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Abstract:  
 
 
Information Technology is an important structural part of organizations. Companies invest 
large amounts of capital and man power into their IT infrastructure. The majority of those 
investments are spent on maintaining and updating existing infrastructure. It is of vital 
importance to update software packages in order to fix security leaks and bugs in the 
software. Security leaks can cause immense damage to a firm and its business, and a loss 
of trust by clients if their private information is leaked. 
 
However, updating software packages can introduce new problems as well. Whenever a 
software package is updated, the possibility of a regression occurring exists. For this 
reason, companies hire large Quality Assurance (QA) departments that test before every 
upgrade whether or not such regressions occur in the software. This costs companies a 
large amount of manpower and money. 
 
A regression can occur in several forms. The most common form of a regression is that a 
new bug is introduced, where a workflow of a program that used to work correctly now no 
longer works correctly. For this type of regression, many types of automated tests and 
testing frameworks have been introduced. However, more subtle regressions also exist. In 
particular, one form of regression that is currently not tested for automation is the 
performance regression. This type of regression does not introduce actual faults in the 
program, but rather causes existing workflows to perform less efficiently than they did 
before the software update. This can cause severe problems in the business workflow, as 
severe performance regressions can slow down the operational system or introduce 
latency to the clients depending on where it occurs. 
 
In this work, we focus on automatically detecting performance regressions to assist the 
quality assurance departments of businesses and help prevent severe performance 
regressions form occurring. In particular, we focus on Relational Database Management 
Systems (RDBMSs) which are used by the majority of businesses and where low latency 
is of vital importance to the business process.   
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Chapter 1 
 
 
 
Introduction  
 
The effectiveness of data management within firms has become more important due to the 
large increases in storage information capacity and the increasing amount of data 
generated by the firms. Data management includes many topics, such as data security, 
sharing, governance and warehousing. Data management is crucial regarding to how 
many businesses operate. To exploit the data a firm has, Relational Database 
Management Systems (RDBMS) are implemented and are used for maintaining 
databases, based on the relation model of data.  Usually, all relationship database 
systems use the Structure Query Language (SQL) to query the data. SQL was particularly 
designed to address structured data that have relations between the different entities of 
the data. [1]  
 
The development and maintenance of Database systems became imperative for the all 
kind of business. For example, Amazon uses an RDBMS in order to keep track of their 
customer base and inventory [13]. The maintenance of business operations and processes 
are mainly managed by the information systems a company has applied, in order to seize 
control of opportunities in the market regarding products or supplying services. Due to this 
dependence on information a firm has, the performance of those systems is of outmost 
importance. More stable systems that perform better have proved to eventually assist 
strategic decision making notable faster due to business intelligence, and avoiding 
opportunity costs. Because of this special relationship of a firm with its data, regression in 
systems can be associated with reducing the speed of processes and customer 
dissatisfaction. Eventually, regression in Information Systems can affect the decision 
makers and create multiple opportunity costs. An example of the impact a regression can 
create in the business performance is if a database request to answer a client search 
requires ten times more time to return results. This can result to an unresponsive website. 
An unresponsive website creates customer dissatisfaction. 88% of online consumers are 
less likely to return to a site after a bad experience and 47% of the users expect a 
maximum 2 seconds loading time for a website. Websites that are loading slow or are 
unresponsive cost retailers around 2.6 billion$ in lost sales [2].So, a performance 
regression in the RDBMS of a firm can have dire consequences.    
 
Companies invest in QA (Quality assurance) in order to ensure quality and steady 
performance for their software products and existing infrastructure. Every new version of 
software must be tested before implemented for bugs and performance regression in 
different scenarios. Regarding performance regression in a software system, the 
automated tools that exist are few and usually not compatible with open source systems. 
The automation of the performance regression detection in an update of a software system 
can lead to a reduction in multiple costs and man power. 
 
Regarding the database industry and performance testing, in order to help customers 
decide which database system performs better in a particular scenario, the Transaction 
Processing Performance Council was created. The TPC benchmark was standardized, 
starting with obsolete workloads for the present, like TPC-A, that kept evolving to the 
industry regulations and needs. The bench marking process however, can be difficult and 
time consuming. Implementing the TPC benchmark and studying the performance of a 
system by using a particular database vendor in comparison with another vendor or 
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another system, can lead to wrong conclusions and hasty mistakes.  There are also many 
pitfalls regarding database performance comparison, such as non-reproducibility or failure 
to optimize the database for bench marking [3]. For serving the purposes of this thesis, the 
benchmark TPC-H will be applied. TPC-H is a decision support benchmark which consists 
of business oriented ad-hoc queries and the data generated are particularly chosen to 
have industry relevance.  Using the TPC-H benchmark, users can come easier to a 
decision on which system they should implement, regarding their own hardware or 
particular scenario. 
 
 
Purpose of this thesis  
 
In this thesis, due to today’s high demand of high quality Database Systems, I propose the 
automation of the bench marking process, in order to detect performance regression 
between the current version of the system, and the next software update. This thesis is 
focused in the database system of PostgreSQL, an open source database that can be 
downloaded, installed and updated through open source version control systems, like 
Github.  
 
One of the factors that performance regression can occur is the code of the new version of 
the system. More specifically, when a new commit is being pulled through GitHub, some 
code files are being deleted, and some new files are being added. In this thesis, I try not 
only to detect performance regression automatically, but also to specify which change of 
the code implemented, actually led to a regression.  
 
By executing the tools, users can detect if the new version causes performance regression 
regarding the time of query execution, using an industry relevant data set, and choosing 
the scale factor for which is closer to their needs in order to perform those tests. 
Developers can recognize which particular file has led to a regression and the precise 
regression in time, in comparison with the previous version of the system.   
 
For the implementation, I use Python for the scripting language, a general purpose 
scripting language that is widely used and accepted by data scientists, software engineers 
and developers, due to its large existing code base for data analysis, graph plotting and 
mathematics. Those combined factions make Python an ideal language for performing 
efficient operations in a database without forfeiting the advantages of a scripting language.  
 
 
Thesis Outline 
 
The thesis is structured as follows. In Chapter 2, I introduce the related work that has been 
implemented by the TPC Benchmarking, the most relevant research in Relational 
Database Management Systems and their current ranking, the related research that has 
been done in PostgreSQL Benchmarking and the strengths of python as a scripting 
language for performing data analysis operations. In Chapter 3 I propose two tools in order 
to detect performance regression between the software updates of the database 
PostGreSQL. The first tool is producing the precise results of performance results based 
on the TPC-H benchmark, and produces graphs that demonstrate the time that was 
needed to execute all the twenty two queries using various hardware specifications that 
were available on the Scilens cluster of CWI.  
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The second tool’s usability is to find the differences in the code between two different 
versions and track down the file that caused the most performance regression, after 
benchmarking and recompiling all the different test patches that are produced. In Chapter 
4, I analyze the costs of Softwrare Quality Assurance of Information Systems and the 
benefits of automating the process. Finally in Chapter 5, I present my conclusions 
regarding the evaluation of the automated performance regression tests as well as 
propositions for future expansions of this project, regarding both the QA and the IT sector. 
In the Appendix, I present the twenty two queries that were used as well as  the flowcharts 
for the tools. 
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Chapter 2 

 

Related work 

In this section, I will present an overview of the related research that has been done in 
Relational Database Management Systems regarding benchmarking. More specifically, I 
will be analyzing the TPC Benchmarking process, the queries and the industry relevant 
data that are being produced by the TPC data generator. 

