between neighboring nodes, and Wn the waiting time to successfully perform all swaps at the same

attempt after having generated all entanglement.

Wn = (W ′n)1 + (W ′n)2 + · · · (W ′n)S

W ′n = max{(W0)1, (W0)2, · · · , (W0)2n}

W0 ∼ geom(pgen)

S ∼ geom(p2n−1
swap)

Since in this case we regenerate all entanglement (instead of just the involved entanglement) when a

single swap fails, the average waiting time of Wn will be greater or equal to that of Tn, so

E [Tn] ≤ E [Wn]

Work on repeater chains with deterministic swapping already provides expressions for the mean of

2n geometric(pgen) random variables, i.e. E [W ′n], as seen in Eq. (4.3). However, as shown in [Eis08] this

mean can also be tightly bounded, as shown below. These bounds make it easier to study the behavior

of this waiting time for large n.

1
λ

2n

∑
k=1

1
k
< E

[
W ′n
]
< 1 +

1
λ

2n

∑
k=1

1
k

(5.5)

where

(1− p) = e−λ
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and

2n

∑
k=1

1
k
= H2n

is the 2n-th harmonic number. So for a repeater chain with 2n segments, in order to generate all

entanglement, the waiting time is upper bounded by

E
[
W ′n
]
< 1 +

H2n

− ln
(
1− pgen

)
Using Wald’s equation we find the mean of the sum of W ′n’s in the definition of Wn as

E [Wn] = E [S] · E
[
W ′n
]

and since

E [S] =
(

1
pswap

)2n−1

we get

E [Tn] <

(
1

pswap

)2n−1
·
(

1 +
H2n

− ln
(
1− pgen

)) (5.6)

The harmonic numbers behave asymptotically as ln(x) + γ, where γ is the Euler-Mascheroni constant

[GKP94, p. 278]. Since the harmonic numbers grow logarithmically, the 2n-th harmonic number grows

linearly in n. For small pgen, − ln
(
1− pgen

)
is very close to pgen. So compared to the 1/pgen term we

had in the previous upper bound this is somewhat of the same order. The first term makes a bigger

difference. For deterministic or near-deterministic swapping, i.e. when pswap is very close to 1, this

upper bound is better than the one previously found in Eq. (5.4), but for smaller pswap this grows much

faster than this previous upper bound. Figure 5.2 gives a comparison between these bounds for different

swapping probability.

(a) N = 16 repeater segments. (b) N = 64 repeater segments.

Figure 5.2: A comparison between the upper bound on the mean waiting time from Equations (5.4) and (5.6) for

different values of pswap, pgen = 0.1, and no distillation.
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5.2.3 Entanglement timeouts

When applying entanglement timeouts at fixed intervals (defined in Section 3.3.2), it is possible to

compute the waiting time distribution entirely analytically.

Generating the required entanglement to attempt a swap operation on layer n requires swaps to

succeed on layer n− 1 first. Entanglement swapping only happens at the end of each bin if the required

entanglement is available, otherwise any current entanglement is discarded. So if the cut-off point is

set to the same moment in time for every nesting layer a situation is created where all the swaps in the

repeater chain need to succeed on the same attempt. After all, if even one of them fails the repeater chain

fails to generate entanglement between the end nodes, and at this point all the current entanglement is

discarded because of the timeout.

The probability of generating entanglement between the end nodes of a repeater chain with 2n

segments depends on two things. First all the required entanglement on layer 0 needs to be generated

before the cut-off time τ is reached. The probability of generating entanglement between physically

neighboring nodes is described, as per Def. 3.3.1, by T0 ∼ geom(pgen), and there are 2n links to be

generated. From this, in combination with Corollary 2.10.1, it follows that the probability of generating

the required entanglement before the cut-off time τ is given by

Pr(T0 ≤ τ)2n
= (1− (1− pgen)

τ)2n
.

The probability that a single swap succeeds is pswap, so the probability that all 2n − 1 swaps succeed

on a single attempt is p2n−1
swap. The probability of successfully entangling the end nodes at the end of the

timeout bin becomes

pc(n) = Pr(T0 ≤ τ)2n
· p2n−1

swap.

This value pc(n) describes the probability a single attempt being successful, an attempt being the

generation of entanglement between the end nodes before time τ. The probability distribution of the first

successful event is then given by a geometric distribution. Since swaps (and therefore also entanglement

delivery) always happen at the cut-off points, the waiting time will be some multiple of the cut-off value.

Ultimately, for the total waiting time we get a geometric distribution multiplied by some scalar τ.

Tcutoff
n = τ · Xn (5.7)

with

Xn ∼ geom(pc(n)),

and

pc(n) = (1− (1− pgen)
τ)2n · p2n−1

swap.

5.3 Numerical approach

As discussed in the previous section, we fail to obtain a completely analytical result for the repeater

chain model with probabilistic swapping and without timeouts. In Section 5.3.1 we show how we can

compute this probability distribution numerically instead. The obtained numerical results are exact for

0 ≤ t ≤ ttrunc, where ttrunc is the maximum number of time steps we want to find Pr(Tn = t) for, and can
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be increased at the expense of greater computational costs (elaborated on in Section 5.3.2). We also show,

in Section 5.3.3, how the bounds on the average waiting time found in Section 5.2.2 can be improved by

including results from our numerical calculation of the waiting time distribution.

5.3.1 Calculating the waiting time distribution

The core idea of this approach is to keep track of the probability mass function of the waiting time

numerically, i.e. as a list of probabilities for different waiting times t. Every step in the swapping

protocol has an effect on the probability distribution of the waiting time. These effects are numerically

computed for all the steps of the protocol, at the end of which we obtain the waiting time distribution

for connecting the end nodes of the repeater chain in question. Algorithm 2 gives a high level overview

of this process when distillation is omitted, while Algorithm 3 shows how m rounds of distillation per

round of swaps would be included in this calculation.

