
A Quantum Polynomial Hierarchy and a Simple
Proof of Vyalyi’s Theorem

Lieuwe Vinkhuijzen

ii

Contents

Introduction v

1 Introduction to computational complexity 1

1.1 Complexity classes . 1

1.1.1 Reductions . 2

1.1.2 Closure . 3

1.2 Oracle machines . 4

1.2.1 Lowness . 7

1.3 Definitions and table of nomenclature 7

2 The quantum polynomial hierarchy 13

2.1 Properties of the quantum polynomial hierarchy 14

2.1.1 Conditional collapses . 15

2.1.2 Upper bounds on the quantum polynomial hierarchy 17

2.2 Closure properties of QMA . 18

2.3 A new proof of a theorem by Vyalyi 26

2.4 Closure properties of QAM . 30

2.5 Towards a quantum Toda’s theorem 35

2.5.1 Towards collapsing the quantum polynomial hierarchy 36

2.6 Related work and open problems 38

iii

iv CONTENTS

3 A QMA-Complete problem: the Local Hamiltonian 41

3.0.1 Preliminaries on Projection operators 42

3.0.2 Selecting a random qubit . 44

3.1 The Local Hamiltonian Problem . 45

3.1.1 Completeness: A small eigenvalue when the answer is “yes” 55

3.1.2 Soundness: Lower bound when the answer is “no” 57

3.1.3 Realization of the counter 60

3.1.4 Some remarks about the proof 62

3.2 A relativized version of the Local Hamiltonian problem 63

4 Acknowledgements 69

Introduction

A major question in computational complexity theory is to understand the relation
between classical computation and quantum computation: if a quantum computer
can solve a problem efficiently, is there also a (potentially randomized) classical
algorithm for it (in complexity-theoretic jargon, we ask: is BPP = BQP)? And
if a candidate solution to a problem can be quickly verified classically, can it be
quickly found by a quantum computer (is NP ⊆ BQP)?

While these questions have remained wide open, exciting progress has been
made in the last two decades. For example, there is a quantum analogue of the class
NP, called QMA, of problems that seem intractable to solve, but where candidate
solutions can be efficiently checked on a quantum computer. Even the concept of
NP-completeness is mirrored in a growing number of QMA-complete problems
that arise naturally in the context of quantum mechanics. In this thesis, we explore
one of these QMA-Complete problems, the Local Hamiltonian problem, which
is a natural generalization of classical constraint satisfaction problems, in which
constraints are allowed to destructively interfere with one another.

A central object of study in classical computational complexity is the poly-
nomial hierarchy, which generalizes the concept of non-determinism. Inspired by
this approach, we define a new quantum analogue of this object, which we call the
quantum polynomial hierarchy, and use a novel method of relativizing the afore-
mentioned Local Hamiltonian problem to show that each level of this hierarchy
has complete problems. We use these ideas to give a shorter and simpler proof of
a theorem by Vyalyi.

The similarity between the two hierarchies extends further than complete prob-
lems: we survey a host of theorems related to the classical hierarchy, and show
that they mostly fall into two categories. Either a theorem has an elegant quantum
analogue and its classical proof requires minimal adaptation, or adapting the proof
fails for one of a variety of interesting reasons. For example, several conditional
collapses of the hierarchy carry over to the quantum case, but we fail to adapt
Toda’s theorem because it relies on Boolean formulae having a discrete number

v

vi INTRODUCTION

of solutions, whereas the set of states accepted by a quantum circuit may be un-
countably infinite. This way we obtain new insights into which proofs, and which
parts of those proofs, are contingent on the fact that the underlying computation
is classical and not quantum, which may be valuable by themselves.

Chapter 1

Introduction to computational
complexity

Computational complexity theory is the branch of computer science which will
eventually resolve the P vs NP conjecture. It takes a top-down approach to com-
puter science: rather than taking a specific problem and analyzing several algo-
rithms which make different tradeoffs on time and memory consumption, we fix
bounds on the use of resources and then associate with those bounds the infinite set
of problems that can be solved by algorithms whose resource consumption obeys
those bounds. The resources may be traditional - the amount of time and memory
used, the number of random coins flipped - but often they are novel and esoteric-
looking resources that are specific to complexity theory, like non-deterministim,
alternation and interaction. This results in a vast zoo of “complexity classes”,
corresponding to the various ways of choosing bounds on the resources. While
sometimes we do classify a particular problem as belonging to a particular class,
to us that will be a means to an end, namely to understand the relationship be-
tween complexity classes, with the ultimate goal of understanding whether the
relationship between P and NP is equality, or inequality.

Acknowledging that complexity uses several tools less known to other areas of
computer science, this chapter lays out the ones that feature in this thesis.

1.1 Complexity classes

Most of computer science is concerned with finding algorithms to solve problems;
to map an input to an output. In this thesis we analyze the simplest kind of those

1

2 CHAPTER 1. INTRODUCTION TO COMPUTATIONAL COMPLEXITY

problems, namely the ones whose output is only a single bit: the algorithm gets
some input string and its job is to output either 0 or 1, where the answer depends
only on the current input and not on previous input or sensory data from the
environment. We call the set of inputs for which the answer is 1 the language
that the algorithm must accept. For example, the language Primes is the set of
(binary strings which represent) prime numbers, and the language SAT is the set
of satisfiable Boolean formulae.

