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Abstract

A lot of investigating in law enforcement is done case by case, without look-

ing at the bigger picture. We use social network analytics to gain insights on

suspects and relations between cases in a criminal contact network. First we

do so by looking for important criminals using centrality metrics and meta-

data. Then we attempt to find ways to break up the network by removing

these central targets in order to test its resilience. We find the community

structure of the network and validate this using statistics associated to indi-

vidual nodes and look if there is a criminal hierarchy in a network such as this

one. One of our findings is that the network consists of some central actors

that act as bridges in the network, that distort the flow of communication

when removed. This suggests that using social network analysis, law en-

forcement can potentially cause disruption within communication networks

of criminals.
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1 Introduction

This section contains background information about the topic and domain of

the thesis, leading to the questions that will be investigated and concluding

with an overview of the rest of the thesis.

1.1 Background

A lot of processes in the line of work of law enforcement require manual ac-

tions to complete. Examples of this are filing police reports, extracting data

from devices and determining new leads to further investigate cases. Another

process that still requires a fair amount of manual action is data analysis.

Data analysis is the key to successfully use information, by performing ac-

tions on raw data you transform this raw data into intelligence. At the dutch

police in Amsterdam-Amstelland, some of this process is already automated

by software that is developed for investigations, but there are still steps to

be made in performing high quality automated data analysis.

Authorities such as the police generally have a number of investigations run-

ning simultaneously, each of which containing a variety of data. Some of

these investigations are completely unrelated to each other, but some might

have an overlap, such as common suspects, or multiple investigations that

relate to each other by having the same type of crime. These shared data

attributes between investigations can be analyzed to bring to light new in-

formation that can be helpful when trying to solve these cases.

One of these attributes that one could examine are social circles, i.e. people’s

contacts. In this day and age everyone uses mobile devices to communicate

with each other. We use mobile phones to call, text and e-mail our social

contacts. A lot of this social interaction is stored in our devices, such as

logs of calls, texts, e-mails and contact information. Using this data we can

see who is connected with who through their contacts, and we can create a

network of people and the ones they interact with on their devices, called a
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social network.

Network analysis has been developing for several decades and is very popu-

lar in the social sciences [1], amongst others. It is used to handle the large

amounts of big data that are available nowadays, as a fair amount of network

analysis methods scale well to bigger datasets. An example of social network

analysis is where a network is used to predict and evaluate the outbreak of

diseases. In [3], Christakis et al. show an analysis of the transmission of an

influenza pandemic, where they characterize factors that impact the spread-

ing of this disease using a social network.

When creating such a social network of a group of people that have rela-

tions to each other, we would get an interconnected network from which we

can extract information using social network analysis methods. An example

of this is that one can distinguish groups such as mutual friends, family or

coworkers by comparing connectivity between nodes in this network. This is

referred to as a community, when a group of nodes are more connected inter-

nally than they are with nodes outside of this group. Certain people might

get classified into groups that are to be expected, or people can be found in

groups that one would not expect. Besides classifying specific people in these

so called communities, the community structure of a network as a whole can

give insight on the data.

Another interesting measure is that one could determine people that are

central to the network, which can be expressed in a variety of di↵erent ways.

Examples of this are whether a person has a lot of connections in general,

or whether a person is connected to people with a lot of connections. Using

these so called network centrality measures [4] we will study the social circles

of suspects and criminals, to provide additional insight to relations within

or between investigations. Perhaps there is a central figure that connects a

big part of the crime happening in Amsterdam, or a person high up in the
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criminal circuit trying to stay hidden, communicating through accomplices.

By using measures such as centrality and community detection one could get

insights like these in these networks.

Data of this nature can often be incomplete, as criminals attempt to work

in secrecy as much as they can. A prime example of this is their methods of

contact. While most people have one phone with all of their regular contacts

in it, criminals tend to have multiple phones, sometimes with only one or

not a single contact in it. They do this to hide their operation and means

of contact as much as possible. This means multiple devices can belong to

the same entity, which can lead to an incorrect interpretation of the criminal

network resulting from such data.

1.2 Research Question

This leads us to the proposed research question:

What insights can we get on suspects and relations between cases by analyzing

data of criminal contact using social network analysis?

We can divide this research question into several sub-questions:

1. Can we identify multiple devices to be the same entity?

2. Can we identify the most ‘important’ criminals using network analysis?

3. Can find ‘key players’ that break up the criminal network when they

are arrested?

4. Can we detect groups of criminals that perform the same type of crime?

5. Is there a hierarchical structure in this criminal network?
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1.3 Thesis Overview

After this introductory section, the thesis is divided in five other sections.

Section 2 describes work related to this research and gives an insight in the

domain of law enforcement data and criminal networks. Section 3 discusses

the statistics of the data that was used. It also goes into the preprocessing

and refining that was done to ensure that the data was transformed in a way

that was suitable for social network analysis and that the quality of the data

was up to scientific standards. Section 4 describes the methods that were

used to analyse the data. Section 5 presents the application of these methods

to the data and shows the results of the experiments, answering the research

questions. However, the first research question will be discussed in Section 4,

as a lot work was done in preprocessing and this involved this problem of

entity resolution that includes the first research question. Section 6 contains

our conclusions and suggestions for future work.
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2 Related work

In this section we will highlight some of the previous work in the field of social

network analysis, specifically on criminal networks, and how this relates to

our research.

