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Abstract

Feature detectors and descriptors have been successfully used for various computer vision tasks, such
as image stitching and content-based image retrieval. Many methods use image gradients in different
stages of the detection-description pipeline to describe local image structures. Recently, some of these
stages have been replaced by convolutional neural networks, in order to increase their performance. Re-
placing orientation estimators and descriptors is a relatively straightforward task, mapping a single image
patch to a single output. A detector, however, is defined as a selection problem, which makes it more chal-
lenging to implement as a neural network. They are therefore generally defined as regressors, converting
input images to score maps. Keypoints can be then be selected from this map by applying non-maximum
suppression. This thesis discusses several methods that use neural networks and defines different metrics
to determine their performance. Experiments are performed on a selection of conventional methods, as
well as a detector network that is trained from scratch, a pre-trained image classifier that is used to gen-
erate feature descriptors and a method that replaces the complete pipeline with three separate networks.
In addition to qualitative measures defined on keypoints and descriptors, the bag-of-words model is used
to implement an image retrieval application, in order to determine how the methods perform in practice.
The results show that, in some cases, neural networks can outperform traditional methods.
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1 Introduction
As billions of images and millions of hours of video are uploaded on the internet every year, and the amounts
are ever increasing, the ability to decode their contents is a challenge for computers that has great value.
There are numerous domain and application areas which over the past decade have required content based
analysis of imagery. These include, but are not limited to, applications in face recognition [69], human
activity recognition and human-computer interaction (HCI) [15, 28, 53, 59], medical image understanding
[22] and image and video retrieval [15,29,52,57]. However, taking raw pixel data and extracting high-level
information that’s useful is a non-trivial task and has been the topic of a lot of research, almost as long as
computers have been around. One method is the detection and extraction of salient features, which can be
used in a wide variety of computer vision tasks, such as object classification, image retrieval and image
stitching. Many methods to detect and extract features have been proposed and a lot of papers have been
published over the past decades describing feature detectors and descriptors, some of which are optimised for
a specific domain, while others are intended for general application. One of the most popular methods, still
today, is SIFT [31], which was first introduced in 1999. SIFT uses an approximation of the Laplacian, which
describes gradients in the image. Many methods approximate image gradients, as directly calculating them
is an expensive operation and the added performance of calculating exact gradients is usually not worth the
extra processing time. Other methods work by directly comparing pixel intensities and do not approximate
gradients, which generally means an even higher computational efficiency, but a loss of performance, as
higher levels of information are unused. These methods may be preferable in online applications that run
multiple times per second and low computational time is critical.

In recent years, researchers have proposed using neural networks for detecting and extracting features.
Neural networks have been around for some time and they have been successfully used to solve complex
problems, such as image classification or speech recognition, but their application to feature detection and
description is relatively new. These networks learn by processing large amounts of data, which in the case
of visual media should not be a problem. However, the learning process can generally be divided into two
classes. The most common class is supervised learning, which means that the input samples are coupled
with labels, which are the expected or desired outputs. These can be used determine the performance of the
network and change its parameters to increase this performance. In some cases the labels may need to be
generated by hand, which costs a lot of time and effort and makes useful data more scarce. In the case of
feature detection, labels could also be calculated, but doing so may build a bias into the network by prefer-
ring certain features above others. On the other hand, when learning is done without knowing the explicit
outputs, it is called unsupervised learning. This, however, makes the task more challenging and requires a
specifically designed algorithm for learning. The goal of this thesis is to review how neural networks can
be used for feature detection and extraction and compare the performance of the resulting networks to the
classical detectors and extractors.

To get an idea of the problem domain, in Section 2 local feature detection and extraction and a couple
of successful algorithms are discussed and Section 3 gives a brief overview of neural networks. Then, in
Section 4 these two fields are combined and methods that use neural networks to detect features are exam-
ined. Section 5 describes the techniques to evaluate the performance of the detectors, which are then used
in the experiments to do the performance evaluation. Finally, the results of the experiments are presented in
Section 6 and discussed in Section 7.
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2 Local Feature Detection and Extraction

2.1 History
Images contain a lot of information and their contents can greatly vary, which makes understanding them
a challenging task for computers. Local feature detectors and extractors arose from the need to computa-
tionally process images and were a means of separating the useful parts from the noise. Naturally, it’s much
easier to work with a simplified representation of the data than it is to use the raw pixel values. The idea is
not to process images globally, in their entirety, but to look for certain structures at the local scale. Some
local structures may be distinct and provide useful information, while others are less significant. The goal
of local feature detection is to look for the types of structures that are distinguishable and can be precisely
localised in sets of images. Some of the earliest structures that were defined to be useful are edges and
corners, where corners are defined as the intersection of two edges.

One of the first corner detectors, defined by Moravec [38] in 1977, moves a sliding window over the image
in several directions to determine which directions result in a significant change. The change in intensity E,
given a shift (u, v), is defined as

E(u, v) =
∑
(x,y)

w(x,y)|I(x+u,y+v) − I(x,y)|2, (1)

wherew(x,y) is the sliding window, I(x,y) is the image intensity at location (x, y) and the shifts (u, v) consist
of horizontal, vertical and diagonal movements. Along an edge, the change in intensity will be small, while
it is large across it. For a corner, all directions will yield a significant change in intensity, whereas a flat
patch will approximately stay the same, no matter which direction the window moves. Corners are found
by means of non-maximum suppression, at the location that gives the highest rate of change, or the local
maximum. Some of the drawbacks of this method are that it gives many responses along edges and, since it
considers changes in direction at steps of 45◦, the results are dependent on the orientations of the edges.

Harris and Stephens improved Moravec’s corner detector in 1988 [13] by addressing these issues. To
calculate the changes in pixel intensity over a patch, the image gradients are approximated using Taylor
expansion. The gradients are then rewritten into matrix form, such that the change in intensity E is defined
as

E(u, v) = (u, v)M(u, v)T , (2)

where M is the gradient matrix. Eigenvalue decomposition can then be performed on M and, since the
eigenvalues are independent of the coordinate system, the direction of the corner does not affect the result
and the detector is rotationally invariant. The Harris detector also aims to eliminate edge responses by using
the eigenvalues to calculate a response

R = det(M)− k · tr(M)2, (3)

where k is some constant and det and tr are the determinant and the trace of matrix M . The patch is
considered a corner when the response has a large positive value. Finally, noise is reduced by applying a
circular Gaussian window, instead of a rectangular one, which makes the Harris corner detector isotropic.

Another method similar to the Harris corner detector is the one introduced in 1978 by Beaudet [4]. It
uses the Hessian matrix

H(x, y) =


∂2I(x, y)

∂x2

∂2I(x, y)

∂x∂y

∂2I(x, y)

∂x∂y

∂2I(x, y)

∂y2

 , (4)

which contains the second-order partial derivatives of the image. As in the Harris detector, the second-
order derivatives are calculated with Taylor expansion. Interest points are found by applying non-maximum
suppression to the determinant of the Hessian matrix, which is why it’s also called the Determinant of
Hessian (DoH) detector.
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Figure 1: The the Laplacian of Gaussian (LoG) function is depicted on the left. Its computationally more
efficient approximation difference of Gaussian (DoG) is shown in the middle. The graph on the right shows
how the DoG’s shape is derived by subtracting 2 Gaussians with a different standard deviation σ.

While the Harris and Hessian detectors are rotationally invariant, they are not able to assign a scale to
the interest points, which puts some constraints on matching. Witkin [65] and Koenderink [20] proposed the
use of a scale-space to search over small and large scales by applying varying degrees of Gaussian blur to the
image to remove details at the finer levels. In 1998 Lindeberg defined the Laplacian of Gaussian (LoG) [30],
a blob detector that implements the scale-space. Images are incrementally convolved with the Gaussian
kernel and for each blurred image, the Laplacian is calculated. The Laplacian is the trace (the sum of the
diagonal) of the Hessian matrix, which contains the image derivatives of the second order. Non-maximum
suppression is not only applied per image, but also over the scale-space, in order to determine the scale of
each interest point.

In the same year Lowe proposed to approximate the LoG with the difference of Gaussian (DoG) [31]. In
his method called SIFT, the scale-space is built by incrementally convolving the input image by the Gaussian
kernel. By subtracting two images with two different amounts of Gaussian blur applied, the LoG function is
approximated. This approximation is illustrated in Figure 1. Since images are already blurred for the scale-
space, interest points can be found only by a simple subtraction and non-maximum suppression, which is
computationally efficient. Besides a feature detector, SIFT also includes an orientation assignment and a
feature extractor.

In 2006 Bay et al. defined a feature detector and extractor based on the Hessian matrix. Their method,
called Speeded-Up Robust Features (SURF) [3], aims to speed up the process by using box-filters and integral
images. The idea of finding features, however, is similar to many other methods and is done by looking for
points that have a large gradient in two perpendicular directions. Scale-invariance is achieved by applying
different sizes of box-filters. An orientation assigner and a special SURF descriptor are defined as well.

Since the interest points of many feature detectors have a position, a scale and an orientation, the resulting
features are defined in an oriented circular region. However, in the case of wide-baseline stereo, images are
taken under a large change in viewpoint. Therefore, interest points defined as circles are not descriptive
enough. In the early 2000s a new set of affine invariant detectors were defined, some of which are the Harris
Affine and Hessian Affine detectors [34] and Maximally Stable Extremal Regions (MSER) [33]. These
methods give interest points an elliptical shape by approximating the affine transformations in the regions
of those points.

In contrast to all of the methods discussed so far, the method published in 2006 named Features from Ac-
celerated Segment Test (FAST) by Rosten and Drummond [45], is not based on image derivatives. However,
corners are found by direct pixel comparisons. The intensities of pixels in a circular region are compared to
that of the centre pixel and a point is said to be a corner if the circle contains at least n consecutive pixels
that are all lighter or all darker than the centre. This is a very intuitive definition of a corner. FAST has a
relatively high computational performance, since a couple of pixel comparisons is less expensive than gra-
dient approximation. It is further increased by learning a good order to evaluate the pixels. Its derivatives,
FAST-ER [46] and AGAST [32], aim to improve it, but use the same principle.
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Figure 2: On the left, an example of the SIFT scale-space with 4 octaves and 4 scales per octave. Each octave
is down-sampled to half the size and each scale is blurred progressively with a constant factor. In practice
there are 6 scales per octave and the number of octaves depends on the image dimensions. On the right, the
resulting difference of Gaussians. Since each comparison needs 2 neighbours, only 1 scale per octave will
yield interest points.

2.2 Conventional Feature Detectors and Extractors
In general, the feature matching pipeline consists of several stages, namely feature detection, feature extrac-
tion and feature matching. Feature detectors select locations from images according to some metric. The
detected features consist of at least a position, but may include a scale, an orientation, and even a more
complex shape. For each of these detected features, descriptors are calculated to simplify the data contained
in the detected region. It is then easier for a matcher to compare these descriptors, as their size is relatively
small and constant. In the next few sections several local feature detectors and extractors are discussed. Over
the years many detectors and descriptors have been defined with varying approaches and performances. The
application for which the features are to be used might influence the selection of a method. Some applica-
tions might require a very high stability of features, whereas for others the time performance may be most
crucial and approximating the gradients may be too expensive.

2.2.1 SIFT

In order to find keypoints, the Scale Invariant Feature Transform (SIFT) [31] uses the difference of Gaussian,
which is an approximation to the Laplacian of Gaussian (LoG). Figure 1 shows the LoG and DoG functions,
and functions like these have a high response when they are centred on blobs, which is the type of structure
mainly targeted by SIFT. What makes SIFT scale-invariant is that a scale is assigned to each interest point
and these scales are calculated by utilising the scale-space. SIFT’s scale-space has a pyramid-like structure
that is made up of octaves and scales. In an octave, every image is incrementally blurred, which removes
details from the image and at the same time increases the size of the approximated LoG function. For the
first octave, the image is doubled in size, using linear interpolation, and for each following octave the image
is sub-sampled to half the size of the previous octave. The first scale in each octave is subjected to prior
smoothing and each successive scale is blurred with a constant factor k =

√
2. A visual representation of

the scale-space can be seen in Figure 2. The DoG is calculated as

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y), (5)
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(a) (b)

Figure 3: (a) The top row shows the 2D second order Gaussian derivatives ∂2G(x,y,σ)
∂x2 , ∂2G(x,y,σ)

∂xy and
∂2G(x,y,σ)

∂y2 , respectively. On the bottom the corresponding 9×9 box filters can be seen, which are discretised
and cropped and approximate the Gaussian with σ = 1.2. (b) First order derivatives of the 2D Gaussian
in the horizontal direction ∂G(x,y,σ)

∂x and the vertical direction ∂G(x,y,σ)
∂y . The bottom shows corresponding

box filters of size 8× 8.

whereG(x, y, σ) is the Gaussian kernel with scale σ, I(x, y) is the image and ∗ is the convolution operator.
This means that the DoG is calculated for all pairs of neighbouring images in each octave.

From the resulting pyramid of DoG images, interest points are selected by applying non-maximum sup-
pression in and across scales. Every point in the DoG images is compared to its 26 neighbours, 8 of which
are in the same scale and 9 in each neighbouring scale. Only those points that are all smaller or all larger
than every neighbour pass the first test. To improve the results, interest points are localised by fitting a 3-
dimensional function centred at the point and calculating the exact location of the extremum by equating the
derivative of the function to 0. The derivatives are approximated with Taylor expansion to increase perfor-
mance. Finally, points with low contrast are removed and edge responses are eliminated by thresholding the
ratio between the eigenvalues of the Hessian at the interest point, similar to the Harris and Hessian corner
detectors.