 

2.1 The TPC Benchmarking 

 

In the early 1980’s, the industry started a competition that has accelerate over time, the 
automation of business transactions. One of the first applications that had worldwide focus 
was the Automated Teller Machine (ATM), and we have seen this online model of 
computing being applied to every aspect of the business, from groceries to gas stations to 
multinational companies. Users were involved for the first time in the creation of update 
transactions in an online database system. Thus, an online transaction processing industry 
was slowly manufactured, an industry that in the present represents billions of dollars in 
annual sales. So database and computer systems vendors began to make claims on the 
performance of their systems, based on the benchmark TP1, that was originally developed 
by IBM, the first attempt for a civilized test, or benchmark between the competition of 
which company produces the best system. As it was expected, the benchmark had flaws, 
as ignoring the network and user interaction components of an OLTP (On-Line 
Transaction Processing), it could generate inflated results.  This situation also frustrated 
the vendors, because they felt that their competitors’ claims were based on a flawed 
benchmark [4]. 

The Transaction Processing Performance Council was created on August 1988 and has 
two major organizational activities. The first is the creation of solid, reliable benchmarks 
and the second is creating a good process for reviewing and monitoring those benchmarks 
and their results. Those two organizational activities are quite important, because they lay 
the foundation for fair competition between the companies or entities that create the 
database systems.  The first benchmark was created in 1989 by the TPC organization with 
the name of TPC-A. This benchmark was the foundation of later benchmarks, and it 
measured the total performance of a system, including the operating system, the database 
management system and other related components that are also involved in the 
transaction processing operation. Over the years, other TPC Benchmarks like TPC-B and 
TPC-C were developed and applied. The first TPC-C result that was published in 1992 had 
a 54 tpmC (Transactions per minute) with the cost per tpmC of $188.562.  A bit more than 
6 years later, the best result was a 52.871 tpmC with the cost of $135 per tpmC. 
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This tremendous improvement can be a reason of performance increase in hardware and 
software products and vendors improving their products in order to eliminate performance 
bugs that were exposed by the benchmark [6]. 

For the purpose of this thesis the TPC-H benchmark will be implemented for testing the 
performance of the database. The TPC-H is a decision support benchmark. It includes 22 
business oriented queries written in SQL, and the data that are generated are implicitly 
chosen to have industry relevance. It is designed for decision support systems that have to 
thoroughly search through large volumes of data. The queries are designed to have a high 
degree of complexity and assist with the process of answering critical business questions. 
The performance metric is Query-per-Hour (QphH@Size), and it represents the capability 
of the system to process those queries. It reflects the query processing power when they 
are submitted by a single stream and also when they are submitted by multiple concurrent 
users. The price/performance metric is $/QphH@Size. The queries are written in SQL-92 
language and are annotated to specify the rows that must be returned when needed. In 
order to make the queries compatible for the PostgreSQL database management system, 
they had to be rewritten, while following all the compliance rules. No new query or variant 
of an existing query has been used during this project [5]. 

 The functionality and use of its query is as follows. Pricing summary report query (Q1), 
Minimum cost supplier query (Q2), Shipping priority report query (Q3), Order priority 
checking query (Q4), Local supplier volume query (Q5), Forecasting revenue change 
query (Q6), Volume shipping query (Q7), National market share query (Q8), Product type 
profit measure query (Q9), Returned item reporting query (Q10), Important stock 
identification query (Q11), Shipping mode and order priority query (Q12), Customer 
distribution query (Q13), Promotion effect query (Q14), Top supplier query (Q15), 
Parts/Supplier relationship query (Q16), Small quantity order revenue query(Q17), Large 
Volume customer query (Q18), Discounted revenue query(Q19), Potential part promotion 
query (Q20), Suppliers who kept orders waiting query (Q21), Global Sales opportunity 
query (Q22) [5]. As demonstrated, every query is business relevant and has been 
designed in such a way that can represent the workloads of a company. The scale factor 
of the data can be chosen by the user, in order to achieve greater connection between the 
existing queries and real workloads. 

An example of the business question and the code to execute it in SQL for Query 3 is as 
follows: 

Business Question: Q3 retrieves the shipping priority and potential revenue,(which is 
defined as the sum of l_extendedprice * (1-l_discount) ), of the orders who have the 
largest revenue among those that had not been shipped yet, as of the given date. The 
orders are listed in decreasing order of the revenue. If more than 10 not shipped orders 
exist, only the 10 orders with the largest revenue are listed.  

When it comes to fair bench marking, there are many common pitfalls. The first is the non-
reproducibility of the experiment. The possibility of reproducing experiments is 
fundamental in science. 
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When other researchers cannot verify your results, by reproducing the experiment, your 
claims regarding a benchmark are not widely accepted, because nobody can verify that 
your results are indeed correct. Another pitfall is the failure to optimize the database for the 
precise benchmark. Finally it is imperative that the two systems that are being compared 
with the benchmark have the same functionality.   

It is also important that the differentiation between the “hot” and the “cold” runs is made. 
The “cold” run represents the first time that the query is executed and the data are being 
loaded from a persistent storage, so it is significantly slower than the “hot” runs, which are 
loaded after the first time from a buffer pool [3].  

In conclusion, fair bench marking can be hard. There are many processes that must be 
addressed, not only in the experiment itself and optimizing the database for the bench 
marking, but also the pre-processing is the same between the systems, automatic indexing 
is not turned on and the tests have been done in multiple data sets [7]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.2 PostgreSQL and Bench marking 
 
 
PostgreSQL is one of the most used open source database management system. It 
currently ranks as fourth in the database industry and second when it comes to open 
source database systems as shown in Figure 1. 
 
 

  
 
 Figure 1: Current Ranking of Database Engines regarding usability (Source: 
www.DB-Engines.com , July 2018)  

 
 
 
Every database system is based on a model, with the exception of schema-less ones. The 
model is responsible for handling the data using applications or libraries in order to 
manage databases of various sizes and sorts. PostgreSQL is a relational database 
system. The relational model reforms all the data to be stored by defining relationships and 
related entities with unique attributes. Some of the known advantages of PostgreSQL in 
comparison with other database systems are its strong and experienced community, which 
can be accessed through free knowledge bases, it has a strong third party support, it can 
be extended programmatically with stored procedures and finally PostgreSQL is an 
objective Relational Database System, with support for nesting [8]. Some of its 
disadvantages are that for simple read heavy operations PostgreSQL might perform 
slightly worse than other database systems like MySQL and it is sometimes hard to find 
service providers that can supply managed instances and support. For the purposes of this 
thesis, my choice to work with PostgreSQL derives from its abilities to deliver reliability and 
data integrity, the extensibility that it offers and the effortless integration of Python scripts.  
 
For some cases, like the TPC-B benchmark, some tools already exist that help with the 
benchmarking processes.  The most popular of those tools is the PgBench. The target 
areas of PgBench are the hardware of the system, the PostgreSQL core operators and the 
identification of performance regression.  



For TPC-H, there is no tool that allows a user to automate the process of benchmarking or 
optimize the database for the benchmark. In general, while there are tools for analyzing 
OLTP (Online Transaction Processing) models for measuring transactions per second, 
there are no OLAP (Online Analytically Processing) tools. Usually, OLAP models are more 
complicated, due to the escalated complexity of the queries and the involvement of 
aggregations. For OLAP systems the response time is the most important element, and it 
demonstrates how effective is the system regarding a workload, and regarding the 
hardware [5], [9].  
 