2.1 Criminal Network Characteristics

There are many challenges to overcome when investigating and analyzing

criminal network data, compared to other data. Criminals often have di↵er-

ent behaviour because of what they do, they try to work in secrecy as much

as possible to avoid authorities, which can results in data intelligence prob-

lems. Morselli [2] states that criminal networks di↵er from regular network in

certain ways, because they ”face a constant trade-o↵ between security from

law enforcement and e�ciency of their operation. Criminal networks are not

simply social networks operating in criminal contexts. The covert settings

that surround them call for specific interactions and relational features within

and beyond the network [5]”.

Adderley et al. [6] and Sparrow [7] state that the data available by law en-

forcement agencies such as the police have several aspects that di↵er from

standard social network data:

• Incompleteness - Criminals work in secrecy and do not want to be

identified by authorities, therefore the data is inevitably incomplete.

This can result in things such as missing links between people or missing

suspects in a network.

• Incorrectness - The data held by authorities could contain incorrect

information, either by criminal intent by tampering with data or due

to human error while processing the evidence and entering the data in

the system.

• Network Dynamics - Criminal Networks are dynamic, as many networks

are. Meaning they are likely to evolve over time.
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• Fuzzy Boundaries - The boundaries of a criminal network are ambigu-

ous. Crimes within organizations are often interrelated with other or-

ganizations. This means that individuals do not necessarily have to

belong to one community of criminals but can have ties to multiple

organizations.

When experimenting we will take these di↵erent aspects into account and

interpret the results from our experiments accordingly.

2.2 Criminal Communities: Crime Gangs

In their research, Oatley and Crick describe the community structure in a

criminal network by identifying crime gangs in the UK [8]. They identify that

if the network exhibits global clustering this indicates the presence of groups

of criminals in the same gang. Within these gangs, local clustering tells

something about the structure within the gang. They describe an internal

gang structure of four di↵erent roles within a gang:

• Leader - Responsible for recruiting, sanctions ‘missions’ for enforcers.

• Provider - An individual either internal or external that supplies the

gang with firearms and/or ammunition.

• Enforcer - An individual that is an active gunman for the gang.

• Runner/Dealer - A member who distribute or supply drugs, usually on

the leaders behalf.

One of the goals of this research is to see if the community structure of the

crime in Amsterdam is similar to internal gang structure that was found by

Oatley and Crick or if we find di↵erent results.
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2.3 Identifying Key Players in a Social Network

In [9], Borgatti proposes two methods to define sets of key players in a social

network, KPP-POS and KPP-NEG.

The KPP-NEG method is used to determine central entities in the network,

so called key players. These entities are not just central in the network, they

have the property that if they are removed from the network this causes

maximal fragmentation, breaking up the network.

His method involves a greedy optimization algorithm that uses fitness fea-

tures based on key player metrics such as the Herfindahl index [10].

It starts with selecting a set of random nodes and computing the fitness value

of this set. After which it iteratively perform two steps until the stopping

criterium is matched:

• Loop over each node in the random set and each node not in the random

set, and compute the fitness di↵erence of the random set if these nodes

were swapped.

• If the fitness di↵erence is smaller than the stopping criterium, stop. Else

swap the nodes with biggest fitness di↵erence and update the fitness of

the random set.

Fragmenting the network by removing key nodes is something that could

prove useful in law enforcement. It can be beneficial to determine key crim-

inals that interconnect the di↵erent components of the network, because ar-

resting these individuals, this could potentially result in groups of criminals

losing contact with one another.
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3 Data

The following section describes the process of extracting the data, refining

it, ensuring the quality of the data and the methods used for analyzing the

social network created with this dataset.

3.1 Data Extraction

For this research we used confidential data extracted from devices, primarily

mobile phones, that have been collected for investigations by the dutch police

in Amsterdam. The police extracts information from phones that are found

or taken from suspects to use the information to aid investigations. These

are primarily from potential suspects, but could also be devices found in and

around houses that have been raided or investigated.

For each available device we have extracted their list of contacts. For each

of these contacts we have the name of the contact, the phone number of the

contact, the name of the item containing the contact and the name of the

investigation corresponding to that item. By linking our dataset to a di↵er-

ent system of the police we also obtained another a domain related measure

we call crime weight or crime severity. The crime weight of an individual

is determined by the highest crime weight of any of the cases they are in-

volved in. This means that if they are involved in a lot of cases, there is

a higher chance that they are involved in a more severe case, resulting in

a higher crime weight. This crime weight consists of a number between 1

and 6, where 1 are relatively small crimes and 6 are the most severe crimes

one could imagine. There are also some nodes classified with crime weight

7, which is the case when there was no information about the severity of the

crime.

Representing the raw data in a network resulted in a network with 343,200

nodes and 469,677 edges.
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3.2 Refining the Data

To ensure that our research with this dataset leads to valid results, we refined

the data by removing excess information and normalizing certain attributes.

3.2.1 Servicenumbers

A lot of the items in this dataset have lists of contacts that contain servi-

cenumbers. These numbers are irrelevant for doing social network analysis

and can create confusion when analyzing the network. A very common ser-

vicenumber such as the emergency service can be in a lot of people’s con-

tacts, but it does not say anything about whether these people are connected

through this number or not. These service numbers will also likely have a

lot of connections in the network, as they are commonly found in people’s

phones, but this does not mean they are a significant entity in this criminal

contact network.

For these reasons we excluded all servicenumbers using a list of known ser-

vicenumbers. We have also manually extended this list by analyzing entities

with a very high degree in the network, being entities with a lot of connec-

tions, and checking odd numbers for whether they are a servicenumber or not.