Recently, Agrawal et. al [8] showed that Primes ∈ P by discovering a deter-
ministic polynomial-time algorithm which, when it is given a number p, outputs
1 if p is a prime, and 0 otherwise. When it outputs 1, we say that it accepts
the input. The set P consists precisely of the languages with this property. The
definition of P is that it is the set of all languages which can be solved by a de-
terministic Turing Machine which halts on every input and for which there is a
polynomial function p(n) such that for all inputs x, the algorithm takes at most
p(length(x)) steps. The class NP consists of those languages L for which there
exists a polynomial-time Turing Machine M such that, if x ∈ L, then there is
a y such that M(x, y) accepts, whereas if x 6∈ L, then for all y, M(x, y) rejects.
Definitions of all complexity classes used in this thesis can be found in Section 1.3.

In spite of these robust definitions and much research, we do not know which
languages are in P and which are not; for example, we do not know whether SAT
is in P.

1.1.1 Reductions

A typical way to measure the complexity of a problem is to find the “best” al-
gorithm for it according to some metric, for example the fastest one. But in
computational complexity theory, that metric may be one of many incompara-
ble types of resource consumption, and time consumption is not always the most
meaningful one.1 To compare the relative difficulty of two problems, our metric
of choice is reducibility. A general and natural way to establish that, for example,
the problem SAT is at least as hard as Primes, if not harder, is to establish a
reduction from Primes to SAT.

The simplest type of reduction is the Turing reduction. A language L Turing-
reduces to a language K, written L ≤T K if L is decided by a Turing Machine
which is allowed to make queries of the form, “is s ∈ K?” and receive the answer
instantly. We say that the machine has oracle access to K. If the machine runs

1Because time consumption is not a measure which preserves the subset relation between
complexity classes.

1.1. COMPLEXITY CLASSES 3

in polynomial time, we write L ≤pT K (in the notation, the T stands for Turing
and the p for polynomial). There are no restrictions on the number of queries the
Turing Machine makes (except of course that this number will be bounded from
above by the machine’s running time). In this work we will always take K to be
a computable language, but in general this is not required.

For example, the problem Clique, of deciding whether a graph G has a clique
of size k, can be Turing-reduced to the problem MaxClique, of deciding whether
the largest clique in G has size k: one repeatedly asks, is the largest clique of size
1? Is it of size 2? And so on, up to n, at which point we will know the size m of
the largest clique. If m ≥ k, then we output yes ; otherwise we output no.

A finer notion of reducibility is the Karp-reduction.2 A language L Karp-
reduces to K, written L ≤m K, if there is a function f such that for all strings
x ∈ {0, 1}∗, x ∈ L ⇐⇒ f(x) ∈ K. Instances of L, then, can be “rewritten” as
instances of K. Put another way, a Karp reduction is a Turing reduction in which
the machine is allowed to make one query to K and must copy the query’s answer
as its output. If the function is computed in a polynomial amount of time, we
write L ≤pm K. The fact that every language in NP can be reduced this way to
SAT is the classic Cook-Levin theorem and establishes that SAT is NP-complete.

1.1.2 Closure

The most elementary questions one can ask about a complexity class are what its
closure properties are. For example, if L and K are in NP, is the language L∩K
also in NP? In this case, the answer is yes, and we say that NP is closed under
intersection. Similarly, a class can be closed under union.

A complexity class C is closed under complement if L ∈ C ⇐⇒ L ∈ C.
It is not known or expected, for example, that NP is closed under complement:
for if a Boolean formula is not satisfiable, how could somebody convince you
of that, other than by going through all possible truth assignments? We write
co-C = {L | L ∈ C} to denote the set of complements of languages in C, for
example co-NP contains the language of Boolean formulas that are not satisfiable
and the set of graphs that do not have a Hamilton path, and so forth. It is
immediate that for any complexity class, C ∩ co-C is closed under complement.
We also have C ⊆ co-C ⇐⇒ C = co-C ⇐⇒ C = C ∩ co-C.

One salient property of any complexity class C is that if K ∈ C, and L is easier

2Some texts use the term many-one reduction, and say that Primes many-one reduces to
SAT, hence the m in ≤p

m.

4 CHAPTER 1. INTRODUCTION TO COMPUTATIONAL COMPLEXITY

than K, then C had better contain L. Otherwise, the idea that a complexity class
is a description of resource bounds and the algorithms which operate within them,
is violated. This intuition is formalized when a class C is closed under reductions,
meaning that for every language K in C, C also contains every language that
reduces to L.

In saying this, one must be careful to specify what type of reduction one has in
mind. For example, NP is known to be closed under Karp reductions, is expected
but not known to be closed under randomized Karp reductions, but is not known
or expected to be closed under Turing reductions. As another example, it is easy
to see that NP ∩ co-NP is closed under Karp reductions, but it takes some work
to show that NP∩co-NP is closed under Turing reductions, and to our knowledge
this work is the first which notices that the quantum version of this theorem is
true, namely QMA ∩ co-QMA is also closed under Turing reductions (though
we do not wish to alarm the reader, and assure her that the proof is very readable
and in fact only uses elementary linear algebra).