When it comes to PostgreSQL optimization, there is not a standardized way to optimize 
the database system, precisely for the benchmark. Index scans are usually preferable over 
sequential scans, yet again, if the “SELECT” statement will return more than 10% of all 
rows in a table, a sequential scan is much faster from an index scan. The main reason for 
this behavior is because an index scan can require several In/Out operations for every 
row, look for the row in the index and finally retrieve the row from a heap, while a 
sequential scan will require only a single In/Out for every row. Sometimes, even less, 
because of the fact that a block (page) on the disk most probably contains more than one 
row. There are some statements like “EXPLAIN” and “EXPLAIN ANALYZE” in order to 
help you determine the approach that PostgreSQL is following to execute the queries and 
the actual performance of the precise approaches. The main problem is that query plans 
are not easy to read, with the information being closer to machine language. In order to 
visualize the problem better, there is a tool with the name Postgres Explain Viewer (PEV) 
that simplifies query plans. It demonstrates a horizontal tree with nodes representing query 
plan. It provides the error amount in the planned time versus the actual execution time, 
and information about the most “expensive” nodes or “bad estimates” as shown in Figure 
2. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: PostGres Explain Viewer horizontal tree 
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Another option regarding performance increase is to create views and query the views 
precisely. A view is a tool for storing partial queries, and they can be treated as tables, 
having to look through a much more limited amount of data. Also, a view can be 
materialized, with the results being stored by PostgreSQL. The statements are “CREATE 
MATERIALIZED VIEW” and “REFRESH MATERIALIZED VIEW”. So in read-heavy 
operations, like the 17th query of the TPC-H benchmark, the cost of the partial query is 
compensated. Materialized views are especially helpful when someone is performing 
identical operations such as “SUM” or “COUNT” and when joining additional tables. In 
conclusion, a materialized view is way more “cheaper” regarding the resources of the 
system than a full statement [9]. 
 
For the purposes of this thesis, I have decided not to perform any other optimization 
regarding the queries other than that the allowed one index per table, due to compliance 
with the TPC benchmark regulations and policies 
 
 
2.3 Python with combination of Database Management systems 
 
 
Python is one of the most popular and widely accepted scripting language regarding 
databases. One strength of python is its use with relational and also NoSQL (Not Only 
SQL) databases. NoSQL databases are undergoing substantial growth in web applications 
and Big Data due to their agility in permitting data to be stored in a flexible manner than 
the relational model allows. On the other hand, this flexibility has its downsides such as 
limited support for consistent transactions [11] 
 
The integration features of Python are also one of its advantages. It integrates the 
Enterprise Application Integration which makes it extremely convenient to develop Web 
Services and call on databases by invoking COM components.  As a result of Python’s 
extensive libraries support and its productivity in comparison with other scripting 
languages, the programming part of this thesis is mostly occupied by python, and a small 
part of SQL for the creation and querying the bench marking tables.  
 
 
 
 
 
 

 

 

 

 

 

 

 



Chapter 3 

 

Implementation and Evaluation 

 

All information of an organization derives from the data its produces and manipulates. The 
usage of high quality Database systems is one of the most important functions that interest 
any firm in any business sector. I have chosen to apply the concepts of automation in one 
of the most used open sources databases, PostGreSQL.  More precisely, the automation 
of globally accepted and acknowledged performance tests is an attractive idea to the 
current market, because of the value business intelligence adds to a firm. 

The purpose of the tools is to automate the benchmarking process between the software 
updates of PostGreSQL. The tools use Github in order to install and pull new updates of 
PostGreSQL. They compare the performance of two versions of PostGreSQL regarding 
time and produce graphical representations of each of the 22 queries from the TPC-H 
organization, as well as the total Power@Size comparison. The second tool, if regression 
is detected, will also track down the file that caused the most regression. 

In this section, I will give an in depth description of the tools and their usability. I will be 
explaining the implementation process and the decisions that the user must take regarding 
the bench marking process and how those decisions will influence the results. I will be 
analyzing my decisions regarding the creation and architecture of the tools. A precise 
flowchart of both of the tools can be found in the appendices. 

 

3.1 Analyzing the first tool and the results 

Regarding the queries of the TPC-H benchmark, each query is defined by the business 
question, the functional query definition, the substitution parameters, which describe how 
to enter values that are needed to complete the syntax, and the query validation. For 
example the initial syntax from TPC-H for query 13 is shown in figure 3.  

 

 

Figure 3: Query 13 from the TPC-H specifications (Source : URL : 
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.3.pdf)  



For the values “Word1” and “Word2”, the documentation of TPC-H clarifies that Word1 
must be randomly selected from four possible values: “Special”, “pending”, “unusual” and 
“express”. Word2 must be randomly selected from the four possible values: “packages”, 
“requests”, “accounts” and “deposits”.  For the sake of speed I implemented the queries 
from the script made from Hannes Muehleisen for the MonetDB/PostGreSQL comparison 
[10], as shown in figure 4.   

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4: TPC-H Query 13 

 

 

All queries represent business scenarios that tend to manifest themselves in everyday 

business situations and business relevant queries. The output of the queries has been 

tested for correctness, as non-integer expressions including prices are expressed in 
decimal notation with at least two digits behind the decimal point and dates are expressed 
in a format that includes the year month and day in an integer form (YYYY-MM-DD). All 
the results of the queries match the validate output of data, specified in in the TPC-H 
documentation.   

 
The first tool is focused between the current commit of PostgreSQL and the next update. It 
installs PostgreSQL, if it is already installed it recognizes the installation, downloads the 
TPC-H benchmark and generate the data for the tables for a scale factor that the user will 
provide. The data are being generated with the use of the QGEN Program. The QGEN 
program is a TPC provided software package that must be used in order for the results of 
benchmarking to be considered valid. Next, the tool creates the data directory that the 
tables will reside, inserts the data into the tables and runs the 22 queries, five times each. 



Next, after storing the results, it drops the tables and upgrades to the next commit of 
PostgreSQL by pulling it from the source on Github. After that, it recreates the tables, 
regenerate the data and insert the data into the tables. The time loading the data is also 
being compared between the two versions. Next, it runs the TPC-H queries again and 
compares the results from the previous version of each query individually as well as the 
total Power@size that it is defined by the following mathematical expression from the TPC 
organization: 

 

TPC-H Power@Size= 24√((3600*SF) / πQi(i, 0)) 

 

Where SF is the scale factor for the data to be produced from QGEN and Q is the product 
of the 22 queries.  TPC-H implementations represent the raw query execution power of the 
system in the least amount of time [5].   

 
The tool uses multiple Python libraries as shown in Figure 5, as NumPy which adds 
support for multidimensional arrays and matrices, and is accompanied with a collection of 
mathematical functions in order to be able to operate on these matrices.  The 
matplotlib.pyplot library was used for developing the graphical representations of the 
results. Psycopg2 was used in order to establish a connection with the database 
PostgreSQL. 
 
 
 

 

 

Figure 5: Libraries used. 

 

 

 

 



The adapter between the database and the Operating System based scripts is the module 
Psycopg2 for establishing the initial connection and the manipulation of the database, as 
creating the tables, loading the data that was generated into the tables and write the 
queries as shown in Figure 6. 

 

 

 

Figure 6: Psycopg2 connection  

  

 

In order to update to the newest version of PostgreSQL, it uses the pull method from the 
source of PostGre in Github. The version that is being tested is displayed. In the case of 
absence of a new commit, a “sleep” command will be initiated for a small amount of time, 
and then retry to update the software as shown in Figure 7.  

 

 

Figure 7: Updating to the newest version 



After the queries have been executed in both of the commits, the matplotlib.pyplot library is 
being used to produce the graphical representation of the results and finally the TPC-H 
Power@size difference between those two commits, shown in figure 8. 