Removing these servicenumbers also causes some phones to have a com-

pletely empty list of contacts. These are likely phones that have just been

bought and only have servicenumbers of their mobile operator in their phone.

As a result they are single nodes in the network that do no interact with any-

one and do not add any value to the data. These nodes were also excluded

from this research. After removing these servicenumbers from the data this

resulted in a network with 342,438 nodes and 461,476 edges.
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3.2.2 Normalization

A lot of contacts with phone numbers in mobile devices are stored by sav-

ing the number after being called or receiving a text from someone. One

then click on this number and save it as a contact, however, one can also

manually save contacts and input the phone number themselves. In a large

dataset like the one used in this research there are a lot of cases of people

entering a phone number for a contact incorrectly. There are also multiple

ways to correctly enter the same phone number, for example, in the Nether-

lands a correct cellphone number would be 0612345678. Another correct way

of saving the same number in the Netherlands would be +31612345678 or

0031612345678, as the country code for the Netherlands is 31. If you would

call either of these three numbers in the Netherlands you would connect to

the same phone number.

Seeing as we want to di↵erentiate contacts based on their phone number

we normalized these di↵erent forms of numbers to one format and cleaned

all phone numbers of incorrect symbols, typing errors and incorrectly format-

ted phone numbers. Table 1 shows examples of the actions of normalization

and cleaning of the phone numbers to get them to one format. Each of these

numbers is normalized to the standard phone number format we use for this

research, which is 31612345678 for this example.

3.3 Data Quality

Each item in our data has a name consisting of an item number and what

type of phone it is, for example 1234567 IPhone 6. The idea behind this

was that this number preceding the type of phone was to be unique so each

device had its own unique name. In practice this was not the case and there

were item names corresponding to multiple devices, as well as that the in-

formation from some devices was extracted and stored multiple times using

di↵erent software or di↵erent versions of the same software.
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Table 1: Phone number normalization and cleanup examples

Action Example

Remove leading 31+ 31+31612345678

Remove ++ 31++612345678

Remove spaces 31 6 12 34 56 78

Remove dashes 31-612345678

Remove leading + +31612345678

Remove leading ’ ’31612345678

Reformat 06-numbers 0612345678

Reformat 0031-numbers 0031612345678

Replace 031 031612345678

Replace/reformat (0) (0)612345678

Replace leading 31(0)6 31(0)612345678

Replace leading 0 031612345678

Reformat/Clean number 316+31612345678+3123456

For doing social network analysis on this data we want to distinguish people,

also referred to as entities, with a unique identifier. This is so each node in the

social network corresponds to exactly one entity and there are no groups of

multiple nodes representing the same entity or multiple entities represented

by the same node. Ideally, all the nodes in the network should be unique

entities, however in practice, seeing as information from some devices gets

extracted multiple times and stored separately we could have entities that

are represented by multiple nodes. We want to minimize this to keep the

quality of the network high and the information extracted from the network

as accurate as possible. This problem of linking records of the same entity

by means of a unique identifier is called entity resolution [11] and we took

several measures to solve this problem to improve the quality of the data, as

discussed in Section 4.2 and 4.3.
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4 Methodology

In this Section we will go into the methods that were used to answer the

research questions described in Section 1.3.

Section 4.1 contains social network definitions that will be used in the sec-

tions thereafter. Section 4.2 is about methods to deal with the problem of

entity resolution. Section 4.3 goes into the process of extracting the own

numbers how they contribute to entity resolution. Section 4.4 is about iden-

tifying/ranking important individuals. Section 4.5 is contains methods to

analyze the community structure of a network.

4.1 Social Network Definitions

Social network analysis is the process of investigating social structures through

the use of networks and graph theory [12]. This can be done by representing

the data in a network structure, where entities in this network are character-

ized as nodes that are connected by their relations/interactions characterized

as edges or links. When representing data in this way one can extract addi-

tional information from this data using network statistics and algorithms.

A social network can be represented as a graph G = (V,E) with a set of

socially relevant objects V , also referred to as nodes, entities or vertices,

connected by a set of relations E, also referred to as links or edges. Figure 1

shows an example of such a network with 6 nodes and 6 edges.

This network is undirected and unweighted. That the network is undirected

means that every connection has no orientation. An edge (v, w) is identical

to the edge (w, v) for v, w 2 V . An example of this is a friendship between
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two people. An example of a relation in a directed network would be a trans-

action of one person to another in a financial network. That the network is

unweighted means that every link has the same weight, so each relation is of

the same strength.

This example network connects all nodes in one component, which is not

always the case. If for example the edges v, w and v, x were removed the

network would consist of two components, where there would be one compo-

nent of two nodes and one component of four nodes. The component with

the majority of the network’s nodes is called the giant component.

The network that is analyzed for this research is a network based on the

contact between phones of criminals that have been extracted by the police

in Amsterdam.

Figure 1: Network with 6 nodes and 6 edges.

Source: http://liacs.leidenuniv.nl/~takesfw/SNACS

4.2 Entity Resolution

To deal with the problem of entity resolution discussed in Section 3.3, we

compared features of the devices, where the main feature is the list of their
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contacts. We did a pairwise comparison of all phones in the dataset to com-

pute the percentage of overlap in their contacts. If a pair of phones has at

least one contact in common, it is then taken in consideration, storing the

size of each of the contact lists, the number of contacts in common and the

percentage of overlap. To compute this percentage of overlap experimented

with several methods of determining set-similarity, such as the Jaccard In-

dex [13], the Srensen-Dice coe�cient or simply taking the average of both

the overlap of phone 1 in phone 2 and the overlap of phone 2 in phone 1. We

came to the conclusion that in this domain, the latter option was a very inac-

curate representation of the overlap between the 2 lists of contacts, and that

the Srensen-Dice coe�cient resulted in a much higher percentage of overlap

than the Jaccard Index when there were only a few contacts in common. The

Jaccard Index seemed to give an good representation of how much phones

overlapped but from a domain perspective this was not accurate enough. As

per requested, to determine whether 2 phones belonged to the same entity

we computed both the overlap of phone 1 in phone 2 and phone 2 in phone 1.