In order to assign orientations to keypoints, a patch centred at the point is extracted at the keypoint’s
scale. Image gradients are then calculated for every point in the Gaussian-weighted patch. The gradients are
added into 36 orientation bins, giving a window of 10◦ per bin. The bin with the largest value is then used
to calculate the orientation, which is accurately localised by interpolation to find the peak. An additional
keypoint is added for every bin with a value within 80% of the maximum, that has the same location, but a
different orientation.

The last step is extracting a descriptor for every keypoint. The descriptors are calculated on patches
centred at the keypoint, given the keypoints scale and rotated according to the orientation assigned in the
previous step. A Gaussian-weighted patch is divided into a grid of 16 × 16, and, similar to the orientation
assignment step, gradients are calculated and accumulated into 8 bins in a grid of 4 × 4. This results in a
4× 4× 8 = 128 dimensional descriptor.

2.2.2 SURF

Speeded-Up Robust Features (SURF) [3] is based on the Hessian matrix H(x, y, σ), which is defined as

H(x, y, σ) =


∂2L(x, y, σ)

∂x2

∂2L(x, y, σ)

∂x∂y

∂2L(x, y, σ)

∂x∂y

∂2L(x, y, σ)

∂y2

 , (6)
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where L(x, y, σ) = G(x, y, σ) ∗ I(x, y) is the image convolved with the Gaussian kernel with scale σ and
centred at point (x, y). Since calculating second-order derivatives is expensive, they are approximated with
box filters, which are 2D Haar wavelets. The Gaussian second order partial derivatives and their correspond-
ing box filters can be seen in Figure 3. SURF searches over the scale-space by using box filters of variable
size. This means that the image does not need to be sub-sampled, which increases performance. A big
advantage of using box filters is that they can be calculated very efficiently by using integral images [61]. In
an integral image IΣ of an image I , the value at a pixel (x, y) is calculated by

IΣ(x, y) =
x∑
i=0

y∑
j=0

I(i, j). (7)

In other words, an integral image is the cumulative sum of the image and each pixel is the sum of itself and
all pixels preceding it. Calculating a rectangular region of any size then becomes the trivial task of adding
and subtracting four values.

The SURF scale-space is, just like SIFT’s, divided into octaves and scales, where each scale uses a
slightly larger filter and each octave doubles the filter size of the previous octave. The determinant of the
Hessian is approximated by

det(H) ≈ DxxDyy − (wDxy)2, (8)

where Dxx, Dxy and Dyy are the responses of the box filters and w = 0.9 is a weight to balance the terms.
The points in the responses are then compared to their 26 neighbours in the same and neighbouring scales
and only extrema are selected. Finally, the interest points are interpolated for exact localisation.

For orientation assignment, SURF approximates gradients in an area around each keypoint by applying
horizontal and vertical Haar wavelets that correspond to the first-order derivatives of the Gaussian, which can
be seen in Figure 3b. These computations are efficient, as they can also be done with the integral images. The
responses of the horizontal and vertical Haar wavelets are interpreted as x- and y-coordinates, respectively,
centred around the keypoint centre. The sum of the responses is then calculated in a sliding window of 60◦

(see image 4). The orientation of the keypoint is set to the direction of the sliding window that resulted in
the largest sum of responses.

As Haar wavelets are the foundation of the SURF algorithm, they are used to calculate the descriptors
as well. A region around the keypoint is selected according to its scale, rotated by the orientation assigned
in the previous step and weighted by a Gaussian window in order to increase robustness. The region is then
divided into a grid of 4 × 4 sub-regions and for each sub-region, horizontal and vertical Haar wavelets are
applied in a grid of 5 × 5. This results in 25 horizontal and 25 vertical gradient values per sub-region. A
descriptor of size 64 is then constructed by calculating the values (

∑
dx,
∑
|dx|,

∑
dy,
∑
|dy|) for each of

the 16 sub-region, where dx and dy are the horizontal and vertical gradients, respectively. The sum of the
gradients describes the general direction of the gradients in the sub-region, while the sum of the absolute
values of the gradients describes the gradients’ strength.

Figure 4: For the orientation, SURF slides a window of 60◦ around the centre of the keypoint, while ac-
cumulating the responses of horizontal and vertical Haar wavelets. The orientation is determined to be the
position in which the sum of the responses is the largest.
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Figure 5: CenSurE uses the Laplacian of Gaussian, shown here on the left. The box and octagon filters on
the right approximate the Laplacian with σ = 1.885.

2.2.3 CenSurE

CenSurE [2] is a feature detector that uses bi-level centre-surround filters, which approximate the Laplacian
of Gaussian. A good approximation of the Laplacian would be a circular bi-level filter. However, calculating
a circular filter is computationally expensive, especially at the larger scales. On the other hand, using a
square-shaped filter, or difference of boxes (DOB), results in a loss of rotational invariance. SURF also
uses box filters and suffers from a decrease in repeatability at odd multiples of 45◦ of rotation. CenSurE
aims to find the middle ground of using circular filters to get a high accuracy, and using box filters to get a
high computational performance, by using octagonal and hexagonal filters. The difference between SURF
and CenSurE is that SURF approximates each element of the Hessian matrix separately, while CenSurE
approximates the LoG, which is the sum of the diagonal of the Hessian matrix. In that regard, CenSurE may
be closer to SIFT, which also approximates the LoG. An example of the LoG and its approximations, the
DOB and the octagonal filter, can be seen in Figure 5.

A high computational performance can be achieved by using slanted integral images, which calculate
the sum over an area in which one of the sides is slanted. A slanted integral image is calculated as

IΣα(x, y) =

y∑
j=0

x+α(y−j)∑
i=0

I(i, j), (9)

where α determines the slope of the slant. With these modified integral images, octagonal and hexagonal
filters can be calculated in a constant time for all scales. However, by adding more sides to the filters to
make them more circular, the number of computations needed is also increased. After the interest points
are detected at all levels, only the extrema of all direct neighbours in the same and two adjacent scales are
selected. So only those points that are higher than all or lower than all 26 neighbours pass the non-maximum
suppression. Finally, the Harris measure at the interest points is used to calculate the ratio of principal
curvatures to threshold out responses along edges. The CenSurE method does not include an orientation
assignment and the resulting features do not have an orientation.
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Figure 6: The accelerated segment test works by comparing 16 pixels in a circle around reference pixel p
and determining whether at least n consecutive pixels are all lighter or all darker than p by some threshold.

2.2.4 AGAST

While methods that approximate gradients are much faster than those that calculate them, the improvement
in speed may not be enough for some applications. In order to gain an even bigger speed-up, some methods
propose to skip gradients altogether and directly compare pixel values. A range of methods use the so-called
Accelerated Segment Test (AST), that, in order to determine whether a point p is a corner, compares its
value to the 16 pixels in a circle around it, as shown in Figure 6. The point is said to be a corner if the
circle contains n consecutive pixels that are all lighter or all darker than p by some threshold. The method
Features from Accelerated Segment Test (FAST) [45] uses this principle to detect corners by determining
for each pixel whether the centre pixel is lighter, darker or the same. FAST aims to minimise the amount
of pixel value comparisons by using the ID3 machine learning algorithm [42]. Applying ID3 results in a
decision tree, which dictates the order in which pixels are compared, depending on the previous comparison
results. FAST, however, has some limitations, some of which are the fact that the decision tree has to be
learned with a set of training images and the suboptimal decision tree that is known to be the result of the
ID3 algorithm.

One of FAST’s derivatives, Adaptive and Generic Accelerated Segment Test (AGAST) [32], was intro-
duced to address these drawbacks. First of all, the decision tree is made binary instead of ternary, by breaking
down each ternary question (whether a pixel in the circle is darker than, similar to or lighter than the centre
pixel) into two binary questions. Second, two decision trees are built, one for homogeneous and one for
heterogeneous areas, and the tree to be used is determined with adaptive tree switching. And finally, the
decision tree is built by calculating a cost function for each node in a bottom-up manner. The cost of a leaf
node is defined as 0, and for each internal node P the cost cP is calculated by

cP = min
C∈{C1,...,Cn}

cC+
+ pC+

cT + cC− + pC−cT = cC+
+ cC− + pP cT , (10)

where C+ and C− are the positive and negative test results for child node C corresponding to a pixel, pC+
,

pC− and pP are the probabilities of the pixel configurations at the child and parent nodes and cT is the cost
of accessing the memory (register, cache or main memory, depending on the position of the pixel). The
result is a two-part decision tree, where each leaf node leads to the appropriate part of the tree depending on
the pixel configuration.

FAST and AGAST do not assign a scale to the found interest points. Since this is necessary to ensure
scale invariance, the scale can be calculated as in ORB [47] (which uses FAST) or BRISK [27] (which uses
AGAST). Both methods use a scale pyramid and apply non-maximum suppression on the corner measure,
which is, like other methods, done by comparing it to 26 neighbours. ORB uses the Harris corner measure
to rate the saliency of corners, whereas BRISK uses the FAST score function.
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3 Neural Networks
The last decade has seen a lot of advancement in artificial intelligence (AI) and deep learning in particular is
increasingly popular. It is a method that enables computers to learn to perform a specific task and the range
of its applications has grown larger every year. Many big companies like Google, Microsoft and Apple have
invested in the development of deep learning techniques and architectures, and these AI systems are used in
the services and products they provide. Even though deep learning is a term that has been popularised in
recent years, the neural networks that are used in deep learning have existed for several decades. Instead of
programming a certain behaviour, which gets more unmanageable as behaviours get more complex, neural
networks aim to learn tasks by taking in a lot of data and incrementally adjusting their parameters. They work
similarly to the animal brain in that they transform data from input to output by making abstractions. They
combine smaller elements into larger, more complex ones, which is made possible by the layered structure
of the networks.

3.1 History
The first neural networks were developed before modern computers existed and one of the first implemen-
tations was made by Rosenblatt [44] in 1957 on hardware made especially for this purpose. He called this
network a perceptron, which is a single-layer neural network with a binary output. The perceptron calculates
a function by multiplying the inputs with weights and adding a bias. Given a set of transformed inputs, the
perceptron can learn to discriminate between two classes of inputs by changing the weights with an update
rule. In 1960 Widrow and Hoff [64] introduced the Adaptive Linear Neuron (ADALINE), which is similar
to the perceptron, but as the name suggests, has a linear output, instead of a binary one. In 1969 Minsky
and Papert [37] showed that neural networks with a single layer could not solve non-linear problems and
didn’t see a future in them. However, multi-layer perceptrons were able to solve more complex non-linear
problems, but there was not yet a good method to learn them. In 1980 the neocognitron was introduced by
Fukushima [11], which is a multi-layer neural network that can learn to recognise visual patterns and is the
precursor to the convolutional neural network, discussed in Section 3.4. It was then suggested in the ’70s
and ’80s that the weights of neural networks be updated with the use of the backpropagation algorithm by

Figure 7: An example of a simple 3-layer neural network with 2 hidden layers. This is a fully-connected
neural network, since all nodes in every layer are connected to all nodes in the neighbouring layers.
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Rumelhart et al. [48] and others before them [23, 41, 63]. In their paper, Rumelhart et al. also proposed
the use of a momentum term to speed up learning, which will be discussed in detail in Section 3.5. In the
following years progress slowed down again, as people lost confidence in neural networks and didn’t think
large architectures were feasible. Backpropagation worked well for shallow networks, but not so much for
deeper models, although many improvements were suggested. Convolutional neural networks were first de-
fined in 1989 by LeCun et al. [24], named LeNet, and were applied to handwritten digit recognition. It was
the fifth iteration, called LeNet-5 [25], that would be very successful. After another period of slow progress,
Krizhevsky et al. designed AlexNet [21] in 2012 and won the ImageNet Large Scale Visual Recognition
Competition (ILSVRC) of that year. It was also designed to be run on the GPU, which meant much faster
learning as computations could be highly parallelised. This was when neural networks really took off and
the application domain started to grow even larger. Neural networks, now often referred to as deep learning
architectures, have even exceeded human performance in certain tasks.

3.2 Fully-Connected Neural Network
A neural network is made up of neurons that are organised in layers, the first of which is called the input
layer, and the last the output layer. In general, the input layer is not actually considered a layer, since it does
not perform any calculation, but simply provides the first real layer with input. A neural network with an
input and output layer is therefore called a single-layer network. In between the input and output layers there
may be zero or more layers that are named hidden layers. Neurons in consecutive layers may or may not be
connected and generally there exist no connections between neurons in layers that are not direct neighbours,
although there are some exceptions. There is a weight associated with every connection that determines how
much the neurons influence each other. A neuron takes as input a subset of the outputs of the neurons in the
previous layer. How inputs are propagated through the network and transformed by each layer will now be
discussed. The following definitions are inspired by the ones presented in [6].