 

 

Figure 8: Code for graphical representations. 

 

 

Hardware and computer specifications play an important role in benchmarking, so the 
script was executed in the Scilens Cluster of Centrum Wiskunde & Informatica, using 
various machines and specifications. The scripts were executed on the Diamonds, Stones, 
Bricks and Gems configurations, each representing a different tier of hardware 
specification. The precise hardware configuration follows in Table 1. 
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 Diamonds Gems Stones Bricks Rocks 

Type Intel Xeon 
E5-4657L 

v2 

Intel 
Xeon e5-
2650 v2 

Intel 
Xeon 

E5-2650 
v2 

Intel 
Xeon 
2650 

Intel 
Core i7-
2600k 

Architecture x86_64 x86_64 x86_64 x86_64 x86_64 

CPU op-
mode(s) 

32-bit, 64-
bit 

32-bit, 
64-bit 

32-bit, 
64-bit 

32-bit, 
64-bit 

32-bit, 
64-bit 

Byte Order Little 
Endian 

Little 
Endian 

Little 
Endian 

Little 
Endian 

Little 
Endian 

CPU(s) 96 32 32 32 8 

Thread(s) 
per core 

2 2 2 2 2 

Core(s) per 
socket 

12 8 8 8 4 

Sockets 4 2 2 2 1 

NUMA 
node(s) 

4 2 2 2 1 

CPU family 6 6 6 6 6 

Model 62 62 62 45 42 

Stepping 4 4 4 7 7 

Clockspeed 2.4 GHz 2.6 GHz 2.6 GHz 2.0 GHz 3.4 GHz 

Virtualization 

 

VT-x 

 

VT-x VT-x VT-x VT-x 

L1d cache 32 KB 32 KB 32 KB 32 KB 32 KB 

L1i cache 

 

32 KB 32 KB 32 KB 32 KB 32 KB 

L2 cache 

 

256 KB 256 KB 256 KB 256 KB 256 KB 

 

Table 1: CWI Scilens-configuration standard (Source: URL: 

https://www.monetdb.org/wiki/Scilens-configuration-standard) 
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The results of the queries are separated in “cold” and “hot” runs.  The “cold” run represents 
the first time a query is being executed after the tables are created and populated. It takes 
CPU time to figure out how to run a query. That is because PostGre needs to compile an 
execution plan in order to figure out the best way to run the query. PostGreSQL uses 
memory to cache execution plans in order to save time the next time the same query is 
executed. A “hot” run of a query is considered a query execution, when the query has 
been executed already in the past. Therefore there is no CPU time loss to execute the 
query, because there is no need to compile an execution plan again.   

Two versions of PostGre were selected randomly in order to execute the test and present 
the results for the first tool. The versions are 
“f9fe269ca21808c1f6a3d0d239365fa4eaf2b389” and 
“af63926cf577f4c30q43b7651e93e3a5eaa262e0”. The tool was executed in all tiers of the 
Scilens cluster for scale factor 1, which means that the data that are being produced by 
the QGEN software will have a size of 1 Gigabyte. The results in the diamonds tier, for the 
commits regarding the “cold run and “hot” runs average differences are represented in 
table 2: 
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 Version: 
f9fe269ca21808c1f6a3d0d239365fa4

eaf2b389 

Version: 
af63926cf577f4c30q43b7651e93e3

a5eaa262e0 

 “Hot” 
Run”(seconds) 

“Cold” Run 
(seconds) 

“Hot” 
Run(seconds) 

“Cold” Run 
(seconds) 

Query 1 5.746  5.967          5.773 5.789 

Query 2 8.158  8.259 6.156  6.265 

Query 3 1.194  1.795 1.183  1.96 

Query 4 1.145  1.245 1.145  1.258 

Query 5 2.624  2.683 2.645  2.696 

Query 6 8.528  8.565 0.526 0.696 

Query 7 9.598  9.696 9.540  10.129 

Query 8 8.713  8.769 6.708  6.968 

Query 9 2.893  2.963 2.118  2.369 

Query 10 0.842  0.965 0.872  0.963 

Query 11 0.189  0.192 0.199  0.269 

Query 12 0.624  0.631 0.662  0.774 

Query 13 0.565  0.567 0.560  0.591 

Query 14 0.535  0.597 0.540  0.553 

Query 15 1.215  1.369 1.116  1.124 

Query 16 0.974  1.236 0.933  1.124 

Query 17 0.212  0.458 0.212  0.365 

Query 18 5.130  5.362 5.328  5.698 

Query 19 0.180  0.189 0.093  0.154 

Query 20 0.081  0.096 0.001  0.0013 

Query 21 3.045  3.178 3.058  3.069 

Query 22 0.313  0.369 0.296  0.495 

Time Loading 
data 

52.397  60.803  

Table 2 
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The results for the stones tier are represented in Table 3:  

 Version: 
f9fe269ca21808c1f6a3d0d239365fa4

eaf2b389 

Version: 
af63926cf577f4c30q43b7651e93e3

a5eaa262e0 

 “Hot” 
Run”(seconds) 

“Cold” Run 
(seconds) 

“Hot” 
Run(seconds) 

“Cold” Run 
(seconds) 

Query 1 5.127 5.569          5.369 5.698 

Query 2 7.945 8.693 7.536 7.969 

Query 3 1.096 1.125 1.140 1.254 

Query 4 1.006 1.012 1.014 1.019 

Query 5 2.216 2.396 2.225 2.239 

Query 6 0.391 0.478 0.399 0.475 

Query 7 8.453 9.019 8.597 8.602 

Query 8 0.511 0.698 0.512 0.632 

Query 9 1.629 1.785 1.596 1.637 

Query 10 0.659 0.796 0.658 0.661 

Query 11 0.145 0.249 0.149 0.178 

Query 12 0.485 0.501 0.478 0.511 

Query 13 0.447 0.494 0.569 0.571 

Query 14 0.389 0.391 0.201 0.421 

Query 15 0.852 0.969 0.365 0.474 

Query 16 0.747 0.878 1.092 1.147 

Query 17 0.169 0.256 0.009 0.019 

Query 18 4.211 4.563 4.107 4.117 

Query 19 0.071 0.124 0.009 0.017 

Query 20 0.002 0.003 0.087 0.103 

Query 21 2.501 2.695 2.963 3.145 

Query 22 0.225 0.334 0.109 0.295 

Time Loading 
data 

49.329 51.968 

Table 3 
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The results for the bricks tier are represented in Table 4:  

 Version: 
f9fe269ca21808c1f6a3d0d239365fa4

eaf2b389 

Version: 
af63926cf577f4c30q43b7651e93e3

a5eaa262e0 

 “Hot” 
Run”(seconds) 

“Cold” Run 
(seconds) 

“Hot” 
Run(seconds) 

“Cold” Run 
(seconds) 

Query 1 5.890 5.920 5.891 5.930 

Query 2 0.150 0.154 0.147 0.154 

Query 3 1.077 1.093 1.081 1.129 

Query 4 1.069 1.075 1.069 1.095 

Query 5 2.768 2.801 2.741 2.894 

Query 6 0.451 0.453 0.463 0.465 

Query 7 10.868 11.410 10.510 10.671 

Query 8 0.617 0.638 0.632 0.682 

Query 9 1.974 2.003 2.082 2.083 

Query 10 0.784 0.799 0.806 0.813 

Query 11 0.169 0.714 0.173 0.174 

Query 12 0.559 0.564 0.579 0.580 

Query 13 0.563 0.573 0.582 0.589 

Query 14 0.455 0.457 0.470 0.474 

Query 15 1.030 1.114 1.022 1.034 

Query 16 0.924 1.009 0.926 0.906 

Query 17 0.212 0.258 0.216 0.250 

Query 18 4.937 5.125 4.843 5.134 

Query 19 0.057 0.060 0.059 0.062 

Query 20 0.001 0.003 0.002 0.003 

Query 21 3.065 3.094 3.127 3.107 

Query 22 0.242 0.274 0.279 0.283 

Time Loading 
data 

228.103 195.719 

     Table 4 
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The results for the rocks tier are represented in Table 5:  