Combining this overlap with meta information such as the name of the item,

that commonly consists the type of phone, or the name of the case where it

was used in, the police can accurately determine whether devices belong to

the same entity. Figure 2 shows a visual of the frequency of occurrence of

percentual overlap in pairs of phones that have one or more contact in com-

mon. We see that most phones have a relatively low percentage of overlap

in contacts, and there are interesting outliers at 50% and 100%. The peak

at 100% is due to devices being extracted multiple times, or several devices

that belong to the same person.

4.3 Extracting Own Numbers

Other than the methods described in Section 4.2, we dealt with the problem

of entity resolution by determining the phone numbers corresponding to the

devices in the data, further referred to as ‘own numbers’. This data originally

was extracted from phones using the extraction software that the police uses,
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Figure 2: Contact overlap in pairs of phones

but it was stored in files with a lot of other information. These own num-

bers were not extracted from these As stated in Section 3.3 we want unique

identifiers for each entity in our social network and the item names were

not exactly unique. As the own numbers are neccesary to identify telephone

nodes, we created a parser that finds all the extracted files of a device, finds

corresponding police reports that can possibly contain this information and

then parses these files to retrieve the phone’s own number. Of all devices in

their database, of 31% of these devices the own number was extracted.

Another incentive to retrieve the own numbers of the devices is if we do

not have this information when making a social network of phones and their
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contacts using this data, we would only have links between phones and con-

tacts, and not a single connection between two phones. This also results in

multiple nodes representing the same entity. A phone in the dataset could

have the own number 31612345678 and this number could be in the list of

contacts of a di↵erent phone. If we do not know the own number of the

phone, we would have a node for the phone with some identifier, and a node

for the contact 31612345678, even though they are in fact the same entity.

Not having these own numbers would result in a very misleading social net-

work, as there would be certain nodes with only outgoing links, these being

the phones. And there would be certain nodes with only incoming links,

being the contacts. Figure 3 is a visual of how one phone with its contacts

would look like.

Figure 3: Phone with its contacts when no own number is known

In a network such as this one, if the own numbers are unknown there is a

high chance that a person is represented by more than one node. This is

because the phones that get extracted are nodes in the network defined by a
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unique identifier instead of their own number. The contacts in these phones

get defined by their phone number and there is no way to know whether a

‘phone node’ with its identifier is the same entity as a ‘contact node’ with

its phone number. This means there will be a lot of redundant nodes and

edges and the network will not be a realistic representation of the situation.

Figure 4 shows an part of the network without solving this entity resolution

problem by defining these own numbers. It shows that the network almost

exclusively consists of these ‘phone’ nodes with their big cluster of contacts,

with very limited edges to other nodes and zero connections between phones.

Figure 4: Structure of the network without own numbers

By determining these own numbers we were able to create a much more re-

alistic representation of the data that was presented to us. Although, when
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looking at the network visualization we still find nodes with a high amount

of overlap that potentially are the same entity, which can be seen in figures 5.

In these figures, the pattern of overlap in contacts seems too interesting to

be random. We see that there are three nodes in the bottom of the figures

that are connected with a large number of contacts above, and the overlap

of these contacts is interesting. The node in the middle is connected with

all of these contacts, and both the node on the left and the node on the

right are connected with about half, where they both have a group of nodes

that does not overlap, and a group in the middle that does overlap. We

expected this to be devices that belong to the same entity, or devices from

the same investigation. However, for most of the occurrences of this pattern

this was not the case. This means that after one performs network analysis

on a network such as this, there are still patterns that stand out, which can

be interesting to be manually investigated by the police.

4.4 Entity Ranking

When extracting information in the domain of crime data, an important

measure in network analysis is how the network is connected. Which people

are ‘key’ in a network, and how to determine these important individuals.

One way of ranking these entities in a network is looking at how central

they are in the network compared to others. By combining these rankings

and potentially adding domain specific information one can determine the

importance of people in a network.

There are many ways to determine the centrality of a node in a network

compared to other nodes. For this research we used a handful of centrality

measures that will be described in this section. These will be used to answer

two of the research questions that were mentioned in the introduction in

Section 1.2.
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Figure 5: Interesting overlap pattern
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4.4.1 Degree Centrality

The degree centrality of a node is conceptually the simplest centrality mea-

sure. It is based on the degree, the number of links the node has. If a node

is connected to many other nodes in a network it has a more central position

in terms of local power, as in this case it has contact with numerous people

in the network. Criminals that only know a few other criminals are gener-

ally less interesting than criminals with a lot of connections in the criminal

circuit. The degree centrality Cd(v) of a node v is equal to the degree of the

node, defined as Cd(v) = deg(v) where deg(v) is its degree. Nodes with a

higher degree have a higher degree centrality.

4.4.2 Closeness Centrality

The closeness centrality of a node is the average length of the shortest path

between this node and all other nodes in a network. The closer a node is

to all other nodes, the smaller the size of the shortest paths will be and the

more central this node will be in the network.