There are different types of layers, but the most basic type is the fully-connected (FC) layer, also called
the dense layer, in which every neuron in one layer is connected to every neuron in the next. A network
that consists solely of fully-connected layers is called a fully-connected neural network or dense neural
network. An example of such a network can be seen in Figure 7. A neuron n in layer l has for every input
xl1, x

l
2, . . . , x

l
M a set of associated weights wln1, w

l
n2, . . . , w

l
nM and calculates the so-called pre-activation

as

zln = wln1x
l
1 + wln2x

l
2 + · · ·+ wlnMx

l
M + bln, (11)

where bln is the bias of neuron n in layer l. The bias is a learnable parameter and its goal is to add a value
to increase or decrease the input to the activation function, which changes the decision boundary and adds
complexity to the neuron. The value of a bias is always 1, but the weight can be learned, just like the weights
of other neurons. The pre-activation is then subjected to an activation function, or transfer function, f , and
the output of the neuron, the activation, becomes

aln = f(zln) = f(wln1x
l
1 + wln2x

l
2 + · · ·+ wlnMx

l
M + bln). (12)

The goal of the activation function is to introduce nonlinearity into the network, which enables the network
to learn complex problems. There are many different types of activation functions, such as the sigmoid, the
hyperbolic tangent (tanh) and the rectified linear unit (ReLU), which are depicted in Figure 8. New activation
functions may yet be proposed, as this is still an active field of research.

The representation of neurons as nodes and connections helps us intuitively understand how neural net-
works function, as they were inspired by biology. However, in practice inputs, weights and biases are repre-
sented by matrices and vectors. The inputs and biases of layer l can be seen as vectors

xl =


xl1
xl2
...
xlM

 , bl =


bl1
bl2
...
blN

 . (13)
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Figure 8: Three different activation functions. The most commonly used in convolutional neural networks
is the ReLU activation function.

The weights of a layer l are represented by a matrix

Wl =


wl11 wl12 · · · wl1M
wl21 wl22 · · · wl2M

...
...

. . .
...

wlN1 wlN2 · · · wlNM

 , (14)

where every column is the set of weights associated with one input element and every row is the set of
weights of one neuron. The output of a layer can now be written as the matrix multiplication

al = f(Wlxl + bl). (15)

In practice, multiple inputs can be calculated in one pass by also representing the inputs as a matrix, where
every column is an input instance. Since the values are propagated from one layer to the next, the input to a
layer is the activation of the previous layer and xl = al−1.

As an example, let’s consider a two-layer network with a single hidden layer that calculates a function
N (X). The input to the network is the matrix X with multiple input instances, both layers have weights Wi

and biases and bi and each layer is followed by an activation function, which may be different for each layer.
The output of the network can then be calculated by

N (X) = A2 = f2(W2f1(W1X + b1) + b2). (16)

The network outputs a matrixA that contains the output for every input instance. This is the forward pass and
is simply a chain of matrix multiplications, additions of biases and element-wise applications of activation
functions.

3.3 Backpropagation
In order to function properly, a network has to have the appropriate weights. In general, weights are ini-
tialised randomly and are updated in incremental steps by using some set of update rules. As previously
mentioned, the most frequently and successfully used set of weight update rules is the backpropagation al-
gorithm, although other update methods exist, such as genetic algorithms. In order to learn, a loss function,
also called a cost or objective function, is defined. The loss determines how well the networks performs and
can be used to modify the weights in such a way that it decreases. One of the simplest loss functions is the
Mean Squared Error (MSE), which is known as

LMSE =
1

S

S∑
s=1

||ys − as||2, (17)

where ys is the expected output of input sample s and as the network’s activation. There are different loss
functions that can be used and, since backpropagation uses derivatives in order to minimise, an important
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property that the loss function must possess is differentiability. Unsupervised methods do not have expected
values and therefore the loss function must be defined in some other way, and this will be discussed in Section
4.

The idea of backpropagation is to use the derivative of the loss function to take small steps to incremen-
tally decrease it. The derivative is calculated with respect to the weights and biases, so the search-space is
highly multidimensional. The algorithm is done in two steps, the forward pass and the backward pass. In
the forward pass the outputs of the neurons of all layers are computed, as explained in the previous section.
In the backward pass these values are used to compute the gradients at each neuron, starting with the output
layer and working its way back, and the gradients are then used to update the weights to minimise the loss
function. To train properly, a large data set is needed, which is divided into training set, validation set and
test set. The training set is used to calculate the gradients and update the weights, while the validation set
is used to compute the performance of the network during training and adjusting hyperparameters. This is
done because the performance on the training set may not be representative of the overall performance and
the network may be overfitted. The test set is used after training to evaluate the network on unused data.
Backpropagation is an iterative method and training is performed for several epochs, until some requirements
are met. In each epoch, the network learns on the whole training set, and the hyperparameters are adjusted
at the end of the epoch.

The most basic variant of backpropagation is gradient descent (GD), or more commonly stochastic gra-
dient descent (SGD). SGD updates the parameters after each sample in the training set, or per mini-batch
of samples, whereas the standard batch gradient descent accumulates gradients and updates the parameters
once every epoch for the whole data set. Every weight wnm of node n from inputm is updated into the new
value ŵnm according to the update rule

ŵnm = wnm − α
∂L
∂wnm

, (18)

where α is the learning rate, L is the loss function and ∂L
∂wnm

is the partial derivative of the loss function with
respect to the weight wnm. This partial derivative gives the direction of steepest ascent for this parameter
and it is therefore subtracted from the original value, to decrease the value of the loss function. Note that
the same definition applies to biases as well, since a bias is nothing more than a weight with input value
−1. The updates start at the final layer, because the output of this layer is directly correlated to the output
of the loss function. Since the loss function is a summation over multiple input samples, the derivative also
contains a summation. However, in the derivative of the loss function over multiple input instances

∂L
∂wnm

=
1

S

S∑
s=1

∂Ls
∂wnm

(19)

the summation and mean will be dropped, since this simplifies the notation. The derivative of the whole can
simply be calculated by taking the mean of each individual derivative.

To calculate the partial derivative of the loss function with respect to a single weight of node n in the
output layer, the chain rule is applied successively as

∂L
∂wnm

=
∂L
∂zn

∂zn

∂wnm
=

∂L
∂an

∂an

∂zn

∂zn

∂wnm
. (20)

Each of the components can be rewritten as

∂zn

∂wnm
=

∂

∂wnm

(
M∑
µ=1

(wnµxµ) + bn

)
= xm, (21)

∂an

∂zn
=

∂

∂zn
f(zn) = f ′(zn), (22)
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∂L
∂an

= ∆n. (23)

Finally, the derivative then becomes

∂L
∂wnm

= ∆nf
′(zn)xm. (24)

The definitions of ∆n and f ′ depends on the choice of the loss function and the activation function on node
n. Once every weight in the output layer is updated, the same method can be applied in a backwards manner
to calculate derivatives with respect to weights in the hidden layers.

3.4 Convolutional Neural Network
The fully-connected neural networks that have been discussed so far have some limitations when it comes
to certain types of input data, such as images. First of all, fully-connected layers are 1-dimensional, which
means that pixels need to be serialised and most structural information in the image is lost. Second, since
every neuron in one layer is connected to every neuron in the next, the number of connections grows rapidly
as the number of neurons increases, and so does the number of computations needed. Finally, because the
number of parameters directly corresponds to the number of input values, the size of the input needs to
be fixed, which is often not desirable for images. Convolutional neural networks (CNNs) were inspired by
the visual cortex, and are designed to work with images, although they are also used in natural language
processing. Instead of assigning a single parameter to each pixel, CNNs learn a set of small filters that are
shared by all parameters. Each filter looks at a small part of an image at a time, which is called its receptive
field. One filter may respond to different structures in the image, such as lines and curves, than another.
The filters are convolved over the image, which means that they are applied to each image location and
the resulting activation maps show where in the image the structures associated with each filter are found
and to what degree. By layering filters on top of each other, more complex structures can be recognised.
Convolutional layers are generally followed by some non-linearity, a pooling layer and possibly some other
layers.

3.4.1 Convolutional Layer

The main operator of the CNN is the convolutional layer. It is made up of f filters, each of which is
3-dimensional, with a width u and height v, and spanning the whole depth d of the input volume. For
example, if the input is an RGB image and the first layer has 32 square filters of size 9, the filters have a
shape of 32×3×9×9. Each filter slides over the image and at each position the dot product of the filter and
part of the image is computed, resulting in a single value per filter per position. This principle is illustrated
in Figure 9a. The layer has a stride s, which mean that after each calculation the filters slide s pixels over
the image (in the horizontal and vertical directions). If the input of a convolutional layer has dimensions
n×d×w×h, the output of the layer has dimensions n×f× ((w−u)/s+1)× ((h−v)/s+1). Taking the
same example as before, if the input is an RGB image of size 1× 3× 120× 90 and the stride is 1, the output
of the first layer has a shape of 1× 32× 112× 82. With a stride of 3, the output becomes 1× 32× 38× 28.
Even if the stride is 1, convolutional layers shrink the input volume. To counteract this, zero-padding may
be applied to inputs, which means that a border of zeroes is added to them. This may reduce or stop the
amount of shrinking, depending on the size of the zero-padding.

3.4.2 Activation

The output of the convolutional layer is generally subjected to an activation function, which introduces
non-linearity into the network. Like those in fully-connected networks, the activation function is applied
element-wise to every parameter in the input. The most often used activation function in CNNs is the
Rectified Linear Unit (ReLU). The ReLU layer applies the function ReLU(x) = max(0, x). Other variants
of this function, such as the Leaky ReLU and the ELU exist as well. It is also possible to use the sigmoid or
the hyperbolic tangent functions, although this is not very common.
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3.4.3 Pooling

Another type of layer, which is often used, is the pooling layer. There are different types of pooling layers,
such as max-pooling, average-pooling and L2-pooling. Just like convolutional layers, pooling layers have a
size p×q and stride s, which determines how the input is transformed. A window of size p×q slides over the
width and height dimensions of the input with steps of s. At each location, the given operation is performed
over the window and output is a single value. For example, a max-pool layer of size 2× 2 and stride 2 slides
a window of 2×2 over the input elements and outputs the maximum value per position, which is depicted in
Figure 9b. This action will cut the width and the height of the input volume in half. Downsampling is one of
the reasons pooling layers are used, in order to increase the computational performance. Another important
aspect of pooling layers is that they introduce some invariance to small transformations of features, which
increases robustness.

3.4.4 Fully-Connected Layer as Convolutional Layer

Many CNN architectures start with several convolutional layers that are followed by a number of fully-
connected layers. In order for these layers to follow convolutional layers, the data need to be flattened,
which is done by serialising the depth, height and width dimensions. However, fully-connected layers are
often implemented as convolutional layers. This is done by adding a convolutional layer with n filters of
size 1 × 1, where n is the number of desired nodes. In doing this, the CNN’s ability to process images of
variable size is conserved. Note, however, that a variable input size means a variable output size, as a CNN
shrinks the width and height of the image by a set amount.

3.5 Optimisation
The optimisation algorithm described in Section 3.3 is also called vanilla gradient descent, as it is the most
standard and straight-forward method of updating weights and biases. At every time-step the parameters are

(a) (b)

Figure 9: (a) A convolution operation slides every filter over the image, calculating the dot product at each
position. (b) A max-pooling operation with size 2 and stride 2 takes input elements of 2× 2 and outputs the
maximum value.
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updated in the direction of steepest descent without taking any other information into account, and this may
result in erratic movements caused by over-sensitivity to local structures in the multidimensional search-
space. To update any parameter pi ∈ {w11, . . . , wNM , b1, . . . , bN} its new value at time step t is simply
calculated as

pti = pt−1
i −∆pti = pt−1

i − αgti , (25)

where gti is the gradient of parameter pi at time step t.
As mentioned before, one of simplest improvements to the standard method is the use of a momentum

term, as it was first described by Rumelhart et al. [48]. By adding this term, the movements through the
search-space are smoothed out and pulled into a general direction, much like a moving object builds up
momentum. The momentum conserves the velocity of the object and it will keep moving in that direction
until it is affected by external forces. As such, the momentum term adds velocity to the gradient descent by
remembering how much and in which direction the parameters are moving through the search-space. The
update rule is modified by calculating the parameter update value ∆pti as

∆pti = α(gti + µ∆pt−1
i ), (26)

where µ is a decay factor between 0 and 1. By changing this factor, the contribution of the new direction
on the momentum can be changed and it is normally set to around 0.9. The momentum term has the same
dimensions as the network parameters, so every parameter has its own momentum value. In general, adding
a momentum value helps the network converge more quickly.

Duchi et al. introduced another optimiser called AdaGrad [8], which aims to normalise the contribution
of each parameter in the update and reduce the effect of large gradients and increase that of small ones. The
idea is that features that are seen less often are more discriminative and should contribute more to the output.
Every parameter gets its own learning rate by dividing it by the total magnitude of all past gradients and its
update value is

∆pti =
α√∑t
τ=1 |gτi |2

gti , (27)

where |gτi |2 is the L2-norm of gradient i at time-step τ per dimension. It can be seen that the denominator
accumulates all previous gradients and grows with each step. This means that with each update, the step size
gets smaller and smaller, until it eventually becomes nearly 0 and progress halts. Zeiler aims to improve this
with AdaDelta [68], which is directly based on AdaGrad. Instead of taking the complete gradient history,
the running average is decayed over time, similar to the momentum term. The decaying running average
E[|gi|2]t is defined as

E[|gi|2]t = ρE[|gi|2]t−1 + (1− ρ)|gti |2, (28)

where ρ is the decaying factor. By using this value to scale the gradients, the problem of progress slowing
down over time is solved, but Zeiler finds another issue with the previously described methods. Because the
gradients are divided by the running average of the gradients, there is a mismatch between the hypothetical
units of the parameters and those of the parameter updates. In order to fix this, another term is added to the
update value, which is the running average of the parameter updates. The update value then becomes

∆pti =

√
E[|∆pi|2]t−1 + ε√
E[|gi|2]t + ε

gti . (29)

The constant ε is added both to start off the algorithm when the numerator is 0 in the first time-step, and to
avoid division by 0. Adding the running average of the parameter updates to the numerator fixes the unit
mismatch, and since it replaces the learning rate α, there is no need to spend time finding a good value for
it. This makes AdaDelta stand out from the other optimisation algorithms.