 Version: 
f9fe269ca21808c1f6a3d0d239365fa4

eaf2b389 

Version: 
af63926cf577f4c30q43b7651e93e3

a5eaa262e0 

 “Hot” 
Run”(seconds) 

“Cold” Run 
(seconds) 

“Hot” 
Run(seconds) 

“Cold” Run 
(seconds) 

Query 1 4.536 4.896 4.566 4.573 

Query 2 0.095 0.110 0.094 0.100 

Query 3 0.816 0.832 0.783 0.783 

Query 4 0.776 0.778 0.776 0.778 

Query 5 2.109 2.116 2.110 2.119 

Query 6 0.327 0.328 0.329 0.336 

Query 7 7.770 7.780 7.812 7.889 

Query 8 0.449 0.558 0.454 0.460 

Query 9 1.507 1.514 1.518 1.523 

Query 10 0.538 0.584 0.591 0.584 

Query 11 0.122 0.122 0.122 0.122 

Query 12 0.405 0.407 0.407 0.430 

Query 13 0.426 0.445 0.429 0.430 

Query 14 0.321 0.322 0.320 0.328 

Query 15 0.718 0.726 0.717 0.722 

Query 16 0.615 0.623 0.606 0.614 

Query 17 0.144 0.172 0.144 0.170 

Query 18 3.669 3.703 3.705 3.801 

Query 19 0.050 0.049 0.050 0.059 

Query 20 0.001 0.001 0.001 0.001 

Query 21 2.257 2.240 2.821 2.258 

Query 22 0.192 0.206 0.203 0.217 

Time Loading 
data 

53.251 56.551 

      Table 5 



The results are being represented in the form of graphical representations for the user, for 
each query separately and the total Power@Size comparison between the two versions. 
For the sake of the reader’s interest I will present the results of only two queries that where 
selected randomly, for the gems tier of the CWI Scilens Cluster. The versions of PostGre 
that are being examined are  “f9fe269ca21808c1f6a3d0d239365fa4eaf2b389” and 
“af63926cf577f4c30q43b7651e93e3a5eaa262e0” and the results represent query number 
seven and query number two. The results represent the “cold run” of the query, the 
minimum of the “hot” runs, the maximum of the “hot” runs and the average of the “hot” runs 
as shown in Figure 10 and 11. The scale factor selected is 1: 

 

 

Figure 10: Query 2 performance regression test on Gems tier for scale factor 1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Query 7 performance regression test on Gems tier for scale factor 1. 



The tool was executed for a scale factor of ten in the stones and bricks tier. Again I 
present the results for query number two and seven, so the reader can make a 
comparison regarding different workloads. The results are demonstrated in figures 12-15.   

 

  

 

 

 

   

 

 

 

 

 

 

Figure 12: Query 2 performance regression test between 2 commits on Stones tier. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Query 2 performance regression test between 2 commits on Bricks tier. 



 

 

 

 

 

 

 

 

 

 

 

Figure 14: Query 7 performance regression test between 2 commits on the Stones tier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Query 7 performance regression test between 2 commits on the Bricks tier. 

 

 

 



An interesting observation regarding the TPC-H queries is regarding the query number 
seventeen. The TPC organization is very strict regarding partitioning and indexing plans 
that a vendor can use in order to produce valid results. While this is to some point 
understandable because some techniques like materialized views would be used in order 
to tune the workload. While the standard allows the database to automatically pick index 
types, for example MySQL automatically creates indexes in any column that is declared as 
foreign key, it is not allowed to create join indexes, materialized views or indexed views 
and computed columns. The results of the 17th query on the Diamonds tier without 
indexing the table lineitem can be seen in figure 16. 

 

 

 

 

 

 

Figure 16: Query 17 results without indexes on Diamonds tier for scale factor 1. 

 

After adding a B-tree index on the  l_partkey column, the results were tremendously faster, 
as shown in figure 17:  

 

 

 

 

 

 

 

Figure 17: Query 17 results after indexing the l_partkey column for scale factor 1 on 
Diamonds tier. 

 

 

 

 



Following the same policy for the other queries, there was no major difference regarding 
time performance, with the exception of Query two, that was executed significantly faster 
for scale factor 1 in the Diamonds tier, as shown in figures 18 and 19.  

 

 

 

 

 

Figure 18: Query 2 before using a B-tree index for scale factor 1 on Diamonds tier. 
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Figure 19: Query 2 after using a B-tree index for scale factor 1 on Diamonds tier. 

 

Finally, after producing the graphical representations for each query the tool will create the 
final comparison of the versions regarding the Power@Size each version “cold” run and 
“hot” runs as shown in Figure 20. 

 

Figure 20: TPCH-H Power@Size comparison between two versions of PostGre 



The precise code for the first tool can be found at:  

URL:    https://github.com/GAlexAnastasiou/PostGreAutomatedBenchmarking 

 

3.2 Analyzing the second tool 

 

The second tool has the function of initially tracking time regression between two versions 
of PostGre. In case that regression is detected, it will track down the change of the code 
that caused the regression. The purpose of this tool is to help testers and DevOps track 
down the file of the code that caused regression in the system faster and make the 
necessary changes.  After following the initial installation procedure of PostgreSQL and 
producing the data with the QGEN program, it will count the total versions  that have been 
uploaded in the source in Github at the past, allowing the user to choose how many 
versions he would like to roll back in order to test  for regression as shown in Figure 21:  

 

 

Figure 21: Total current versions, and the rolling back option. 

 

 

The twenty-two queries are executed separately for every commit, six times each. The 
“cold” and the “hot” runs are printed for each of the versions. The comparison and the 
results are stored in a file for every two versions, moving forward. Every time that a new 
version is tested, the tables are dropped and recreated, in order to compare the loading 
time of the data sets. After the older version has been tested against the new one for 
regression regarding time, the script calculates if there was indeed regression while 
executing the queries and loading the data into the tables.  

After we have obtained the benchmark results for a new release we have to automatically 
decide whether or not a performance regression has occurred. This sounds easy, but it is 
not. The new version of the software could perform worse simply because of a random 
variance. This risk increases when we test more queries, as the chance that the software 
will perform worse on any single one of the queries increases with the amount of queries 
we test. Another consideration is that the measurements itself can be imprecise. The 
timers use to measure only have a certain time resolution, and when we measure queries 
that take only several milliseconds to run the timer itself can introduce variance as well.  



For this reason, I take the standard deviation of the five runs into account when attempting 
to classify whether or not a particular version introduces a performance regression. When 
the difference between the new version and the old version exceeds the standard 
deviation I consider that a performance regression as shown in Figure 22. 

 

 

 

 

Figure 22: Performance regression detection between two versions and the number of files 
of differences in those versions. 

