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Abstract

The Dutch high school TimeTabling problem (HSTT) consists of scheduling courses in
a discrete timeframe such that no conflicts exist for students, teachers, and classrooms. A
Minimal Conflicting Teacher (MCT) is a set of teachers for which no conflict-free solution
exists, wherein each subset allows for such a solution. Finding MCT sets is non-trivial
for this problem, and is currently done by hand through experience. We translate school
schedule constraints to a Boolean formula in conjunctive normal form, and check these
scheduling problems for satifiability using a SAT Solver. This conversion deliberately re-
moves schedule constraints below a certain threshold, retaining only schedule constraints
that are hard demands, and leaving out all other schedule constraints. An algorithm selects
sets of teachers for which satifiability must be checked, rapidly exploring the vast number
of possible combinations of teachers to find Minimal Conflicting Teacher sets.

Keywords: High School Timetabling, temporal scheduling, scheduling problem, high
schools, Constraint Satisfaction Problem, Boolean Satifiability, Conversion, SAT Solver,
schedule constraints



Chapter 1

Introduction

Government-led reforms and a shortage of teaching staff cause a significantly increased
complexity in the construction of schedules for Dutch high schools compared to schedules
of other European schools. A recent push by the Dutch government for increased indi-
vidualization of learning trajectories, aimed at increasing overall performance of Dutch
students, has led to new challenges in the construction of schedules for high schools. One
of the main competitors in the market for Dutch timetabling software currently delivers
automata for constructing and optimizing these schedules.

The main subject of this thesis is an attempt to schedule a high school timetable, a
problem known to be NP-complete [1, 2], by modelling the scheduling problem to DI-
MACS CNF format and using open-source SAT Solvers to solve the problem, and if the
problem is unsatifiable, attempting to find a reduced set of actors with constraints by
which the scheduling problem remains unsolvable. Finding these minimal conflicting sets
of constraints is non-trivial. Once such a set is found, the scheduler can make the schedule
solvable by either reassigning teachers or students to other courses, or by changing the
schedule demands of teachers after approval of school management and the teacher.

In order to test the solvability of different sizes of the Dutch high school scheduling
problem, a timetable generator has also been implemented that allows the user to generate
timetables of a user supplied size.

In Chapters 1 to 3 of this thesis, we provide an introduction into the problem, including
a historic overview. Chapter 4 provides related work that could be found on this subject.
Constraints found in HSTT are defined in Chapter 5. In Chapter 6, we show how a timetable
can be modelled in DIMACS CNF. We list contemporary SAT Solvers in Chapter 7. In
Chapter 8, show a procedure to generate artificial timetables. We explore searching for
Minimal Conflicting Teacher sets through various strategies in Chapter 9. We show in
Chapter 10 the results of computational experiments that have been run. Our conclusions
and further areas of research are contained in Chapter 11.

This report is written as a final product of a Master’s thesis at the Leiden Institute of
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Advanced Computer Sciences at Leiden University, supervised by dr. W.A. Kosters and
dr. J.M. de Graaf.
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Chapter 2

A brief history of the scheduling problem for

Dutch high schools

The Dutch secondary school was reformed in 1968 when the “Mammoetwet” bill passed.
Education in secondary school was reformed in order to educate all students with a broad,
general education, coupled with a more specialized education tailored to that student’s
abilities. The education of a student on secondary school was concluded with exams in a
set of subjects, some of which were mandatory (such as Dutch) while others were optional
(such as Physics).

Another reform was executed in 1998, in which the havo and vwo level educations were
changed significantly. The last two years of education were tailored even more closely to
the abilities and interests of a student, who was given the freedom to select one of four
“profiles”. Each profile consisted of a set of mandatory subjects and a set of optional
subjects. Some schools even allowed students to select one or more extra subjects, of which
participation could not be guaranteed by the school, but in which the student is examined.

At the same time, many teachers began working part-time. Often perceived as an
underpaid and undervalued profession, schools found it increasingly difficult to find teachers
willing to be appointed on a full-time base, and often had to resort to hiring multiple part-
time teachers instead.

These two factors combined to form a challenging scheduling problem. The largely free
choice of subjects by students caused a sharply increased number of non-disjoint classes,
which in turn sharply reduced the number of possible schedules. Because of the large
amount of quality demands placed on the schedule, this led to difficulties in finding a
schedule which was acceptable for all participants. The reduced availability of teachers
further limited the number of possible solutions, and due to sharp scheduling restraints
imposed from collective bargaining, further decreased the number of acceptable schedules
for all participants.

After several evaluations, the reform of 1998 was revised in 2007. The number of courses
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that were offered by schools was reduced, and a number of courses (colloquially known
as “stapelvakken’) were simplified in structure. This led to slight decrease in scheduling
complexity.

Schools are encouraged by the government to excel. Many of the larger schools offer
special tracks for gifted students, focussing on specific areas such as technology, sport, or
healthcare. Other schools offer a bilingual education (TTO), to prepare students for the
more and more international society. Unfortunately, this does have significant repercussions
for the complexity of the schedule, often leading to situations that seem like a “school-
within-a-school”.

In recent years, the VO-raad has pushed the “Leerling 2020” plan, which aims at further
individualizing the student learning trajectory. It proposes making participation in even
more subjects optional, and giving students more freedom in choosing what courses they
wish to attend at any given moment. To accomodate for this increase in freedom of choice,
schedules will need to accomodate optional attendance of courses by students. It is expected
that many schools will have difficulties in realizing a schedule with contemporary school
scheduling software.
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Chapter 3

Problem description

We start with an input S. S is a set of courses, each of which must be scheduled on a
timeslot t, consisting of a segment m, a workday d and a period t. Each course can have
a number of teachers and a number of students assigned to it. The main problem in high
school timetabling (HSTT) is assigning each course a timeslot in such a way that the
resulting schedule of each teacher and student is collision free. Input S can have a set
of constraints C imposed on it. These schedule constraints further limit the number of
possible solutions.

We can convert the constraints to a CSP description in a file encoded in the DIMACS
CNF format and feed it to an open source SAT Solver. The SAT Solver will attempt to
determine if there is a solution possible, and will output the first found solution, if any
is found. If a solution is found, this solution is then read back in, and the fitness of the
schedule is measured. We use this methodology to check for satifiability of a schedule within
a set of fixed constraints.

If S has been unsuccessfully scheduled with all constraints, we can remove a number
of constraints and export S again. Can we repeat this process in the hopes of finding a
minimal subset of constraints that cannot be satisfied as a whole in polynomial time?

3.1 Example problem

Problem Se is a set with twelve courses that must be scheduled within three days (d1, d2, d3),
each containing four periods (h1, h2, h3, h4). Each course is attended by the same student
(there is only one), and each subject has a specific teacher. Some subjects have constraints
that require the courses to be scheduled in different days, see Table 3.1 for the requirements.

There are five additional constraints imposed on Se.

• Subject ne must be scheduled in h1

• Subject fa must not be scheduled in h4

5



Subject Teacher nr. courses nr. days

ne A 3 3

fa B 2 1

en C 2 2

du D 2 1

te E 1 1

ak F 2 2

Figure 3.1: Example problem

• Teacher C must not be scheduled in d1

• Subject te must not be scheduled in d2

• Subject ak must not be scheduled in h3, h4
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Chapter 4

Related work

The school timetabling problem is approached from a number of different directions in
recent years. The timetabling problem is a well researched problem, with many known
solution approaches. One such approach used on South African school timetables in [3],
uses a two-phased Genetic Algorithm approach.

Another approach is using a Late Acceptance Hill Climber, such as in [4]. A Late
Acceptance Hill Climbers accepts a candidate solution if it is not worse than a solution
that was “current’ several steps before, instead of the last found “current’ solution, allowing
it to escape local optima. The distance of the “current” solution is flexible, and can be
lengthened or shortened at runtime. This allows the algorithm to be more flexible at the
start of its process and more robust at the end.

Demirović and Musliu have used a combination of MaxSAT and local search to solve
instances of the high school time tabling problem in [5]. Constraints are partitioned into two
types, hard and soft, where soft constraints are weighted. The goal is to find an assignment
which satisfies all hard constraints and minimizes the sum of the weights of the unsatisfied
soft constraints.

Simulated Annealing is also used as an algorithm to solve High School Timetabling
(HSTT) problems in [6]. The approach here is to assign neighborhoods to every type of
movement in the search space, and to measure the fitness of each solution by multiplying
the number of movements in each of the neighborhoods while imposing a maximum fitness.
The algorithm allows for changes to the neighborhood structures within a search. Using
this approach allows an algorithm to search for solutions of only certain differences, without
losing the ability to leave locally optimum solutions.

Tabu Search [7], a Global Optimization algorithm, seeks to prevent a heuristic from
finding solutions that have few differences with the current optimum. It is often used with
hill climbing heuristics, and compares features of the current locally optimal solution with
new-found solutions. Only if the two solutions have few or no corresponding features is
the solution accepted as a new optimum. This allows an automaton to step over trivial
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solutions that might keep it locked on a local optimum.
No known works could be found by the author regarding the specific problem of finding

minimal conflicting sets of constraints in HSTT.
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Chapter 5

Constraints found in Dutch HSTT

A schedule for Dutch high schools typically contains many constraints. These constraints
are imposed on the schedule by teachers, students, the board of directors, deans, and the
limited availability of resources such as classrooms, audio-visual equipment, or computers.
Constraints can be hard constraints or soft constraints. Hard constraints are constraints
that must be met. An example of this could be the availability of a teacher, or the constraint
that no first-year student is allowed to have empty timeslots between his or her first and
last courses of a day (called gap hours). Soft constraints are not mandatory, but are highly
desirable. An example could be the reduction of the number of gap hours in the schedule
of a teacher. A field of conflict in most schools is the degree of separation between hard
and soft constraints. Some hard constraints are not perceived as hard constraints by all
parties, and some theoretically soft constraints are actually hard constraints in practice.
The goal is finding a schedule that satisfies all hard constraints, and most soft constraints.
This is the High School Timetabling Problem (HSTT).

The inability to create schedules for Dutch High Schools by hand that satisfy all con-
straints has led one of the main competitors on the market for Dutch timetabling software
to model constraints in terms of penalty points. If the criteria of a constraint are not met,
penalty points are awarded to the schedule. The total number of penalty points of a sched-
ule, its penalty value, is its “fitness”. If the penalty value is decreased, the solution is more
fit. The automata try to minimize the penalty value for the schedule, thus maximizing fit-
ness. Hard constraints are typically valued at one million penalty points. Soft constraints
are valued at arbitrary values, but it is generally advised to keep the value between one
hundred and ten thousand penalty points.

Even though hard constraints are imposed on a schedule, this does not mean the au-
tomata are forced to only accept solutions in which all hard constraints are met. A con-
structing automaton will accept any solution which does not contain conflicts. Once a
solution is found containing all courses, its fitness is stored. If the automaton then finds
another solution with higher fitness, it is considered to be an improvement. A solution that
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does not satisfy all hard constraints might be optimized to a solution that does satisfy
all hard constraints, either through a different assignment of timeslots to courses, or by
changing student-to-course or teacher-to-course assignments, if such an assignment exists.

It is not always possible to satisfy all hard constraints in a schedule, and it is generally
not possible to satisfy all constraints. Some constraints can be contradictory. Consider the
following constraints:

1. Teacher T wants to be scheduled exclusively on Tuesdays.

2. The subject Mathematics is to be scheduled on any timeslot except those of Tuesday
afternoon.

3. Classroom R is exclusively available on mornings.

If teacher T is assigned a course in Mathematics in classroom R, it will not be possible
to schedule this course without breaking at least one of these constraints. Soft constraints
are even less likely to be completely satisfied, because these constraints are often used to
spread out courses of a specific subject-group combination over the available timeslots in
the week. The mis-placement of a single course could lead to a slight decrease of fitness.

5.1 Schedule constraints

Schedule constraints are imposed upon the set of all possible timeslots in the schedule of
a student or teacher. Each schedule constraint contains a tuple (R, T ), where R is set of
courses, and T is a set of timeslots. Schedule constraints penalize the placement of courses
in R on timeslots in T . An example of this could be all courses of student s1, and all
timeslots of Monday.

Schedule constraints use predicate functions that return a value which can be used in
a fitness function. An example of such a predicate function is counting the total number
of available timeslots between the first and the last unavailable timeslot in T . The fitness
function can then award penalty points to the schedule if it either exceeds a user-supplied
value, or does not exceed it.

An example would be a constraint imposed on a teacher’s schedule, specifying that no
more than three available timeslots are acceptable on Fridays, with a penalty value of one
thousand points for each available period after the third. If the schedule contains seven
available timeslots on Friday, the constraint would add four thousand penalty points to the
complete schedule.