As seen in Definition 3.3.1, the probability distribution of T0, i.e. the waiting time for a repeater chain

with 20 = 1 segment, is geometric. Since this distribution has infinite support, it is impossible to store

the entire PMF numerically in a finite amount of space, and so this tail needs to be truncated. We call

this truncation point ttrunc. For simplicity we fix this truncation point at the beginning of the algorithm.

The next paragraphs describe how we can numerically obtain the distribution of Tn+1 from the

distribution of Tn. In order to compute the distribution of Tn we start at T0, of which we know the

distribution, and iterate over the steps in the algorithm n times.

We can verify the output of the algorithm against the statistics produced by generating waiting time

samples using the Monte Carlo method (Alg. 1), an example of which is given in Figure 5.3.

Algorithm 2: Numerically calculate the distribution of waiting time Tn for the basic model

(Section 3.3.1) without distillation.
Input : Initial PMF of T0 ∼ geom(pgen) as an array

Output: Waiting time PMF for a repeater chain with 2n segments

for 1 to n do

PMF← wait for entanglement(PMF) // (Using Alg. 4)

PMF← swap(PMF, pswap) // (Using Alg. 6)

end

Algorithm 3: Numerically calculate the distribution of waiting time Tn for the basic model

(Section 3.3.1) with nested distillation.
Input : Initial PMF of T0 ∼ geom(pgen) as an array

Output: Waiting time PMF for a repeater chain with 2n segments

for 1 to n do

for 1 to m do

PMF← wait for entanglement(PMF) // (Using Alg. 4)

PMF← distillation(PMF, pdist) // (Using Alg. 6)

end

PMF← wait for entanglement(PMF) // (Using Alg. 4)

PMF← swap(PMF, pswap) // (Using Alg. 6)

end
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Waiting for parallel processes Before a swap or distillation attempt can be made, it is necessary to

wait for the required entanglement first. In our model we require exactly two links to do either, and we

assume that these links can be generated in parallel in both cases. When both the required links have the

same waiting time distribution, the CDF of the resulting distribution can be found by squaring the CDF

of the input distribution, as seen in Equation (5.2). It is possible to translate between the PMF and CDF

of a random variable using Corollary 2.2.1. Algorithm 4 gives a pseudocode overview of computing the

new probability mass function.

Algorithm 4: Computing the probability mass function for two parallel i.i.d. random processes
Input : PMF (as array) of completion time of single process

Output: PMF (as array) of maximum waiting time to complete 2 such independent processes in

parallel

CDF← pmf to cdf(PMF)

for t = 0 to ttrunc do
CDF[t]← CDF[t]2

end

PMF← cdf to pmf(CDF)

Probabilistically succeeding operations Recall from Def. 3.3.1 that we can describe the effect of a

probabilistically succeeding swap or distillation attempt on the waiting time as a geometric sum of i.i.d.

random variables.

Tn+1 = (Tn)1 + (Tn)2 + · · ·+ (Tn)S (from Def. 3.3.1)

where in the case of entanglement swapping S ∼ geom(pswap). The sums of two random variables can

be computed through the convolution of their PMFs (Lem. 2.7). Algorithm 5 shows how this can be

done for our numerical, truncated distributions.

Algorithm 5: Computing the probability mass function of Z = X + Y
Input : PMFX, PMFY as arrays

Output: PMFZ as array

PMFZ ← ttrunc zeros

for x = 0 to ttrunc do

for y = 0 to ttrunc − x do
PMFZ[x + y]← PMFZ[x + y] + PMFX[x]·PMFY[y]

end

end

As a side note, the convolution of two discrete functions can also be computed using fast Fourier

transforms (FFTs) [BB88]. For two functions f1 and f2, the Fourier transform of their convolution equals

the product of their Fourier transforms.

FFT( f1 ∗ f2) = FFT( f1) · FFT( f2) (5.8)

This method is computationally cheaper than computing the convolutions directly. The details of this

complexity improvement are given in Section 5.3.2.
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Being able to numerically compute distributions of the sum of two random variables, we now need

to solve the problem for the case where the length of the sum is also a random variable. The expression

we obtained in Equation (5.3) is the following:

Pr(Tn+1 = t) =
∞

∑
s=1

Pr(S = s)Pr

(
s

∑
k=1

T′n = t

)
(5.3 restated)

Something which might seem a problem at first is that, since S is geometrically distributed, Pr(S = s)
will never become 0, and in order to obtain an accurate result we would have to evaluate this sum for an

infinite number of terms. However, if we look at Lemma 2.9 we see that in order to compute Pr(Tn = t)
this sum only needs to run from S = 1 to S = t, as for any other values of S the terms in this sum become

0. The intuition here is that in the process which distributes entanglement between the end nodes in t

time steps can never involve s > t number of swaps. This leaves

Pr(Tn+1 = t) =
t

∑
s=1

Pr(S = s)Pr

(
s

∑
k=1

T′n = t

)
. (5.9)

Algorithm 6 shows how this can be implemented. Because we are not calculating each Pr(Tn = t)
individually, but rather the entire PMF in one go (so that we can leverage efficient library

implementations of subroutines) it also suffices to evaluate this geometric sum from S = 1 to S = ttrunc.

Algorithm 6: Computing the PMF of Z = X1 + ... + XS. Note that in the algorithm below, ∗
indicates the convolution of two PMFs, and + indicates the linear combination of two arrays.