 

 

In case of a regression detection the tool starts analyzing the changes that occured 
between the versions. More precisely, it will produce the differences between the code 
lines of those versions, delete the last change of the differences and try to recompile 
PostgreSQL. In case of a successful recompilation, the queries are run again, and the time 
that was needed to execute them is once more compared with the initial commit. If the 

difference between the new version and the old version exceeds the standard deviation, 
the changes of the code are being stored in a file, as well as the commit name. Eventually, 
the file of the changes of the code that was responsible for most of the regression in 
comparison with the other files between those 2 versions is stored in the file: 
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Figure 29: The file that caused performance regression for version 
“56b4da8c9d11f685f1fe2e11cf015e850913b6b8” 
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Same policies with the first tool are being applied regarding indexing the tables. Finally, 
after storing the file that caused the most regression into a file with the version name, the 
tool proceeds to the next version, repeating the same procedure, until it reaches the final 
commit of PostgreSQL in Github. A flowchart of the tool can be found in the appendix. 

 

The code for the second tool can be found at: URL: 
https://github.com/GAlexAnastasiou/PostGreSQL-Benchmarking-automated-detection-of-

regression-file 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Implementing automation in Software Quality Assurance 

 

The above tools can be used in implementing automation in the testing of the newest 
software releases. The department that is responsible for testing the software before 
approving it for production status is the Software Quality Assurance department. The 
software is being tested for security and for complying with standards and certain policies.  

According to Capgemini, Sogeti and Hewlett Packard, 35% of the IT investments of any 
firm are directed in testing. The prediction for the end of 2018 is that testing will claim 40% 
of the total IT investments as shown in Figure 30 [14]. The survey found 39% of 
respondents to declare that the reliance on manual testing is the most important 
technological challenge in application development.   

 

 

Figure 30: Proportion of IT budget spend in Quality Assurance (Source: Statista 2018) 

 

The last release of World Quality Report 2018-19 most important finding is that end user 
satisfaction is now at the top of the testing strategy goals. Testing is becoming increasingly 
aligned with the business goals of firms. The second important finding was that 99% of the 
respondents use DevOps in at least some of their projects. The DevOp title derives from 
development and operations and aims in unifying software integration, testing, and 
infrastructure management.  DevOps aim to deliver value to the end user as fast as 
possible, while keeping quality high.   
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The benefits of Software Quality Assurance in an organization are the higher reliability on 
software products, the reduced cost of overall software lifecycle and providing greater 
customer satisfaction while gradually reducing the maintenance costs. The main principles 
of Software Quality Assurance are “fir for purpose” and “right at the first time”. In order to 
achieve those two principles, cooperation with development is essential. The depth of 
testing is categorized in three levels. The first level is called “Black box” testing, which only 
tests if the functionality works as planned. The second level is called White Box texting, in 
which the internal structure of the software is tested, with code reviews. The third level is 
called Gray Box Testing, in which the testers have knowledge of the internal data 
structures and have designed the tests for that particular data structures. The tests are 
executed at user level. Two methodologies are currently being used. The first is Scrum, in 
which each part of the software is tested differently and after integration the whole product 
is tested. The second is the Waterfall or the V-Model, in which everything is tested at the 
end.  

The costs that are associated with Software Quality Assurance are separated in two major 
types: Conformance costs and non-conformance costs.   The costs of Conformance are 
costs of prevention of defects before they happen and the appraisal costs that include 
measuring and evaluating the software products in order to assure quality standards are 
implemented. For the prevention process, examples of costs are the training of staff in 
design methodologies and quality improvement meetings. Examples of appraisal costs are 
code inspections and testing activities. So, the conformance costs are mostly associated 
with the amount invested to achieve quality software products. The non-conformance 
costs are all the expenses that are included when things do not go as planned. Those are 

the costs in reprogramming and retesting [15].  

So, in order to reduce the costs in Software Quality Assurance, Campanella proposes to 
remove the failure costs by investing in prevention activities and continue to evaluate and 
alter preventative efforts [16]. The approach of this idea is that software failure costs can 
be reduced by identifying and permanently fixing defects early in the software lifecycle 
because the cost of corrections increases the later the defect is recognized. The activities 
that are proposed in order to remove the failure costs are the creation of lifecycle 
development standards, the creation of detailed documentation and finally the 
implementation of automation in software configuration and testing processes. 

Implementing automation in testing is usually done after manual testing. Manual testing 
includes several testers executing scenarios without using any automation tools. It is 
considered primitive as a method, but it is necessary in order to track unique bugs in a 
software system and eventually lead to an automated test. The main goal of manual 
testing is functionality, in all requirements. The use of automated tools is for test cases that 
would normally require a big amount of human intervention for the execution as well as 

reducing the labor force on this field.  
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According to most Software Quality Assurance related firms like Intland Software [17] the 
best practices regarding automation are test cases that are executed repeatedly, test 
cases that are tedious or difficult to perform manually and test cases that are time 
consuming.  The cases that are to be avoided in automation are the cases that the 

requirements are changed frequently.  

The tools that were created for the automation of benchmarking of PostGreSQL Database 
in this thesis followed this precise model.  Executing 22 queries manually and 
benchmarking them in comparison with the newer update of the software is tedious to 
perform. Also testing for different scenarios and different workloads within two versions of 
a system is difficult to accomplish manually, since it is time consuming to test for a large 
amount of data, like a scale factor of 100. The process of creating the tables manually and 
implementing indexes on them, insert the data into the system and then run all the queries 
5 times in a row while gathering the precise results regarding time performance, is time 
consuming and mostly repetitive. Yet it is necessary in order to provide a quality software 
product to the users. The tools provide a precise result for the time of execution of each 
query regarding the comparison of the current and previous model of the software as well 
as the total Power@Size. The second tool also provides an answer as to where the 
performance regression can be tracked in the file of the code, saving time for the testers 
from manually tracking down the file. The main purpose of the tools are speeding up the 
testing process and reduce the human labor that is required to test for performance 

regression.  

The benefits of automation in benchmarking with those tools are the following. First and 
most important the optimization of time required for testers. The frequency of updates can 
reach two or three updates per day, which usually, the last update is a fix for the previous 
one. For frequent execution manual testing takes even more time for bigger systems. The 
testing team can be deployed in the results of the tool, rather than handle repetitive tests. 
The second benefit is the increase of efficiency by reducing the human error possibility. 
Manual testing can be mundane, and can wear testers out. The automation of the test can 
allow the execution without user interaction. Instead, testers can now focus on the results.   
The third benefit is the increase of the test coverage by allowing the user to choose how 
many versions of the system he would like to examine. The fourth benefit is the user 
environment simulation by allowing the tester to choose the scale factor. This way the 
tester can also simulate user satisfaction, regarding on the user’s work load. Finally , the 
last benefit of the tools is the reusability of the tests, while the TPC-H benchmarking is still 

considered relevant.  

The need of automation in testing processes continues to rise. However, automation is the 
biggest bottleneck in Software Quality Assurance. While testing was initially designed in 
order to purely remove bugs and evaluate the functionality of a software system, with the 
use of automation in repetitive tests, testers can now focus on the customer experience 

and business functions of the system.  
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The current suggestion from is the use of DevOps when possible. Testers need to be 
involved earlier in the processes and be more aligned with the development team, in order 
to be able to create automated tests for different scenarios.  However the implementation 
of DevOps for Software Quality Assurance is part of the Agile methodology. Software 
Quality Assurance is currently following the Waterfall mode. The Waterfall model has five 
stages in software development life cycle, which are the requirements definition, the 
system design, the implementation, the integration and finally the operation and 
maintenance of the system. The Software Quality Assurances role in the Waterfall model 
starts after the implementation with code reviews and inspections. Using the Agile model, 
Software Quality Assurance has to take an active role earlier in the stages of development. 
The Agile model has three stages, which are the Requirement definitions and the system 
design using stories, the implementation and the integration. Testing must be performed in 
every stage of the development life cycle. In the first stage with customer feedback, in the 
second stage with code reviews and meetings and in the third stage by ensuring that all 
the functionality requirements are met [18]. That, as a consequence can increase the costs 
of Software Quality Assurance teams. By applying automation in the initial stages of the 
development, using previous test cases and user stories, can reduce the costs of Software 
Quality Assurance.  According to Alberts, design errors in the start of the development life 
cycle have double the impact than do coding errors as shown in table [number]. He 
supports that usually the 66,% of errors in development life cycle is a product of poor 

design, 16,6% of errors are logic errors and 16,5% of errors are Syntax Errors [19]. 