5.2 Course constraints

There are many constraints which can be imposed on sets of courses. The model used by
Dutch timetabling software currently imposes the following constraints on sets of courses:
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• Educational constraints

• Concurrent course constraints

• Block constraints

• Student-to-class assignment constraints

• Timeslot-availability

Educational constraints

Educational constraints are imposed on a schedule to improve the rate in which students
pick up on the subject. These constraints can be used to penalize the placement of specific
courses in a schedule. The user can specify the penalty points awarded for:

• not scheduling the set of courses on the desired number of days,

• each number of free periods between two courses scheduled in the same day (gap
hours),

• each number of breaks between two courses scheduled in the same day,

• an asymmetrical scheduling of the courses over all time slots,

• an asymmetrical scheduling of the courses over all days,

• scheduling a course on a specific timeslot,

• not scheduling a course on a specific timeslot,

• scheduling the set of courses in a specific block,

Each of these constraints is imposed on sets of courses with varying levels of common-
ness. The most global level is the total set of courses in the schedule. If a scheduler specifies
a constraint on the desired number of days at this level, all courses will be scheduled in
that number of days. This level is often used to supply default educational constraints. It
is however possible to specify constraints for smaller sets of courses, such as all courses of
a specific subject, or all courses for a specific department. If a constraint is imposed on a
smaller, more specific set of courses, it overrides the constraints at any more global level
for those courses.

A gap hour is a timeslot in the schedule of a student or teacher that is assigned a course
while a preceeding and a succeeding timeslot are not assigned a course. If there are multiple
adjacent gap hours, these are collectively referred to as a gap in that schedule. Gaps are
generally unwanted, and most schools seek to minimize the number of gap hours in their
schedules.
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Block constraints

Block constraints are imposed on sets of courses that must be scheduled on the same day,
on adjacent timeslots. This type of constraint is often applied to courses such as Physical
Exercise, for which it is impractical to schedule two or more separate courses, or courses
for practical, technical courses, such as Metalworking or Farming. Block constraints can
be imposed on a set of any size, though smaller sets of two or three courses are the most
common.

Student-to-class assignment constraints

Student-to-class assignment constraints are used when allowing changes to classes while
scheduling. Sometimes, an improvement to a schedule is blocked because there is a small
subset of students that cannot be scheduled at a course’s preferred timeslot. If the class
assignment of students can be changed at runtime, the algorithm might be able to swap one
student-to-class assignment for another, allowing the course to be scheduled at its preferred
timeslot. Changing student-to-class assignments is mostly allowed before the schedule is
published to everyone involved. Changing student-to-class assignments after publication is
often not allowed, or with a minimal number of changes. These changes can optionally be
penalized with constraints.

Timeslot-overflow

Timeslot-overflow constraints impose a maximum and minimum number of courses that
are allowed to be scheduled in a specific timeslot. If a given school building only contains
seventeen classrooms, then scheduling eighteen courses on any single timeslot will make it
impossible for one of the courses to be scheduled into a classroom. It is also possible to
count the number of requested classrooms for a course, or even a user-supplied value that
is dictated per course. As such, it is possible to create a schedule that makes optimal use
of classrooms containing smart boards, or one that minimizes the peak demand of courses
requiring the use of a computers.

It is also possible to dictate that there has to be at least one timeslot that contains
a certain number of courses. This can be very useful if all courses in a specific subject
and for a specific set of students are to be given at the same time. This is often used to
force all courses for the subject Mentoring onto the same timeslot for students in a specific
department.

5.3 Change constraints

When a schedule has been created and is running, it is possible that changes need to be
made to accomodate for errors or unexpected long unavailability of teachers (e.g., disease
or contract termination). Because some changes to the schedule can be quite difficult, and
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the use of contemporary automatic scheduling software is preferred, it might be preferable
to schedule the changes automatically.

Unfortunately, changes to a running schedule are regarded as highy unfavorable, and
large unplanned changes to a schedule are often met with unrest and dislike. Changing
the schedule with an automaton must therefore also be constrained by the number of
changes required to find a better solution. This can be accomplished by noting down the
original timeslots of each course, and counting the number of courses that have been moved.
Thresholds and penalty points can be applied, forcing an automaton to keep the number
of changes in check.

These constraints are solely used in schedules that are already running. As such, they
will not be further treated here.

13



Chapter 6

Modelling a timetable in DIMACS CNF

Open source SAT Solvers use the DIMACS CNF file format1 as input. DIMACS CNF files
contain Boolean functions in Conjunctive Normal Form denoted in a standardized way. An
example of a Boolean formula in conjunctive normal form is:

(x1 ∨ x4 ∨ ¬x5) ∧ (¬x1 ∨ x3 ∨ x4 ∨ x5) ∧ (¬x3 ∨ ¬x4)

Figure 6.1 shows how this formula can be denoted in simplified DIMACS CNF format.

1 c Sample Boolean formula .
2 1 4 −5 0
3 −1 3 4 5 0
4 −3 −4 0

Figure 6.1: Example DIMACS CNF file.

The first line in the file always denotes the problem as a Boolean formula in Conjunc-
tive Normal Form. This file lists it as consisting of five literals and three clauses. Every
subsequent line not starting with the letter c (which denotes comments and is ignored) then
lists a new clause. Every clause is made up of a row of either positive or negative numbers.
A number represents a literal in the Boolean formula. If a literal is negated in the Boolean
formula, then the number representing it in the file is also negated. The literal x3 in the
Boolean formula above is for instance represented by the number 3 in the second clause,
and the number −3 in the third clause of the example DIMACS CNF file. The number 0
denotes the end of each clause.

1see: http://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.tex
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6.1 Modelling a course in DIMACS CNF

To model a timetable to a simplified DIMACS CNF file, we must convert a set of courses
(each a tuple containing sets of students and teachers) and constraints to a set of literals and
clauses. The literals and clauses added to the model for each course in order to assign those
courses exactly one timeslot and preventing conflicting courses from being scheduled at the
same timeslot are all mandatory. No solution can be considered a valiable schedule without
satisfying at least these constraints. Additional constraints must be added to further limit
the number of possible solutions such that the hard demands that a scheduler or the school
poses to the schedule are also met. A school can therefore be modelled as a set of literals
Lm, a set of constraints Cm, and a second set of literals La and constraints Ca, where Lm

is the set of all literals representing the scheduling of a course on a timeslot, Cm is the
minimal set of clauses required to schedule each course on exactly one timeslot without
conflicts, and La and Ca are the sets of literals and clauses used to model other types of
constraints, such as absence on certain dates. The schedule cannot be modelled without
each of the literals and clauses in Lm and Cm, but can be scheduled with a subset of the
literals and clauses in La and Ca (though it might then not satisfy all constraints).

La + Ca

Lm + Cm

Figure 6.2: Lm and Cm are the minimal set of clauses and literals required for modelling
a conflict-free schedule. La and Ca are additional literals and constraints on top of that
minimum.

When modelling a timetable to a simplified DIMACS CNF format, each course can be
represented by a set of literals L for each timeslot that course can be scheduled on. If a
timetable has eight periods, five days, and one segment, then the scheduling of a course on
a timeslot is represented by 40 consecutive literals L = {x1, x2, x3, . . . , x39, x40} for each
course. To schedule a course into a timeslot, one of the literals in this set can be made true,
while all the other literals for this course are made false. This can be achieved by adding
a number of clauses to the file as shown in Figure 6.3.

The clause in Figure 6.3 can only be satisfied when at least one of all the literals repre-
senting the scheduling of course c1 on a timeslot is made true. A course must however be
scheduled in exactly one timeslot. The clause above is satisfied when it contains at least
one positive literal among all the literals, but does not constrain solutions from contain-
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1 c Course c1 must be scheduled in at l e a s t one o f the se t ime s l o t s
2 c 1 r ep r e s en t s the f i r s t t imes l o t , 2 the second , e t c .
3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 0

Figure 6.3: Course c1 is assigned a number of literals.

ing multiple true literals. In order to prevent course c1 from being scheduled in multiple
timeslots, we must add additional clauses that can only be satisfied if exactly one of the
literals representing the possible timeslots for course c1 is true. These clauses can be seen
in Figure 6.4.

1 c Each combination o f two l i t e r a l s r ep r e s en t i n g p o s s i b l e
t ime s l o t s f o r course c1 must at most conta in one p o s i t i v e
l i t e r a l .

2 −1 −2 0
3 −1 −3 0
4 −1 −4 0

. . .
39 −1 −40 0
40 −2 −3 0
41 −2 −4 0

. . .
778 −38 −39 0
779 −38 −40 0
780 −39 −40 0

Figure 6.4: These clauses cannot be satisfied if multiple literals representing the scheduling
of course c1 on a timeslot are true.

Each unique pair of literals representing possible timeslots for course c1 is assigned a
clause that prevents a solution if both literals are positive. Combined with the first clause
in Figure 6.3, this forces c1 to be scheduled at exacly one timeslot. Thus, the number of
clauses required per course to only allow solutions where that course is scheduled in exactly
one timeslot is n ∗ (n− 1)/2+1, where n is the number of unique timeslots that course can
be scheduled in.
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6.2 Preventing conflicting courses from being scheduled at the same

timeslot

Courses conflict if a student or teacher attends both courses at the same timeslot. To
prevent two conflicting courses from being scheduled at the same timeslot, we must disallow
solutions containing positive values for the corresponding literals for both courses. Figure
6.5 shows how scheduling course c1 on any of the possible timeslots can be represented by
literals 1 to 40. Scheduling course c2 is represented by literals 41 to 80. The previous clauses
disallow solutions where two literals representing the same timeslot for both courses c1 and
c2 are both true. The number of clauses required per pair of overlapping courses is equal
to the total number of timeslots.

1 c Because cour s e s c1 and c2 c o n f l i c t , we wish to add c l au s e s that
can not be s a t i s f i e d i f both cour s e s are scheduled at the

same schedu le t ime s l o t .
2 −1 −41 0
3 −2 −42 0
4 −3 −43 0

. . .
39 −38 −78 0
40 −39 −79 0
41 −40 −80 0

Figure 6.5: Courses c1 and c2 must not be scheduled at the same timeslot, label=Clauses
preventing two courses from having corresponding positive literals.

6.3 Preventing gaps

Teachers and students also impose a number of additional constraints on the assignment
of timeslots of their courses. Gaps for instance are disallowed in certain departments, and
certain timeslots are disallowed because either the teacher or student is unavailable, or
because the school does not want courses to be scheduled at that time (e.g., meetings).
Because these are constraints imposed upon a combination of courses, we cannot use the
literals representing the possible schedule timeslots of individual courses to impose these
constraints. We must therefore assign each teacher and each student with a representation
of consecutive literals much like the courses. To disallow gaps, we must add clauses for each
individual gap configuration. The number of clauses added is equal to

∑
i<h−2

i=1
h− 1− i×d

where h is the number of periods and d is the number of days.
In Figure 6.6, we represent the schedule of teacher T with a set of consecutive literals
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valued 161 to 200. The schedule of teacher T is represented by 40 literals, each representing a
unique timeslot. Because gaps only exist on a single day, and are never counted over multiple
days, we construct clauses that represent timeslots for each possible gap configuration
for each day, and which cannot be satified if a gap exists conforming to that clause’s
configuration.

1 c Disa l low gaps in the schedu le o f t eacher T.
2 −161 162 −163 0
3 −161 162 163 −164 0
4 −161 162 163 164 −165 0
5 −161 162 163 164 165 −166 0
6 −161 162 163 164 165 166 −167 0
7 −161 162 163 164 165 166 167 −168 0
8 −162 163 −164 0
9 −162 163 164 −165 0

10 −162 163 164 165 −166 0
. . .

178 −197 198 −199 0
179 −197 198 199 −200 0
180 −198 199 −200 0

Figure 6.6: Prevent gaps in schedule of teacher T .

We must however also link all the literals corresponding to the timeslots of all courses
teacher T attends to the literals that correspond to the timeslots of T ’s schedule. We do this
by appending further constraints. If teacher T attends courses c1, c2, c3 and c4, and those
courses are represented by literals 1 to 40, 41 to 80, 81 to 120, and 121 to 160 respectively,
then we can append the clauses shown in Figure 6.7.

Each clause pairs one of the literals corresponding to a possible timeslot assignment of
a course teacher T attends to a literal corresponding to the same timeslot in teacher T ’s
schedule. If the course’s literal is true, then the corresponding literal in the schedule of
teacher T must also be true.

This does however allow the solution to permit false positives, as a false value for the
literal of the course is enough to satisfy the clause, and the value for the literal of the
corresponding timeslot of teacher T can then be any value. Because these false positives
might allow solutions with gaps to be accepted, we must append further clauses to prevent
this from happening, such as in Figure 6.8

Each clause lists the literals corresponding to identical timeslots assignments of all the
courses teacher T attends, plus the literal corresponding to teacher T ’s schedule. If none of
the literals of the courses are true for that schedule timeslot, then the literal corresponding
to the schedule timeslot of teacher T must be made false, or the clause would not be
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1 c Link the l i t e r a l s o f a l l the cour s e s o f t eacher T to h i s or her
schedu le po s t i on s .