It is defined as Cc(v) =
1

( 1
n�1

P
w2V d(v,w))

Where Cc(v) is the closeness centrality of node v and
P

w2V d(v, w) is the

average shortest path length from node v to any other node w in the network.

A higher closeness centrality means the node is more central in a network.

4.4.3 Betweenness Centrality

The betweenness centrality of a node is determined by the number of times

this node is included in the shortest path between two other nodes. This is

based on people being an important factor in the connection to others. If

a node connects a large number of other nodes this node is central to the

network.
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Betweenness centrality of node u is defined as Cb(u) =
P

v,w2V
�u(v,w)
�(v,w)

Where �(v, w) is the number of shortest paths from node v to node w and

�u(v, w) is the number of these shortest paths that run through node u.

Nodes with higher betweenness are more central in a network.

4.4.4 Eccentricity Centrality

The eccentricity centrality of a node is based on the concept of node eccen-

tricity. This is the length of the longest shortest path from this node, or the

distance to the node furthest away from the considered one.

The eccentricity e(v) of node v is defined as e(v) = maxw2V d(v, w)

The eccentricity centrality of a node is then obtained by simply taking the

inverse of the eccentricity: Ce(v) =
1

e(v)

Nodes with a higher eccentricity centrality are more central in a network.

4.4.5 PageRank Centrality

PageRank centrality is based on the principle of the PageRank [14] algorithm

that google uses to rank websites in their search engine results. It is a variant

of eigenvector centrality [15] that uses the structure of incoming links of a

node.

It is defined by repeatedly applying Pc(i) = ↵
Pn

j=1 aji
Pc(j)
out(j) +� until conver-

gence, then setting Cp(i) = Pc(i)

Where ↵ is a constant, � is equal to 1�↵
n where n is the number of nodes and

aji = 1 is if there is an edge from j to i.

4.4.6 Detecting Key Players

As described in Section 2.3, Borgatti proposes two methods to define sets

of key players in a social network. Entities are considered key players when
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they are central in a network in such a way, that when they are removed

from the network this causes a high degree of fragmentation. This means

that the network gets more disconnected after removing these entities than

it was before. Borgatti proposes a way to randomly select nodes, compute

the fitness value of these nodes, which is determined by the fragmentation

that is caused by removing them from the network, and in this way find a

set of nodes with maximal fragmentation.

While Borgatti’s method is random, there is a centrality measure that is

likely closely related to network fragmentation: betweenness centrality. As

described in Section 4.4.3, betweenness centrality is the measure that indi-

cates how many times a node is used as a bridge in the shortest path from one

node to another. We propose that by removing nodes with high betweenness

values, one removes these bridges and this may cause fragmentation of the

network.

4.5 Community Detection

When looking at the community structure of a network there are groups of

nodes that are more strongly connected with each other than with the rest

of the network. Finding these groups, so called communities, can be a com-

putationally di�cult task as the size of these groups is typically not known

beforehand.

Finding communities can give additional information about a network. In

the field of crime data one could for example find gangs, or criminals per-

forming the same type of crime in certain locations. In most cases these

communities are detected by community detection algorithms and there are

a variety of algorithms that can perform these computations. In this work

we have used the Louvain [16] method.

The Louvain method for community detection is a method based on an it-

erative process of modularity optimization. Modularity, defined as a value

between -1 and 1 measures the density of edges inside communities compared
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to edges between communities.

Maximizing this value theoretically results in the best possible grouping of

the nodes in a network. Instead of trying all possible combinations of nodes

in groups, the Louvain method first finds small communities by maximizing

modularity locally on all nodes. These small communities are then repre-

sented as one node and this process is then repeated until no modularity

increase can occur.

The general definition of modularity (for a weighted graph) is defined below.

However, for our experiments we worked with an unweighted network, mean-

ing all the weights are equal to 1.

Q = 1
2m

P
ij [aij � kikj

2m ] �(ci, cj)

Where

• aij represents the edge weight between i and j

• ki and kj are the sums of the weights of the edges attached to nodes i

and j respectively

• m is the sum of all edge weights in the graph

• ci and cj are the communities of nodes i and j

• � is a simple delta function that is 1 if i = j and 0 if i 6= j

An iteration of the Louvain method has two iterative phases. First, each

node is assigned to its own community. Then for each node i the algorithm

calculates the change in modularity when i is removed from its own commu-

nity and moved to the community of each neighbour j of node i. This change

in modularity, �Q, can be calculated using:

�Q = [
P

in +2ki,in
2m � (

P
tot +ki
2m )2]� [

P
in

2m � (
P

tot
2m )2 � ( ki

2m)2]

Where
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•
P

in is the sum of all the weights of the links inside the community

that node i is moving to

•
P

tot is the sum of all the weights of the links to nodes in the community

• ki is the weighted degree of i

• ki,in is the sum of the weights of the links between i and other nodes

in the community

Once �Q is computed for all communities that node i is connected to, it is

moved into the community for which the highest modularity increase is at-

tained. In case there is no improvement of modularity, i stays in its original

community. Once there is no improvement in modularity for any node, the

first phase of the algorithm is finished.

The second part of the algorithm is where all of the nodes in one community

get grouped and now represent one node. A new network is built from these

grouped nodes where links between nodes in the same community are repre-

sented as self loops on the new community node. Edges from multiple nodes

in the same community to a node in a di↵erent community are represented

by weighted edges. Once this process of rebuilding the simplified network is

done, the first phase can be reapplied to this network.