1.2 Oracle machines

We mentioned Turing reductions earlier, in which a machine has instant access
to some (presumably difficult) language. This is an appropriate technique in the
context of reductions, but it is also a useful technique in slightly deeper complexity
theory. When in the 70’s, researchers were trying to prove P 6= NP, but the
problem wouldn’t budge, a natural step was to just give the deterministic machine
the SAT function for free, defining a new class called ∆P

2 , which was presumably
much more powerful than P because we have P ⊆ NP ⊆ ∆P

2 . Hence it was hoped
that proving P 6= ∆P

2 would be easier than proving P 6= NP.

The technique of giving algorithms instant access to a problem is called rela-
tivization and the language to which they gain access is called the oracle language
or simply the oracle. Formally, we have to perform minor surgery on the Turing
Machine model to account for the presence of oracles. All oracle Turing Machines
have three additional special states qquery, qyes, qno (not to be confused with qaccept
and qreject) and one additional write-only tape, called the oracle tape. When the
machine enters the state qquery, the string s on the oracle tape is considered. If
s ∈ L, where L is the oracle, the machine transitions to the state qyes; otherwise,
if s 6∈ L, it goes to qno. Lastly, the content of the tape is erased and the head
of the oracle tape is brought back to the first square. This whole procedure is
counted as one time step (alternatively, we can say that deciding whether s ∈ L is
not counted towards execution time). If M is an oracle Turing Machine and L is a

1.2. ORACLE MACHINES 5

language, we denote with ML the machine having oracle access to L, e.g. MSAT.

To relativize a complexity class, rather than a single Turing Machine, with a
particular language L, one takes the set of all appropriate Turing Machines, gives
them oracle access to L, and then considers the set of resulting languages. For
example, to relativize P with SAT, one takes all polynomial-time deterministic
oracle Turing Machines, and gives them oracle access to SAT. The resulting class
is denoted PSAT. The “real” class P, in this context, is P∅, i.e. we give the oracle
machines access to the empty set. We sometimes speak of relativizing a class, say
P, with another class, say NP. In this case we simply take the union of PL over
L ∈ NP. Specifically, let TM(P) be the set of deterministic, polynomial-time
oracle Turing Machines. Then

PNP ≡
⋃

L∈NP

⋃
M∈TM(P)

Language
(
ML
)

(1.1)

There is a subtle abuse of language going on in the left side of this equation.
When we put NP in the superscript, we mean the set of languages accepted by
polynomial-time non-deterministic Turing Machines, but by P in the base, we
refer to a set of oracle Turing Machines. The whole expression PNP, therefore,
means: the union, over L ∈ NP, of the sets of languages accepted by determin-
istic, polynomial-time oracle Turing Machines with access to L. For example,
the statement PNP∩co-NP = NP ∩ co-NP unambiguously means that the class
NP ∩ co-NP is closed under Turing reductions.

Sometimes we will stack complexity classes, for example in one proof we need

the class NPNPNP

. A stack like ABC
is to be read from top to bottom. First we

consider the set of languages accepted by C-machines, and give those languages to
B-machines as oracles, resulting in the set of languages D = BC. Finally we give
all A-machines the languages in D as oracles.

The most interesting property of relativized complexity classes is no doubt that
their relationship with one another provably depends upon the oracle. Specifically,
there are languages Y and N such that, provably, PY = NPY and yet PN 6= NPN

[16] (Of course we do not know whether P∅ = NP∅!). Remember, therefore,
that complexity classes are defined by reference to the underlying Turing Machine
model, and are not defined by value as a set of languages.

Most theorems in complexity theory relativize, meaning that their theorem
statement is true relative to every oracle language. For example, the time hierarchy
theorem, proved in the seminal paper [18] by Hartmanis and Stearns which first
established computational complexity, states (roughly) that Turing Machines given

6 CHAPTER 1. INTRODUCTION TO COMPUTATIONAL COMPLEXITY

O(n3) time solve a strictly larger set of languages than Turing Machines given
only O(n2) time. The proof is simply a time-bounded version of the proof of the
undecidability of the Halting Problem, and uses as its main ingredient the fact
that there is a universal Turing Machine. But this is true in every oracle world:
given oracle access to a language L, there is a universal Turing Machine capable
of simulating all other machines that have oracle access to L, so this ingredient
relativizes.

In some sense, these theorems are widely applicable: they are always true,
even in the oracle model, relative to an uncountable number of languages! On the
other hand, there is a certain simplicity to them: They fail to observe any deep
or fundamental fact about the nature of computation that holds in the standard
Turing Machine model, but not in the oracle model, and hence are not sensitive
to the presence or absence of oracles. The fact that the oracles Y and N above

exist means that, whatever the proof of P
?
=NP, it cannot be one of these “simple”

theorems, and must use some nontrivial fact about computation other than the
existence of a universal Turing Machine. Hence relativization is known as one

of the three “formal barriers” towards P
?
=NP, along with the barriers of Natural

Proofs [50] and Algebrization [26]. See [17] and [25] for discussion and background.