2 −1 161 0
3 −2 162 0
4 −3 163 0

. . .
40 −39 199 0
41 −40 200 0
42 −41 161 0

. . .
159 −158 198 0
160 −159 199 0
161 −160 200 0

Figure 6.7: Linking the timeslots of courses to the schedule of T .

1 1 41 81 121 −161 0
2 2 42 82 122 −162 0
3 3 43 83 123 −163 0
4 38 78 118 158 −198 0
5 39 79 119 159 −199 0
6 40 80 120 160 −200 0

Figure 6.8: Preventing false positives in the schedule of T .

satisfied.

6.4 Preventing up to n gaps in a schedule

Schools might not disallow gaps completely. Due to the high amount of optional subjects
and the resulting number of (non-disjoint) cluster groups, a schedule completely free of gaps
is most likely impossible. Schools therefore only disallow gaps for certain departments, while
allowing gaps in other departments up to a certain limit.

If gaps are completely disallowed,then clauses are used for each possible gap configura-
tion. To allow gaps up to a certain limit, we add a literal for each allowed gap configuration,
and use those literals to disallow certain combinations. Figure 6.9 demonstrates this for up
to one gap consisting of one gap hour.

If T has a schedule where three of the seven timeslots contain courses scheduled such as
in Figure 6.10 and we were to allow up to three gap hours in the schedule of T , we would
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1 c f o r c e add i t i ona l l i t e r a l s to t rue f o r c e r t a i n gap
c on f i g u r a t i o n s

2 −161 162 −163 201 0
3 −161 162 163 −164 202 0
4 −161 162 163 164 −165 203 0
5 −161 162 163 164 165 −166 204 0
6 −161 162 163 164 165 166 −167 205 0
7 −161 162 163 164 165 166 167 −168 206 0
8 −162 163 −164 207 0

. . .
103 −197 198 −199 378 0
104 −197 198 199 −200 379 0
105 −198 199 −200 380 0
106 c d i s a l l ow s o l u t i o n s conta in ing more than one gap .
107 −202 0
108 −203 0
109 −204 0
110 −205 0
111 −206 0
112 −208 0

. . .
292 −379 0

Figure 6.9: Preventing more than two gaps in the schedule of T .

need a number of clauses such as those in Figure 6.11. Obviously, we can dispense with
disallowing combinations that are impossible, such as 11 and 20.

1 2 3 4 5 6 7

Figure 6.10: Example schedule for T . Black cells are timeslots that contain courses.

6.5 Modelling timeslot-overflow constraints

To prevent a set of courses from being scheduled in such a way that the total number of
courses on a certain timeslot never exceeds a fixed amount, we will need to impose further
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1 c f o r c e add i t i ona l l i t e r a l s to t rue i f a c e r t a i n gap
con f i gu r a t i on e x i s t s

2 −1 2 −3 11 0
3 −2 3 −4 12 0
4 −3 4 −5 13 0
5 −4 5 −6 14 0
6 −5 6 −7 15 0
7 −1 2 3 −4 16 0
8 −2 3 4 −5 17 0
9 −3 4 5 −6 18 0

10 −4 5 6 −7 19 0
11 −1 2 3 4 −5 20 0
12 −2 3 4 5 −6 21 0
13 −3 4 5 6 −7 22 0
14 −1 2 3 4 5 −6 23 0
15 −2 3 4 5 6 −7 24 0
16 −1 2 3 4 5 6 −7 25 0
17 c d i s a l l ow s o l u t i o n s conta in ing more than three gap hours .
18 −11 −22 0
19 −15 −20 0
20 −25 0
21 −24 0
22 −23 0

Figure 6.11: Preventing more than four gap hours in the schedule of T .

clauses upon the solution. If we were, for example, to prevent three or more courses on
period 1 of Monday from a set of five courses, we would need clauses such as in Figure
6.12. Unfortunately, these lists of clauses exponentially grow with the size of the subset
of courses and the number of allowed courses. Modelling overflow constraints is therefore
currently disabled.

6.6 Modelling specific schedule constraints

A schedule of a teacher, student, or even classroom can be constrained at specific timeslots.
A teacher that cannot easily get out of bed might be constrained on timeslots of each first
period of each day, allowing the teacher to start a bit later. To prevent a course from
being scheduled on a specific timeslot, we can easily add a short clause for each disallowed
timeslot by explicitly forcing the literal corresponding to the scheduling of a specific course
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1 c d i s a l l ow a l l combinat ions o f th ree l i t e r a l s r ep r e s en t i n g monday
’ s f i r s t t ime s l o t f o r f i v e cou r s e s .

2 −1 −41 −81 0
3 −1 −41 −121 0
4 −1 −41 −161 0
5 −1 −81 −121 0
6 −1 −81 −161 0
7 −41 −81 −121 0
8 −41 −81 −161 0
9 −41 −121 −161 0

10 −81 −121 −161 0

Figure 6.12: Preventing timeslot-overflow in a subset of courses, label=Disallowing timeslot
overflow.

on a specific timeslot in the schedule of the teacher to false. An example of disallowing a
timeslot for a student or teacher is shown in Figure 6.13.

1 c d i s a l l ow a l l combinat ions o f the l i t e r a l s r ep r e s en t i n g monday ’ s
f i r s t t ime s l o t f o r each course in subset $S$ o f $T$ .

2 −81 0

Figure 6.13: Preventing overflow in a subset of courses in the schedule of teacher T .

Blocking off a timeslot for a teacher, student, or classroom results in n clauses, where n
is the number of courses for that teacher, student, or classroom. As such, these constraints
add n×m clauses, where m is the number of constrained timeslots.

6.7 Modelling aspecific schedule constraints

Most of the teachers’s schedules are imposed with aspecific schedule constraints. These are
constraints that disallow courses from being scheduled in a part of the schedule, without
specifying which part. A teacher that has a Full-Time equivalent (FTE) of 0.7 must for
instance be scheduled in only four days, leaving the fifth day available. However, which day
remains unscheduled is up to the school, and the scheduler, to decide.

To prevent the courses of a teacher from being scheduled in more than four days, we
need to add an extra literal to the Boolean formula for each day in the schedule of each
teacher. If none of the timeslots for the corresponding day are unavailable, then that literal
is forced to true with a clause such as in Figure 6.14. Further clauses must then be added,
disallowing solutions where all days contain unavailable timeslots, such as in Figure 6.15
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1 c i f a l l t ime s l o t s on day x are a v a i l a b l e ( f a l s e ) , then extra
l i t e r a l n i s t rue .

2 1 2 3 4 5 6 7 8 41 0
3 9 10 11 12 13 14 15 16 42 0
4 17 18 19 20 21 22 23 24 43 0
5 25 26 27 28 29 30 31 32 44 0
6 33 34 35 36 37 38 39 40 45 0

Figure 6.14: Imposing aspecific schedule constraints on the schedule of teacher t.

1 c d i s a l l ow a s o l u t i o n where a l l days have scheduled cour s e s .
2 −41 −42 −43 −44 −45 0

Figure 6.15: Disallow solutions with all days scheduled.

If less than four days are to be scheduled on, we need to impose further clauses, such
as in Figure 6.16.

1 c d i s a l l ow a s o l u t i o n where more than two days conta in scheduled
cour s e s .

2 −41 −42 −43 0
3 −41 −42 −44 0
4 −41 −42 −45 0
5 −41 −43 −44 0
6 −41 −43 −45 0
7 −41 −44 −45 0
8 −42 −43 −44 0
9 −42 −43 −45 0

10 −42 −44 −45 0
11 −43 −44 −45 0

Figure 6.16: Imposing more aspecific schedule constraints on the schedule of teacher t.

6.8 Disallowing previous or specific solutions

If a SAT Solver finds a solution to the problem, it can list that solution. That solution can
be translated to a single clause, and can be appended to the schedule to prevent the SAT
Solver from listing it as a solution. If, for example, a SAT Solver was used to solve the
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sample Boolean formula at the top of this chapter, then it might have generated SAT -1

-2 -3 4 -5 as output. We can then append an additional clause to the formula to disallow
that solution by adding a clause that negates the entire solution as shown in Figure 6.17.

1 p cn f 5 3
2 c Sample Boolean formula .
3 1 4 −5 0
4 −1 3 4 5 0
5 −3 −4 0
6 c Disa l low a s p e c i f i c s o l u t i o n :
7 1 2 3 −4 5 0

Figure 6.17: Disallowing a specific solution.

6.9 Generating CNF through a broker

Another tool that can generate DIMACS CNF files is Sugar [14]. Sugar uses a self-made
intermediate language to generate DIMACS CNF files (Sugar CSP files) that can be solved
using a SAT Solver such as MiniSat. An example of such a file is:

1 ; domain d e f i n i t i o n s
2 (domain a l l 1 3) ; a l l t ime s l o t s
3 ; course d e f i n i t i o n s
4 ( int c1 a l l )
5 ( int c2 a l l )
6 ( int c3 a l l )
7 ( int c4 a l l )
8 ( int c5 2 2) ; f i x e d course scheduled in t ime s l o t 2
9 ( int c6 a l l )

10 ( int c7 a l l )
11 ( int c8 a l l )
12 ( int c9 a l l )
13 ; d e f i n i t i o n s o f non−d i s j o i n t cour s e s
14 ( a l l d i f f e r e n t c1 c2 c5 )
15 ( a l l d i f f e r e n t c3 c6 )
16 ( a l l d i f f e r e n t c9 c8 c7 )
17 ( a l l d i f f e r e n t c4 c7 )
18 ; hard c on s t r a i n t t eacher unava i l ab l e l a s t t ime s l o t
19 (and (!= c1 3) (!= c2 3) )
20 ; hard c on s t r a i n t t ime s l o t a v a i l a b i l i t y .
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21 ( count 3 ( c1 c2 c3 c4 c5 ) ge 1) ; t ime s l o t 1 at l e a s t 3 cour s e s
22 ( count 2 ( c6 c7 c8 c9 ) l t 3) ; t ime s l o t 3 at most 1 cour s e s .

Example Sugar CSP file

Every Sugar CSP file contains a set of domain definitions, integer definitions, and
constraint definitions, which must adhere to a syntax specification created by the author
of Sugar [15]. Once the file is complete, Sugar will generate a DIMACS CNF file that
describes the same problem in conjunctive normal form. Sugar will automatically start a
SAT Solver to try and solve the problem, and will output a solution to the problem if one
is found.

A Sugar CSP file first lists a set of domains. These domains represent the available
ranges of positive natural numbers that are considered valid solutions for each of the
integers assigned to that domain. These domains are followed by integer definitions.
Each integer must be assigned a value within the domain specified. This is the solution the
SAT Solver attempts to find. Integers may also be assigned a fixed value, or a self-defined
range.

Below the integer definitions the CSP file defines constraints. There are several
keywords available in the CNF syntax to facilitate easier definition of constraints. The
allDifferent keyword, for example, imposes a constraint on a set of integers that no
two integers in the constraint can have identical values.

There are several different keywords available that allow for further limiting of the
allowed assignments of values for each course. Combining these keywords is also possible,
which allows for further limiting of the assignments.

To generate a Sugar CSP file that describes a scheduling problem, we define a domain D
with a range equal to the total number of available timeslots. In a school schedule with one
segment, five days and eight hours, this domain would be (1. . . 40). Assigning an integer cn
to each of the courses, and supplying them with domain D, specifies that each course must
be scheduled in a timeslot within the available timeslots. We must however also supply a
large amount of constraints to prevent non-disjoint courses from being scheduled at the
same time, otherwise a solution where each course is scheduled in timeslot 1 would be
acceptable. To prevent overlap, the allDifferent keyword allows us to supply a set of
non-disjoint courses for each teacher and each student which must be scheduled at different
timeslots. We can also combine a number of keywords to prevent assignments on specific
days or periods. An example would be (and (!= c1 3) (!= c2 3)) which constrains courses
c1 and c2 from being assigned to periods 3.

Using an intermediary language allows for small optimizations by the broker. It might
add additional and notably redundant clauses to the DIMACS CNF file based on internal
evaluations. These additional clauses might optimize the algorithm of the SAT Solver and
lead to faster solution-checking.
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6.10 CNF File Statistics

CNF files generated by modelling a scheduling problem into a DIMACS CNF file are gen-
erally quite large. The number of literals can quickly reach several hundreds of thousands,
and the number of clauses may reach into the millions for typical Dutch high schools, which
generally contain at least eight periods, two segments, over fifty teachers with varying Full-
Time Equivalents, and around 1.000 students.