Input : PMFX as array, 0 < pswap ≤ 1 such that S ∼ geom(pswap)

Output: PMFZ as array

PMFZ ← 0

PMF temp← PMFX

for s = 1 to ttrunc do
PMFZ ← PMFZ + Pr(S = s) · PMF temp

PMF temp← PMF temp ∗ PMFX // (Using Alg. 5)

end
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(a) Numerically calculated waiting time PMF with Algorithm 2.

(runtime ≈ 10 sec. for N = 32)

(b) Empirical waiting time PMF, obtained from 270,000 samples

generated using Algorithm 1. (runtime ≈ 500 sec. for N = 32)

Figure 5.3: We can verify the exact numerical results from Algorithm 2 against the empirical distribution obtained

from the Monte Carlo simulation. The repeater chain parameters here are pgen = 0.1, pswap = 0.5, and no

distillation, for varying number of repeater segments N. The given runtimes are for single-threaded computations

on commodity hardware.

5.3.2 Computational complexity

The computational complexity of this method is given in Lemma 5.7. This complexity depends not only

on the number of repeater segments N, but also on the value of ttrunc. As Lemma 5.10 shows, in order to

capture a minimum amount of probability mass c so that Pr(Tn < ttrunc) ≥ c, ttrunc grows polynomially

with N. Lemma 5.10 also suggests that the value of ttrunc would be heavily dependent on pswap, which

is confirmed by the comparison of numerical results for different pswap in Figure 5.4.

Lemma 5.7. The computational complexity of Algorithm 2 is given by

O
(

log N · t2
trunc log ttrunc

)
where ttrunc can be set according to Lemma 5.10.

Proof. The loop in Algorithm 2 has n = log N iterations over Algorithms 4 and 6. This gives a time

complexity of

O (log N · f (ttrunc))

where f (ttrunc) is the time complexity of running both Algorithms 4 and 6. Algorithm 4 has a

time complexity of O(ttrunc) (Lem. 5.8), and Algorithm 6 has a time complexity of O(t2
trunc log ttrunc)

(Lem. 5.9). This brings the overall time complexity to

O
(

log N · t2
trunc log ttrunc

)

33



Results: waiting time 5.3 Numerical approach

Lemma 5.8. The computational complexity of Algorithm 4 is given by

O (ttrunc) .

Proof. Translating the PMF to a CDF, squaring all the elements in the CDF, and translating the resulting

CDF back to a PMF can be done in time linear to the support of the distribution, so for our truncated

distributions the entire algorithm takes O(ttrunc) time.

Lemma 5.9. The computational complexity of Algorithm 6 is given by

O
(

t2
trunc log ttrunc

)
.

Proof. For Algorithm 6, ttrunc convolutions need to be done. Each of these convolutions can be done

in O(t2
trunc) time using Algorithm 5, or in O(ttrunc log ttrunc) time using fast Fourier transforms [BB88],

bringing the total time complexity of Algorithm 6 to O(t2
trunc log ttrunc).

Lemma 5.10. In order to capture a minimum amount of probability mass Pr(Tn < ttrunc) ≥ c of the distribution

of Tn, for some constant 0 ≤ c ≤ 1, the value ttrunc needs to increase polynomially with the number of repeater

segments N.

ttrunc = O

(
1

1− c

(
2

pswap

)log N 1
pgen

)
.

Proof. Markov’s inequality [ES10] for non-negative random variables states

Pr(Tn ≥ ttrunc) ≤
E [Tn]

ttrunc
.

Using this bound we find that, if we want to capture at least Pr(Tn < ttrunc) ≥ c probability mass, we

can achieve this by setting

ttrunc =
E [Tn]

1− c
.

Using the upper bound on E [Tn] from Lemma 5.2 we get

ttrunc ≤
1

1− c

(
2

pswap

)log N 1
pgen

.
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(a) Waiting time PMF for pswap = 0.5 (runtime ≈ 75 sec. for N =

32)

(b) Waiting time PMF for pswap = 0.9 (runtime ≈ 150 sec. for N
= 8,192)

(c) Waiting time CDF for pswap = 0.5, Pr(T5 ≤ 5000) = 0.94

(runtime ≈ 75 sec. for N = 32)

(d) Waiting time CDF for pswap = 0.9, Pr(T13 ≤ 5000) = 0.9985

(runtime ≈ 150 sec. for N = 8,192)

Figure 5.4: As can also be see in Lemma 5.10, the value to set ttrunc to in order to capture close to 100% of the

probability mass is heavily dependent on pswap. Here we set ttrunc = 5,000 and compare the captured probability

mass Pr(Tn ≤ 5000) for different numbers of repeater segments N = 2n and different swap success probabilities.

The probability pswap = 0.5 is the highest theoretically achievable success probability for a single entanglement

swap attempt via linear optics in a setup like [DLCZ01], although different setups for near-deterministic swapping

have been proposed [BRP+10]. The given runtimes are for single-threaded computations on commodity hardware.

Multiprocessing It is possible to parallelize the for-loop of length ttrunc in Algorithm 6 to some degree.

At each iteration of this loop two things happen: a linear (weighted) sum of two PMFs taking O(ttrunc)

time, and a convolution taking at best O(ttrunc log ttrunc) time. Because the convolutions are the most

computationally expensive of these two, we will focus on parallelizing these.

Let f1 be the PMF of X, which is the input distribution of Algorithm 6, and fk the convolution of k of

these functions.

fk = f1 ∗ f1 ∗ ... ∗ f1︸ ︷︷ ︸
k
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The for-loop in Algorithm 6 iteratively computes all fk up to fttrunc using

fk = fk−1 ∗ f1.

However, from the associativity of convolutions it follows that fk can also be computed in the following

way. For any j, l ≥ 1 such that j + l = k we have that

fk = f j ∗ fl .