More recently, the optimiser Adam was introduced by Kingma and Ba [19]. Adam works by keeping
track of the first and second moment of the gradient. The second moment is, similar to AdaGrad and
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AdaDelta, the average magnitude of the gradients per dimension. However, Adam additionally accumulates
the first moment, which is the mean gradient value per dimension. At each time-step t, the first moment mt

i

and second moment vti of parameter pi are updated according to

mt
i = β1m

t−1
i + (1− β1)gti , (30)

vti = β2v
t−1
i + (1− β2)|gti |2, (31)

where β1 and β2 are hyperparameters that control the decay rate. However, since the values for mt
i and vti

are initialised to 0, these values are biased toward 0, especially in the first few iterations. Therefore, the first
and second moment values are bias-corrected, as

m̂t
i = mt

i/(1− βt1), (32)

v̂ti = vti/(1− βt2). (33)

Once the bias-corrected first and second moments are calculated, the update value of parameter pi then is
defined as

∆pti = α
m̂t
i√

v̂ti + ε
. (34)

The value m̂t
i is the decaying average of the past gradients, which is similar to the momentum method. The

value v̂ti is the decaying average gradient magnitude, which is similar to the AdaDelta method. Therefore,
Adam seems to combine the two methods.

3.6 Regularisation
Training data are divided into training set, validation set and test set. This is done to measure the perfor-
mance, not only on the data that the network is trained on, but also on new data that the network has not seen
yet. If there exists a discrepancy between the loss of the training set and the loss of the validation set, the
network is likely overfitting. This means that the network has a good performance on the training samples,
but does not generalise well for new data. In other words, the network memorises the correct outputs for the
given inputs, instead of finding a general solution. In order to prevent overfitting, some form of regularisa-
tion can be implemented. There are many different types of regularisation and two common methods will
be discussed here.

One of the most basic types of regularisation is L1 and L2 regularisation. The magnitudes of the weights
are restricted by adding a penalty term to the loss function. This should decrease the complexity of the model
and make it less likely to overfit to the training data. Given a loss functionL, the L1 regularised loss becomes

L1 = L+ λ
∑
w∈W

|w|, (35)

where W is the set of all weights in the network and λ is the scaling factor that determines how much the
weights are penalised. Analogously, the L2 regularised loss is given by

L2 = L+ λ
∑
w∈W

w2. (36)

The difference is that L2 regularisation minimises the magnitude of all weights, whereas L1 regularisation
may lead to sparse weights. It is also possible to use a mix of both.

Another method that is often used is called dropout [14]. During training, at every step of the iteration,
a random subsample of neurons in the network is deactivated. This means that they neither participate in
the forward step, nor in the backward step of the learning process. The reason this prevents overfitting is
that one subset of neurons might start to overfit, which makes the network biased toward the training data.
However, when a new subset of neurons is chosen, the bias is no longer present and will not be strengthened.
Another way to look at it is that each subset is a separate neural network. When training is done and all
neurons are active, the result is the average of all the separately trained networks.
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3.7 Normalisation
The distribution of the input data affects how the network is trained, how well it converges and how it
performs. Therefore, it is common to normalise the data in some ways before or as it is processed by the
network. Here are several method to normalise input data.

One of the most basic types of normalisation is input normalisation. The first step is usually mean
centring, which balances the data around 0. Then, the data are normalised by dividing by the standard
deviation, so that the standard deviation is 1. This can be done in several ways. Assuming the data are
images, the normalisation can be done per image, such that each image has a mean of 0 and a standard
deviation of 1. What is also common, is normalising per pixel. In that case, the mean and standard deviation
of the complete data set is stored and each input image is normalised before processing. The normalisation
can also be done per channel or for all values. Which method is preferable depends on the data and the
application.

A type of normalisation that is used in between neural network layers is Local Contrast Normalisation
(LCN) [18]. The goal is to enforce a local competition of features. A Gaussian-weighted square window (in
the paper they use a size of 9× 9) spanning the whole depth of the input with a sum of 1 is applied at each
position. For an input value xijk, where i, j and k are the depth, height and width indices, respectively, the
mean centred value mijk is calculated as

mijk = xijk −
∑
ipq

wjkxi,j+p,k+q. (37)

Here, p and q are the indices of the window in the width and height dimensions. Then, to normalise the
values, at each position the standard deviation is calculated as

σjk =

√∑
ipq

wjkm2
i,j+p,k+q. (38)

The normalised value nijk is then defined as

nijk = mijk/max(c, σjk), (39)

where the value c is set to the mean value of σjk per sample.
Similar to LCN, Local Response Normalisation (LRN) [21] normalises response values over the depth

of the response after the application of the ReLU activation. Each value xijk is normalised as

nijk = xijk/(k + α
∑
p

x2
pjk)β , (40)

where p iterates over a number of adjacent responses at the same width and height position and k, α and β
are hyperparameters. In the original paper, p = [−2, 2], k = 2, α = 10−4 and β = 0.75. The difference
with LCN is that no mean centring is done, there is no window, but only the values at the same position are
taken and the normalisation is not done over the whole depth.

Perhaps the most prevalent type of normalisation in recent years is batch normalisation [16]. Like LCN
and LRN it normalises activations in between convolutional layers. The difference is that batch normalisation
does this per parameter over a complete batch. For a parameter xijk, a batch with B samples is defined as
xijk = {x1ijk, . . . , xBijk}. Then, the mean over the batch is defined as

mijk =
1

B

B∑
b=1

xbijk. (41)

The variance of the mean-centred batch is then calculated as

σ2
ijk =

1

B

B∑
b=1

(xbijk −mijk)2. (42)
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The parameter is then normalised as

nijk =
xbijk −mijk√

σ2
ijk + ε

. (43)

However, since this normalisation restricts the outputs of the previous layer, two additional learnable param-
eters γ and β are added. The final normalised result becomes

n̂ijk = γnijk + β. (44)

These two parameters enable the layer to restore the original values by setting their values to the mean and
standard deviation.
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4 Learning Feature Detectors and Descriptors
In Section 2 several conventional, hand-crafted methods for feature detection and description were presented
and in Section 3 the definitions of NNs and CNNs were discussed. In this section, we consider a selection
of methods that have been published in recent years that combine feature detection and neural networks, to
produce NNs that have learned to find stable keypoints. Whereas manually defined feature detectors gener-
ally focus on one or several kinds of structures, neural networks may learn to find structures that are more
complex and are stable with exactly those transformations that are desirable. Naturally, a neural network
will produce keypoints that are stable to those transformations that are presented during training. And this
is perhaps where the strength of learning lies, as the NN can learn to perform for any specific task given the
right data, whereas for hand-crafted methods a completely new method may have to be designed.

The feature detection and matching pipeline is made up of multiple steps, each of which may be replaced
by a neural network, although the main categories discussed here are the detection, orientation assignment
and feature description.

4.1 TILDE
TILDE [60] is a method by Verdie et al. and is one of the first ones that can be learned by a neural network
to detect keypoints. The method focuses on keypoints that are stable under different lighting and weather
conditions. It uses supervised learning to train a CNN, as the ground truth for what should and should
not be a keypoint is determined by using some manual method, which is SIFT in the original paper, but the
authors mention that any other method may be used. The data set used contains images of the same scenes in
different conditions and the training data consist of pairs of positive and negative samples. Positive samples
are created at locations where in most conditions a keypoint is located and negative samples are locations
where there are no keypoints near in any condition. Using the sample patches, network inputsX are retrieved
by calculating the horizontal and vertical image gradients, the gradient magnitude and the components of
the LUV colour space for each pixel, which results in a total of 6 image features per pixel. The network
outputs a score map, which indicates how well each point satisfies the network’s definition of an interest
point. Actual interest point are then selected from the score map by applying non-maximum suppression.

The TILDE regressor is a single-layer network that is defined by the Generalised Hinging Hyperplanes
(GHH) [62], which is a piecewise linear function. The GHH in the context of CNNs consists of a set of
parameters ω = [W, b], which are the filters W = {W11, . . . ,WNM} and the biases b = {b11, . . . , bNM}.
The output of the GHH is defined as

GHH(X, ω) =

N∑
n=1

δn
M

max
m=1

Wnm ∗X + bnm, (45)

where δn = +1 if n is odd and −1 if it’s even. The GHH is a generalisation of activation functions, such
as ReLU and PReLU, which can be defined as a GHH. Since the TILDE network is a single-layer network,
given the set of parameters, its activation is simply calculated as

N (X) = A(X, ω) = GHH(X, ω). (46)

In the paperN = 4 andM = 4, which means that there are 16 filters of size 21× 21 per image feature. The
objective function L used to train the TILDE network consists of three parts, the classification-like loss Lc,
the shape regulariser loss Ls and the temporal regulariser loss Lt, and is defined as

L = Lc + Ls + Lt. (47)

The classification-like loss Lc helps the networks distinguish between the positive samples and negative
samples and takes the form

Lc = γc||ω||22 +
1

K

∑
xi∈X

max(0, liA(xi, ω))2, (48)
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where γc is a hyperparameter, X is the set of all input samples andK its cardinality and li ∈ {−1,+1} is the
label for the negative and positive samples. This means the network is encouraged to return positive values
for patches that contain a keypoint and negative values for patches that don’t and a simple non-maximum
suppression can be used to find local maxima.

The next part of the loss function, the shape regulariser Ls, is meant to give the shape of local maxima
a higher peak and is defined as

Ls =
γs

Kp

∑
xi∈Xp

N∑
n=1

∣∣∣∣wnηi(n) ∗ xi − (wnηi(n)xi)h
∣∣∣∣2

2
(49)

where γs is another hyperparameter, Xp is the set of all positive samples and Kp its cardinality, ηi(n) =

argmaxmw>nmxi adds only the filters that contribute to the response and h(x, y) = eα(1−
√
x2+y2

β ) is a
function that has the desired shape. The shape regulariser term is then adjusted by using approximations of
the 2D Fourier transform.

Finally, the last term of the loss function is the temporal regulariser Lt, which is defined as

Lt =
γt

Kp

Kp∑
i=1

∑
xj∈Ci

(A(xi, ω)−A(xj , ω))2, (50)

where γt is another hyperparameter and Ci is the set of images at the same location as image xi, but in
different conditions . This term helps the network to look for keypoints located at structures that are present
in all of the different conditions.

4.2 Covariant Feature Detector
The previously defined method learns to detect features by using SIFT or other keypoints as ground-truth and
the resulting detector is therefore biased towards the structures present in those keypoints. Lenc and Vedaldi
were one of the first to define a truly unsupervised feature detector [26]. They define a covariance constraint
that enables a neural network to learn to produce outputs that are covariant to any affine transformation.

4.2.1 Network Output

Where many other learned detectors output a score map that indicates the quality of each point as a keypoint,
the network N of this method transforms an image patch p into a transformation matrix as

N (p) =

[
a b x
0 0 1

]
=

au bu xu
av bv xv
0 0 1

 , (51)

where x is the centre of the keypoint relative to the centre of the patch and a and b encode other properties of
the keypoint, such as shape and orientation. A very simple implementation would only output the keypoint
coordinates x and interpret

[
a b

]
as the identity I . In more complex cases a and b could, for example,

encode the keypoint orientation, the shape of an ellipse or even a combination of both. These transformation
matrices can be interpreted to transform some base keypoint at the centre of the patch to the location and
shape of the most prominent keypoint. What these values actually encode is enforced by the way network is
trained and the transformations in the data presented to it.

4.2.2 Learning

Training data consist of triplets (p1,p2, t), wherep1 andp2 are patches that overlap at least partially, t ∈ T is
a set of transformations and the patches are related by the transformation, such that p2 = tp1 and the inverse
t−1p2 = p1. The set of transformations T can be separated into two subsets P ⊆ T, the transformations
that are resolved by the detector, and Q ⊂ T, those that are not resolved by the detector. In other words, P
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is the set of transformations that the detector outputs and Q is the set of transformations that the detector is
covariant with, but does not output. An example of this is a corner detector that is covariant with rotations.
The network only outputs coordinates, but points to the same location, even if the image is rotated. In this
case, the set of resolved transformations P = T equals translation and the set of residual transformations
Q = R equals rotation.