Literals

Defining the timeslot of a single course within the schedule of a single actor such as a teacher
or student requires pds literals, the number of all timeslots. This number is equal to the
number of periods p multiplied by the number of all days d and every school segment s.
The same number of literals is used to keep track of the available and unavailable timeslots
of each actor. Assuming a schedule of 2, 000 courses for 100 teachers and 1, 200 students
would yield 1, 300 × pds + 2, 000 × pds literals. If a school has 2 school segments and 40
timeslots, this would lead to total of 104, 000 + 160, 000 = 164, 000 literals.

Certain constraints require the use of additional literals. Each allowed gap in a schedule
of a single actor for instance increases the number of literals by one. Aspecific schedule
constraints also add literals.

The total number of literals can be calculated with

L = (T + S)× (pds+ g) + C × pds+ a× d

where T is the total number of teachers, S is the total number of students, C is the total
number of courses, g is the total number of literals added to prevent gaps, a is the total
number of aspecific schedule constraints, and L is the total number of literals.

Clauses

Scheduling each course adds a large amount of clauses to the CNF file. One clause is added
to ensure that the course is scheduled on at least one timeslot, then n× (n− 1)/2 further
clauses are added to ensure that the course is scheduled on no more than 1 timeslot. In
the example above, this would add a total of 1,999,000 clauses.

Each course must also be scheduled at the same timeslot on the same day for each
actor attending that course. Assuming that about half the courses within one department
of a schedule are conflicting due to students and teachers attending both courses, and
each department containing about 100 courses, this would add a futher D × (Cd/2)× pds
clauses, where D is the number of departments, and Cd is the number of courses for each
department. Specific schedule constraints add n × m clauses, where n is the number of
courses for the teacher, student, or classroom, and m is the number of timeslots blocked.

The number of clauses required to prevent gaps is equal to
∑

i<h−2

i=1
h− 1− i× d where

h is the number of periods and d is the number of days.
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Chapter 7

SAT Solvers

SAT Solvers are programs used to search for solutions (=satisfying assignments) to Boolean
formulas in conjunctive normal form. When run, a SAT Solver uses an algorithm to assign
true and false values to literals in the fomula in order to find an assignment such that all
clauses in the Boolean formula result to true. If such a solution is found, the SAT Solver
labels the formula as satisfiable. If all possible combinations have been exhausted and none
result in a true result for all the clauses in the Boolean formula, then the formula is labeled
as unsatisfiable.

SAT Solvers are not magic. They are as constrained by NP-complete problems as all
other algorithms and automata. When given a DIMACS CNF file, a SAT Solver might
spend ages trying to find a solution that does not exist. As such, each DIMACS CNF file
can be processed for a fixed period of time. If no solution is found within that time period,
the result is INDET or indeterminate.

A number of open source SAT Solvers are available online. One of these is MiniSat
[8], a minimalistic open source SAT Solver written in C++, developed to help researchers
and developers alike to get started on SAT. MiniSat uses the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [9], which is a backtracking search algorithm that uses unit
propagation and pure literal elimination. Unit propagation allows for clauses with only
a single unassigned literal to be assigned greedily, which prunes the search space. Pure
literal elimination happens when a literal only occurs in a single polarity, which allows
all clauses containing it to be true, further pruning the search space. MiniSat has won
numerous awards in SAT competitions. MiniSat is also branched as CryptoMiniSat.
CryptoMiniSat is a multi-threaded SAT Solver released under a MIT open source license.
Another notable branch of MiniSat is Glucose.

Another SAT Solver is Lingeling, by Armin Biere from the Johannes Kepler Uni-
versity at Linz [10]. Lingeling is implemented in C, and has an API. The base code of
Lingeling has been used in a number of reimplementations, notably Plingeling, Clin-
geling, Splatz, and PicoSAT. Lingeling uses a number of preprocessing algorithms to
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prune the search space, before feeding the problem to a Conflict-Driven Clause Learning
(CDCL) algorithm [11], inspired by DPLL. The two differ mainly in CDCL backjumping
non-chronologically; where DPLL backtracks by chronologically retracing arbitrary deci-
sions, CDCL retraces arbitrary decisions which led to conflicts non-chronologically. It also
adds these conflicts as inverted clauses to the problem.

FastSatSolver is a C++ SAT Solver which uses Genetic Algorithms to solve SAT
problems. Using Genetic Algorithms allows it to rapidly solve some instances of SAT prob-
lems.
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Chapter 8

Generating timetables

In order to test the strength and usability of using a SAT Solver to find minimal conflicting
teacher sets in HSTT, we required a set of different example files. To facilitate this, a
generator was created that is able to supply templates for schools of varying sizes. These
generated timetables can then be used as problem sets.

The input for generating a timetable is an integer value between 0 and 20. This value
is modified slightly to allow for variance.

Using the input value n, we add to the file in a fixed order:

1. Departments To correctly simulate Dutch high schools, we use the value to gener-
ate n departments with a prefix M, n + 1 departments with a prefix H, and n + 2
departments with prefix V.

2. Students Each department is populated with a number of students, which is 10×n,
divided by a random number r, where 0 < r < 4. This number is then slightly tweaked
for further randomization. Each student takes part in exactly one department. The
students of each department are all assigned to basic classes, to which all courses of
mandatory subjects are attached.

3. Subjects A fixed number of 27 common Dutch subjects is added to the schedule.

4. Packages Each student is given a set of subjects it will follow courses of. For each
department, s subjects are mandatory, where 7 < s < 15. In case of a mandatory
subject each student will be assigned that subjects. Other subjects are optional, and
not all students are assigned those subjects. Each student is supplied with a number
of subjects in such a way that the total number of courses he or she would follow lies
within acceptable bounds (between 19 and 35 courses).

5. Groups Students are assigned to groups. Groups will later on be used to assign to
courses. For mandatory subjects, the basic classes of each department is used. For
optional subjects, groups are generated, using a maximum number of students of 30.
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6. Courses Once groups have been generated, we create courses for each combination
of group and subject.

7. Teachers Teachers are generated with unique, random, three-letter user codes. Teach-
ers are assigned an Full-Time Equivalent (FTE) between 0.2 and 1.0. Then, teachers
are assigned all courses for a set of unique combinations of groups and subjects.

8. Constraints Teachers with an FTE below 1.0 are supplied with aspecific schedule
constraints to limit the freedom of their solutions.

The students in the generated timetables are not assigned into groups for optional
subjects. Assigning students into groups for optional subjects influences what courses can
be scheduled at the same time. Assigning students in such a way that the department as
a whole can be optimally scheduled is a separate problem altogether [12] and falls well
outside the scope of this thesis. The software used to generate timetables also contains
software used to assign the students into groups.
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Chapter 9

Searching for Minimal Conflicting Teacher

Sets

Once a scheduling problem is modelled in a DIMACS CNF file, an open source SAT Solver
is able to check the satisfiability of that scheduling problem. If a scheduling problem is
unsatisfiable, then we know that the modelled scheduling problem (all courses and the
assignments of teachers and students to those courses) cannot be scheduled in such a way
that all constraints imposed on it are satisfied.

A school cannot be run without a schedule, and so, it is important to find out which
set of constraints is the possible cause of the unsatisfiable schedule. If a minimal set of
conflicting constraints can be found, then the school scheduler knows what the cause of the
unsatisfiability is, and can try to solve that problem, either by changing the constraints
imposed on the schedule, or by reassigning teacher or students to different courses.

As decribed in Section 6.1, a scheduling problem cannot be modelled in a DIMACS CNF
file without at least modelling Lm and Cm, where Lm is the set of all literals representing
the scheduling of a course on a timeslot, and Cm is the set of clauses required to schedule
each course only once and without conflicts. All other literals and clauses, contained in sets
La and Ca, cater for other types of constraints.

We define a Conflicting Teacher set as a set of teachers with the property that scheduling
all courses of the scheduling problem without conflicts is impossible when imposing only
the constraints of that set of teachers onto the schedule. We define a Minimal Conflicting
Teacher (MCT) set as a Conflicting Teacher set with the additional property that all subsets
of that set are not Conflicting Teacher sets.

The search space for Minimal Conflicting Teacher sets can be modelled as a directed
rooted tree with a root node containing the set of all teachers. Each edge leading away
from a node to another leads to a node of which the teacher set is a strict subset of the
parent node.

Each node that contains a Conflicting Teacher set is unsatisfiable. Sets containing only
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subsets of an MCT set are always satisfiable, and this can be checked by a SAT Solver in
polynomial time for smaller set sizes. Checking all subsets of a large set of teachers is not
feasible in polynomial time. As such, identifying a node of which the teacher set is an MCT
set requires a good search strategy to reduce running time. The teacher set of a node of
size n can only be marked as an MCT set if its schedule is unsatisfiable and none of the
schedules of its child nodes of size n− 1 are unsatisfiable.

In this chapter we will describe two algorithms to find MCT sets. The first algorithm
uses a bottom-up approach, while the second algorithm uses a top-down approach. Both
algorithms return a set of nodes of which the teacher set of each node is an MCT set.
Whenever a SAT Solver is used to check for a solution to the scheduling problem of a node,
a file is written that contains all literals and clauses in Lm and Cm, and which contains
only the clauses and literals in La and Ca used to describe the schedule demands of the
teachers in that node’s teacher set.

9.1 A first algorithm to find MCT sets

Using the basic operations of modelling a scheduling problem in a DIMACS CNF file,
starting and stopping a SAT Solver, and reading the results of a SAT Solver run, we
can create an algorithm that allows us to systematically search through search space to
find MCT sets. The pseudocode for the first algorithm that was created can be seen in
Algorithm 1. The algorithm is named findMCTsetsBottomUp.

Algorithm 1 findMCTsetsBottomUp(set T , int maxRounds, int initialSetSize)

int round ← 1
Tree x← T
repeat

if round < maxRounds or allNodesBranchedFromSingleNode() then
removeSatisfiedNodes(x)
createNodes(x, initialSetSize, T )

else

mergeSatisfiedNodes(x)
end if

branchUnsatisfiedNodes(x)
runSATSolverOnNodes(x)
checkSatisfiedBranchedNodesAndMarkParentBranchIfMinimal(x)
round ← round + 1

until userInterrupts()
return getAllMarkedMinimalNodes(x )

Algorithm 1 searches for MCT sets within set T , which contains all user-selected teach-
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ers in a scheduling problem. The algorithm starts in an exploratory phase lasting at most
maxRounds rounds, in which it removes all satisfied nodes from the current tree x using
removeSatisfiedNodes(x ) and then creates new nodes populated randomly with teacher sets
of size initialSetSize (using createNodes), which is user-supplied. It uses the SAT solver to
check the solvability of each node, then marks them as either satisfied or unsatisfied. After
the exploratory phase of the algorithm, nodes marked as satisfied are merged into other
nodes marked as satisfied until a node is found which is marked as unsatisfied. If at any
point during the run of the algorithm an unsatisfied node is found, then the algorithm
checks all subsets of size n − 1, where n is the unsatisfied parent node’s teacher set size,
an operation called branching. If all of those branched nodes contain teacher sets that are
satisfiable, then the node is marked as containing a Minimal Conflicting Teacher set. Un-
satisfied nodes are never removed from x. If all of the nodes in x are branched from a single
node, then the algorithm creates new nodes to prevent itself from being unable to find new
MCT sets. After the user interrupts the algorithm, the set of all nodes in x marked as an
MCT set are returned by getAllMarkedMinimalNodes(x ).

The operation of branching is a breadth-first search strategy. Breadth-first searches
are executed by creating n child nodes from each unsatisfied node, where n is the number
of teachers in the unsatisfied node. Each of the child nodes is populated with n−1 teachers,
so that each subset of size n− 1 is present. The scheduling problem of each of these child
nodes is checked by the SAT Solver, which is costly, especially at larger sizes and with
many unsatifiable sets. This strategy systematically explores the total search space and
can guarantee that all MCT sets present in the parent node are found, at the cost of
running time. Since the algorithm starts with many nodes containing small teacher sets,
this algorithm uses a bottom-up approach, wherein it hopes to come across a Conflicting
Teacher Set rapidly, while still able to check a solution for satisfiability rapidly. As teacher
set sizes increase, so does the computational cost of searching for an MCT set within that
teacher set.

During the exploration phase of this algorithm, it creates multiple nodes containing
a small teacher set. These sets are later merged together if no unsatisfied teacher set is
found. The algorithm is using a bottom-up search strategy, which can be preferable in
scheduling problems containing a large number of small MCT sets. In a bottom-up search
strategy, we create a number of child nodes such that their teacher sets are a partition of
the total teacher set. These nodes are then scheduled by a SAT Solver. If any solution is
unsatisfied, then a breadth-first search strategy can be used to find MCT sets from that
solution.

This strategy heavily benefits when searching a scheduling problem containing small
MCT sets, but suffers greatly when the smallest MCT sets are larger than the initial set
size. It is quite common for this strategy to have to merge a small number of nodes with
large teacher sets to find an MCT set, which negatively affects search time.