Using this we can divide the functions f1 through fttrunc which need to be computed into a number of

groups, such that any function fk in a given group can be computed from the convolution of f j and fl

in a previous group. Table 5.1 gives an overview of the resulting groups of functions. For example f7 in

group 4 can be obtained using f3 ∗ f4 which have been computed earlier in group 3, while computing f9

in group 5 is impossible without at least one fk from group 4.

All the functions in any given group can be computed in parallel on different threads as they do

not depend on each other. Because the number of functions which can be computed from functions

in previous groups grows exponentially with each group, the total number of these groups will be

O(log ttrunc). This means that in the limit of having an infinite number of independent threads, the

total time complexity would drop from O(t2
trunc log ttrunc) to O(ttrunc log2 ttrunc). When the number of

available threads is much smaller than ttrunc, the speedup of Alg. 6 gains from parallelization will behave

like a constant factor in the number of threads.

group fk only dependent on previous groups

1 f1

2 f2

3 f3, f4

4 f5, f6, f7, f8

5 f9, ..., f16

6 f17, ..., f32
...

dlog2 ttrunce+ 1 f ttrunc
2 +1, ..., fttrunc

Table 5.1: Functions f1 through fttrunc divided into groups, such that all fk in a given group can be computed using

f j and fl from previous groups.

5.3.3 Improving bounds on the mean waiting time

The bound on the mean derived in Section 5.2.2 can be improved upon using the numerical PMFs

obtained from the approach described in Section 5.3.1.

Numerical lower bound Our algorithm calculates the PMF of Tn up until some truncation point ttrunc.

By truncating this distribution we are discarding all elements in the support of Tn greater than ttrunc. If

we renormalize this truncated distribution we obtain a new distribution of a random variable which we

will call Ttrunc
n (Def. 5.11). The mean of this new random variable forms a lower bound on the mean of

Tn, as shown in Lemma 5.12.
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Definition 5.11. We define the random variable Ttrunc
n as Tn given Tn < ttrunc. The probability mass function of

Ttrunc
n is given by

Pr
(
Ttrunc

n = t
)
=

Pr(Tn = t)/ Pr(Tn < ttrunc), if t < ttrunc.

0, if t ≥ ttrunc.

Lemma 5.12. The mean of Tn is lower bounded by the mean of Ttrunc
n (Def. 5.11).

E
[
Ttrunc

n
]
≤ E [Tn] .

Proof. Using Definition 5.11 we write the CDF of Ttrunc
n as

Pr
(
Ttrunc

n ≤ t
)
=

∑t
k=1 Pr(Tn = k)/ Pr(Tn < ttrunc), if t < ttrunc.

1, if t ≥ ttrunc.

Comparing this we the CDF of Tn

Pr(Tn ≤ t) =
t

∑
k=1

Pr(Tn = k)

we can see that

∀t, Pr
(
Ttrunc

n ≤ t
)
≥ Pr(Tn ≤ t)

which we can also write as

∀t, Pr
(
Ttrunc

n > t
)
≤ Pr(Tn > t).

Using Lemma 2.5, we get

E
[
Ttrunc

n
]
≤ E [Tn] .

Numerical upper bound An upper bound on E [Tn] is given in Lemma 5.13. This upper bound allows

us to combine information from our numerically calculated, truncated distribution of Tn, with the

analytical upper bound on the mean found in Lemma 5.2.

Lemma 5.13. The mean of Tn can be upper bounded by

E [Tn] ≤
ttrunc−1

∑
k=1

Pr(Tn ≥ k) +
∞

∑
k=ttrunc

Pr(Yn ≥ k)

where Yn is given in Definition 5.3.

Proof. Using Lemma 2.5, the expectation of Tn is given by

E [Tn] =
∞

∑
t=1

Pr(Tn ≥ t)

=
ttrunc

∑
t=1

Pr(Tn ≥ t) +
∞

∑
t=ttrunc

Pr(Tn ≥ t).
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Results: waiting time 5.3 Numerical approach

Using

∀t, Pr(Tn ≥ t) ≤ Pr(Yn ≥ t),

from Lemma 5.5, we can replace the second summation with one over Pr(Yn ≥ t) and obtain the

following inequality:

E [Tn] ≤
ttrunc−1

∑
k=1

Pr(Tn ≥ k) +
∞

∑
k=ttrunc

Pr(Yn ≥ k).

The terms in the first summation of the upper bound given in Lemma 5.13 can be obtained from our

truncated, numerical distribution of Tn. Obtaining the value of the second summation is a bit more

involved. When trying to bound tail of Yn we notice that, aside from its mean, we have no closed form

expression for the behavior of Yn. However, using the same tools for computing the distribution of Tn

numerically up to some ttrunc, we can also compute the distribution of Yn up to that same ttrunc. The

mean of Yn can then be written as

E [Yn] =
ttrunc−1

∑
t=1

Pr(Yn ≥ t) +
∞

∑
t=ttrunc

Pr(Yn ≥ t).

Because we can obtain the values in the first of these summations from our numerical calculation of Yn,

and we know the mean of Yn analytically (Lem. 5.2), we can compute the value of the second summation

as follows:
∞

∑
t=ttrunc

Pr(Yn ≥ t) = E [Yn]−
ttrunc−1

∑
t=1

Pr(Yn ≥ t)

=

(
2

pswap

)n 1
pgen

−
ttrunc−1

∑
t=1

Pr(Yn ≥ t).

The upper bound in Lemma 5.13 can be made arbitrarily tight by increasing the value of ttrunc.

(a) Bounds on E [T12], i.e. N = 4,096 repeater segments.

(runtime ≈ 140 sec.)

(b) Bounds on E [T13], i.e. N = 8,192 repeater segments.

(runtime ≈ 150 sec.)