First, let’s consider the case that the network resolves all transformations in the set T and the set of
residual transformations Q = I is empty and only contains the identity. Since t−1p2 = p1 and the outputs
of the networks are related by the same transformation t, the network outputs should satisfy the constraint
N (p2)t−1 = N (p1). This can be rewritten into the covariance constraint

N (p2)N (p1)−1t−1 = I. (52)

This constraint is only satisfied if the network returns the same keypoint in both patches.
However, in the case that the network resolves only a subset ofT, applying the inverse transformation t−1

to N (p2) also applies the inverse of the transformation q, which is not resolved by the network. Therefore,
only tq−1, the part of twithout q, should be applied toN (p2). Thus the network should satisfy the constraint
N (p2)(tq−1)−1 = N (p1). Finally, the covariance constraint becomes

N (p2)qN (p1)−1t−1 = I. (53)

A network that satisfies this constraint is thus covariant to all transformations in T. The learning objective
is then defined as

L(p1,p2, t, q) =
1

K

K∑
k=1

||N (p1
k)t−N (p2

k)q||22. (54)

Once the network is trained, it gives the location of the most prominent keypoint for each patch. Given
an input image, the network is convolved over the image and a a transformation matrix is output per patch.
Keypoints are then extracted from images by accumulating votes from each of these outputs. For example,
each output gives the coordinates of the best keypoint in the local area and votes are added at those coordi-
nates by using bilinear interpolation. Doing this with every patch output results in a sort of score map, on
which non-maximum suppression and thresholding can be applied to find keypoints. This method can also
be used for other properties of the keypoints, although an exact method is not given in the paper. There are
two architectures defined for the detector, which are both depicted in Table 1.

DetNet-S
Conv 1 Conv 2 Conv 3 FC 1 FC 2 FC 3

40× 5× 5 100× 5× 5 300× 4× 4 500 500 2
ReLU ReLU ReLU ReLU ReLU

Max-Pool Max-Pool
2× 2 2× 2

DetNet-L
Conv 1 Conv 2 Conv 3 FC 1 FC 2 FC 3 FC 4

40× 5× 5 100× 5× 5 300× 4× 4 500 500 500 2
ReLU ReLU ReLU ReLU ReLU ReLU

Max-Pool Max-Pool + LRN
2× 2 2× 2

Table 1: The two architectures of the covariant feature detector, with the small network on top and the large
network on the bottom.
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4.3 Quad Detector
Another method that learns a feature detector, without using points from other methods to focus on, is the
quad detector by Savinov et al. [50]. It’s called the quad detector, because it learns by processing quadruples
of input patches. Similar to many other learned detectors, it takes an image as input and outputs a score
map that gives a higher score to points that are invariant or covariant to a set of transformations. This only
describes the detection stage and invariance to scale and rotation is achieved by using the SIFT pipeline and
replacing the detector. The quad detector is applied to a scale-space and keypoints are selected by performing
non-maximum suppression and second-order Taylor expansion.

4.3.1 Learning

Learning to detect keypoints that are repeatable under certain transformations is done by presenting the
detector four image patches from two images. The two images of the same scene are separated by a set
of transformations, mainly a change in viewpoint and illumination, but any desired transformations can be
included. A quadruple of images is extracted as

Q = (p1
d,p

2
d,p

1
t(d),p

2
t(d)), (55)

where pid and pit(d) are two corresponding points in image d and its transformed counterpart t(d). Given a
set of quadruples, the detector N is to learn a response that satisfies a ranking constraint

R(p1
d,p

2
d,p

1
t(d),p

2
t(d)) = (N (p1

d)−N (p2
d))(N (p1

t(d))−N (p2
t(d))) > 0. (56)

This constraint is only satisfied if the detector preserves the order of the points. In other words, if N (p1
d)

is larger than N (p2
d), then N (p1

t(d)) is also larger than N (p2
t(d)), and vice versa. To make this constraint

differentiable, it is embedded in the hinge loss and the objective function of the detector becomes

L =
∑
d∈D

∑
t∈T

∑
i,j∈C

max(0, 1−R(pid,p
j
d,p

i
t(d),p

j
t(d))), (57)

where D is the set of all images, T is the set of all transformations and C is the set of all corresponding
points. Since it’s not practical to take all of the combinations of images, transformation and corresponding
points, quadruples are generated by random sampling.

4.3.2 Data Generation

Data generation as described above depends on all desired transformations being included in the data set
used. Since it may be difficult to find data sets that include all transformations that are desired, it is also
possible to apply some transformations manually. To make the detector invariant to a set of transformations
Ta, for each quadruple two transformations t1a, t2a ∈ Ta are sampled at random and applied to the patches as

Qa = (t1a(p1
d), t

1
a(p2

d), t
2
a(p1

t(d)), t
2
a(p2

t(d))). (58)

This makes the detector learn to additionally preserve the order under the applied transformations. For
example, if the data set does not contain any images that are rotated, applying manual rotations of patches in
this manner ensures rotational invariance is learned by the detector. Another set of transformations Tb can
be used to augment the training images by applying transformations t1b , t2b ∈ Tb as

Qb = (t1b(p
1
d), t

2
b(p

2
d), t

1
b(p

1
t(d)), t

2
b(p

2
t(d))). (59)

In this case, the same transformation is applied to the same point in each corresponding image. This does
not enforce invariance to the applied transformations, but does increase robustness to them. An example in
which this may be desirable is scaling. If certain structures are only present at very large or very small scales,
including patches extracted at these scales will ensure the detector processes these structures and possibly
learns to detect them. Invariance in this case is not desirable, however, since a structure present at one scale
may not be visible at another.
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4.4 Orientation Estimator Network
Not only feature detection, but also orientation assignment can be done with neural networks. A method by
Yi et al. is designed exactly for that purpose [67]. In order to estimate the orientation of a given patch p, the
orientation needs to be parameterised. The network outputs two values that are interpreted as the normalised
sine and cosine of the patch’s angle. These values can then be used to calculate the angle in degrees.

Given two input patchesp1 andp2, centred at the same point with different orientation, the loss is defined
as

L = ||d(p1,R(p1))− d(p2,R(p2))||22, (60)

where d(p,R(p)) is the descriptor of patch p with the orientation output by the orientation networkR(p).
The network thus aims to choose orientations for pairs of patches that minimise the difference between the
resulting descriptors. The orientation network also uses the GHH activation defined in equation 45. The
network consists of 5 layers, of which the first 3 are convolutional layers with the ReLU activation and max-
pooling and the last 2 are fully-connected layers with the GHH activation. The architecture of the network
can be seen in Table 2.

Conv 1 Conv 2 Conv 3 FC 1 FC 2
10× 5× 5 20× 5× 5 50× 3× 3 100 2

ReLU ReLU ReLU GHH GHH
N = 4,M = 4 N = 4,M = 4

Max-Pool Max-Pool Max-Pool
2× 2 2× 2 2× 2

Table 2: The architecture of the orientation estimator network. The last 2 layer are fully-connected and use
the GHH activation with 4 filters in the maximum and 4 filters in the summation.

4.5 LIFT
Another method by Yi et al. titled Learned Invariant Feature Transform (LIFT) [66] learns to perform the
complete feature detection pipeline, from detection to orientation assignment to description. It contains three
separate networks, the detector N , the orientation estimator R and the descriptor D. The detector takes as
input an image and produces a score map that indicates the distinctiveness of each point and selects keypoints
by performing non-maximum suppression. Small patches are cropped out at the locations found by the
detector, which are in turn used as input for the orientation estimator. The orientation network then produces
orientations that are applied to the patches. Finally, the rotated patches are processed by the descriptor
network, that outputs a multidimensional vector for each input patch.

4.5.1 Training

Training data are generated using SIFT keypoints to determine positive and negative training samples. The
data are comprised of quadruples of image patches (P1,P2,P3,P4), where P1 and P2 are centred at the
same SIFT keypoint, but from a different 3D perspective, P3 are centred at another SIFT keypoint and
P4 are located where there is no keypoint. After they are processed by the detector N , the patches P are
cropped into smaller patchesQ centred at the maximum score value. The orientation network then calculates
orientations, that are applied to the cropped patches Q, to produce rotated patches R. These rotated patches
are then transformed into descriptors D.

Even though the flow goes from detector to descriptor, the network is trained in reverse order, from
descriptor to orientation estimator to detector. The descriptor is trained separately as first using SIFT key-
points as training data. Then the orientation estimator is trained together with the already trained descriptor,
replacing the SIFT orientations with the ones output by the networkR. Finally, the detector is trained using
the complete CNN pipeline. To make the maximum selection differentiable, the softargmax function [5] is
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used during training, which is defined as

softargmax(S) =
∑
x

exp(sx/σ)∑
y

exp(sy/σ)
x, (61)

where x,y ∈ R2 are coordinates of the score map S, sx and sy are the scores at those coordinates and σ is
a smoothing factor. As σ goes to 0, the softargmax function converges to the argmax function and outputs
the coordinates of the maximum value. To make the image transformations differentiable, the cropping and
rotation of patches is done using spatial transformer layers [17]. A spatial transformer layer takes as input
a transformation matrix that contains the desired transformations, such as rotation, scaling and even affine
transformations. It generates a sampling grid that contains coordinates of the input values and applies the
transformations to get the coordinates of the output values. A sampling kernel can then generate the output
using some type of interpolation, such as bilinear interpolation.

4.5.2 Descriptor

The descriptor network of LIFT is the one presented by Simo-Serra et al. [54]. The network is made up of 3
convolutional layers, each of which is followed by an L2-pooling layer, a hyperbolic tangent (Tanh) activation
layer and a Local Contrast Normalisation (LCN) layer (discussed in Section 3.7). The input patches are
64×64 pixels and are transformed by the network into 128-dimensional descriptors. The descriptor network
processes triplets of rotated patches (R1,R2,R3), where R1 and R2 are corresponding pairs and R3 are
non-corresponding. The network learns by calculating the L2-norm between pairs of positive and negative
samples and the loss function takes the form

LD(Rr,Rt) =
1

KD

KD∑
k=1

l(D(rrk),D(rtk)), (62)

where KD is the number of patch pairs, D(rrk) and D(rtk) are the computed descriptors for the reference
patch and its pair and

l(D(rr),D(rt)) =

{
||D(rr)−D(rt)||2, for positive pairs,
max(0, C − ||D(rr)−D(rt)||2), for negative pairs,

(63)

is the hinge embedding loss. This encourages the network to give a similar output for positive samples and
penalises negative samples that are closer than C in terms of L2-distance. An important technique that is
used in learning is the mining of hard samples, which means that in each batch of size Kb, the Kh samples
with the highest hinge embedding loss are selected and backpropagation is only performed on those hard
samples. This reportedly improves the performance significantly.

4.5.3 Orientation Estimator

The next step is to learn the orientation estimator, together with the already learned descriptor. This orienta-
tion estimator is very similar to the one presented in Section 4.4. At this stage, only positive pairs of cropped
patches (Q1,Q2) are considered. The objective function is simply defined as

LR(Q1,Q2) =
1

KR

KR∑
k=1

||D(%(q1
k))−D(%(q2

k))||2, (64)

where %(q) is the rotation operator that rotates the cropped patch q byR(q), the angle output by the orien-
tation estimator. This simply is the mean L2-distance between the resulting descriptors and the network is
encouraged to learn orientations that minimise the distance of the descriptors for corresponding patches.
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4.5.4 Detector

The detector of LIFT is very similar to the TILDE detector and the network also uses the GHH (described
in Section 4.1). The difference is that LIFT applies the network directly to the image data, where TILDE
extracts features from the image. The detector’s loss function has two parts:

LD(P1,P2,P3,P4) = γLclass(P
1,P2,P3,P4) + Lpair(P

1,P2). (65)

Here γ is a hyperparameter that balances the two parts. The class-loss is defined as

Lclass(P
1,P2,P3,P4) =

1

KN

KN∑
k=1

4∑
i=1

αi max(0, (1− softmax(liN (pik))))2, (66)

where li = 1 if the patch is centred at a keypoint (i ∈ {1, 2, 3}) and li = −1 if the patch is not centred at
a keypoint (i = 4), αi is another hyperparameter to balance the two cases and the softmax function is the
differentiable version of the max function. The pair-loss is

Lpair(P
1,P2) =

1

KN

KN∑
k=1

||D(%(ς(p1
k)))−D(%(ς(p2

k)))||2, (67)

where ς(p) is the crop operator that crops the patch p at the coordinates of the maximum value in the
score map softargmax(N (p)). The class-loss makes the network learn to discriminate keypoints from non-
keypoints and the pair-loss makes the network select keypoints that are invariant to the transformations in
the training data. The data for the detector are also mined for hard samples. To help the detector learn, the
network is pre-trained by replacing the pair-loss Lpair is by the function

L̃pair(P
1,P2) =

1

KN

KN∑
k=1

(1−
p1
k ∩ p2

k

p1
k ∪ p2

k

+
max(0, ||x1

k − x2
k||1 − 2s)√

p1
k ∪ p2

k

), (68)

where xik = softargmax(N (pik)) and s = 64 is the width and height of the patches pik. This outputs 0
for patches that are centred at the same location and increases with the distance between the patches. After
pre-training this function is replaced with the normal pair-loss function.
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5 Experiments
Determining the performance of feature detectors and extractors is not trivial, as it is dependent on the
application and the data. There are different measures that are defined to quantify the quality of detected
features in a general sense. On the other hand, finding the performance of a specific application can give
an indication of how well features can be used in practice. This section discusses several methods that have
been used to test the performance of a selection of feature detectors and descriptors. The detector-descriptor
pairs that are used in the experiments are shown in Table 3. The results of these experiments are discussed
in Section 6.

Detector Descriptor Distance Dimensionality Memory Cost
SIFT SIFT L2 128 512 B
SIFT VGG16 L2 256 1 KB
SURF SURF L2 64 256 B

AGAST BRISK Hamming 512 64 B
CenSurE SIFT L2 128 512 B

Quad SIFT L2 128 512 B
Quad VGG16 L2 256 1 KB
LIFT LIFT L2 128 512 B

Table 3: A list of detectors-descriptor pairs, together with the distance measure used to find matches, the
dimensionality and memory cost per descriptor.