 

Error type % Total Errors Severity %Total cost of error 

Design 66% 2.5 83% 

Logic 16,5% 1 8% 

Syntax 16,5% 1 8% 

 Development phase Operations phase Both 

% of Total Life Costs 47,5% 50% 97,5% 

%Costs Due to 
Errors 

48% 50% - 

% of Total Life Cycle 
Costs attributed to 

errors 

22,6% 25% 47,6% 

Table 6: Errors and Software Life Cycle Costs [19] 
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Based on those estimations the return of investing in better design and earlier Sofware 
Quality Assurance involvement is a multiplicative factor of five. For example, a euro more 
spend in design and gathering user stories and automated cases from the start of the 
development life cycle would have saved five euros spent on corrections and maintenance 
at later stages of the software life cycle. This is also visible in the Database system 
PostGreSQL. The regression that can be accidentally implemented with a new patch can 
have severe consequences in the time required to execute queries in large data sets, 
which will lead to slower processes and ultimately harm the user satisfaction.  By tracking 
the regression before the newer version is implemented using the automated tools, the 
testers or DevOps can make the necessary changes, and avoid the costs of creating 
another patch, which is usually a quick fix for the previous patch.  Using the automated 
tools, they can also get an indication of which code file caused the most regression, so 

they can focus their efforts in a much more targeted part of the code.      
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5. Conclusions and Future Work 

 

5.1 Conclusion 

As it was discussed, performance evaluation of databases is something deeply dependent 
on hardware, indexing and generally database optimization. Arriving to a conclusion 
regarding which database performs better, tends to be difficult and it is always correlated 
with the precise scenario and workload the performance test is associated with. For 
business in all kind of sectors, quality database systems and RDBMS’s is a necessity due 
to the large value they add regarding information processing, market analysis and 

assisting management in the decision making process.  

While automation of bench marking is a subject that can be controversial because of 
today’s current market distribution, automated tools that provide testing with valid results 
and detailed reports, that apply different scenarios which are globally acknowledged and 
accepted, can shift the current trends and redistribute the database industry financially.  
Therefore, the automation of database bench marking can provide rapid results and 
acquire significantly less manpower in order to conclude which database is the best for the 
firm’s workload and everyday querying scenarios. This decision is important to any 
organization since the Big Data concept started to be applied. The value of better 
performance in database systems is translated to faster processes, reduction of 
opportunity costs, better managerial decisions and ultimately customer satisfaction and 
loyalty.   

 

5.2 Future work 

 

Our approach for classifying results as performance regressions is simple and effective, 
but still has some problems. As we only ever compare two adjacent versions for 
performance regressions and we have a margin for error on detecting them, performance 
regressions could silently bypass our system if every consecutive version very slightly 
reduces the performance of a query. If we do not detect a one millisecond difference in two 
consecutive versions as performance regression, for example, every version could reduce 
the performance of a query by 1 millisecond until a significant performance regression is 
introduced. To avoid this we would have to take account the performance of a query over 
time instead of just looking at consecutive versions and detecting if performance 
regressions slowly occur. 

These regressions are more difficult to detect. It is especially challenging to find out which 
code is responsible for the regression, as likely many minor changes have introduced 
many small performance regressions instead of a single line or body of code causing the 

problem. 



Another improvement that could be made is the amount of times we run the benchmarks. 
Currently we run the queries six times in the first tool and five times in the second tool, 
since the extra run was not necessary for the second tool. However we could choose how 
many queries to  run adaptively based on the standard deviation. If after five runs the 
performance is still volatile, we might want to perform more runs. On the other hand, if 
three runs have exactly the same time, maybe we can already stop running the query.   

While those tools can detect the regression between the new versions of the database and 
eventually track down the difference that added the most regression in time performance 
of PostGreSQL, there is also the possibility of difference files to cause regression in a 
precise combination. For example, file number two showed no regression between the two 
commits, but the combination of file two and nine may have caused most of the 
regression. Also, if the order that the files are listed is of importance, because of 
compilation problems, the permutations must be analyzed. The mathematical expression 
of determining the permutations within a list of files is shown below [12]:  

 

 

An example for applying the above mathematical type in the case of permutation with 
repetition inside a list that contain ten files and the user chooses to detect regression for 
the combination of three files, the total possibilities will be one thousand. In the case of 
permutations without allowing the repetition of the files, the possibilities that are produced 
are still of a large number. For example, a typical file that contains the differences between 
the commits can easily amount to sixteen differences. If the user chooses to test for 
regression for that particular file that contains sixteen differences and choose to test for 
permutations that group up to three differences, the possibilities that will be produced are 
3.360.   Keeping in mind that every time the new test version of PostGreSQL has to be 
recompiled, all the tables dropped and reloaded again and executing the twenty-two 
queries of the TPC-H benchmark five times each, the completion of the script can take a 
large amount of time. An interesting research question would be to determine a valid way 
to produce this test including the combinations and permutations of the differences 
between the commits regarding the time that the script has to conclude and the 
mathematical and programming validity of this idea.  
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Appendices 

Appendix A 

TPC Membership (April 2017) 

In this appendix all the firms and organizations that are of full membership status to the 
TPC organization are presented in Figure 31 while the associate members are presented 
in Figure 32. 

 

 

Figure 31 – Full status membership firms of the organization TPC.  

 

 

 

 

Figure 32 – Associate status firms of the TPC organization. 

 

 

 

 



Appendix B 

TPC-H Queries Business Questions and Functional Definitions  

In this appendix I present all the queries business questions representations and all the 
queries functional definitions for PostGreSQL [10].  

Query 1 Business Question: The Pricing Summary Report Query provides a summary 
pricing report for all lineitems shipped as of a given date. The date is within 60 - 120 days 
of the greatest ship date contained in the database. The query lists totals for extended 
price, discounted extended price, discounted extended price plus tax, average quantity, 
average extended price, and average discount. These aggregates are grouped by 
RETURNFLAG and LINESTATUS, and listed in ascending order of RETURNFLAG and 
LINESTATUS. A count of the number of lineitems in each group is included.   

 

Query 1 Functional definition: 

 

 

 

 

 

 



Query 2 Business Question: The Minimum Cost Supplier Query finds, in a given region, for 
each part of a certain type and size, the supplier who can supply it at minimum cost. If 
several suppliers in that region offer the desired part type and size at the same (minimum) 
cost, the query lists the parts from suppliers with the 100 highest account balances. For 
each supplier, the query lists the supplier's account balance, name and nation; the part's 
number and manufacturer; the supplier's address, phone number and comment 
information. 