Figure 5.5: Using Lemmas 5.12 and 5.13 we can compute increasingly better bounds on the average waiting time

by increasing ttrunc. From Definition 5.11 it follows that these bounds will always converge on the actual mean for

sufficiently large ttrunc. The repeater chain parameters here are pgen = 0.1, pswap = 0.9, and no distillation. The

given runtimes are for single-threaded computations on commodity hardware.
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Chapter 6
Results: fidelity

Using the model for fidelity as given in Section 3.4, and having the previously described methods for

calculating the waiting time probability distribution, our next goal is to find the average fidelity as a

function of the generation time. In Section 6.1 we describe how this can be done for the Monte Carlo

method, and in Section 6.2 we describe how this can be done for the numerical approach.

6.1 Monte Carlo simulation

Because our Monte Carlo simulation draws individual waiting time samples, it is straightforward to

calculate the fidelity alongside each sample, given the functions for swapping, distillation, and decay

described in Section 3.4.

Entanglement swapping and decay Algorithm 7 shows which additions to the Monte Carlo

simulation for waiting time (Alg. 1) can be made to produce fidelity samples alongside the waiting

time samples when we only consider entanglement swapping and decay over time, but no distillation.

Entanglement distillation Because we assume distillation to follow the same nested structure as

entanglement swapping, we can use a similar recursive function as Algorithm 7 to compute fidelities

after m layers of distillation, using the function for distillation from Section 3.4. For this the line

F swap ← swap(F left, F right)

would be replaced by

F swap , pdist ← distill(F left, F right)

and the random sample r would then be checked against (this now fidelity dependent) pdist.
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Results: fidelity 6.2 Numerical approach

Algorithm 7: Function F(n), generates waiting time sample from Tn and corresponding fidelity.

Differences with Algorithm 1 have been highlighted.
Input : Params of Algorithm 1, fidelity of links between neighbors F0

Output: Single sample from Tn and corresponding fidelity

if n = 0 then
return (sample from T0, F0)

else if n ≥ 1 then
(left, F left)← F(n− 1)

(right, F right)← F(n− 1)

diff← |left− right|
if left < right then

F left← decay(F left, diff) // left link earlier

else if right < left then

F right← decay(F right, diff) // right link earlier

end

F swap← swap(F left, F right)

r ← uniform random sample from [0, 1]

if r ≤ pswap then

return max(left, right), F swap // swap was successful

else

return max(left, right) + F(n), F swap // swap failed, retry

end

end

6.2 Numerical approach

Computing fidelities in our exact numerical approach is more involved than for the Monte Carlo

simulation. Here we present a method for computing output fidelities as a function of time, given

we only consider decay over time, and deterministic entanglement swapping (i.e. pswap = 1). We can

verify the results of this calculation against fidelities produced by the Monte Carlo simulation, which

can be seen in Figure 6.1.

Fidelity as function of time We start by defining the function Fn(t) as the average fidelity of entangled

pairs outputted by a repeater chain with 2n segments at time t. For F0(t) we assume this to be some

constant value: the fidelity of links generated between neighboring nodes (a repeater chain with 20

segments) does not depend on time, as the links do not spend any time in memory and thus do not

decay. The next thing we will do is show how the function Fn+1(t) can be computed, given we have

Fn(t).

Decay of earlier generated link We first look at the fidelities of both input links for an entanglement

swap, given the swap happens at time t. We will refer to these links as “earlier” and “later”, referring

to the order in which they are generated. The later link of the two does not decay between the time it

is generated and the time the swap is performed because our model assumes the swap is performed
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Results: fidelity 6.2 Numerical approach

directly after the second link is ready. For the fidelity of the later link we can thus write

Flater
n (t) = Fn(t).

The earlier generated link however does decay. When the later link is generated at time t, there are a

number of combinations in which this could have happened. In order for the later link to be generated

at time t, either the “left” link or the “right” link needs to be generated at time t (or both). Table 6.1

givens an overview of this.

left link 1 2 3 · · · t−1 t t t · · · t t

right link t t t · · · t 1 2 3 · · · t−1 t

Table 6.1: All possible combinations of generation times for two links such that the maximum generation time (the

generation time of the later link) is equal to t.

Each of these tuples of left and right has a probability associated with it. These probabilities can be

obtained from our numerically calculated probability distribution of Tn. Using these probabilities we

we can extract the following expression for the average decay the earlier link experiences while waiting

for the later link, given this later link is created at time t.

Fearlier
n (t) =

[
t−1

∑
k=1

decay (Fn(t), t− k) · 2 Pr(Tn = k)Pr(Tn = t)

+ Fn(t) · Pr(Tn = t)2

]
/ Pr(max{(Tn)l , (Tn)r} = t),

where decay(F, ∆t) is the function given in Section 3.4 and in more detail in Lemma A.6. Intuitively,

what this function does is take the weighted average over all the possible amounts of decay the earlier

link can experience, given the later link is generated at time t.

Deterministic entanglement swapping From the average fidelities of the earlier link and later link

at any given time, computing the fidelity at that time after the swap (given the swap succeeds) is

straightforward. For the case of deterministic entanglement swapping, having generated two links at

layer n of the protocol allows for the deterministic delivery of entanglement on layer n + 1. Because

swapping is assumed to take no time, the corresponding fidelity is then given by

Fn+1(t) = swap
(

Fearlier
n (t), Flater

n (t)
)

,

where the swap function is the function described in Section 3.4, and given in detail in Lemma A.4.