Once the user interrupts the algorithm, each unsatisfied node marked as an MCT set
is returned.
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9.2 A second algorithm to find MCT sets

We now introducte a second algorithm that searches for MCT sets, Algorithm 2. This algo-
rithm uses a top-down approach, seeking to rapidly eliminate teachers from the root node
containing all user-selected teachers. The algorithm is named findMCTsetsTopDown.

Algorithm 2 findMCTSetsTopDown(set T , int upperBound)

Tree x ← T ⊲ Tree with root node x, marked ’indeterminate’
repeat

Tree y ← findSmallestUnsatisfiedNode(x)
if y not null then

if containsChildNodes(y) then
if teacherSetSize(smallestChildNode(y)) = 1 then

removeChildNodes(y)
branchNode(y)

else

moveTeachersFromSmallestToLargestChildNode(y)
end if

else

if teacherSetSize(y)/2 ≥ upperBound then

splitNode(y)
else

branchNode(y)
end if

end if

end if

runSATSolverOnNodes(x)
checkSatisfiedBranchedNodesAndMarkBranchIfMinimal(x)

until userInterrupts() or isSatisfiable(x)
return getAllMarkedMinimalNodes(x )

Algorithm 2 uses a greedy depth-first search strategy which aims at reducing
the number of steps required to find an MCT set compared to depth-first searching. The
algorithm first creates a root node called x. Each node consists of a teacher set, a marking, a
set of pointers to children, and a status. The marking of a node can be satisfied, unsatisfied,
or the default marking of unknown. The status can be split, branched, or child. Root node
x’s teacher set is initialized with all user-selected teachers, marked as unknown and with
status child. It has no children.

The algorithm next recursively looks up the node with the smallest teacher set size
marked as unsatisfied within the tree of root x and returns it as node y. If multiple nodes
are found with the same teacher set size, the first encountered is returned.
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If y is returned that node either contains only satisfied child nodes (since all children
are smaller than their parents), or contains no children at all. If y contains no children,
then it either branches when half its children rounded down is below a user-supplied upper
bound, or it creates two child nodes through splitNode(y), an act called splitting. These
child nodes contain teacher sets of size ⌈n/2⌉, resp. ⌊n/2⌋, where n is the number of teachers
of its parent. These sets are marked as unknown and are a partition of the parent node.

An initial allocation of teachers to sets was implemented using completely randomly
assigning of teachers to sets. This implementation was improved by implementing a distance
matrix M , which contains the distances between any two teachers. The distance between
two teachers is defined as the number of their courses that share a student, classroom,
or teacher. The first teacher is added to the set randomly, with all subsequent teachers
selected by sorting the previous teacher’s distance values in M and selecting the teacher
with the highest score. Some small amout of randomization is added to allow for some
variance in selection of teachers.

If y does contain children, then, if the smallest child node of y contains a single teacher
and y has status split, all child nodes of y are removed and its assigned status becomes
branched. If the smallest child node of y contains multiple teachers, and y has status split,
then teachers are moved from the child node with the smallest teacher set to the child node
with the largest teacher set through moveTeachersFromSmallestToLargestChildNode(y). If
both are of the same size, teachers are moved from the second child node. Teachers selected
to be moved are selected at random.

Once teachers have been moved from one child node to another, both sets are marked
as unknown, its initial marking, such that the algorithm retries solving both nodes with
the SAT Solver.

Because greedy depth-first searching never checks all possible child nodes of size n− 1,
it alone cannot be used to find MCT sets. Instead, it applies a breadth-first search strategy
if the size of the teacher set in its largest child node is below upper bound u.

If a SAT Solver cannot find a solution within the time period it is allotted, then the
solution is labelled indeterminate. Solutions labelled indeterminate are considered to be
unsatisfiable to the algorithm. If the root node x is satisfiable, then no MCT sets are
present, and the algorithm exits.

Optimizing the search algorithm

There are a number of variables that can be adapted to modify the behaviour of Algo-
rithm 2.

The total time limit the algorithm is allowed to run can be modified. This is useful
when used in combination with different sets of initial parameters. Limiting the total time
the algorithm is allowed to run enables it to restart with different parameters. Restarting
with different parameters allows the algorithm to find solutions it would otherwise not have
found, such as MCT sets of a size larger than the upper bound for branching.
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The time period a SAT Solver is allowed to search for a solution can be modified. During
the initial search, the set of teachers is large, and so it is advisable to keep the time a SAT
Solver is allowed to search for solutions small, as it might not be able to find any solution
in polynomial time. Child nodes however contain a reduced number of teachers, and with
it a reduced number of literals the SAT Solver needs to check. Expanding the time the
SAT Solver is allowed to spend on finding a solution for these smaller scheduling problems
might allow for fewer indeterminate solutions, and harder proof for how conflicting a set
of teachers is.

Another variable that can be tweaked is the upper bound u of a node, which dictates
when a node starts to create child nodes using a breadth-first strategy. Using a lower value
saves time, as fewer child nodes are generated, though generating schedules for all the
subsets of size n− 1 is still quite fast for values of n with 1 < n < 20.

Different search strategies

Algorithm 2 is a depth-first greedy algorithm which seeks to rapidly find any minimal
conflicting teacher set. It can however be changed to behave differently, which might make
it more suitable to find minimal conflicting teacher sets in different scheduling problems.

One such strategy might be to start with a large number of nodes with subsets of
teachers of size n with 5 < n < 10. If the scheduling problem contains multiple pairs or
triples of teachers that are conflicting, this might be a faster way to find these subsets,
than to start with all teachers, and using a binary search strategy. It is also possible to
construct nodes for each pair of teachers, or each triple. Assuming 100 teachers on average,
this would yield about 5,000 unique pairs or about 160,000 unique triples.

Obviously, it is always useful to check the initial selection of all teachers, as finding
a solution for the scheduling problem of all teachers means that there are no conflicting
teacher sets at all.

9.3 Making Algorithm 2 more efficient

Algorithm 2 was adapted after running some computational experiments, in order to reduce
running times for sets with large MCT subsets. The most notable change was to disallow
the breadth-first search strategy in child nodes of size n > 50. If all child nodes of a node
with a larger size are satisfiable, then binary searching is simply reset and the algorithm
tries again. This does however mean that MCT sets of size > 50 would never be found by
the algorithm. This is an acceptable sacrifice, as sets of size larger than 50 are exceedingly
rare. It also means that sets of larger sizes will be harder to find, because binary searching
might reset multiple times if conflicting teachers keep finding their way into the smaller
child node. This algorithm was then used on both problem sets. In addition, it also kept
record of the number of rounds it took to find a solution, as it is possible that finding a
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solution with only binary searching still takes a long time if all unsatifiable sets were found
in highly unbalanced child nodes.
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Chapter 10

Computational experiments

In this chapter we describe seceral experiments aimed at finding MCT sets. In these exper-
iments, we ran Algorithm 1 and both versions of Algorithm 2 searching for MCT sets, and
stored information about running time, number of conversion steps, number of breadth-
first searches, and the MCT sets found. Each of these runs was ended the moment a MCT
set was found.

All experiments ran on a Dell Precision 3510 containing a 2.6-GHz Intel Core i7-6820HQ
CPU with 16GB RAM memory running ElementaryOS 0.4 Loki, which is Ubuntu 16.04
based. All timetables were generated by proprietary software within a virtualized Windows
10 environment, compiled by Virtual Studio 2017 RC. MiniSat [8] was compiled using
version 2.2.0 of its source code with GCC 5.4.0 [13].

We generated a number of test scheduling problems for the SAT Solver to solve. In each
of these files students have been assigned to classes and constraints were added that were
exportable to DIMACS CNF format. Each of these scheduling problems was converted to
a DIMACS CNF file, after which MiniSat was used to search for a solution.

10.1 Problem Set 1

A first experiment was run using generated Problem Set 1. This Problem Set was selected
because it could not be scheduled without conflicts by the automata of the software, and
was of a comparable size to a typical Dutch high school. There were 113 teachers in the
scheduling problem, all assigned a set of constraints limiting the total available timeslots to
a value corresponding to their Full-Time Equivalent (FTE). All of these constraints were
specific schedule constraints (i.e., fixed timeslots blocked in the schedule of the teacher).
Before running the experiments, a different version of Algorithm 2 was run which did not
stop when finding an MCT set, and which systematically explored all child nodes of all
unsatisfied nodes until no unsatisfied child nodes could be found containing a teacher set
which was not already known to be an MCT set. Four distinct MCT sets were found of

38



sizes 7, 10, 11, and 20.
Algorithm 1 was allowed to run without a timeout and with an ititial set size of 21.

This initial set size was chosen to allow the program to find all known MCT sets in the
Problem Set, while still retaining the ability of generating and testing multiple teacher sets
during each round. The algorithm was allowed to work with 50 exploration rounds before
merging the satisfied teacher sets. This value was chosen to ensure that enough exploration
rounds were attempted before merging the sets, which could lead to a large unsatisfied set
that would need to be branched: an expensive operation with regards to time.

Minimum Conflicting Teacher set (teacher codes) Size Found

kth, nrt, roz, ppq, wzo, zeb, vzn 7 44×

bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 56×

Table 10.1: MCT sets found by Algorithm 1 after 100 runs on Problem Set 1.

Both versions of Algorithm 2 were also allowed to run without a timeout and with a
breadth-first lower bound of 8 until a first conflicting teacher set was found. The lower
bound was set to prevent the algorithm from branching too early, which is expensive with
regards to time, while still allowing the algorithm to find all MCT sets. Algorithm 2 found
4 distinct Minimal Conflicting Teacher sets:

Minimum Conflicting Teacher set (teacher codes) Size Found

kth, nrt, roz, ppq, wzo, zeb, vzn 7 20×

bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 58×

dvb, chm, heg, knc, msv, roo, pne, ngs, sbl, qry, zne 11 21×

hzr, elr, cwx, cqi, ftk, nku, mte, lur, ngs, jbu, tur, vlb, slg, pkf, stg, qfj, ppq, xnj, wuz, zsm 20 1×

Table 10.2: MCT sets found by Algorithm 2 after 100 runs on Problem Set 1.

Both algorithms found an MCT set during each run, and running times were such that
a school scheduler for a Dutch high school could make use of the tool without having to
wait too long. Table 10.3 shows for 100 runs of each algorithm for Problem Set 1 the total
running times, the median running times, the standard deviation of the running times, and
the number of MCT sets found.

Algorithm name Total runtime Median runtime Standard deviation nr. MCT sets found

Algorithm 2 1,684 minutes 17.8 minutes 701.17 4

Algorithm 2 (adapted) 933 minutes 8.22 minutes 23.96 3

Algorithm 1 1,873 minutes 10.16 minutes 11.98 2

Table 10.3: Statistics of 100 runs for Algorithms 1 and 2 on Problem Set 1.
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The adapted version of Algorithm 2 clearly reduced the average running times for
each MCT set found. The difference is most notable in larger sets, where a 48% decrease in
running time was measured for the MCT set of size 11. Algorithm 1, though very consistent
in running times, was also the poorest performer in running times and did not find the
MCT sets of size 11 and 20. Figure 10.1 plots the running times of each algorithm. The
consistent speed of Algorithm 1 is clearly visible, as is the improvement in running time
between both versions of Algorithm 2.
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Figure 10.1: Running times of the algorithms for Problem Set 1.

10.2 Branching strategy

Table 10.4 illustrates the branching strategy at each point during a run which found an
MCT set of size 11. Binary searches (B) only required two files to be converted and solved
by a SAT Solver, while Breadth-first searches (W) required a file to be converted and solved
by a SAT Solver for each teacher in the set, and were therefore computationally costly at
larger set sizes. The root node of 113 teachers was split with a binary search strategy,
which eventually found a conflicting teacher set of size 99 after merging half the teachers
of the smaller set into the larger one twice. The first few Breadth-first searches at size 55
took a minimum of 10 minutes and reduced the size of the teacher set by 1, while the first
Binary search took no more than one minute and reduced the teacher set size by 14. This
clearly illustrates that using breadth-first searching on nodes with large teacher sets has a
high computational cost, which is further shown by the notable difference in running times
between both versions of Algorithm 2.
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113 99 86 83 72 63 59 55 54 53 52 48 47 44 41 40 38 37 36
B B B B B B B W W W B W B B W B W W B

33 32 31 30 28 26 23 22 20 19 18 17 16 15 14 13 12 11
W W W B B B W B W W W W W W W W W W

Table 10.4: Branching Strategy during a specific run of Algorithm 2 on Problem Set 1. B
= Binary search strategy, W = Breadth-first search strategy

10.3 Problem Set 2

A second experiment was run using generated Problem Set 2. This Problem Set was selected
because it could be scheduled without conflicts using traditional methods. It was then
modified to contain exactly two MCT sets, both of size 2. The size of the scheduling problem
was also comparable to that of a typical Dutch high school. There were 155 teachers in the
scheduling problem, all assigned a set of constraints limiting the total available timeslots to
a value corresponding to their Full-Time Equivalent (FTE). All of these constraints were
specific schedule constraints (i.e., fixed timeslots blocked in the schedule of the teacher).