These two steps are repeated until there is no further increase of modular-

ity. Now communities in the network have been identified and these can be

analyzed to find nodes with similar connections.
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5 Experiments

This section contains the experiments that we ran to answer the research

questions defined in Section 1.2.

Section 5.1 describes the experimental setup used for this research. Sec-

tion 5.2 shows characteristics of the network. The remaining sections contain

the application of the methods described in Section 4 to answer the research

questions.

5.1 Experimental Setup

Most of the network analysis methods that were used were programmed in

python using the Networkx [17] package. We also used the Teexgraph [18]

library for large scale network analysis. Visualizations were done using

Gephi [19]. The experiments were conducted in a VMware virtual machine

running Ubuntu that was connected to a local PostgreSQL database server

containing the data.

5.2 Network Statistics

Table 2 shows characteristics of the criminal contact network.

This table shows that almost all nodes are connected with one another in

the giant component. The experiments that we ran were all ran on the giant

component of the network. Roughly 98% of every entity in the dataset is

connected, which is unexpected considering main connecting points such as

servicenumbers have been removed beforehand. One would think that, be-

cause criminals tend to work in secrecy as much as possible there would be

less connectivity in a network such as this one. A giant component of this

magnitude shows that this criminal network is more interconnected than ex-

pected.

The remaining 2%, 6793 nodes, consist of 799 components. While the giant
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Table 2: Network Statistics

Measure Value

Number of Nodes 340,262

Number of Edges 434,864

Number of Components 800

Nodes in Giant Component 333,469

Edges in Giant Component 428,603

Number of Triangles 76,371

Average Clustering Coe�cient 0.04010

Average Degree 2.556

Average Shortest Path Length 6.263

component will likely consist of organized crime, the rest of the components

will likely consist of smaller groups of criminals or people that work alone or

in su�cient secrecy.

The table also shows that the triangle count of the network is relatively

low. We speak of a triangle when in a group of three nodes there are edges

from each node to the other. When comparing this statistic to a network

such as Facebook or Twitter, we see that for this network the triangle count

is much lower than the number of edges and nodes. A part of the reason

for this is that not all of the own numbers were known, and triangles can

only form with phones for which the own number is known. This is be-

cause without own numbers there would only be links from ‘phone’ nodes to

‘contact’ nodes and there is no way to create a triangle in this fashion. An-

other reason for this is because in general, social interactions show homophily

(people tend to connect to people that are similar to themselves) and tran-

sitivity [20], but this shows that for this crime network these relations apply

in a smaller manner. This form of non-transitive connectivity is also shown

in the relatively low average clustering coe�cient of 0.04010. As the cluster-
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Figure 6: Degree Distribution

ing coe�cient is dependant on the number of triangles, this is to be expected.

Figure 6 shows the distribution of degree of the network.

We found that when looking at the degree distribution this criminal network

follows a power-law, where there are a large number of people in the network

with a low degree, and the higher the degree of the nodes get, the smaller

the number of nodes with this degree gets. This means the degree is not a

normal distribution but is more skewed, meaning there are very few people

with an extremely high degree and a lot of people with an extremely low

degree, as opposed to a normal distribution.

Another interesting measure that can be read from Table 2 is the average

27



shortest path length. For a network of this magnitude it is interesting to see

that the average shortest path length is only 6.263. This means that from

any node to in the network to another, on average, it takes 6.263 edges.

Considering that the average clustering coe�cient is only 0.04010, there have

to be nodes that are connected to a large number of people for the average

shortest path length to be 6.263. These so called ‘hub’ nodes are an important

factor to interconnecting the network. We can see the presence of these nodes

in Figure 4, where some of these hub nodes have over a thousand connections.

Having a dense core with hub nodes, a small average shortest path length

and a high clustering coe�cient are properties that can indicate that the

network is a small world network. This network has two out of three of these

properties, but the clustering coe�cient is lower than the expected value for

one of a small world network. This is most likely due to that the own numbers

of phones are not all known in the network. Because not all of these own

numbers are known, some connections between phones are missing, which

results in a lower triangle count, which in turn results in a lower clustering

coe�cient. If all the data was available there is a good chance that this

network would be a small world network.

5.3 Centralities

Another way to obtain insights is to look at network statistics and domain

related attributes and see how they relate to each other. One way to do this

is a scatter plot. This is a visual of two measures plotted against each other,

showing how these measures relate to one another. Making a plot for each

pair of these measures results in a scatter plot matrix, which can be seen in

Figure 7.

For each node, from left to right the measures that can be seen in the scatter

plot matrix are:

• Degree centrality Cd
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Figure 7: Matrix of relation between node-specific metrics

• PageRank centrality Cp

• Eccentricity centrality Ce

• Closeness centrality Cc

• Betweenness centrality Cb
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• Average clustering coe�cient

• The number of connections (degree)

• The number of cases an entity is involved in

• The severity of the crimes as defined in Section 3.1

Many of the scatter plots in this matrix are network measures related to

other network measures, but the most interesting scatter plots are those of

how network measures relate to domain specific measures.

While we only have two domain specific measures in this matrix, as one may

expect, these correlate. The number of cases and the severity of the crimes

of an individual relate to each other, such that if an individual is involved in

a lot of crimes, the severity of their most severe crime is higher than someone

that is involved in fewer crimes.

Besides this correlation of domain specific measures, this scatter plot matrix

does not show other obvious correlations between domain specific measures

and network measures. We do measure a correlation between betweenness

and crime weight and some correlations between betweenness and other net-

work measures such as degree and PageRank centrality. This means that

some nodes with a high betweenness are also significant to the criminal net-

work in a di↵erent way, which can make them important entities for the

police to watch or investigate.