Extending this to probabilistic swapping is currently still an open problem.
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Results: fidelity 6.2 Numerical approach

(a) Numerically calculated average fidelities using the method

in Section 6.2. (runtime ≈ 3 sec. for N = 8)

(b) Empirical average fidelities, obtained from 270,000 samples

generated by Algorithm 7. (runtime ≈ 10 sec. for N = 8)

Figure 6.1: Fn(t) gives the average fidelity of entanglement delivered at time t by repeater chains with varying

number of segments N = 2n, deterministic swapping (pswap = 1), no distillation, and pgen = 0.1. The mean

memory lifetime, relevant for the amount of decay waiting links experience, is set here to 50 time steps.
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Chapter 7
Discussion

7.1 Summary

Goal and motivation Our goal was to analyze the waiting time for distributing entanglement in

quantum repeater chains. Quantum repeaters form an important building block of quantum networks

as they help overcome exponential losses in optical fiber which would otherwise make long distance

quantum communication through fibers impossible. Having more detailed information about the

waiting time probability distributions for distributing entanglement using repeater chains is useful for

example in the investigation of what kind of parameter regimes would be needed to achieve certain

distances with these repeater chains. Having full information about this probability distribution can

also aid in making design decisions for a repeater protocol, for example when setting entanglement

timeout duration.

Model We define the waiting time as the amount of time it takes for a repeater chain which starts

with no entanglement to generate entanglement between its end nodes. Our repeater chain model

uses the BDCZ protocol for entanglement swapping, and assumes entanglement generation between

neighbors, as well as entanglement swapping, are heralded probabilistic operations which succeed with

a fixed probability. A heralded distillation scheme following the same nested structure as the BDCZ

protocol can also be included in the model when the success probabilities are assumed to be fixed. The

communication time for entanglement swapping or distillation are neglected. This model captures most

of the core components of a heralded repeaters scheme, although additions can be made to extend or

improve this model. These additions are discussed in detail in Section 7.2.

Results We have presented two methods of obtaining information about the probability distribution

of this waiting time.

The first approach uses a Monte Carlo simulation to draw waiting time samples which are

distributed according to our repeater chain model. Many samples are then aggregated to obtain a

numerical approximation of the waiting time probability distribution. Drawing a single sample has an

average time complexity which is polynomial in the number of repeater segments. With this approach

we are also able to estimate the fidelity of the generated entanglement, taking swap and distillation

operations into account, as well as state decay over time.
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The second approach is an algorithm for numerically calculating the waiting time distribution up

to some truncation value, as well as obtaining tight bounds on the mean. This algorithm produces

exact results up to the precision of the numerical operations on the specific machine. The results of

this algorithm are verified against the results from the Monte Carlo method. This method has a time

complexity which is polynomial in the number of repeater nodes. This improves on previous methods

which numerically obtained exact information about the waiting time distribution in exponential time.

With this improvement in time complexity we are now able to compute the waiting time distributions

for repeater chains with thousands of segments with computation times in the order of minutes on

consumer hardware, while previously these distributions have only been obtained for repeater chains

with 16 segments. The calculation of fidelity conditioned on time can be integrated in this method

when taking the effects of decay over time into account, in combination with deterministic entanglement

swapping.

For the characterization of the waiting time and output fidelity the Monte Carlo approach is able

to produce results for more detailed models, e.g. the inclusion of fidelity dependent probabilistic

entanglement distillation. An advantage the numerical approach still holds over the Monte Carlo

simulation is that, even though both of them run in polynomial time, with their current implementations

the numerical approach is much faster in practice.

7.2 Future work

In this section we discuss a number of potential improvements to our model and methods, as well as

other future steps.

Validation While we have verified our numerical calculations against a simulation of the same model,

the question of how well this model compares to reality, i.e. the validity of the model, is still open. To

this end one might consider comparing results from our methods against those of a more physically

realistic simulation [QuT].

Communication and local operation time In our current model we assume entanglement swapping

takes no time at all, while in reality this is not true. Extending our current model and methods to include

the communication time between nodes, as well as some fixed amount of time for local operations would

narrow the gap between the model and reality. Exploratory investigation into this seem to indicate that

including the communication and local operation time to our algorithm is not too difficult to do.

Iterative distillation So far we have assumed that entanglement distillation follows the same nested

structure as entanglement swapping. For distillation to actually follow this structure a large amount of

parallelism on the quantum channel between any two nodes is required, as well as the need for the nodes

to be able to store large amounts of qubits. An iterative distillation protocol which reduces the required

parallel resources, sometimes called entanglement pumping, has also been proposed [BDCZ98, DBCZ99].

Because this protocol requires significantly fewer parallel quantum resources it might be more practical

for some physical implementations of quantum repeaters, and hence it could be worth extending our

model and methods with this distillation protocol.
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Entanglement rate and idling repeater nodes In our current model, repeater chain nodes which have

delivered their share of the total required entanglement will idle until it turns out that a following swap

has failed and the entanglement in question needs to be regenerated. A higher overall entanglement

rate could be achieved when idling repeater nodes would instead continue to generate entanglement,

on the assumption that a swap or distillation attempt can fail in the future. Because of this it is also not

the case that the rate at which entanglement can be distributed in a repeater chain is necessarily equal

to the inverse of the average waiting time E [Tn]
−1, as that would mean the entanglement generation for

a second link would only start when the repeater chain has delivered the first link. In practice however

this means that before finishing distributing the first link, and starting to generate entanglement for

the second link, some components of the repeater chain are idling, thus having a lower overall rate

than would be possible. Future work could potentially focus on analyzing the entanglement rate for

a repeater chain model in which the individual components are constantly attempting to generate and

distribute entanglement rather than idling when their job temporarily done.