Query 2 Functional definition: 

 



Query 3 Business Question: The Shipping Priority Query retrieves the shipping priority and 
potential revenue, defined as the sum of l_extendedprice * (1-l_discount), of the orders 
having the largest revenue among those that had not been shipped as of a given date. 
Orders are listed in decreasing order of revenue. If more than 10 unshipped orders exist, 
only the 10 orders with the largest revenue are listed 

 

Query 3 Functional definition: 

 

 

 

 

 

 

 

 

 

 



Query 4 Business Question: The Order Priority Checking Query counts the number of 
orders ordered in a given quarter of a given year in which at least one lineitem was 
received by the customer later than its committed date. The query lists the count of such 
orders for each order priority sorted in ascending priority order. 

Query 4 Functional definition: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Query 5 Business Question: The Local Supplier Volume Query lists for each nation in a 
region the revenue volume that resulted from lineitem transactions in which the customer 
ordering parts and the supplier filling them were both within that nation. The query is run in 
order to determine whether to institute local distribution centers in a given region. The 
query considers only parts ordered in a given year. The query displays the nations and 
revenue volume in descending order by revenue. Revenue volume for all qualifying 
lineitems in a particular nation is defined as sum(l_extendedprice * (1 - l_discount)). 

Query 5 Functional definition: 

 

 

 

 

 

 

 

 

 



Query 6 Business Question: The Forecasting Revenue Change Query considers all the 
lineitems shipped in a given year with discounts between DISCOUNT-0.01 and 
DISCOUNT+0.01. The query lists the amount by which the total revenue would have 
increased if these discounts had been eliminated for lineitems with l_quantity less than 
quantity. Note that the potential revenue increase is equal to the sum of [l_extendedprice * 
l_discount] for all lineitems with discounts and quantities in the qualifying range 

Query 6 Functional definition:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Query 7 Business Question: The Volume Shipping Query finds, for two given nations, the 
gross discounted revenues derived from lineitems in which parts were shipped from a 
supplier in either nation to a customer in the other nation during 1995 and 1996. The query 
lists the supplier nation, the customer nation, the year, and the revenue from shipments 
that took place in that year. The query orders the answer by Supplier nation, Customer 
nation, and year (all ascending). 

Query 7 Functional definition: 

 



Query 8 Business Question:  The market share for a given nation within a given region is 
defined as the fraction of the revenue, the sum of [l_extendedprice * (1-l_discount)], from 
the products of a specified type in that region that was supplied by suppliers from the given 
nation. The query determines this for the years 1995 and 1996 presented in this order. 

 

Query 8 Functional definition: 

 

 

 



Query 9 Business Question: The Product Type Profit Measure Query finds, for each nation 
and each year, the profit for all parts ordered in that year that contain a specified substring 
in their names and that were filled by a supplier in that nation. The profit is defined as the 
sum of [(l_extendedprice*(1-l_discount)) - (ps_supplycost * l_quantity)] for all lineitems 
describing parts in the specified line. The query lists the nations in ascending alphabetical 
order and, for each nation, the year and profit in descending order by year (most recent 
first). 

Query 9 Functional definition:  

 

 

 

 

 

 



Query 10 Business Question: The Returned Item Reporting Query finds the top 20 
customers, in terms of their effect on lost revenue for a given quarter, who have returned 
parts. The query considers only parts that were ordered in the specified quarter. The query 
lists the customer's name, address, nation, phone number, account balance, comment 
information and revenue lost. The customers are listed in descending order of lost 
revenue. Revenue lost is defined as sum(l_extendedprice*(1-l_discount)) for all qualifying 
lineitems. 

 

Query 10 Functional definition: 

 

 

 



Query 11 Business Question: The Important Stock Identification Query finds, from 
scanning the available stock of suppliers in a given nation, all the parts that represent a 
significant percentage of the total value of all available parts. The query displays the part 
number and the value of those parts in descending order of value. 

 

Query 11 Functional definition: 

 

 

 

 

 

 

 



Query 12 Business Question: The Shipping Modes and Order Priority Query counts, by 
ship mode, for lineitems actually received by customers in a given year, the number of 
lineitems belonging to orders for which the l_receiptdate exceeds the l_commitdate for two 
different specified ship modes. Only lineitems that were actually shipped before the 
l_commitdate are considered. The late lineitems are partitioned into two groups, those with 
priority URGENT or HIGH, and those with a priority other than URGENT or HIGH. 

 

Query 12 Functional definition: 

 

 

 

 

 

 

 



Query 13 Business Question: This query determines the distribution of customers by the 
number of orders they have made, including customers who have no record of orders, past 
or present. It counts and reports how many customers have no orders, how many have 1, 
2, 3, etc. A check is made to ensure that the orders counted do not fall into one of several 
special categories of orders. Special categories are identified in the order comment 
column by looking for a particular pattern. 

 

Query 13 Functional Definition:  

 

 

 

 

 

 

 

 

 

 

 

 



Query 14 Business Question: The Promotion Effect Query determines what percentage of 
the revenue in a given year and month was derived from promotional parts. The query 
considers only parts actually shipped in that month and gives the percentage. Revenue is 
defined as (l_extendedprice * (1-l_discount)). 

 

Query 14 Functional definition:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Query 15 Business Question: The Top Supplier Query finds the supplier who contributed 
the most to the overall revenue for parts shipped during a given quarter of a given year. In 
case of a tie, the query lists all suppliers whose contribution was equal to the maximum, 
presented in supplier number order. 

 

Query 15 Functional definition: 

 

 

 

 

 

 



Query 16 Business Question: The Parts/Supplier Relationship Query counts the number of 
suppliers who can supply parts that satisfy a particular customer's requirements. The 
customer is interested in parts of eight different sizes as long as they are not of a given 
type, not of a given brand, and not from a supplier who has had complaints registered at 
the Better Business Bureau. Results must be presented in descending count and 
ascending brand, type, and size. 

 

Query 16 Functional definition:  

 

 

 

 

 



Query 17 Business Question: The Small-Quantity-Order Revenue Query considers parts 
of a given brand and with a given container type and determines the average lineitem 
quantity of such parts ordered for all orders (past and pending) in the 7-year database. 
What would be the average yearly gross (undiscounted) loss in revenue if orders for these 
parts with a quantity of less than 20% of this average were no longer taken? 

 

Query 17 Functional definition:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Query 18 Business Question: The Large Volume Customer Query finds a list of the top 
100 customers who have ever placed large quantity orders. The query lists the customer 
name, customer key, the order key, date and total price and the quantity for the order. 

 

Query 18 Functional definition: 

 

 

 

 

 



Query 19 Business Question: The Discounted Revenue query finds the gross discounted 
revenue for all orders for three different types of parts that were shipped by air and 
delivered in person. Parts are selected based on the combination of specific brands, a list 
of containers, and a range of sizes. 

 

Query 19 Functional definition: 

 

 

 



Query 20 Business Question: The Potential Part Promotion query identifies suppliers who 
have an excess of a given part available; an excess is defined to be more than 50% of the 
parts like the given part that the supplier shipped in a given year for a given nation. Only 
parts whose names share a certain naming convention are considered. 

Query 20 Functional definition: 

 

 

 



Query 21 Business Question: The Suppliers Who Kept Orders Waiting query identifies 
suppliers, for a given nation, whose product was part of a multi-supplier order (with current 
status of 'F') where they were the only supplier who failed to meet the committed delivery 
date. 

Query 21 Functional definition: 

 



Query 22 Business Question: this query counts how many customers within a specific 
range of country codes have not placed orders for 7 years but who have a greater than 
average “positive” account balance. It also reflects the magnitude of that balance. Country 
code is defined as the first two characters of c_phone. 

 

Query 22 Functional definition:  

 

 

 



Appendix C 

Flowcharts of the tools  

Tool 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tool 2: 

 

 