Some relativizing theorems involve stacks of complexity classes. For example,
Toda’s theorem states that NPNP ⊆ PPP. To say that Toda’s Theorem relativizes
is to say:

For all languages L ⊆ {0, 1}? : NPNPL

⊆ PPPL

(1.2)

For all complexity classes A,B,C, we have:

If A ⊆ B then CA ⊆ CB (1.3)

If A = B then CA = CB (1.4)

Note that the same does not hold for languages. If L ⊆ K then it does not
follow that CL ⊆ CK (for example, take K = {0, 1}∗ and L some undecidable
language). However, if we consider not the ⊆ subset relation but the ≤ reduction
relation, then the obvious implications do hold. Namely, if L ≤R K then CL ⊆
CK where R is some suitable notion of reduction (e.g. polynomial-time Karp
reductions) and C is closed under R-reductions. It is not true in general that if
CA ⊆ CB then A ⊆ B (there are provable counterexamples, e.g. take A = C =
PSPACE and B = LogSPACE).

1.3. DEFINITIONS AND TABLE OF NOMENCLATURE 7

1.2.1 Lowness

It is not always true that giving a complexity class an oracle changes it. For
example, if L ∈ P, then PL = P, intuitively because P algorithms can call other
P algorithms as subroutines. We say that L is low for P. As another example,
the language GraphIsomorphism is low for NP and for PP [22]. Intuitively, a
language being low for some class indicates that it is not nearly as complex as the
languages in that class, because even instant access to solutions provides no help
to solve new problems.

Counterintuitively, it is not true that if L is low for C and C ⊆ D then L is low
for D, even though D contains more difficult problems than C. This breaks a little
bit with the idea that if C ⊆ D then the problems of D are more difficult than
those in C. For example, we know that NP ⊆ PP and that NP ∩ co-NP is low
for NP, but we do not know whether NP∩co-NP is low for PP (Here PP is the
class of problems solvable by polynomial-time Turing Machines which are allowed
to flip random coins but which must give the right answers with higher probability
than wrong answers. The language MajoritySAT is complete for this class).
Why this discrepancy in lowness? At a high level, it is because these two classes
are defined with different Turing Machine models: the former according to the
non-deterministic model, the latter the probabilistic model. A language is in NP
if a solution can be easily checked, whereas a language is in PP if there is a good
way to control the number of accepting computation paths of a non-deterministic
machine that accepts it. These two concepts do not carry over one-to-one.

This pair of classes, NP and PP, is a good example of where difficulty as
gauged by time consumption by algorithms and by reductions is very different.
The problems SAT and MajoritySAT both take 2O(n) time by today’s best algo-
rithms, yet SAT ≤pm MajoritySAT and it is not obvious that MajoritySAT ≤pm
SAT, in fact the former statement relativizes, but the latter statement does not.
Hence NP is usually thought of as a smaller, much less powerful class than PP in
terms of computational complexity.

1.3 Definitions and table of nomenclature

If x ∈ {0, 1}n is a string of bits, then by |x〉n we mean the x-th basis vector in C2n :

|x〉n ≡ [0 0 · · · 0︸ ︷︷ ︸
x

1 0 0 · · · 0︸ ︷︷ ︸
2n−x−1

]T (1.5)

The mapping from strings to numbers is the natural one, so the string 000

8 CHAPTER 1. INTRODUCTION TO COMPUTATIONAL COMPLEXITY

represents the number 0, the string 011 represents the number 3, etc. Here a state’s
subscript denotes its size, that is, the number of qubits. For example, |x〉n consists
of n qubits. Sometimes the subscript is omitted because the size of the register is
immaterial, or obvious from context. We denote by B ≡ {z ∈ C2 | |z| = 1} the
state space of a qubit, and by B⊗n ≡ {z ∈ C2n | |z| = 1} the state space of n
qubits.

The letter x will always refer to the input string to the current machine, and n
is reserved to refer to its length, n = length(x). Whenever a mention of polynomial
time, or polynomial space, is made, it is understood that we mean that the function
is polynomial as a function of n. The letters L and K always refer to languages,
i.e. L ⊆ {0, 1}∗. When a quantum gate takes an input register and a workspace
register, the workspace register is always initialised to |0〉, and we will often neglect
to specify how the operator behaves when the workspace is not properly initialised,
as it is clear that the operator can be completed to a unitary operator in many
ways.

Definition 1 BQP
A language L ⊆ {0, 1}∗ is in BQP if there is a polynomial w(n) and a classical
polynomial-time algorithm which on input x ∈ {0, 1}∗ outputs a description of
a quantum circuit Ux. This quantum circuit takes as input only a w(length(x))-
qubit register as workspace, initialised to |0〉w (it sometimes convenient to
think of Ux as having x “hardwired”), and satisfies the following requirements:

• If x ∈ L then Pr[Ux accepts |x〉] ≥ 2/3,

• If x 6∈ L then Pr[Ux accepts |x〉] ≤ 1/3.