Optimizing entanglement timeout duration Having full information about the probability

distribution of generating entanglement could be useful for optimizing the duration of entanglement

timeouts. These timeouts enforce a maximum storage time of generated links, and discard these links if

this time limit is reached. By limiting the amount of time links are stored the amount of decay they

experience is also limited. However, regenerating entanglement after discarding it takes time, and

so these entanglement timeouts create a trade-off between fidelity and waiting time. Ultimately what

needs to be optimized is not either fidelity or waiting time individually, but rather a function of both (a

common metric used for this the secret key rate). Knowing exactly what the probability is of generating

the next link within the next t timesteps could help in the decision of whether to discard a currently

decaying link. Knowing how the expected fidelity changes as a function of the time it takes to generate

a link is also useful for optimizing these cut-offs.

Fidelities, state decay, and entanglement distillation Combining state decay over time and

entanglement distillation into a method for computing both the waiting times as well as corresponding

fidelities has proven difficult. The main challenge here is the two-way dependence between fidelity

and waiting time. The fidelity affects the waiting time because the success probability of distillation

depends on the fidelity (for common distillation schemes like [BBP+96] or [DEJ+96]). At the same time

the waiting time affects fidelity, because when already generated links spend time waiting for other links

to generate, the already generated links decay over time, worsening their fidelity. While for simulations

this two-way dependence between waiting time and fidelity does not pose a fundamental problem,

incorporating this into our numerical methods remains an open problem.
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Appendix A
Fidelity tracking

In order to estimate or compute fidelity of entanglement generated by a repeater chain as a function of

time, we need to make a number of assumptions. This appendix goes over all assumptions we make

with regard of quantum states, operations (distillation and swaps), and state decay over time.

In short we assume Werner states as input for all operations, distillation is done using the BBPSSW

protocol [BBP+96], swapping is done using the standard teleportation scheme [BBC+93], and for state

decay over time we assume exclusively depolarizing noise.

Fidelity The fidelity F of a quantum state ρ is a measure of how close your actual state is to some

desired (target) state. In Definition A.1 the fidelity is given when this target state is a pure state. While

fidelity is a metric for the quality of a state and not strictly for the amount of entanglement, when the

target state is a maximally entangled two-qubit state (often a Bell state), we can state that we have

discernible entanglement when F > 0.5.

Definition A.1. For some quantum state ρ, and some desired pure state |ψ〉, the fidelity F of ρ is determined by

the distance between these states, given by

F = 〈ψ| ρ |ψ〉 .

Werner states Our goal is to compute fidelities of two-qubit entangled states. For this purpose we

make the assumption that all our states are Werner states (Def. A.2). These Werner states have two

important properties:

• A Werner state is completely defined by its fidelity. This means that when we keep track of

fidelities, we are also keeping track of the entire quantum state. Having the complete quantum

state helps when determining what effect certain operations have on the fidelity.

• Any two-qubit state can be “twirled” to a Werner state with the same fidelity [BBP+96, DB07]. This

twirling involves applying random gates to the state, effectively discarding information about the

state until all that remains is a Werner state.

Definition A.2. A Werner state is a two qubit state ρ which can be written entirely as a function of its fidelity F

and a given target Bell state (here Φ+):

ρW(F) = FΦ+ +

(
1− F

3

) (
Φ− + Ψ+ + Ψ−

)
, (A.1)
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where Φ± = |Φ±〉〈Φ±| and Ψ± = |Ψ±〉〈Ψ±|. This state can also be written as

ρW(F) = αΦ+ + (1− α)
I

4
. (A.2)

where

α =
4F− 1

3
.

Distillation Entanglement distillation, also referred to as entanglement purification, is a procedure

which takes two (or more) imperfect entangled pairs of qubits and (probabilistically) “distills” a single

pair with higher fidelity from them. Here we assume all entanglement distillation follows the BBPSSW

protocol [BBP+96], which is a distillation protocol which takes two Werner states as input. Lemma A.3

gives both the output fidelity as well as the probability of success as a function of the input fidelities for

this protocol.

Lemma A.3. For two Werner states with fidelity F1 and F2, the fidelity after a successful distillation attempt using

the BBPSSW protocol [BBP+96] is given by the expression below [DB07]. The corresponding success probability

of the distillation attempt is given by the denominator.

F′ =
F1F2 +

(
1−F1

3

) (
1−F2

3

)
F1F2 + F1

(
1−F2

3

)
+
(

1−F1
3

)
F2 + 5

(
1−F1

3

) (
1−F2

3

) . (A.3)

Entanglement swapping Because we know that the input states of any swap operation in our model

are two Werner states with fidelities F1 and F2, we can exactly compute what the fidelity of the output

state will be. We can do this by looking at all possible pairs of pure input states, and which output state

would be produced when applying the quantum teleportation scheme [BBC+93] on them. Table A.1

gives an overview of these input and corresponding output states, as well as the probability of having

these states as input given out state descriptions are ρW(F1) and ρW(F2). Using Table A.1, we can find

the output fidelity as a function of the input fidelities, which is given in Lemma A.4. An equivalent

expression for the case where F1 = F2 is also given in [BDCZ98, DBCZ99].

Lemma A.4. Given two Werner states ρW(F1) and ρW(F2), performing an entanglement swap operation on these

states (without any gate or measurement noise) using the quantum teleportation scheme [BBC+93], produces an

output state with fidelity

F′ = F1F2 + 3
(

1− F1

3

)(
1− F2

3

)
.