5.4 Ranking ‘Important’ Entities

There are several ways to approach finding ‘Important’ nodes in a network.

The first is applying network analysis methods and determining central nodes

that are crucial for connecting the network. Another way is to look at domain

specific measures. For this research we did not have a lot of domain specific

information, but we did have some case related information such as for each

node in which cases they were involved.
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By linking the database where our dataset is from to another system that

the police had where they have information about the severity of the crimes,

we found the ‘crime weight’ for each node. This crime weight consists of a

number between 1 and 6, where 1 are relatively small crimes and 6 are the

most severe crimes one could imagine. There are also some nodes classified

with crime weight 7, which is the case when there was no information about

the severity of the crime. Figure 8 shows a diagram of the distribution of

crime weight in this network.

Figure 8: Crime weight distribution

In this figure, each node is ranked by their highest crime weight. This is

because generally, more severe crimes determine a criminal. For example if

someone is involved in shoplifting and also involved in a murder, it would be
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strange to qualify this person as a thief, rather than a murderer.

Besides this domain specific metric we also looked at centrality rankings to

determine important nodes. For each node we computed each of the five

centralities described in Section 4.4. For each centrality measure we ranked

the nodes by ordering them by their centrality value. We then looked at the

top 20 of each centrality measure to see if we can find nodes of importance,

that are highly ranked in multiple centrality measures. As these centralities

are known to correlate[21], we expect some amount of overlap between the

top ranked entities of this network. We find that when looking at the top five

of each centrality ranking, five entities show up in more than one centrality

ranking. Two entities even rank in the top 5 in three di↵erent measures.

When looking at the top 10 we find that nine entities show up in more than

one ranking, of which five show up in three di↵erent rankings. This tells us

that even though some centralities are correlated in a way, there are in fact

entities that could be interesting to investigate.

We also combined these methods of ranking entities, where we looked at

centralities in comparison to case weight. This is to find out whether case

weight correlates with centrality measures to determine if severe criminals

are also more central in the criminal network of Amsterdam. Figure 9 shows

how two commonly used centralities compare to a domain specific measure

such as case weight.

In this figure the centralities are normalized to a range between 0 and 1. We

see that the majority of nodes in this centrality range have a low crime weight

as the majority of the points in the figure are blue. We see that the lefthand

side of the figure is mostly blue and dark blue, meaning nodes with a very

low degree are generally criminals with a low crime weight. This makes sense

as criminals that are not deep in the criminal circuit yet and do not have

as many connections, probably perform less severe crimes. We also see that

when the betweenness of nodes rises this does not really correlate with crime

weight as in this figure the nodes with higher betweenness are still mostly

colored blue.
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Figure 9: Degree centrality vs betweenness centrality, colored by case weight

There is a correlation visible in the figure, between degree centrality and be-

tweenness centrality, as was also seen in the scatter plot matrix. The higher

the degree of the node, the higher the betweenness of that node. And we

also see that on the righthand side, where the degree and betweenness values

start going up, the crime weight also goes up as that side shows more green,

yellow, orange and red nodes.

When examining correlations between each of the centrality measures and

the severity of crimes to see if more severe criminals are in fact more central

in the network, we find that this is not necessarily the case. The results of

Figure 9 showed a relation between crime weight and centrality in a small
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range of the two centralities (0 to 0.04 and 0 to 0.025). When looking at the

relation between centralities and crime weight, a boxplot gives an accurate

representation of this relation, as you can see the distribution of a centrality

measure seperate for each crime weight in one figure. Figure 10 shows a

similar pattern of distribution of the degree for each crime weight, other than

for the crime weights of 5 and 7 where there are significantly less nodes with

this crime weight and a high degree. This is probably due to the absence

of nodes with crime weights of 5 and 7 that we saw in Figure 8. For the

other centrality measures we see a similar trend. This is the case for four

out of the five centralities we used in this research, for which boxplots can

be found in the appendix, Figures 12, 13, and 14. For closeness centrality

however, we found that nodes with a lower crime weight tend to have a

higher closeness centrality, which can be seen in Figure 11. This means that

people with a lower crime weight tend to have a smaller average shortest path

length, meaning their distance to others in the network is shorter. This may

indicate that the bigger criminals are hiding in remote parts of the network.

5.5 Identifying Key Players

As stated in Section 4.4.6, identifying key players that cause the network to

fragment when removed are likely to have high betweenness centrality values.

We experimented with removing the nodes that have the highest betweenness

in this network and observed the results this had on the fragmentation of the

network. For this we use two measures, the number of components that are

in the network after removing this node or these nodes, and the impact it

has on the average shortest path length of the network. These measures are

specifically interesting in this field, as fragmenting a criminal network or in-

creasing the di�culty of criminals contacting each other can have an impact

on the criminal circuit.

As shown in Table 3, we found that even when removing a single node,

this being the node with the highest betweenness, we already disconnect
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Figure 10: Boxplot of degree centrality vs crime weight

the network in such a way that it falls apart in five components, one large

component and four small ones. When removing the ten nodes with the

highest betweenness centrality, this shatters the network, resulting in 15853

components. Again, one main component and a lot of smaller components.

After removing these nodes, we took a sample of this newly created network

with 10.000 nodes and their respective edges and calculated the new average

shortest path length. After taking the average of 10 approximations per new

giant component, we see a minor increase in average shortest path length.