Whenever there is an algorithm, such as the one described above, to generate a
circuit for each input, the resulting circuit family {Ux}x∈{0,1}∗ is called a polynomial
time uniformly generated circuit family, or a uniform circuit family for short. By
a counting argument, there are ℵ1 circuit families, but only ℵ0 algorithms, so most
circuit families are non-uniform. By a similar counting argument, there are ℵ1

Boolean functions f : {0, 1}∗ → {0, 1}, so most functions are not computable by
uniform circuits (or by any algorithm, for that matter).

1.3. DEFINITIONS AND TABLE OF NOMENCLATURE 9

Definition 2 QMA
A language L ⊆ {0, 1}∗ is in QMA if there are polynomials m(n), w(n) and a
uniform family of quantum circuits {Ux}x∈{0,1}∗ , taking an m(n)-qubit register
as input and a w(n)-qubit workspace, such that for all x ∈ {0, 1}∗:

• Completeness: If x ∈ L then there exists a quantum state |ψ〉m of m
qubits such that Pr[U accepts |ψ〉m] ≥ 2/3,

• Soundness: If x 6∈ L then for all quantum states |ψ〉m on m qubits,
Pr[U accepts |ψ〉m] ≤ 1/3.

The set {Ux}x∈{0,1}∗ of circuits is called the QMA protocol for L.

The state |ψ〉m is called the witness or the certificate for x, similar to how an
NP Machine accepts a certificate.

In the definitions above, the constants 1/3 and 2/3 can be replaced by 2−ε(n) and
1−2−ε(n) whenever ε(n) is a polynomial [62]. This is known as error amplification,
or boosting (and is usually achieved simply by executing the protocol a number of
times and taking the majority vote among the executions). A circuit with a small
probability or error is often called a boosted circuit.

The following list of complexity classes is far from exhaustive, and the reader is
encouraged to browse the Complexity Zoo [66] for all 535 complexity classes, and to
consult a textbook such as Arora and Barak’s Computational Complexity: A Mod-
ern Approach[1] for a comprehensive introduction to computational complexity.
All occurrences of n refer to the length of the string x, thus n = |x| = length(x).

10 CHAPTER 1. INTRODUCTION TO COMPUTATIONAL COMPLEXITY

P Polynomial time The set of languages accepted by Turing Machines
whose running time t(n) is bounded from above
by a polynomial: for all x ∈ {0, 1}∗ : t(n) ≤ nk.

NP Nondeterministic
polynomial time

The set of languages L for which there is
a polynomial-time nondeterministic Turing Ma-
chine M such that (i: completeness) if x ∈ L then
M(x) has an accepting computation path and (ii:
soundness) if x 6∈ L then every computation path
of M(x) rejects.

PP Probabilistic polyno-
mial time

Languages such that there is a polynomial-time
randomized Turing Machine M such that on all
inputs, the probability that M(x) outputs the cor-
rect answer is greater than the probabiltiy of ob-
taining the wrong answer.

BPP Bounded-error prob-
abilistic polynomial
time

Same as PP except the machine must output the
right answer with probability at least 2/3.

BQP Bounded-error quan-
tum polynomial time

Same as BPP, except the Turing Machine is a
quantum circuit.

MA Merlin-Arthur Languages such that there is a randomized
polynomial-time Turing Machine M such that (i:
completeness) if x ∈ L, then there is a string y
such that M(x, y) accepts with high probability
and (ii: soundness) if x ∈ L then M(x, y) rejects
with high probability for all strings y.

QCMA Quantum Merlin,
Classical Arthur

Same as MA except the machine is a uniform
quantum circuit

QMA Quantum Merlin
Arthur

Same as QCMA except the witness can be a
quantum state.

AM Arthur Merlin Like MA but Arthur gets to ask Merlin a ques-
tion, i.e. send a message.

QAM Quantum Arthur
Merlin

Like AM but Arthur has a quantum computer.
The question is still a classical message.

PSPACE Polynomial space Same as P except the usage of space, instead of
time, is bounded by a polynomial.

PH Polynomial hierarchy Let ΣP
1 = NP and ΣP

k+1 = NPΣP
k . Then PH =

∪∞k=1ΣP
k .

CH Counting hierarchy Let CP
1 = PP and CP

k+1 = PPCP
k . Then CH =

∪∞k=1C
P
k .

L ≤pm K Karp-reducibility There is a polynomial-time computable function f
such that, for all x ∈ {0, 1}∗, x ∈ L ⇐⇒ f(x) ∈
K. We say that L m-reduces to K.

L ≤pT K Turing-reducibility There is a polynomial-time oracle Turing Machine
with oracle access to K which solves L.

K ∈ C-Complete Every language in C can be reduced to K (un-
der some appropriate notion of reduction, usually
mentioned in context), and K ∈ C.

1.3. DEFINITIONS AND TABLE OF NOMENCLATURE 11

The following inclusions are known [1, 58] 3 , and relativize. It is unknown
whether any of the inclusions are strict.