Algorithm 1 was allowed to run without a timeout and with an ititial set size of 5. This
initial set size was lower than that of Problem Set 1 because of the smaller MCT set sizes
in the Problem Set. The algorithm was allowed to work with 50 exploration rounds before
merging the satisfied teacher sets.

Minimum Conflicting Teacher set (teacher codes) Size Found

uhu, upf 2 42×

xga, xma 2 58×

Table 10.5: MCT sets found by Algorithm 1 after 100 runs on Problem Set 2.

Both versions of Algorithm 2 were also allowed to run without a timeout and with a
breadth-first lower bound of 8 until a first conflicting teacher set was found. The lower
bound remained unchanged from Problem Set 1 because the effect of reducing running
time is negligible at such low values.

Minimum Conflicting Teacher set (teacher codes) Size Found

uhu, upf 2 88×

xga, xma 2 112×

Table 10.6: Combined MCT sets found by both versions of Algorithm 2 after 100 runs on
Problem Set 2 each.
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Both algorithms found an MCT set during each run, and running times were much lower
than the running times for Problem Set 1, which contained larger MCT sets. Table 10.7
shows for 100 runs of each algorithm for Problem Set 2 the total running times, the median
running times, the standard deviation of the running times, and the number of MCT sets
found.

Algorithm name Total runtime Median runtime Standard deviation nr. MCT sets found

Algorithm 2 97.84 minutes 0.94 minutes 0.96 2

Algorithm 2 (adapted) 99.92 minutes 0.97 minutes 1.01 2

Algorithm 1 65.13 minutes 0.49 minutes 0.08 2

Table 10.7: Statistics of 100 runs for Algorithms 1 and 2 on Problem Set 2.

Running times for this Problem Set are much reduced, as are the standard deviations
for each algorithm. All algorithms found both MCT sets present in the Problem Set.

Figure 10.2 shows a plot of running times for each algorithm for 100 runs on Problem
Set 2. Though both versions of Algorithm 2 rapidly manage to reduce the initial teacher
set size from 155 to a MCT set of size 2, Algorithm 1 succeeds in finding either of the
two MCT sets much more rapidly by populating many small sets and testing them. MCT
sets of size 2 are somewhat contrived; in most cases, the scheduler would easily be able to
pick these sets out straightforwardly, or analyze the problem at such pace that searching
for them algorithmically does not benefit much. The difference in runtime between both
versions of Algorithm 2 is less than 3% and appears to be insignificant.
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Figure 10.2: Running times of the algorithms for Problem Set 2.
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10.4 Performance of both versions of Algorithm 2 on Problem Set 1

The running times for each run of both versions of Algorithm 2 are strongly connected
to the number of intermediate steps required to reduce the current conflicting teacher set
of a node to an MCT set. Figure 10.3 plots the running time of each run of Algorithm 2
on Problem Set 1 against the total number of intermediate steps in which an unsatisfiable
teacher set was found. Note that the horizontal axis has a logarithmic scale.
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Figure 10.3: Running times for Algorithm 2 for 100 runs on Problem Set 1. Note that the
horizontal axis has a logarithmic scale.

Figure 10.3 clearly shows that smaller MCT sets require on average fewer intermediate
steps than larger MCT sets. Figure 10.4 shows the same plot for 100 runs of the adapted
version of Algorithm 2 on Problem Set 1.
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Figure 10.4: Running times for the adapted version of Algorithm 2 for 100 runs on Problem
Set 1. Note that the horizontal axis has a logarithmic scale.

Figure 10.4 reveals that the number of intermediate steps required by the adapted
version of Algorithm 2 are less varied for each MCT set it found. The running time is also
lower for larger MCT set sizes.

10.5 Performance of both versions of Algorithm 2 on Problem Set 2

Both versions of Algorithm 2 showed comparable performance in Problem Set 2, with
regards to total number of conversion steps and total running time. Both algorithms also
found the individual MCT sets in roughly the same ratio. The reduced total runtime and
number of intermediate steps found between both versions of Algorithm 2 in Problem Set
1 are not visible in this Problem Set. This is not unexpected; the key change between the
original algorithm and the adapted version is the inclusion of a lower bound for branching.
Because Algorithm 2 is able to rapidly reduce its current conflicting teacher set in the first
few rounds of a run for problem sets with small MCT sets, the algorithm doesn’t greatly
vary in results beyond what is to be expected from random variance.
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Figure 10.5: Running times for Algorithm 2 for 100 runs on Problem Set 2.
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Figure 10.6: Running times for the adapted version of Algorithm 2 for 100 runs on Problem
Set 2.

In short, both Algorithm 1 and Algorithm 2 are useful in finding MCT sets for various
Problem Sets. Algorithm 1’s approach of generating large numbers of small teacher sets
to be tested allows it to rapidly find smaller MCT sets, but ultimately proves inefficient
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when looking in Problem Sets containing only large MCT sets. Algorithm 2 benefits from
running being able to rapidly reduce the total teacher set to a smaller set containing an
MCT set, but is less efficient in Problem Sets containing small MCT sets.

The adapted version of Algorithm 2 shows a clear performance increase in Problem
Sets containing large MCT sets, but cannot find sets of size larger than or equal to 50 due
to its upper limit for branching strategies. This sacrifice appears to be minor, as such large
MCT sets are rare. If a suspicion exists that such a large MCT set is present in a Problem
Set, the algorithm can always be run with a higher upper limit.
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Chapter 11

Conclusions and further research

In this thesis, we have tried to develop a strategy for rapid discovery of Minimal Conflicting
Teacher (MCT) sets within instances of the Dutch High School Time Tabling problem.
Though a simple heuristic can be used in small problems to locate these Minimal Conflicting
Teacher sets, these heuristics perform poorly in problems of the size of a typical Dutch high
school.

Using a binary searching algorithm drastically reduces the time required to discover a
MCT set if the set is small, compared to breadth-first searching heuristics. Larger min-
imal conflicting teacher set sizes profit less from this approach, though smart gathering
of teachers in sets can lead to faster MCT set discovery. One notable possibility of smart
population of teacher sets is by using the distance matrix to populate the smallest set with
teachers that are the least-connected.

Another algorithm, which uses a strategy of testing a large number teacher sets of
small size, outperforms a binary searching strategy in Problem Sets containing minimal
conflicting teacher sets of small size.

Currently, finding minimal conflicting teacher sets in scheduling problems of Dutch
high schools depended on analysis performed by the school scheduler, and were ineffective
for larger minimal conflicting teacher set sizes. Using these algorithms allows the school
scheduler to identify minimal conflicting teacher sets, and do so at rapid pace. The ability
to identify such a set will allow school schedulers to identify and implement solutions to
such problems, such as changing teacher-to-class assignments, or by changing course or
schedule constraints at a moment when they are not set in stone yet.

Further research is required to expand the number of constraints checked by the SAT
Solver. Notably, the ability to check overflow on schedule timeslots for specified sets of
courses is an important improvement and should allow for the discovery of many more
MCT sets. If the SAT Solver is able to generate solutions wherin students are reassigned
into different classes, more solutions will be possible, which should reduce the number of
MCT sets.
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Each of the algorithms uses a number of preset variables that can be tweaked to mod-
ify its behaviour. Though an effective set of these variables has been used, no in-depth
study has been made into the effects of different values for each of these variables on the
performance of the algorithms.
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Glossary

course A course is a meeting between teachers and
students in a classroom, which repeats for
each timeslot it is scheduled on.

gap When a student or teacher’s schedule contains
a number of available timeslots directly pre-
ceded and succeeded by an unavailable times-
lot, those timeslots are gaps.

period A timeslot is a time period with a fixed start
and end time, which repeats for every day of
a schedule. In most Dutch High Schools, all
periods are of identical length, between 40 and
70 minutes.

schedule A schedule is set of courses, each scheduled
on a timeslot, a day, a segment, and contain-
ing sets of students, teachers, and classrooms.
Each course is scheduled such that no student,
teacher, or classroom is required to take part
in multiple courses at the same time.

segment A schedule can be partitioned into segments,
such as trimesters or semesters.

student Students are taught subjects during their ed-
ucation at a High School. Students select a
number of subjects from all subjects available
to them to follow courses in during the sched-
ule of a schoolyear.

subject A course contains a subject, which is what is
taught by the teachers to the students.
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timeslot A timeslot is a combination of a workday, a
period, and a segment. If a student or teacher
has no course scheduled for that timeslot, it
is considered available, otherwise it is unavail-
able.
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Appendix A

Results of running Algorithm 1

Algorithm 1 has been run on two problem sets.

A.1 Results for Problem Set 1

Run Set Set size Time ms Time min

1 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1261640 21.03

2 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1230563 20.51

3 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1253250 20.89

4 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1327344 22.12

5 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1261843 21.03

6 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1350782 22.51

7 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1257609 20.96

8 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1268484 21.14

9 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1317407 21.96

10 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1302218 21.70

11 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1390875 23.18

12 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1395375 23.26

13 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1393344 23.22

14 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1311797 21.86

15 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1310140 21.84

16 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 927969 15.47

17 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 1067937 17.80

18 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 899969 15.00

19 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 906797 15.11

20 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 907062 15.12

21 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1663172 27.72

22 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 1200578 20.01

23 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1275672 21.26

24 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1321438 22.02

25 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1298015 21.63

26 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1295016 21.58

27 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1344625 22.41

28 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1323672 22.06

29 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1306406 21.77

30 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1278266 21.30

31 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1338843 22.31

32 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 885032 14.75

33 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1529593 25.49

34 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1320235 22.00

35 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 1176640 19.61

36 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 1090375 18.17

37 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 941516 15.69

38 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 1019859 17.00

39 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 919141 15.32

40 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 910641 15.18

41 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 922718 15.38
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42 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 923079 15.38

43 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 922656 15.38

44 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 969406 16.16

45 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1269922 21.17

46 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1284969 21.42

47 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1287000 21.45

48 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1304031 21.73

49 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 890734 14.85

50 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 989375 16.49

51 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1454500 24.24

52 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 932657 15.54

53 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 928828 15.48

54 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1252062 20.87

55 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 927000 15.45

56 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 967266 16.12

57 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1268766 21.15

58 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 881437 14.69

59 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 981547 16.36

60 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 945484 15.76

61 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1537109 25.62

62 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 1161266 19.35

63 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 1013437 16.89

64 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 961610 16.03

65 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1584281 26.40

66 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 933625 15.56

67 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 1230000 20.50

68 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 893687 14.89

69 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 960985 16.02

70 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 903734 15.06

71 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 880984 14.68

72 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1325516 22.09

73 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 914265 15.24

74 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 893516 14.89

75 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1332422 22.21

76 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 906750 15.11

77 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 892062 14.87

78 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 888375 14.81

79 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1301688 21.69

80 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 924219 15.40

81 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 889375 14.82

82 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1283203 21.39

83 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1341312 22.36

84 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 902875 15.05

85 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1371141 22.85

86 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1345422 22.42

87 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 906531 15.11

88 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 914109 15.24

89 kth, nrt, ppq, roz, vzn, wzo, zeb 7 1330125 22.17

90 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 959032 15.98

91 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 1015844 16.93

92 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 1042594 17.38

93 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 904016 15.07

94 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 884875 14.75

95 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 948156 15.80

96 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 896969 14.95

97 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 1125031 18.75

98 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 1015016 16.92

99 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 890969 14.85

100 air, bfo, bov, glk, kth, nrt, ppq, roz, vzn, zeb 10 878015 14.63

Table A.1: Results of running Algorithm 1 on Problem Set 1.