An important property of feature detectors and descriptors is the computation time, which is listed in
Table 4 for the detectors (including orientation assignment) and descriptors. Features were detected on the
first 1 000 images of the ILSVRC 2017 data set. Descriptors were calculated for only 300 keypoints.

Detector Computation Time (s)
SIFT 74.86
SURF 64.19

CenSurE 68.21
FAST 6.08

AGAST 90.26
Quad 958.12
LIFT 1972.86

Descriptor Computation Time (s)
SIFT 60.84
SURF 46.24
BRISK 3.04
LIFT 220.59

VGG16 910.55

Table 4: The total computation time for detectors on the left and descriptors on the right, calculated over the
first 1000 images of the ILSVRC 2017 test set.

5.1 Repeatability
Repeatability is one of the most frequently used measures of stability and robustness in detected features,
since it was first defined for local features by Schmid et al. [51]. It measures the amount of features that
are repeated when images are subjected to geometric and photometric transformations. In the second part
of the feature matching pipeline, when the descriptors are calculated and matched, it is important that there
are as many correspondences as possible. For a set of images of the same scene that is separated by some
transformation, the number of correspondences dictate the possible number of descriptor matches. If there
are no correspondences in the detected features, a correct match cannot be found. Therefore a high stability
and robustness of detected features is desirable and this quality is tested by the repeatability measure. If
the repeatability is high for a group of transformations, then the detector is said to be covariant to those
transformations. The advantage of using repeatability as a scoring function is that the process can be fully
automated if the parameters of the transformation are known. Before repeatability was used, user input was
required, for example to determine the ground truth of what should be a feature.
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To calculate the repeatability, the detected interest points in two images have to be compared, where the
images are related by a transformation t and are called the reference image Id and the transformed image
It(d). According to the original definition, an interest point in the reference image is repeated when one
is also found at the corresponding point in the transformed image. Since the detector can have a certain
deviation, the correspondence is not expected to be in the exact same position, but there is a small margin
of error ε where the point is allowed to be, and is said to be within the neighbourhood around the point. But
it does not seem reasonable to use the same neighbourhood size for interest points of all sizes and it would
be more appropriate to use a margin that is relative to the sizes of the keypoint.

Mikolajczyk et al. [36] addressed this issue and improved Schmid’s definition, while generalising it for
elliptical interest points by calculating the area of intersection between two ellipses. The overlap error εo is
relative to the size of the interest points and is defined as

εo(pi, pj) = 1−
pi ∩ pj
pi ∪ pj

, (69)

where pi ∈ Pd and pj ∈ Pt(d) are the regions of the interest points. As in the original paper, a set of
points is considered to be a match if the overlap error is at most 40%. But by using the overlap error to find
matches an unfair advantage is given to detectors that find larger interest points. The number of matches,
and so the repeatability, can be increased simply by scaling up the size of the points. To counter this bias, for
every comparison the two interest points are rescaled, such that the smaller point has a radius of 30 pixels.
By matching features in this manner, only the position and the relative difference in size between the two
keypoints dictates which features match. However, there is a problem with matching features like this. When
comparing two very small keypoints, for example of radius 1 pixel, that are located at a distance of 10 pixels
from each other and don’t overlap at all, the result should not be a match. But with the given definition, the
two keypoints are scaled up to radius 30 pixels and do actually result in a match. Therefore, an additional
criterion is defined as

|pi − pj | ≤ 4rmin, (70)

where rmin is the smallest of the two radii. Hence, two keypoints of radius 1 that are more than 4 pixels
away from each other do not give a match.

To calculate the repeatability r, the set of corresponding points C has to be determined. This is done by
matching every pair of points as described above and calculating the number of correspondences as

C = {(pi, pj)|εo(pi, pj) ≤ 0.4, pi ∈ Pd, pj ∈ Pt(d)}. (71)

Note that every keypoint may only be matched once. Both Schmid and Mikolajczyk use the ratio between
this set and the minimum number of interest points in the two images to calculate the repeatability as

r =
|C|

min(|Pd|, |Pt(d)|)
. (72)

There is another issue with this definition of the repeatability, that is best illustrated with an example. If
the reference image contains a single keypoint, the transformed image has 99 keypoints and the single point
in the reference image has a match in the transformed image, the resulting repeatability is 1, even though
there are 98 keypoints in the transformed image that don’t have a match. To counter this problem, Ehsan et
al. [10] made an adjustment to the calculation of the repeatability by defining it as

r =
2 · |C|

|Pd|+ |Pt(d)|
, (73)

where each correspondence counts as 2 points, one in each image, and instead of the minimum, the sum of
the number of keypoints in both images is used to divide the number of correspondences by. In the example,
the resulting repeatability is 0.02, which seems more appropriate, since most keypoints don’t have a match.

Since the number of keypoints affects the repeatability score, as more keypoints result in a higher prob-
ability of finding a match, the number of keypoints is fixed for every comparison. This can be easily done
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by selecting Kk keypoints with the highest response value. In general, a high response value means a high
confidence that a point is a good keypoint and every method used in the experiments assigns a response value
to keypoints. The repeatability was computed with Kk ∈ 300, 600, 1000. If, for a certain image a detector
found less than Kk keypoints, the results of that comparison was omitted.

5.2 Descriptor Matching
While repeatability gives a good indication of the quality of the interest points with respect to invariance
and covariance with a given set of transformations, it is not necessarily a perfect indicator of good matching
performance. If a method has a very low repeatability it is unlikely to find many correct matches, since very
few keypoints have an actual correspondence. On the other hand, a high repeatability does not automatically
result in a good matching performance. Therefore, the descriptors can be matched like they would be in a
practical application, and the results will give an indication of how well the methods perform. However,
the results of the matching experiments depend on the type of descriptor used. Some detectors have a
coupled descriptor, while others don’t. Since it is impractical to test different combinations of detectors and
descriptors, a single descriptor was chosen for each detector (see Table 3).

To see how well each detector-descriptor pair performs, several values are calculated for pairs of images
related by a known transformation, similar to Mikolajczyk and Schmid [35]. As with the repeatability test
described in the previous section, the set of correspondences C are calculated by doing an intersection test
between every pair of keypoints, and a pair is a correspondence if the overlap error εo < 40%. Then the
descriptors in the reference image and transformed image are matched with a brute force matcher to find the
total set of matches M . The matcher calculates the distance between the descriptors and a match if found if
a pair is each other’s nearest neighbour. The type of distance measure used depends on the descriptor and
is listed in Table 3. Finally, from the set of matches the set of correct match M+ is found by checking if the
keypoints of the two descriptors are correspondences as well, and thus overlap each other by at least 60%.
Then, the set of false matchesM− = M−M+. To plot the findings, two new values will be calculated from
these collected results. First the recall is calculated as

recall =
|M+|
|M |

, (74)

which determines how many of the found matches are actually correct. Then the precision is calculated as

precision =
|M+|
|C|

, (75)

that determines what portion of the actual correspondences are found by the method. For a feature detector
to perform well, both of these measures need to by high. Having a high recall and a low precision means
that the matches found by the detector are correct, but it misses many matches. In the extreme case it may
only find a single correct match, while there are many potential matches. Having a low recall and a high
precision means that a detector finds a lot of matches that are correct, but also finds many matches that are
not correct.

5.3 Transformations
Features are extracted from images so that they may be matched to features found in other images. In the
example of image retrieval, the goal might be to find an image of an object in a large database of images,
given a reference image. However, the object in the reference image may look different from the one in the
target image, as it is rotated, blurred, under different lighting conditions etc. The two images are separated
by a set of transformations and this has an impact on the matching success. Therefore, it is important to
determine the performance of detectors with respect to these transformations. For this task, the parameters
of the transformation need to be known, so that it can be determined computationally whether matches are
correct.

The transformation parameters are included in some data sets, which are designed especially for repeata-
bility experiments, which usually come in the form of homographies. Homographies can also be calculated,
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which is called homography estimation. Recently, neural networks have been used to accomplish this task as
well [7, 40]. The downside of using homographies is that they give the transformation of a plane, so unless
the content of the image is a flat surface, the homography is not entirely accurate. Some data sets contain
3D information, which can be used to transform each keypoint with high accuracy, but these data sets are
scarce and their application is not trivial. One could also generate pairs of images from 3D scenes, for which
the transformations can be precisely controlled, but the downside of this is that the resulting images may not
accurately represent real-life images and so the results could be unreliable.

Another method that can be used on any data set is to manually apply transformations to images, in which
case the parameters of the transformations are already known and can be used to calculate the homography.
This is very easy to implement and any data set can be used. Although not every transformation can be
manually applied to images, this method has been thoroughly used and has been found to give a good rep-
resentation of the detector performance. The transformations that have been manually applied to calculate
repeatability and matching performance will now be discussed.

5.3.1 Rotation

An important property for feature detectors to have is rotational invariance, as objects in images are often at
least somewhat rotated. Input images are rotated by steps of θ, the angle in degrees, and the keypoints in the
original image are compared to those in the rotated image. Images and keypoints can be rotated by applying
the transformation matrix to the coordinates, which in case of rotations is defined as

R(x, θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

xuxv
1

 , (76)

where x =
[
xu xv

]> are the coordinates of the point being rotated. However, the points first need to be
translated, such that they rotate around the origin. This is done by the translation

T1(x, c) =

1 0 −cu
0 1 −cv
0 0 1

xuxv
1

 , (77)

where c =
[
cu cv

]> is the centre of the image. After rotation the points are translated back, but the
bounding box of the rotated image is larger than that of the original and to make the whole image fit the
points must be translated back by a different amount. The new translation is

T2(x, c, θ) =

1 0 c̃u
0 1 c̃v
0 0 1

xuxv
1

 , (78)

where c̃u = || cos(θ)cu|| + || sin(θ)cv|| and c̃v = || sin(θ)cu|| + || cos(θ)cv||. The final transformation
matrix that rotates points around the origin and translates to the new centre is found by concatenating these
transformations as

R0(x, c, θ) = T2RT1. (79)

Some manually defined feature detectors, such as SURF, are known to work well with some angles of
rotation (mainly every 1

2π or 1
4π), but not others. This is usually caused by the shape of the filters, as SURF,

for example, uses box filters. Therefore, in the experiments repeatability is calculated for rotations with steps
of θ = 1

12π.

5.3.2 Scale

Another important transformation that detectors should be covariant with is scaling. An object may be
projected in two different images at two completely different scales. Being covariant up to a certain scale
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can therefore be very important, depending on the application. The transformation matrix for scaling is
defined as

S(x, σs) =

σs 0 0
0 σs 0
0 0 1

xuxv
1

 , (80)

where σs is the scale. The value of σs was varied from 0.5 to 3, with steps of 0.25. For each scale, the
keypoints in the scaled image was compared to those in the unscaled original image.

5.3.3 Blur and Noise

Two more transformations that are more anomalies of photography than actual transformations are blur and
noise. Most images will have at least some degree of blur and noise and being robust to these transformations
can be important if the target images contain either or both. The coordinates of points are not changed by
these transformations and therefore the transformation matrix is simply the identity I . For blurring images,
Gaussian blur was applied with a standard deviation σb of 0.5 to 5, with steps of 0.25. To apply noise,
images values were converted to lie within the range [0, 1]. Then, a random value drawn from the normal
distribution was added to each pixel. The standard deviation σn was varied from 0.1 to 1, with steps of 0.1.

5.3.4 Compound

Each of the previously defined transformations can occur in a pair of corresponding images and each of the
experiments give an idea of how well the detectors respond to each of the transformations. Yet, in practice
these transformations will generally not exist in isolation, but some degree of each will be present. Therefore,
it might be interesting to determine the performance of the detectors when multiple transformations are
applied at once. This will be referred to a a compound transformation. Compound transformations consist
of rotation, scale, blur, noise and an additional random change in contrast and brightness. The transformation
matrix can be found by simply multiplying those of rotation and scale as

C(x, c, θ, σs) = R0(x, c, θ)S(x, σs). (81)

Transformations were sampled randomly, such that θ ∈ [0, 2π), σs ∈ [ 2
3 , 2], σb ∈ [ 1

2 , 3] and σn ∈ [0.1, 0.4].
The contrast and brightness changes were applied to image I to get the transformed image Î according to
the function

Î(x, y) = αI(x, y) + β, (82)

where α is a multiplicative factor in the range [ 1
2 , 2], and β is an additive factor between 0 and 100, assuming

pixel values are in the range [0, 255].

5.4 Non-Redundancy & Coverage
While repeatability and matching scores represent a qualitative measure on a per keypoint basis, there are
other criteria that say something about the quality of the keypoints in relation to each other. Two such criteria
are non-redundancy [43] and coverage [9].

Non-redundancy is a measure of how much the keypoints overlap and is defined as

non-redundancy = Knr/K, (83)

where K is the cardinality of the keypoints and Knr the non-redundant cardinality. In order to calculate the
non-redundant cardinality, a mask function fk(x) is applied to each keypoint k as

fk(x) =

{
Ke
− 1

2ζ2
(x−xk)TΣ−1

k (x−xk)
, if(x− xk)TΣ−1

k (x− xk) ≤ ρ2,

0, otherwise,
(84)
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where xk is the keypoint centre, Σk a matrix containing its shape and ρ and ζ describe the window of the
keypoint descriptor. The parameter ρ corresponds with the size of the window and ζ is the standard deviation
of the Gaussian window, if one is used. The values of these parameters differ per method and can usually be
found in the paper. The values of the masks are normalised, such that the sum for each keypoint is 1. After
the mask function is applied to each keypoint, the cardinality and non-redundant cardinality are calculated
as

K =

∫
Ω

(∑
k∈K

f(x)

)
dx, (85)

Knr =

∫
Ω

(
max
k∈K

f(x)

)
dx, (86)

where Ω is the image domain. In other words, the cardinality is calculated by taking the sum of all masks,
which is true because the sum of each mask is 1. The non-redundant cardinality is then the maximum value
per pixel.