Theorem 1. For all oracles O ⊆ {0, 1}∗ :

PO ⊆ NPO ⊆ QMAO ⊆ PPO ⊆ CHO ⊆ PSPACEO (1.6)

3We cite [58] for the result QMA ⊆ PP, because it is the first published proof known to the
authors. It is mentioned in the text that defines QMA [62], where it is left as an excercise to
the reader.

12 CHAPTER 1. INTRODUCTION TO COMPUTATIONAL COMPLEXITY

Chapter 2

The quantum polynomial
hierarchy

Consider the following problem. The input consists of a graph G and an integer
k, and the output should be “yes” if and only if the largest clique in G has size k.

It is not clear that this problem is in NP: Certainly if G has a clique of size
k, then that can be certified by giving the vertices of the clique, but there is no
obvious way to certify that there is no larger clique. Moreover, the problem is
not easily seen to be in co-NP either: if the largest clique of G does not contain
exactly k vertices, then that can be verified if it has an even larger clique, but if
its largest clique is smaller than k, what then?

However, if we are allowed to call the (NP-Complete) language Clique as an
oracle, then this puzzle is easily solved: first we query Clique on 〈G, k〉 to see
whether G has any clique of size k, and then we query Clique on 〈G, k + 1〉 to
see whether k is the size of the largest clique, or not.

The polynomial hierarchy neatly classifies a host of problems such as these,
which do not seem to be captured by NP-Completeness. The example above can
be solved by a polynomial-time, deterministic oracle Turing Machine with access
to an NP language, but one may also imagine giving a non-deterministic Turing
Machine an NP oracle. Repeating this procedure recursively gives us the various
levels of the polynomial hierarchy: The first level consists of just P and NP, the
second level is PNP and NPNP, which we call ∆P

2 and ΣP
2 , and the third level,

called ΣP
3 , is NP with an oracle for a ΣP

2 language, denoted NPΣP
2 . This hierarchy

was first defined in [3] by Meyer and Stockmeyer.

Let’s see two more examples motivating the study of the polynomial hierarchy.

13

14 CHAPTER 2. THE QUANTUM POLYNOMIAL HIERARCHY

First, each of the levels of the hierarchy has natural complete problems. For
example, the problem of deciding, given a Boolean formula φ, whether there exists
a y such that for all z : φ(y, z) is true, is the archetypical ΣP

2 -Complete problem.
Second, in 1983, Sipser [12] showed how any language in the class BPP can be
rewritten this way, as a predicate with two quantifiers, showing that BPP ⊆ ΣP

2 .
Hence the two ostensibly unrelated concepts of nondeterminism and randomness
are brought together by studying the polynomial hierarchy.

Motivated by the fruits of the study of this classical object, we define a quantum
version by analogy. In this analogy, P corresponds to BQP, NP corresponds to
QMA, and subsequent levels of the hierarchy are defined recursively as before.
We call the resulting hierarchy BQPH:

ΣBQP
1 =QMA ΣBQP

i+1 =QMAΣBQP
i (2.1)

∆BQP
1 =BQP ∆BQP

i+1 =BQPΣBQP
i (2.2)

BQPH =
∞⋃
i=1

ΣBQP
i (2.3)

2.1 Properties of the quantum polynomial hier-

archy

A fundamental property of the polynomial hierarchy is that either it is infinite,
or else it “collapses” to some finite level. By infinite, we mean that each level
is a strict subset of the next: NP (ΣP

2 (ΣP
3 (· · · . By “collapse”, we mean

that for some i, ΣP
i = ΣP

k for all k ≥ i and hence ΣP
i = PH. We say that the

hierarchy has collapsed to the i-th level. In a sense, this is the only way it can
collapse: it cannot be that ΣP

i = ΣP
i+1 6= ΣP

i+2. Because many researchers believe
that the polynomial hierarchy does not collapse, showing that a hypothesis implies
a collapse has become a common way of giving evidence against a hypothesis.

We will show that the quantum polynomial hierarchy collapses in the same
way under analogous hypotheses. The following theorem will be the principal
ingredient.

Theorem 2. For every oracle set O ⊆ {0, 1}?, QMABQPO = QMAO, i.e.
BQPO is low for QMAO.

In other words, the statement that BQP is low for QMA relativizes.

2.1. PROPERTIES OF THE QUANTUM POLYNOMIAL HIERARCHY 15

2.1.1 Conditional collapses

The simplest and earliest conditional collapse of the classical polynomial hierarchy
is the following: if P = NP then the polynomial hierarchy collapses to PH = P
[3]. This theorem is true for our hierarchy, too:

Theorem 3. If BQP = QMA then BQPH = BQP.

Proof. As a warm-up, let’s first prove that QMAQMA = BQP under the assump-
tion that BQP = QMA. By hypothesis, we get QMAQMA = QMABQP. But
we know from Theorem 2 that BQP is low for QMA, i.e. QMABQP = QMA.
Hence the case ΣBQP

2 = BQP is proved. In list format:

BQP =QMA The assumption (2.4)

ΣBQP
2 =QMAQMA By definition (2.5)

=QMABQP By assumption (2.6)

=QMA BQP is low for QMA (2.7)

=BQP By assumption (2.8)

For higher levels of the hierarchy, the proof is by induction. The base case is
ΣBQP

1 = BQP. For the induction case, we suppose that ΣBQP
i = BQP for some

i and will derive that ΣBQP
i+1 = BQP.