A.2 Results for Problem Set 2

Run Set Set size Time ms Time min

1 xga, xma 2 55578 0.93
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2 xga, xma 2 27313 0.46

3 uhu, upf 2 41297 0.69

4 xga, xma 2 27625 0.46

5 xga, xma 2 27125 0.45

6 uhu, upf 2 55672 0.93

7 uhu, upf 2 27218 0.45

8 xga, xma 2 27625 0.46

9 uhu, upf 2 69782 1.16

10 xga, xma 2 27562 0.46

11 xga, xma 2 27750 0.46

12 uhu, upf 2 26953 0.45

13 uhu, upf 2 27188 0.45

14 uhu, upf 2 42828 0.71

15 uhu, upf 2 27375 0.46

16 xga, xma 2 84500 1.41

17 uhu, upf 2 27328 0.46

18 uhu, upf 2 27203 0.45

19 xga, xma 2 27469 0.46

20 xga, xma 2 72063 1.20

21 xga, xma 2 29547 0.49

22 uhu, upf 2 27281 0.45

23 xga, xma 2 44562 0.74

24 xga, xma 2 74235 1.24

25 uhu, upf 2 27125 0.45

26 uhu, upf 2 29015 0.48

27 uhu, upf 2 29391 0.49

28 xga, xma 2 74547 1.24

29 xga, xma 2 42937 0.72

30 xga, xma 2 29328 0.49

31 xga, xma 2 27172 0.45

32 xga, xma 2 29032 0.48

33 xga, xma 2 27390 0.46

34 xga, xma 2 44344 0.74

35 xga, xma 2 27328 0.46

36 xga, xma 2 43609 0.73

37 uhu, upf 2 28297 0.47

38 xga, xma 2 28407 0.47

39 xga, xma 2 27578 0.46

40 xga, xma 2 29203 0.49

41 xga, xma 2 27578 0.46

42 xga, xma 2 28359 0.47

43 xga, xma 2 55532 0.93

44 uhu, upf 2 27343 0.46

45 xga, xma 2 27375 0.46

46 uhu, upf 2 27172 0.45

47 xga, xma 2 27344 0.46

48 uhu, upf 2 69156 1.15

49 xga, xma 2 27360 0.46

50 xga, xma 2 29500 0.49

51 uhu, upf 2 41765 0.70

52 uhu, upf 2 27422 0.46

53 uhu, upf 2 69547 1.16

54 xga, xma 2 41687 0.69

55 uhu, upf 2 27329 0.46

56 xga, xma 2 27640 0.46

57 uhu, upf 2 55766 0.93

58 uhu, upf 2 41547 0.69

59 xga, xma 2 55484 0.92

60 uhu, upf 2 41531 0.69

61 uhu, upf 2 44485 0.74

62 xga, xma 2 29859 0.50

63 uhu, upf 2 27234 0.45

64 xga, xma 2 30047 0.50

65 uhu, upf 2 29063 0.48

66 xga, xma 2 43360 0.72

67 xga, xma 2 44859 0.75

68 xga, xma 2 43625 0.73

69 uhu, upf 2 30360 0.51

70 xga, xma 2 45578 0.76

71 xga, xma 2 121547 2.03

72 uhu, upf 2 27203 0.45

73 uhu, upf 2 29468 0.49

74 uhu, upf 2 46188 0.77
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75 xga, xma 2 43203 0.72

76 xga, xma 2 58922 0.98

77 xga, xma 2 45766 0.76

78 xga, xma 2 45234 0.75

79 xga, xma 2 29562 0.49

80 xga, xma 2 27579 0.46

81 uhu, upf 2 28250 0.47

82 uhu, upf 2 27421 0.46

83 uhu, upf 2 27610 0.46

84 xga, xma 2 41687 0.69

85 uhu, upf 2 27485 0.46

86 uhu, upf 2 27406 0.46

87 xga, xma 2 27703 0.46

88 uhu, upf 2 27625 0.46

89 xga, xma 2 42734 0.71

90 xga, xma 2 28204 0.47

91 xga, xma 2 29765 0.50

92 xga, xma 2 42969 0.72

93 uhu, upf 2 28078 0.47

94 uhu, upf 2 28281 0.47

95 xga, xma 2 88313 1.47

96 uhu, upf 2 44219 0.74

97 xga, xma 2 60016 1.00

98 xga, xma 2 43422 0.72

99 xga, xma 2 90515 1.51

100 uhu, upf 2 28719 0.48

Table A.2: Results of running Algorithm 1 on Problem Set 2.
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Appendix B

Results of running Algorithm 2

Algorithm 2 has been run on two problem sets. Both problem sets contained at least two
unique minimal conflicting teacher sets.

B.1 Results for Problem Set 1

Run Set Set size Time ms Time min

1 kth, nrt, roz, ppq, wzo, zeb, vzn 7 162125 2.7

2 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 199047 3.32

3 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 204437 3.41

4 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 208500 3.48

5 roz, zeb, vzn, wzo, kth, nrt, ppq 7 219094 3.65

6 roo, sbl, zne, dvb, heg, chm, ngs, msv, knc, pne, qry 11 223047 3.72

7 nrt, kth, roz, vzn, ppq, zeb, wzo 7 224219 3.74

8 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 229188 3.82

9 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 232188 3.87

10 chm, dvb, heg, pne, knc, msv, ngs, sbl, roo, qry, zne 11 306266 5.1

11 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 323406 5.39

12 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 333703 5.56

13 kth, nrt, ppq, roz, vzn, zeb, wzo 7 336547 5.61

14 kth, nrt, roz, ppq, wzo, zeb, vzn 7 354672 5.91

15 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 355562 5.93

16 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 359656 5.99

17 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 362625 6.04

18 roo, sbl, zne, dvb, heg, chm, ngs, msv, knc, pne, qry 11 368375 6.14

19 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 368735 6.15

20 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 369984 6.17

21 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 370547 6.18

22 kth, nrt, roz, ppq, wzo, zeb, vzn 7 378782 6.31

23 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 384734 6.41

24 glk, air, bfo, bov, kth, nrt, ppq, roz, vzn, zeb 10 398828 6.65

25 kth, nrt, roz, ppq, wzo, zeb, vzn 7 402672 6.71

26 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 417859 6.96

27 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 419265 6.99

28 glk, air, bfo, bov, kth, nrt, ppq, roz, vzn, zeb 10 422656 7.04

29 roz, zeb, vzn, wzo, kth, nrt, ppq 7 428360 7.14

30 roz, zeb, vzn, wzo, kth, nrt, ppq 7 440406 7.34

31 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 440453 7.34

32 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 441985 7.37

33 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 444860 7.41

34 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 448172 7.47

35 glk, air, bfo, bov, kth, nrt, ppq, roz, vzn, zeb 10 455437 7.59

36 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 457203 7.62

37 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 457437 7.62

38 kth, nrt, ppq, roz, vzn, zeb, wzo 7 461875 7.7

39 glk, air, bfo, bov, kth, nrt, ppq, roz, vzn, zeb 10 466235 7.77

55



40 nrt, kth, roz, vzn, ppq, zeb, wzo 7 478828 7.98

41 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 495938 8.27

42 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 510391 8.51

43 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 511125 8.52

44 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 520390 8.67

45 glk, air, bfo, bov, kth, nrt, ppq, roz, vzn, zeb 10 527172 8.79

46 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 556797 9.28

47 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 563313 9.39

48 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 565438 9.42

49 kth, nrt, roz, ppq, wzo, zeb, vzn 7 570016 9.5

50 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 575781 9.6

51 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 592469 9.87

52 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 596031 9.93

53 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 609656 10.16

54 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 623172 10.39

55 glk, air, bfo, bov, kth, nrt, ppq, roz, vzn, zeb 10 624391 10.41

56 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 628938 10.48

57 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 636422 10.61

58 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 637734 10.63

59 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 638485 10.64

60 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 639891 10.66

61 dvb, chm, heg, msv, knc, ngs, qry, sbl, pne, roo, zne 11 640968 10.68

62 roz, zeb, vzn, wzo, kth, nrt, ppq 7 653375 10.89

63 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 665531 11.09

64 kth, nrt, roz, ppq, wzo, zeb, vzn 7 667641 11.13

65 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 674421 11.24

66 roz, zeb, vzn, wzo, kth, nrt, ppq 7 707125 11.79

67 dvb, chm, heg, msv, knc, ngs, qry, sbl, pne, roo, zne 11 719735 12

68 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 731562 12.19

69 dvb, chm, heg, msv, knc, ngs, qry, sbl, pne, roo, zne 11 739875 12.33

70 air, glk, bfo, bov, nrt, kth, roz, vzn, ppq, zeb 10 748031 12.47

71 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 773156 12.89

72 kth, nrt, roz, ppq, wzo, zeb, vzn 7 800844 13.35

73 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 803750 13.4

74 nrt, kth, roz, vzn, ppq, zeb, wzo 7 816437 13.61

75 dvb, chm, heg, msv, knc, ngs, qry, sbl, pne, roo, zne 11 838047 13.97

76 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 858125 14.3

77 roz, zeb, vzn, wzo, kth, nrt, ppq 7 862391 14.37

78 dvb, chm, heg, knc, msv, roo, pne, ngs, sbl, qry, zne 11 877766 14.63

79 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 936422 15.61

80 roz, zeb, vzn, wzo, kth, nrt, ppq 7 959594 15.99

81 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 973859 16.23

82 roo, sbl, zne, dvb, heg, chm, ngs, msv, knc, pne, qry 11 979547 16.33

83 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 981578 16.36

84 dvb, chm, heg, knc, msv, roo, pne, ngs, sbl, qry, zne 11 1158468 19.31

85 roo, sbl, zne, dvb, heg, chm, ngs, msv, knc, pne, qry 11 1163594 19.39

86 dvb, chm, heg, msv, knc, ngs, qry, sbl, pne, roo, zne 11 1190578 19.84

87 roo, sbl, zne, dvb, heg, chm, ngs, msv, knc, pne, qry 11 1194094 19.9

88 dvb, chm, heg, msv, knc, ngs, qry, sbl, pne, roo, zne 11 1239875 20.66

89 kth, nrt, ppq, roz, vzn, zeb, wzo 7 1255500 20.93

90 bov, bfo, air, glk, kth, nrt, roz, ppq, zeb, vzn 10 1334172 22.24

91 dvb, chm, heg, msv, knc, ngs, qry, sbl, pne, roo, zne 11 1347703 22.46

92 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 1457359 24.29

93 roo, sbl, zne, dvb, heg, chm, ngs, msv, knc, pne, qry 11 1470609 24.51

94 roz, zeb, vzn, bfo, bov, glk, air, kth, nrt, ppq 10 1607609 26.79

95 dvb, chm, heg, msv, knc, ngs, qry, sbl, pne, roo, zne 11 1638609 27.31

96 roo, sbl, zne, dvb, heg, chm, ngs, msv, knc, pne, qry 11 3286281 54.77

97 roo, sbl, zne, dvb, heg, chm, ngs, msv, knc, pne, qry 11 4925219 82.09

98 dvb, chm, heg, knc, msv, roo, pne, ngs, sbl, qry, zne 11 6084500 101.41

99 dvb, chm, heg, knc, msv, roo, pne, ngs, sbl, qry, zne 11 6125250 102.09

100 hzr, elr, cwx, cqi, ftk, nku, mte, lur, ngs, jbu, tur, vlb,

slg, pkf, stg, qfj, ppq, xnj, wuz, zsm

20 13521281 225.35

Table B.1: Results of running Algorithm 2 on Problem Set 1.
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B.2 Results for Problem Set 2

Running times for Problem Set 2 were much more uniform, because the MCT sets in the
Problem Set only consisted of two teachers.

Run Set Set size Time ms Time min

1 xga,xma 2 47984 0.80

2 upf,uhu 2 53859 0.90

3 upf,uhu 2 53875 0.90

4 upf,uhu 2 53922 0.90

5 upf,uhu 2 53953 0.90

6 xga,xma 2 54016 0.90

7 upf,uhu 2 54031 0.90

8 xga,xma 2 54062 0.90

9 upf,uhu 2 54063 0.90

10 xga,xma 2 54078 0.90

11 upf,uhu 2 54094 0.90

12 upf,uhu 2 54094 0.90

13 upf,uhu 2 54125 0.90

14 xga,xma 2 54156 0.90

15 xga,xma 2 54156 0.90

16 upf,uhu 2 54157 0.90

17 upf,uhu 2 54172 0.90

18 upf,uhu 2 54172 0.90

19 upf,uhu 2 54188 0.90

20 upf,uhu 2 54235 0.90

21 xga,xma 2 54250 0.90

22 xga,xma 2 54266 0.90

23 xga,xma 2 54328 0.91

24 upf,uhu 2 54343 0.91

25 xga,xma 2 54390 0.91

26 xga,xma 2 54391 0.91

27 xga,xma 2 54406 0.91

28 xga,xma 2 54406 0.91

29 xga,xma 2 54437 0.91

30 upf,uhu 2 54453 0.91

31 xga,xma 2 54453 0.91

32 xga,xma 2 54469 0.91

33 upf,uhu 2 54469 0.91

34 upf,uhu 2 54500 0.91

35 upf,uhu 2 54515 0.91

36 upf,xga 2 54547 0.91

37 xga,xma 2 54578 0.91

38 xga,xma 2 54641 0.91

39 xga,xma 2 54672 0.91

40 xga,xma 2 54750 0.91

41 xma,xga 2 54750 0.91

42 xga,xma 2 54875 0.91

43 xga,xma 2 54954 0.92

44 xma,xga 2 55062 0.92

45 xga,xma 2 55125 0.92

46 xga,xma 2 55281 0.92

47 xga,xma 2 55312 0.92

48 xga,xma 2 55328 0.92

49 xga,xma 2 55500 0.93

50 xma,xga 2 56532 0.94

51 xga,xma 2 57047 0.95

52 xga,xma 2 57516 0.96

53 upf,uhu 2 57734 0.96

54 xga,xma 2 57766 0.96

55 xga,xma 2 57797 0.96

56 xga,xma 2 57875 0.96

57 xga,xma 2 58141 0.97

58 upf,uhu 2 58297 0.97

59 upf,uhu 2 58359 0.97

60 uhu,upf 2 58375 0.97

61 xga,xma 2 58797 0.98

62 xga,xma 2 59172 0.99

63 xga,xma 2 59375 0.99

64 xga,xma 2 59531 0.99
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65 xma,xga 2 59562 0.99