Related to non-redundancy, coverage describes the spatial distribution of the keypoints. This is done by
measuring the mean distance for each pair of keypoints. However, simply taking the arithmetic mean results
in a high sensitivity to outliers, which may skew the results. Therefore, the coverage is calculated using the
harmonic mean Hi, given a reference keypoint i, which is defined as

Hi =
K − 1∑K
j=1,j 6=i

1

dij

, (87)

where K is the number of keypoints and dij is the distance between keypoints i and j. This is done with
each keypoint as a reference and the coverage is calculated as

coverage =
K∑K
i=1

1

Hi

. (88)

Keypoints that are detected at the exact same location at different scales are excluded from the calculations.

5.5 Image Retrieval
While the previously discussed measures define some qualitative properties of the detected keypoints, it is
not guaranteed that detectors and descriptors that have a good repeatability and matching performance will
also perform well in practical applications. In order to give some idea about the practical performance of
the conventional and neural network-based methods, there will be an implementation of an image retrieval
application.

In real-world image retrieval systems, the database may contain hundreds of thousands, or even millions
of images. While the comparison of every pair of descriptors is a very precise method, it is too costly to
perform with these numbers of images. One method to achieve real-time performance is the bag-of-words
(BoW) model [56, 70], which is used in these experiments. The descriptors of all images in the database
are (partially) used to perform k-means clustering. The descriptors are fitted to a predetermined number of
clusters (words), and this set of clusters is called the dictionary. Every descriptor can then be assigned to
one of the cluster simply by calculating the distance between the vectors. By doing this to every descriptor
in an image, the number of times each word occurs in that image can be stored in a histogram of occurrences.
This results in a single histogram vector per image, which is now much easier to compare. The dictionary
and the histograms can be stored in a database and given a query image, its histogram can be calculated and
compared to those in the database. The comparison between histograms can again be done by calculating a
simple distance measure, which in these experiments is the L1-distance.
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Figure 10: Some example images from the used data sets. Two examples from the Oxford data set are on
the left, from the ILSVRC 2017 test set in the middle and the ALOI data set on the right.

The bag-of-words trainer and histogram extractor implemented in the OpenCV library are used. The
number of database images is set to 250 000 and the number of clusters to 8 000. The dictionary is calcu-
lated by taking the descriptors of the 10 most prominent keypoints in each image, resulting in 2 500 000
descriptors. For the histograms, 200 keypoints per image are used. In the final step, 2 500 query images are
constructed by applying a random scale, rotation, blur, noise, contrast and brightness. The query images are
then compared to the database and all database images are ranked by their distance to the query image. If
the highest ranked image the the same as the untransformed query image the result is considered correct. In
order to get a more detailed look at the performance, the rank of the correct images are also recorded.

The transformations used in the image retrieval are slightly different than those used in the repeatability
and matching experiments. Rotations are still in the range [0, 2π] and scale changes are in the range [ 2

3 , 2].
For blurring, σb is parameterised between [0, 2]. For noise, σn lies in the range [0, 0.2]. For the contrast and
brightness changes, α was randomly generated within the range [0.85, 1.15] and β in the range [−20, 20].

5.6 Data Sets
The repeatability experiments were performed on two different data sets. The first is the Oxford Graffiti
data set [36], which contains sets of images, between which there is one of several different transformations.
The transformations include, amongst others, change in viewpoint, change in illumination and progressive
blurring. Homographies between sets of images are given, which describe the change in viewpoint in the
images. A homography is nothing more than a transformation matrix that maps 2-D points from one image
to the other. The second is part of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2017
test data set [49]. Of the total of 5 500 test images, the first 2 000 were used to manually create pairs of
transformed images. The transformations applied are those described in Section 5.3. The non-redundancy
and coverage experiments were performed on the complete data set of 5 500 images. Some examples of the
Oxford data set and the ILSVRC 2017 test data set can be seen in Figure 10 on the left and in the middle,
respectively.

To test the detectors’ performance with changing illumination, experiments were performed on the Am-
sterdam Library of Object Images (ALOI) [12]. This data set is a collection of images made of 1 000 objects
under varying illumination and viewpoint angle. For each object, images were made with 3 different cameras
and 8 different lighting conditions, to give a total of 24 images. For the purpose of these experiments, only
pairs of images made with the same camera, but under different lighting conditions were compared. The
setup contained 5 light sources illuminating the objects from different angles, from left to right. The first 5
illumination conditions were with one of the five light sources turned on. The next two were with two light
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sources from the left and two from the right, respectively. The final lighting condition was with every light
source turned on simultaneously. In the experiments, this last lighting condition was used as the reference
and each of the other 7 lighting conditions were compared to this reference condition. Some examples of
this data set are shown in Figure 10 on the right.

Finally, the image retrieval experiments were performed on the large ILSVRC 2012 training data set,
containing more than 1.2 million images. Like in the 2017 test data set, there are many different categories
of images, in all different shapes and sizes. In order to make the computation time feasible, only 250 000
images of the data set were used. Mainly the computation of the methods using neural networks took a very
long time, even with parallel computation on the GPU.

5.7 Implementation Details
5.7.1 Conventional Feature Detectors & Descriptors

All of the experiments were implemented in C++. As some of the networks were implemented in python,
the Boost.Python library was used to call python functions from C++. Most image manipulation was per-
formed using the OpenCV 3 library, which is available for both C++ and Python. This library also contains
many implementations of local feature detectors, such as SIFT and SURF. All of the implementations of the
conventional feature detectors used in the experiments were the ones contained in the OpenCV library. The
parameters of each method were set to values as close as possible to those given in the original papers, and
otherwise to the standard values present in the library. As CenSurE only defines a feature detector without
orientation assignment, SURF’s implementation of orientation assignment and SIFT’s descriptors were used
in the experiments.

5.7.2 The Quad Detector

The implementations of the quad detectors described in Section 4.3 for the purpose of these experiments were
made using the PyTorch neural networks library, made for Python. The network architecture was one from
the original paper, which is a non-linear version with 32 convolutional filters in the first layer, followed by
an ELU activation layer, a dropout layer and finally a dense layer. The networks were trained with the DTU
Robot Image Point Feature Data Set [1], using only illumination changes as correspondences. Attempts
to use viewpoint changes given the 3D point data were not very successful. The networks trained with
illumination changes performed approximately as well or even better than the ones trained with viewpoint
changes, and therefore only the former were used in the experiments. The networks were trained for 2 000
epochs, each consisting of 10 240 newly generated quadruples and with a batch size of 256. Optimisation
was done with the Adam optimiser. The resulting filters are depicted in Figure 11.

The quad detector only defines the calculation of a score map and the rest of the pipeline, the orientation
assignment and feature description, are done according to the SIFT procedure. Therefore, the OpenCV
implementation of SIFT was used and modified accordingly. The main difference with SIFT is the size
of the images in the scale-space. Where SIFT has equally sized images in each octave, comparing two
neighbouring images is simple. However, the filters of the quad detector have a constant size and therefore,
the image size needs to be adjusted to calculate at different scales. An octave consists of 5 scales and each
scale is 3

√
1
2 times smaller than the previous and each octave is twice as small as the last. By choosing these

factors, the scales over which are searched are evenly spread out. Because neighbouring scales are different
sizes, comparing them is not as straightforward as in SIFT. Several approaches were tested, such as resizing
every image in an octave to the largest scale in that octave or calculating the position in neighbouring scales
with bilinear interpolation. The best method, however, was for each scale to resize the dimensions of its
neighbouring scales to that of itself. In other words, for every scale, the larger neighbour was scaled down
and the smaller neighbour was scaled up. Since the largest and smallest scales only need to be scaled in
one direction, this resulted in 3 more rescalings per octave. There was, however, no noticeable difference in
computation time.
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5.7.3 LIFT

In the experiments, there are two different implementations of LIFT used, both of which are available on
GitHub. The first version includes all 3 stages of the method, but the orientation estimator is trained on
images that do not contain large rotations. Therefore, it does not work well when images do contain large
rotations. The orientation assignment of SIFT, also included in the code, was used instead of the orientation
network. This version was used for the repeatability and matching experiments. A second version, in which
the orientation estimator was trained with images containing rotations, was used for the retrieval experiments.
Ideally, the second version would have been used for all experiments. However, the second version was not
found until after the repeatability and matching experiments had been performed and time constraints did
not allow a recalculation of the results.

5.7.4 The Covariant Detector

An implementation of the covariant network can be found online. However, the networks provided only
detect keypoint locations without scale and orientation. A complete keypoint detector was implemented by
applying the scale-space and orientation assignment of SIFT. This detector did however not produce stable
keypoints and was therefore omitted from the experiments. Other attempts at training a detector that outputs
a location and scale were also without success.

5.7.5 VGG16 Descriptors

Recently, some well-known pre-trained networks, such as VGG and AlexNet, have been used to generate
image descriptors [39, 58]. These networks have already been trained on many training images and they
have good filters that are known to perform well. The first several layers have been shown to be appropriate
for this task, as these layers are trained to recognise local structures. There are different methods to extract
features from the network outputs. However, in this case the network outputs are used directly as feature
descriptors.

To test whether such a pre-trained network can produce qualitative descriptors, some of the experiments
will be performed with two more detector-descriptor pairs. For SIFT and the quad detector, both of which use
the SIFT descriptor, the descriptor calculation part will be replaced by the output of the VGG16 network’s
7th layer. All other components will be left intact, meaning that the detection and orientation assignment
will be exactly the same as in the original methods. After patches are cropped and rotated according the the
location, scale and orientation of the keypoints, they are resized to 40 × 40 pixels and fed into the VGG16

Figure 11: The filters in the first layer of the non-linear quad detector. The network seems to look at different
gradients in order to determine which points are covariant with the given transformations.
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network (as shown in Table 5). The output of layer 7, which has depth 256, is then used as the descriptor.
The padding in each layer is set to 0, such that the volume shrinks to size 256× 1× 1. The results will show
if these descriptors improve the robustness of the methods over the original, hand-crafted SIFT descriptors.
Since the keypoints are the same, only the matching and retrieval experiments will be done.

VGG16 Descriptor
Conv 1 Conv 2 Conv 3 Conv 4 Conv 5 Conv 6 Conv 7

64× 3× 3 64× 3× 3 128× 3× 3 128× 3× 3 256× 3× 3 256× 3× 3 256× 3× 3
ReLU ReLU ReLU ReLU ReLU ReLU

Max-Pool Max-Pool
2× 2 2× 2

Table 5: The first 7 convolutional layers of the VGG16 network used to calculate descriptors.

5.7.6 Feature Cardinality

As discussed in Section 5, to make a fair comparison, the number of features should be the same for ev-
ery detector. For the repeatability and matching experiments, every detector detected as many features as
possible. The sets of features, with cardinality K, were then sorted according to the response value. Each
experiment was then performed 3 times, by using only the {Kn|n ∈ {300, 600, 1000}} features with the
highest response. This resulted in 3 different values for each experiment. Since the desired number of fea-
tures depends on the specific application, any value for n may be preferable. Therefore, the values reported
in the next section are the mean of the 3 different values. However, if a detector did not detect enough fea-
tures for a certain image (K < Kn), the results for that image are omitted. For the manual transformations,
the results are completely omitted if there were fewer than 100 images that resulted in enough features. For
the non-redundancy and coverage experiments, only the cases with Kn = 300 were used, since the number
of keypoints influence the results.
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6 Results
The results of the experiments described in the previous section will be presented here. First, the results of
the repeatability and matching experiments are considered together, as these measures are correlated. Next,
we look at the results from the non-redundancy and coverage experiments. Then, the matching results of the
SIFT and Quad detectors together with the VGG16 descriptor are compared to those with the original SIFT
descriptor. Finally, the results of the image retrieval experiments are presented.

6.1 Repeatability and Matching
The repeatability and matching experiments were performed on the methods listed in Table 6. The repeatabil-
ity scores of the Oxford data set are presented in Figure 12. The repeatability of the manual transformations
applied to the ILSVRC data set, together with those of the lighting changes from the ALOI data set, can be
found in Figure 13. Then, the recall and precision from the feature matching experiments can be found in
Figure 14 for Oxford and in Figure 15 for the manual transformations. Now, a brief discussion of the results
per method.

Method Detector Orientation Estimator Descriptor
SIFT [31] SIFT SIFT SIFT
SURF [3] SURF SURF SURF

CenSurE [2] CenSurE SURF SIFT
AGAST [27,32] AGAST BRISK BRISK

Quad [50] Quad SIFT SIFT
LIFT [66] LIFT LIFT LIFT

Table 6: The combinations of detector, orientation estimator and descriptor used in the repeatability and
matching experiments.