By definition, ΣBQP
i+1 = QMAΣBQP

i . Substituting the induction hypothesis, we

get QMAΣBQP
i = QMABQP = BQP. In list format:

ΣBQP
i =BQP The induction hypothesis (2.9)

ΣBQP
i+1 =QMAΣBQP

i By definition (2.10)

=QMABQP By the induction hypothesis (2.11)

=QMA BQP is low for QMA (2.12)

=BQP By assumption (2.13)

For every i, the class ΣBQP
i collapses to BQP, which we substitute in the

definition of BQPH to complete the proof:

BQPH =
∞⋃
i=1

ΣBQP
i =

∞⋃
i=1

BQP = BQP (2.14)

16 CHAPTER 2. THE QUANTUM POLYNOMIAL HIERARCHY

We are now ready to proceed to the next theorem, which generalizes Theorem
3 to other levels of the hierarchy:

Theorem 4. If ∆BQP
i = ΣBQP

i , then BQPH = ∆BQP
i .

Proof. The proof is by induction. Take i to be some positive integer. The case of
i = 1 is the case where BQP = QMA and is covered in Theorem 3. For i > 1, the
base case of the induction is if ∆BQP

i = ΣBQP
i then ∆BQP

i = ΣBQP
i+1 . The induction

step will be that if ∆BQP
i = ΣBQP

i+k then ∆BQP
i = ΣBQP

i+k+1. First, the base case in
list format:

∆BQP
i =ΣBQP

i The assumption (2.15)

ΣBQP
i+1 =QMAΣBQP

i By definition (2.16)

=QMA∆BQP
i By assumption (2.17)

=QMABQP
Σ
BQP
i−1

By definition of ∆BQP
i (2.18)

=QMAΣBQP
i−1 BQPis low for QMA (2.19)

=ΣBQP
i By definition (2.20)

=∆BQP
i By hypothesis (2.21)

The induction case is similar. The induction hypothesis is that ∆BQP
i = ΣBQP

i+k

for some k ≥ 1, and will imply that ∆BQP
i = ΣBQP

i+k+1.

∆BQP
i =ΣBQP

i+k , k ≥ 1 Induction hypothesis (2.22)

ΣBQP
i+k+1 =QMAΣBQP

i+k By definition (2.23)

=QMA∆BQP
i By induction hypothesis (2.24)

=QMABQP
Σ
BQP
i−1

By definition (2.25)

=QMAΣBQP
i−1 BQP is low for QMA (2.26)

=ΣBQP
i By definition (2.27)

=∆BQP
i By assumption (2.28)

So for every k ≥ 0, ∆BQP
i = ΣBQP

i+k , so BQPH = ∆BQP
i .

2.1. PROPERTIES OF THE QUANTUM POLYNOMIAL HIERARCHY 17

The classical hierarchy has one more elementary conditional collapse, namely
if any level is closed under complement, then it collapses to that level, e.g. if
NP = coNP then NP = PH. In the quantum case, we do not presently know how
to prove the analogous statement, i.e. if QMA = coQMA then QMA = BQPH.
The principal difficulty seems to lie in showing that QMAQMA∩co-QMA ⊆ QMA,
from which the desired results would follow immediately, or indeed BQPQMA∩co-QMA ⊆
QMA, from which the desired collapse would not immediately follow. We do, later
on, prove something almost as good, namely PQMA∩co-QMA ⊆ QMA (Theorem
12), which we use to give a novel, very short proof of a theorem by Vyalyi (Theorem
16).

There are many other less elementary conditional collapses. For example, the
Karp-Lipton Theorem [21] states that the hierarchy collapses to PH = ΣP

2 if
NP ⊂ P/poly, and we will return to quantum analogues of it in Section 2.6.

2.1.2 Upper bounds on the quantum polynomial hierarchy

We present one upper bound on the quantum polynomial hierarchy, namely that it
is contained in the counting hierarchy. This follows from the fact that the inclusion
QMA ⊆ PP relativizes [9].

Theorem 5. Our hierarchy is in the counting hierarchy: BQPH ⊆ CH. In fact,
for each i, ΣBQP

i ⊆ CP
i .

Proof. Recall that the counting hierarchy, CH, is defined as CP
1 = PP and CP

i+1 =

CP
i

PP
with CH =

⋃∞
i=1 CP

i .

The proof is by induction. In the base case, we have ΣBQP
1 = QMA ⊆ PP =

CP
1 , which was shown by Marriot and Watrous [9]. In the induction step, we will

assume that ΣBQP
i ⊆ CP

i and derive ΣBQP
i+1 ⊆ CP

i+1.

Suppose ΣBQP
i ⊆CP

i , for i ≥ 1 Induction hypothesis (2.29)

ΣBQP
i+1 =QMAΣBQP

i By definition (2.30)

⊆QMACP
i Induction hypothesis (2.31)

⊆PPCP
i QMA ⊆ PP relativizes (2.32)

=CP
i+1 By definition (2.33)

Concluding, by induction: for all i, ΣBQP
i ⊆ CP

i , and hence BQPH ⊆ CH.