This means that by removing a relatively small group of so called key play-

ers, the average shortest path length increases slightly, and the network falls

apart into thousands of separate components.
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Figure 11: Boxplot of closeness centrality vs crime weight

Table 3: Fragmentation by removing key players

Top #nodes removed #Components #Nodes #Edges Path Length

0 1 333462 428591 8.18

1 5 333214 428200 8.20

10 15853 315912 406497 8.32

25 27993 303568 387170 8.35

5.6 Community Structure

To determine what the optimal division into communities is for a network

using the Louvain Method, one has to experiment with the resolution pa-

rameter to see for which resolution the modularity is optimal. Table 4 shows

that for a resolution of 1.25 we get the optimal value for modularity, with
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190 communities for this network.

Table 4: Tuning of Resolution parameter

Resolution #Communities Modularity

0.50 343 0.91537

0.75 262 0.91662

1.00 215 0.91671

1.25 190 0.91705

1.50 172 0.91550

1.75 160 0.91458

For various nodes in this network we have information about the type of

crime they are involved in. This means that when dividing the network in

communities, we can investigate if these modularity based communities con-

sist of people that perform the same type of crimes. In this way we can

validate the network measure of community structure by using domain spe-

cific metadata. There’s a total of 12 main crime types, with 675 subtypes.

For this community analysis we will be looking at subtypes.

As shown in Table 5, we found that 75 of the communities have one crime

type that covers the majority of the community. For 52 of the communities

it is the case that 75% or more of the nodes in the community have the same

crime type and 12 communities consist of only nodes with exactly the same

crime type.

Table 6 shows that the type of crime that is most common in some commu-

nities, almost exclusively shows up only in that community. For 24 commu-

nities we find that their most common crime type has 90% or more of its

occurrences in this community, meaning there is 10% or less of this crime

type being performed in di↵erent communities. For 51 of the communities

we find that their most occurring crime type occurs in this community for

more than 50% of the total occurrences in the network. Meaning that the
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Table 5: Crime distribution per community

% Same Crime Type # Communities

>51 75

>75 52

100 12

majority of the occurrences of this crime type is in one community.

Table 6: Community distribution per crime

% Same Community # Communities

>90 24

>51 51

5.7 Hierarchy

To determine if there is a hierarchical structure within a network, one can

look at the assortativity of its nodes. Assortativity is described as a prefer-

ence that nodes tend to attach to nodes that are similar in a way. In the

case of a hierarchy, this is likely to be seen in the degree of nodes. Seeing

as not all own numbers are known, it is likely that that the network is dis-

assortative, as ’phone’ nodes are connected to a lot of contacts and to fewer

other phones, mainly resulting in connections between high degree nodes and

low degree nodes. This network has an assortativity coe�cient of -0.21 from

which we can conclude that this network is disassortative. Low degree nodes

are connected to high degree nodes and nodes of degree 50 and higher are

rarely connected to other nodes of degree 50 and higher, but mainly to other

very low degree nodes. This could be because of the ‘phone’nodes being

connected to the ‘contact’nodes as described in Section 4.3. It could also be

an indication of a hierarchical structure within the network, where not every
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criminal has contact with as many other criminals, but there are specific

people who have contact with a lot of people and others who have very little

contacts.
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6 Conclusion & Discussion

In this work, we presented methods to analyze data of criminal contact us-

ing social network analysis to get insights on suspects and relations between

cases. A lot of work was done in preprocessing the data and getting an ac-

curate representation of the criminal network using this dataset. By doing

this preprocessing and linking our dataset to additional metadata available

by the police, we managed to identify a lot of nodes in the network that were

the same person. Removing these nodes ensures the quality of our results.

We found that this criminal network has properties of a small world network,

which it likely is, but due to absence of data it is missing links resulting in a

low clustering coe�cient.

We found there are no actors in this network that have a high centrality

value for di↵erent centrality measures. Our analysis also showed that there

is little correlation between centrality measures and the severity of crimes

committed by actors in the network. This means we can identify potentially

important targets for the police to arrest based on centrality measures and

crime weight, but it is hard to automatically classify them in this way.

We found an e↵ective way of breaking up a criminal network by locating key

players that fragment the network when removed by choosing targets with

high betweenness. This results in fragmentation and a significant increase in

average shortest path length, hindering contact in the network.

We showed that community detection algorithms to some extent show similar

results in grouping people based on their crime type. We found some com-

munities solely consisting of people performing the same type of crime and

some crime types that almost exlusively showed up in certain communities.

Using these communities the police can find criminals in groups where they

may not expect them to be, and create links between cases that were not

previously present.

The network showed to have low assortativity, where there were a lot of nodes
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connected to nodes with a very di↵erent degree, which can be explained due

to the nature of the data, or by the presence of a hierarchical structure in

the network.

Summarizing, we have researched entities, their relations, and relations be-

tween cases in a criminal network and found interesting information that

could be used in future police investigations.

For future work, the data could be refined even more, as the results will

get more realistic once more entity resolution is performed. An example of

how this could be done is taking names of contacts in consideration, figuring

out by which aliases criminals go and minimizing the number of nodes rep-

resenting the same entity. Once temporal data is available, link prediction

is also something that would be interesting to research for this data. As

it would be valuable information to the police to know which criminals are

likely to work with one another.
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Appendix

Figure 12: Boxplot of betweenness centrality vs crime weight
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Figure 13: Boxplot of PageRank centrality vs crime weight

Figure 14: Boxplot of eccentricity centrality vs crime weight
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