SIFT

It is immediately noticeable that SIFT does rather poorly compared to the other methods when it comes to
repeatability. In the Oxford data set, except in the bark set and with small changes in the graffiti set, SIFT has
a relatively low repeatability. It does reasonably well with manual rotations and scaling, but worse than all
other methods for the other transformations. However, when looking at the precision and recall, SIFT seems
to do better, especially when it comes to scale and rotation changes. There does seem to be a sensitivity to
blurring and noise, which may stem from the fact that SIFT uses blurring in the DoG to approximate the
image gradients. Large amounts of blur in the image seem to interfere with the detection and matching.

SURF

On the other hand, SURF seems to dominate the repeatability for most data sets, except when it comes
to scaling. SURF appears to be especially robust to blurring and noise, exactly where SIFT struggles to
perform. The box filters may be responsible for this, as a bit of blurring or noise should not affect its output
values. Unfortunately, this high repeatability does not necessarily translate to a good matching performance.
SURF’s matching scores are mediocre for scaling and rotation, although it does have a much higher recall
for blur, noise and compound transformations than the other conventional methods.

CenSurE

While CenSurE is based on SIFT and SURF, the experiments reveal that it often does not work as well
as either method. In some cases it does outperform one, but usually not both. In both repeatability and
matching scores, it’s mostly either at or near the bottom. However, this might be due to the combination
of the detector, the orientation assignment and the descriptor that was used, since CenSurE only defines a
detector without orientation assignment.
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Figure 12: The repeatability scores of the oxford data set.
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Figure 13: The repeatability scores of the manual transformations and the lighting changes.

AGAST

The results show that AGAST has a high repeatability when the relative values between neighbouring pixels
stay the same, such as rotation and scaling. However, when the image structures are disrupted at a pixel-level,
for example by noise or blur, the repeatability suffers. This could very well be because keypoints are found
by comparing the values of pixels to those of their neighbours. Looking at the matching scores, AGAST
does not do very well. However, for a method that does not work with gradients and by doing so gains a
lot in terms of computational performance, this may not be very surprising. In some cases, such as the boat
scene of the Oxford data set or the manual scale changes, AGAST outperforms some of the more complex
methods.
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Figure 14: The matching scores of the Oxford data set.
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Figure 14: The matching scores of the Oxford data set.
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Figure 15: The matching scores of the manual transformations and the lighting changes.
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Figure 15: The matching scores of the manual transformations and the lighting changes.

Quad

The non-linear quad detector with 2 layers gives reasonably high repeatability scores. In a few cases, such
as in Oxford’s leuven set and in the manual rotation changes, the repeatability is not as high as the other
methods, but in general it’s either in the middle or at the top. What is really interesting is the results of
the matching experiments. Here, we can see that the quad network outperforms the other methods in a lot
of the cases, sometimes together with SIFT or SURF, but more consistently over all of the experiments. It
also performs very well in the compound transformations and the lighting changes. The question is whether
these results will translate in a practical application.

LIFT

The version of LIFT used in these experiments is the one without the rotation network, but with SIFT’s
rotation assignment. This may be why the performance is not very high with rotations, as can be seen in
both the Oxford sets that contain rotations and the manual rotations. In both these cases LIFT yields low
repeatability and matching results. Because the networks were trained without any rotational variations,
some loss of performance may be expected. However, since SIFT orientations are assigned to keypoints,
the drop in performance should not be very dramatic. The extreme loss of performance that can be seen for
manual rotations in Figures 13 and 15 may result from the fact that all networks are trained together. What
should be LIFT’s strength is in this case its weakness. The networks are trained to work well together and
replacing the orientation network may have resulted in the drop in performance that can be seen. For all
other transformations, except lighting changes, LIFT performs reasonably well.
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6.2 Non-Redundancy and Coverage

(a) (b)

Figure 16: (a) Non-redundancy. (b) Coverage.

The combinations of detector, orientation estimator and descriptor in these experiments are the same as
in the repeatability and matching experiments, shown in Table 6. Non-redundancy is a measure of how much
(or how little) the keypoints overlap each other. A score of 100% means that the keypoints don’t overlap at
all and this means every keypoint adds new information. If a keypoint highly overlaps another, then its
descriptors will not add any new information, as it encodes the same region. Therefore, it is desirable that
a set of keypoints overlap as little as possible, such that the information contained in them is maximised.
Coverage, on the other hand, shows how close the keypoints are to each other. A good detector will produce
keypoints that are evenly spread out over the image.

The results of the non-redundancy experiments are shown in Figure 16a. In both instances LIFT has the
highest score. After LIFT, AGAST performs best when it comes to non-redundancy and SURF and the quad
detector have the lowest scores. AGAST has the smallest descriptors and SURF the largest descriptors, which
heavily influences how much the descriptors overlap. Figure 17 shows an example of keypoints detected by

(a) (b) (c)

(d) (e) (f)

Figure 17: Keypoints detected by (a) SIFT, (b) SURF, (c) CenSurE, (d) AGAST, (e) Quad and (f) LIFT.
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Figure 18: The matching scores, comparing the SIFT and VGG16 descriptors.
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Figure 18: The matching scores, comparing the SIFT and VGG16 descriptors.

each detector. SURF and the quad detector find large keypoints, whereas the keypoints found by LIFT are
very small, which would also explain the non-redundancy scores. The non-redundancy seems very sensitive
to the keypoint and descriptor size. One could easily increase the non-redundancy by decreasing the size of
the keypoints.

The coverage results can be seen in Figure 16b. For these experiments, SIFT performs best, second to
LIFT, and AGAST the worst. A possible explanation is that AGAST tends to focus the strongest keypoints
in the areas of the image that have the highest contrast, because it ranks points on a cornerness measure.
This is also supported by the fact that additional experiments showed that AGAST has a significantly higher
coverage when all keypoints are used, as opposed to only the 300 keypoints with the highest response. Other
than LIFT and AGAST, the differences between the methods are relatively small and not very significant.

6.3 VGG16
For these experiments, descriptors of the SIFT and Quad detectors were replaced with the VGG16 descrip-
tors, as shown in Table 7. In the case of SIFT, when it comes to rotation the VGG16 descriptors reduce the
performance, as both recall and precision go down by about 1%. Given the fact that the VGG16 network
is not trained with rotated images, but all images have an upward orientation, this is not very unexpected.
In the case of scaling, the VGG16 network improves the recall and precision by about 3–5%, which is a
significant improvement. For all other cases, the VGG16 descriptor improves the recall (in some cases by as
much as 20%), while the precision goes down significantly. What this means is that there are fewer matches
found in total, but a larger portion of those that are found are actually correct.

In the case of the quad network, the VGG16 descriptors do not have as much of a positive effect as with
SIFT. In all cases, the precision drops drastically, which means fewer good matches are found, since the
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Method Detector Orientation Estimator Descriptor
SIFT [31] SIFT SIFT SIFT

SIFT + VGG16 [31,55] SIFT SIFT VGG16
Quad [50] Quad SIFT SIFT

Quad + VGG16 [50,55] Quad SIFT VGG16

Table 7: The combinations of detector, orientation estimator and descriptor used in the VGG16 matching
experiments.

number of correspondences is the same. For rotation, the recall drops by about 2%, which is not a very
big difference and again is not very surprising for a network that is not trained with rotated images. For
scaling and blurring, the recall may increase or decrease and the difference is not significant. With noise,
VGG16 finds fewer correct matches. However, in the case of compound transformations, the VGG16 network
performs slightly better by 2–3%. All in all, considering that using a neural network is computationally more
expensive, pairing the VGG16 descriptor together with the quad detector may not be justified. However, the
method used here to calculate descriptors is very simple and straight-forward. More complex methods could
be used [39, 58], which might improve the results. Using the output of an earlier layer might improve the
results as well. Perhaps the 7th layer is too deep and the structures are too high-level. Another possibility for
improvement is training the networks together, similar to how the separate networks of LIFT were trained
together.

6.4 Image Retrieval

Method Detector Orientation Estimator Descriptor
SIFT [31] SIFT SIFT SIFT

SIFT + VGG16 [31,55] SIFT SIFT VGG16
SURF [3] SURF SURF SURF

CenSurE [2] CenSurE SURF SIFT
AGAST [27,32] AGAST BRISK BRISK

Quad [50] Quad SIFT SIFT
Quad + VGG16 [50,55] Quad SIFT VGG16

LIFT [66] LIFT LIFT LIFT

Table 8: The combinations of detector, orientation estimator and descriptor used in the retrieval experiments.

The image retrieval experiments were performed on the methods in Table 8. The results in Figure 19
show how the methods perform in a practical application. The aim of a retrieval system is to retrieve the
correct image, and if the correct image is not ranked first, it should be ranked as low as possible. Figure
19a shows the percentage of images that were retrieved correctly and had a rank of 0. Figure 19b shows the
average rank of all the 2 500 instances.

The method that has the highest performance when it comes to image retrieval is SURF, as it has the
most correct matches and the lowest average rank. However, the difference with Quad is very small and
negligible. Both methods predicted 60% of the query images correctly. Compared to SIFT, which matched
about 43% correctly, the quad detector did a much better job. This may partially result from the fact that
the transformations contain blurring and noise, which SIFT is sensitive to. It is an interesting comparison,
though, as the SIFT and Quad pipelines are very similar and only the feature detection is replaced. CenSurE
also worked relatively well, with 48% of the predictions correct.

The lowest scores are produced by AGAST, which has the highest average rank, and LIFT, which has
the lowest number of correct matches. For AGAST, this may not be very surprising, as it was already clear
from the previous experiments that there is a high sensitivity to blurring and noise. LIFT, on the other hand,
did have promising results for repeatability and matching experiments without rotations. Since this version
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(a)

(b)

Figure 19: The results of the image retrieval experiments. (a) The percentage of cases in which the image
retrieved by the system was correct, out of a total of 2 500 instances. (b) The average rank of the retrieval,
including the ones that are correct and have a rank of 0.

of the LIFT algorithm did include an orientation estimator network that was trained with rotations, a much
better result could have been expected.

Whereas the VGG16 descriptors improved the matching performance of SIFT, they drastically decrease
performance when it comes to image retrieval. For the quad detector this may have been expected, as the
matching performance was also decreased by the VGG16 descriptors. But for SIFT, it seems that the SIFT
descriptor already works very well.

Comparing the results of the matching experiments with compound transformations in Figure 15 with
the results of the image retrieval, it can be seen that the performance of the methods is relatively similar.
Quad and SURF have the highest performance, then CenSurE, followed by SIFT and finally AGAST. The
only big difference is that in the matching experiments, LIFT has a performance similar to that of CenSurE,
and this does not at all translate to the case of image retrieval.
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7 Discussion
SIFT and SURF perform very well in both the defined metrics and the practical setup. SIFT is particularly
strong in rotation and scaling, while it is sensitive to blurring and noise. This may be explained by the fact
that it uses Gaussians in different steps of the algorithm. On the other hand, SURF is very robust when
it comes to blurring and noise. It is, however, not as good as SIFT in dealing with rotations and scaling.
In the image retrieval, SURF had the highest number of correct matches and the lowest average rank and
outperformed SIFT significantly. However, in a practical application, images in the data set may not contain
as much blurring or noise as was used in these experiments, which would have a big impact on how each
detector performs.

AGAST works relatively well when in case of rotation and scaling, but performance drops quickly when
transformations like blurring and noise are applied. This likely results from the fact that the AST finds
keypoints by direct pixel comparisons and even small disruptions at the pixel level can disturb the process.
Perhaps it not so surprising that it does not achieve a high score in image retrieval, as AGAST was mainly
designed for tracking. What is remarkable, though, is that AGAST is not faster than SIFT or SURF, as shown
in Table 4. Since AGAST does not add any extra computation and it is stated in [32] that it improves the
computation time of FAST, it is possible that the OpenCV implementation of AGAST is not as efficient as
it could be.

The Quad network replaces the interest point detection of SIFT, while the rest of the detection and de-
scription pipeline is the same, where possible. In almost all experiments, the Quad network outperforms
SIFT, except perhaps when it comes to rotations. Comparing the Quad network to SURF, the latter gener-
ally has a higher repeatability score, while the former does better in matching. In the retrieval experiments,
the performance of both is very similar, although SURF does slightly better. Since neural networks are com-
putationally more expensive, SURF is much faster.

Defining a neural network for calculating an orientation or a descriptor is relatively straightforward, as it
converts a single image patch to a single multidimensional output. On the other hand, detecting keypoints
is a more complex problem, because it is not clear what the number of outputs should be. All of the feature
detectors discussed in Section 4 use a different method to find keypoints. However, at one point or another,
in each method the input image is converted into a score map, on which non-maximum suppression is then
performed to find the most stable keypoints. Most methods calculate the score map directly. The covariant
detector does it indirectly, by first determining the location of the best keypoint per patch, and then accu-
mulating votes. It seems necessary to use a score map, at least with CNNs, in order to produce an arbitrary
amount of keypoints, given an image of any size.

The results of the neural networks are not as good as might be expected. The same results can be
achieved by traditional method that are much faster. However, these results show that neural networks do
have a potential to achieve very high performance, as they can be trained to work for specific transformations
and data sets. Therefore they may be tuned exactly to the data they need to perform on. The downside of
neural networks is that they are difficult to train and can have many parameters that need to be precisely tuned
in order to achieve good results.The advantage of neural networks is that they can be trained specifically for
a data set, containing any set of transformations. TILDE, for example, was trained to be robust to weather
and lighting changes. Manually defining a detector that performs well with these transformations may be
challenging, while a neural network mainly requires training on the right data.
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