Proof. Table A.1 gives an overview of all the possible input states, corresponding probabilities and

corresponding output states. We can find to total output fidelity as

F′ = ∑
ψ,φ

pin(ψ, φ)Fout(ψ, φ)

for ψ, φ ∈ {Φ+, Φ−, Ψ+, Ψ−}. Filling in the non-zero values from Table A.1 gives

F′ = F1F2 + 3
(

1− F1

3

)(
1− F2

3

)
.
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State in pin State out Fout

Φ+ ⊗Φ+ F1F2 Φ+ 1

Φ+ ⊗Φ− Φ− 0

Φ+ ⊗Ψ+ Ψ+ 0

Φ+ ⊗Ψ− Ψ− 0

Φ− ⊗Φ+ Φ− 0

Φ− ⊗Φ−
(

1−F1
3

) (
1−F1

3

)
Φ+ 1

Φ− ⊗Ψ+ Ψ− 0

Φ− ⊗Ψ− Ψ+ 0

Ψ+ ⊗Φ+ Ψ+ 0

Ψ+ ⊗Φ− Ψ− 0

Ψ+ ⊗Ψ+
(

1−F1
3

) (
1−F1

3

)
Φ+ 1

Ψ+ ⊗Ψ− Φ− 0

Ψ− ⊗Φ+ Ψ− 0

Ψ− ⊗Φ− Ψ+ 0

Ψ− ⊗Ψ+ Φ− 0

Ψ− ⊗Ψ−
(

1−F1
3

) (
1−F1

3

)
Φ+ 1

Table A.1: All possible combinations of input Bell states and their corresponding output state after entanglement

swapping. The column Fout gives the fidelity of output state in relation to the target state Φ+. The column pin gives

the probability of this particular combination of input states, given the two input states are described by ρW(F1)

and ρW(F2).

Decay over time For the decay, or noise, the quantum states experience when stored in memory we

assume exclusively depolarizing noise (Def. A.5). While different physical systems can suffer from

different kinds of noise, depolarization can be seen as a “worst case” scenario, as it affects all possible

measurement bases the qubits could be measured in. When applying a depolarizing channel with

probability p to a Werner state with some parameter α (as in Eq. (A.2)), this produces a new Werner

state with α′ = α · (1− p) (see Lem. A.6). For a link which has spend ∆t time in memory, we apply

a depolarizing channel with parameter p = e−λ∆t, where λ−1 is the characteristic time, or the mean

lifetime of the state in the memory.

Definition A.5. The depolarizing channel Ep acting on a state ρ is given by

Ep(ρ) = (1− p)ρ + p
I

d

where d is the dimensionality of ρ, and 0 ≤ p ≤ 1 can be seen as the amount of depolarization or the probability

with which ρ completely depolarizes (becomes the maximally mixed state I/d) [NC11].
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Lemma A.6. Applying a depolarizing channel Ep to a Werner state ρW(F) produces a another Werner state

ρW(F′), where parameter α (as in the form of Eq. (A.2)) becomes α′ = α · (1− p).

Proof. Writing ρW(F) in the form of Eq. (A.2) and applying Ep gives

Ep (ρW(F)) = (1− p)
(

αΦ+ + (1− α)
I

4

)
+ p

I

4

= (1− p)αΦ+ + (1− p)(1− α)
I

4
+ p

I

4

= (1− p)αΦ+ + (1− (1− p)α)
I

4

= α′Φ+ + (1− α′)
I

4
,

which is a Werner state with fidelity

F′ =
3α′ + 1

4

and

α′ = α · (1− p).
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Appendix B
Random sums using PGFs

The following is an overview of a different method for handling the geometric sum in Equation (5.3).

This approach did not yield any improvements in comparison with the results presented in Sections 5.2

and 5.3, however for future reference we summarize this approach here.

Motivation In Sections 5.2 and 5.3 the geometric sum of i.i.d. random variables is expressed as and

computed through repeated convolutions of their probability mass functions (Lemma 2.9). This method

however presents an obstacle in Section 5.2 because it gives an expression which we cannot work

with analytically. And while in Section 5.3 this difficulty is overcome by expressing the probability

distributions numerically, it is also found that these repeated convolutions are now the computational

bottleneck of the algorithm. Because this geometric sum causes difficulties for both our analytical as well

as numerical efforts, it might be worth investigating if this sum can be computed via different means.

Probability generating functions As it turns out, this geometric sum can be expressed in terms of

probability generating functions (PGFs) in a more elegant way than Equation (5.3). Definition B.1 gives

the definition of the probability generating function of a random variable, and shows its relation to the

corresponding probability mass function. Lemma B.2 shows how we can express the geometric sum in

terms of PGFs.

Definition B.1. For a count random variable X with probability mass function Pr(X = x), the probability

generating function (PGF) is defined as

GX(z) = E
[
zX
]
=

∞

∑
x=0

Pr(X = x) · zx.

Lemma B.2. For the random variable WN = X1 + X2 + · · ·+ XN , with all Xk i.i.d., and X and N independent

count random variables, the PGF of WN is given by the following expression [Gri02].

GWN (z) = GN(GX(z)).

Results for analytical approach While we have the expression from Lemma B.2 for the geometric

sum, for the maximum of random variables (the other operation we need to do, see Definition 3.3.1)

there exists no expression for probability generating functions.
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Random sums using PGFs

Instead of evaluating the maximum of random variables in terms of their probability generating

functions, we could also translate the PGFs back to the corresponding PMF or CDF. However, even

though a probability generating function is unique to its corresponding probability distribution [Gri02],

there exists no method for finding a closed form expression of the PMF from an arbitrary PGF. This

means that also this route fails to produce a completely analytical solution.

Results for numerical approach Being able to unable to use these PGFs to obtain a completely

analytical solution, we might still get use out of it by integrating it in the numerical approach

(Section 5.3). The expression in Lemma B.2 can be used to compute the geometric sum via PGFs,

rather than via (computationally expensive) convolutions of the PMF. But since we can only do the max

operation via the CDF we need to numerically translate the PGFs back to PMFs or CDFs first. A method

for doing this is presented in [AW92], which we have implemented and tested. The time complexity

of this inversion method is similar that of doing the geometric sum via convolutions, but because the

convolutions can easily leverage efficient library implementations they are practically much faster.
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