66 xga,xma 2 59594 0.99

67 xga,xma 2 59625 0.99

68 xga,xma 2 59735 1.00

69 upf,uhu 2 61375 1.02

70 upf,uhu 2 61390 1.02

71 upf,uhu 2 61422 1.02

72 upf,uhu 2 61750 1.03

73 upf,uhu 2 61766 1.03

74 xga,xma 2 61828 1.03

75 upf,uhu 2 61875 1.03

76 upf,uhu 2 61890 1.03

77 xga,xma 2 61907 1.03

78 upf,uhu 2 61968 1.03

79 xma,xga 2 62141 1.04

80 upf,uhu 2 62203 1.04

81 upf,uhu 2 62469 1.04

82 xga,xma 2 62515 1.04

83 upf,uhu 2 62532 1.04

84 xma,xga 2 62625 1.04

85 xga,xma 2 62906 1.05

86 xga,xma 2 63000 1.05

87 xga,xma 2 63094 1.05

88 xma,xga 2 63094 1.05

89 xga,xma 2 63546 1.06

90 xga,xma 2 63593 1.06

91 upf,uhu 2 63938 1.07

92 upf,uhu 2 65484 1.09

93 uhu,upf 2 65609 1.09

94 xga,xma 2 66485 1.11

95 xga,xma 2 67625 1.13

96 upf,uhu 2 67750 1.13

97 upf,uhu 2 75891 1.26

98 upf,uhu 2 82844 1.38

99 xga,xma 2 85296 1.42

100 upf,uhu 2 86704 1.45

Table B.2: Results of running Algorithm 2 on Problem Set 2.
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Appendix C

Results of running the adapted Algorithm 2

The adapted Algorithm 2 has been run on the same two problem sets as Algorithm 2.

C.1 Results for Problem Set 1

Run Set Set size Time ms Conversion steps

1 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 2.128.938 27

2 chm, dvb, qry, roo, sbl, heg, msv, ngs, knc,

pne, zne

11 1.528.140 101

3 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 734.985 57

4 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 608.938 43

5 chm, dvb, qry, roo, sbl, heg, msv, ngs, knc,

pne, zne

11 503.109 54

6 roz, wzo, vzn, kth, ppq, nrt, zeb 7 429.125 23

7 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 468.203 28

8 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 402.938 21

9 chm, dvb, qry, roo, sbl, heg, msv, ngs, knc,

pne, zne

11 649.156 42

10 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 452.344 30

11 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 144.078 9

12 roz, wzo, vzn, kth, ppq, nrt, zeb 7 589.391 24

13 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 568.390 39

14 roz, wzo, vzn, kth, ppq, nrt, zeb 7 400.985 21

15 chm, dvb, qry, roo, sbl, heg, msv, ngs, knc,

pne, zne

11 1.045.063 54

16 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 513.000 29

17 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 594.828 35

18 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 831.875 48

19 roz, wzo, vzn, kth, ppq, nrt, zeb 7 752.015 45

20 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 448.282 27

21 roz, wzo, vzn, kth, ppq, nrt, zeb 7 458.500 18

22 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 676.641 46

23 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 405.438 24

24 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 438.609 29

25 chm, dvb, qry, roo, sbl, heg, msv, ngs, knc,

pne, zne

11 960.812 56

26 roz, wzo, vzn, kth, ppq, nrt, zeb 7 427.672 26

27 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 218.562 13

28 roz, wzo, vzn, kth, ppq, nrt, zeb 7 569.797 24

29 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 365.562 21

30 glk, bov, air, bfo, roz, vzn, kth, ppq, nrt, zeb 10 573.578 50

31 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 582.282 43

32 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 449.062 35

33 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 493.125 36

34 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 386.844 20

35 nrt, kth, ppq, roz, wzo, vzn, zeb 7 741.921 32

36 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 270.563 17
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37 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 266.906 17

38 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 1.053.703 40

39 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 430.875 25

40 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 691.500 39

41 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 541.250 43

42 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 263.000 20

43 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 500.125 32

44 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 287.765 21

45 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 451.594 39

46 chm, ngs, msv, pne, qry, roo, sbl, dvb, heg,

knc, zne

11 743.281 64

47 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 199.000 11

48 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 359.547 27

49 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 422.891 29

50 nrt, kth, ppq, roz, wzo, vzn, zeb 7 533.734 20

51 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 508.844 29

52 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 607.860 42

53 chm, ngs, msv, pne, qry, roo, sbl, dvb, heg,

knc, zne

11 420.110 40

54 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 567.875 33

55 chm, ngs, msv, pne, qry, roo, sbl, dvb, heg,

knc, zne

11 665.922 56

56 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 612.406 48

57 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 526.609 42

58 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 433.609 29

59 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 345.922 23

60 chm, ngs, msv, pne, qry, roo, sbl, dvb, heg,

knc, zne

11 1.150.547 71

61 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 371.797 22

62 chm, ngs, msv, pne, qry, roo, sbl, dvb, heg,

knc, zne

11 1.075.797 99

63 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 472.375 31

64 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 296.782 20

65 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 528.703 43

66 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 506.984 41

67 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 575.204 37

68 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 725.609 60

69 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 243.453 19

70 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 433.360 36

71 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 447.968 27

72 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 291.891 23

73 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 281.000 25

74 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 349.750 20

75 nrt, kth, ppq, roz, wzo, vzn, zeb 7 734.531 36

76 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 443.500 31

77 chm, ngs, msv, pne, qry, roo, sbl, dvb, heg,

knc, zne

11 797.063 72

78 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 428.891 28

79 air, bfo, bov, nrt, kth, ppq, roz, glk, vzn, zeb 10 371.328 20

80 chm, ngs, msv, pne, qry, roo, sbl, dvb, heg,

knc, zne

11 544.578 52

81 chm, ngs, msv, pne, qry, roo, sbl, dvb, heg,

knc, zne

11 1.627.625 90

82 air, bfo, bov, glk, kth, nrt, roz, ppq, vzn, zeb 10 787.578 58

83 air, bfo, bov, glk, kth, nrt, roz, ppq, vzn, zeb 10 344.391 28

84 air, bfo, bov, glk, kth, nrt, roz, ppq, vzn, zeb 10 412.641 26

85 air, bfo, bov, glk, kth, nrt, roz, ppq, vzn, zeb 10 381.812 23

86 air, bfo, bov, glk, kth, nrt, roz, ppq, vzn, zeb 10 460.968 25

87 air, bfo, bov, glk, kth, nrt, roz, ppq, vzn, zeb 10 523.250 37

88 air, bfo, bov, glk, kth, nrt, roz, ppq, vzn, zeb 10 344.531 20

89 air, bfo, bov, glk, kth, nrt, roz, ppq, vzn, zeb 10 140.032 9

90 kth, nrt, roz, ppq, vzn, wzo, zeb, 7 591.797 26

91 chm, ngs, msv, pne, qry, roo, sbl, dvb, heg,

knc, zne

11 862.672 52

92 air, bfo, bov, glk, kth, nrt, roz, ppq, vzn, zeb 10 786.453 66

93 air, bfo, bov, glk, kth, nrt, roz, ppq, vzn, zeb 10 461.938 42

94 kth, nrt, roz, ppq, vzn, wzo, zeb, 7 631.781 32

95 air, bfo, bov, glk, kth, nrt, roz, ppq, vzn, zeb 10 476.156 27

96 kth, nrt, roz, ppq, vzn, wzo, zeb, 7 387.828 12

97 air, bfo, bov, glk, kth, nrt, roz, ppq, vzn, zeb 10 522.312 39

98 air, bfo, bov, glk, kth, nrt, roz, ppq, vzn, zeb 10 543.766 43

99 chm, ngs, msv, pne, qry, roo, sbl, dvb, heg,

knc, zne

11 947.188 82

100 air, bfo, bov, glk, kth, nrt, roz, ppq, vzn, zeb 10 397.078 30
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Table C.1: Results of running the adapted Algorithm 2 on Problem Set 1.
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C.2 Results for Problem Set 2

Run Set Set size Time ms Conversion steps

1 upf,uhu 2 56.406 12

2 xga,xma 2 54.859 12

3 upf,uhu 2 60.922 14

4 xga,xma 2 54.718 12

5 upf,uhu 2 54.422 12

6 upf,uhu 2 54.062 12

7 xga,xma 2 62.547 14

8 xga,xma 2 59.328 13

9 xga,xma 2 60.172 13

10 upf,uhu 2 58.032 13

11 xga,xma 2 62.922 14

12 xga,xma 2 62.625 14

13 upf,uhu 2 54.172 12

14 upf,uhu 2 54.328 12

15 upf,uhu 2 54.328 12

16 xga,xma 2 55.234 12

17 upf,uhu 2 54.391 12

18 xga,xma 2 59.156 13

19 upf,uhu 2 54.469 12

20 upf,uhu 2 58.219 13

21 upf,uhu 2 61.937 14

22 upf,uhu 2 61.250 14

23 xga,xma 2 59.687 13

24 xga,xma 2 61.282 14

25 upf,uhu 2 54.532 12

26 xga,xma 2 65.953 14

27 xga,xma 2 54.657 12

28 upf,uhu 2 58.843 13

29 upf,uhu 2 54.563 12

30 xga,xma 2 61.313 14

31 upf,uhu 2 57.546 12

32 xga,xma 2 54.531 12

33 xga,xma 2 57.437 12

34 upf,uhu 2 54.359 12

35 xga,xma 2 59.266 13

36 xga,xma 2 54.985 12

37 xga,xma 2 54.718 12

38 upf,uhu 2 58.375 13

39 xga,xma 2 54.000 12

40 xga,xma 2 55.172 12

41 xga,xma 2 82.938 19

42 upf,uhu 2 54.516 12

43 upf,uhu 2 61.625 14

44 xga,xma 2 58.968 13

45 xga,xma 2 62.734 14

46 upf,uhu 2 57.546 12

47 xga,xma 2 55.031 12

48 upf,uhu 2 56.984 12

49 xga,xma 2 54.266 12

50 xga,xma 2 74.438 15

51 upf,uhu 2 54.235 12

52 upf,uhu 2 54.406 12

53 xga,xma 2 60.140 13

54 upf,uhu 2 56.937 12

55 upf,uhu 2 57.234 12

56 xga,xma 2 55.187 12

57 xga,xma 2 58.469 12

58 xga,xma 2 57.594 12

59 upf,uhu 2 54.328 12

60 upf,uhu 2 64.937 14

61 xga,xma 2 58.375 12

62 xga,xma 2 54.782 12

63 upf,uhu 2 54.282 12

64 upf,uhu 2 57.922 13

65 upf,uhu 2 86.219 19

66 xga,xma 2 57.750 12

67 xga,xma 2 61.297 14

68 xga,xma 2 54.953 12

69 xga,xma 2 63.031 14

70 xga,xma 2 90.562 19
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71 xga,xma 2 57.391 12

72 xga,xma 2 54.563 12

73 upf,uhu 2 54.188 12

74 xga,xma 2 63.046 14

75 xga,xma 2 54.953 12

76 xga,xma 2 58.266 13

77 upf,uhu 2 54.328 12

78 upf,uhu 2 61.688 14

79 upf,uhu 2 54.125 12

80 upf,uhu 2 57.281 12

81 xga,xma 2 58.812 13

82 xga,xma 2 58.813 13

83 xga,xma 2 62.750 14

84 upf,uhu 2 65.562 15

85 upf,uhu 2 78.796 19

86 upf,uhu 2 54.453 12

87 xga,xma 2 54.266 12

88 xga,xma 2 58.328 13

89 xga,xma 2 57.328 12

90 upf,uhu 2 57.594 13

91 upf,uhu 2 90.656 19

92 upf,uhu 2 66.969 15

93 upf,uhu 2 65.672 15

94 xga,xma 2 74.250 15

95 upf,uhu 2 61.687 14

96 xga,xma 2 59.938 13

97 upf,uhu 2 68.375 14

98 xga,xma 2 70.797 15

99 xga,xma 2 66.719 14

100 xga,xma 2 62.375 13

Table C.2: Results of running the adapted Algorithm 2 on Problem Set 2.
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