18 CHAPTER 2. THE QUANTUM POLYNOMIAL HIERARCHY

The proof works for any complexity class C which relativizingly contains QMA,
and where it makes sense to define a hierarchy ΣC

i+1 = CΣC
i . So one could take

C = A0PP , which is defined by Vyalyi in [58], for example.

Because the counting hierarchy is contained in PSPACE, the following is
immediate.

Theorem 6. BQPH ⊆ PSPACE.

We have given only upper bounds on ΣBQP
i . It would be interesting to have

lower bounds, of the form QAM ⊆ ΣBQP
3 , for example. As it stands now, it may

still be that the counting hierarchy is infinite, yet BQPH collapses to BQP and
still BQP (PP and BQP (QAM.

2.2 Closure properties of QMA

This section contains the proof that QMA is closed under deterministic polynomial-
time Turing reductions, which is the main ingredient to the simpler proof of Vya-
lyi’s Theorem in Section 2.3. As a warm-up, we first show that QMA is closed
under intersection. The main ingredient is Theorem 8, which tells us about sit-
uations in which two subcircuits act independently and hence we do not have to
worry about destructive interference. To streamline its proof, we recall the fact
that every state has a Schmidt Decomposition.

Theorem 7 (Schmidt Decomposition). For every pure state |ψ〉 ∈ A ⊗ B there
are orthonormal sets {|ai〉} ⊂ A, {|bi〉} ⊂ B such that

|ψ〉 =
∑
i

yi |ai〉 |bi〉 (2.34)

where yi are all nonnegative real numbers.

The next lemma, the Entanglement Independence Lemma, says that if two
QMA protocols possess soundness individually, that property is preserved when
they are combined in a single circuit and their inputs are entangled, as long as
they are implemented and measured independently, as in Figure 2.1. This is not
obvious a priori, because oftentimes quantum circuits behave in surprising ways
when clever use is made of entanglement. The result of the Theorem, then, is
that in this case, no such clever use is possible for Merlin: entangling the two
certificates for the two circuits gives him no advantage. We give two proofs of this
theorem.

2.2. CLOSURE PROPERTIES OF QMA 19

|ψ〉m
U

|0〉w

|φ〉m
V

|0〉w

Figure 2.1: The circuits U and V receive inputs that may be entangled.

Theorem 8 (Entanglement Independence Lemma). Let U, V be two quantum cir-
cuits as in Figure 2.1, both receiving an m-qubit input and a w-qubit workspace.
Suppose that U and V accept with probability at most a and b, respectively, regard-
less of their m-qubit input. Then the probability that both U and V accept when
they are implemented jointly, and when their inputs may be entangled, is at most
a · b.

We will first prove that the probability is at most a, using simple algebraic
manipulations.

First proof of Theorem 8. Let ΠU and ΠV denote the measurement operators that
correspond to the events that U and V accept. In general, the probability that a
system |ψ〉 is measured according to the event corresponding to ΠA and then ΠB

is ‖ΠBΠA |ψ〉 ‖2 = 〈ψ|ΠAΠBΠA |ψ〉. In our case, the measurement operators are
ΠU ⊗ I and I ⊗ΠV . These operators commute, so it makes no difference whether
one or the other comes “first”.

If the input is the state |ψ〉 =
∑

i zi |ai〉 |bi〉, then the probability that both U
and V accept this input is

P =

∣∣∣∣∣(ΠU ⊗ ΠV) · (U ⊗ V) ·
∑
i

zi |ai〉 |0〉 |bi〉 |0〉

∣∣∣∣∣
2

(2.35)

=

∣∣∣∣∣∑
i

zi(ΠUU |ai〉 |0〉)⊗ (ΠV V |bi〉 |0〉)

∣∣∣∣∣
2

(2.36)

≤

∣∣∣∣∣∑
i

ziΠUU |ai〉 |0〉

∣∣∣∣∣
2

= Pr

[
U accepts

∑
i

zi |ai〉

]
≤ a (2.37)

20 CHAPTER 2. THE QUANTUM POLYNOMIAL HIERARCHY

The next proof uses a trick by Marriot and Watrous [9]. They are able to
express the probability that a circuit accepts an m-qubit input in terms of the
eigenvalues of a 2m × 2m matrix, as in Equation 2.39. The equality follows from
the fact that(I⊗m ⊗ |0〉)(|ψ〉m) = |ψ〉m ⊗ |0〉.

P [U accepts |ψ〉] = 〈ψ| 〈0|U †ΠU |ψ〉 |0〉 (2.38)

= 〈ψ| ·
(
(I⊗m ⊗ 〈0|) · U †ΠU · (I⊗m ⊗ |0〉)

)
|ψ〉 (2.39)

Second proof of Theorem 8. Let

Ũ = (I⊗m ⊗ 〈0|) · U †ΠU · (I⊗m ⊗ |0〉) (2.40)

and define Ṽ analogously. Clearly these operators are Hermitian, so their eigen-
values are real, so their “largest” eigenvalue is well-defined.

According to Equation 2.39, for anym+m-qubit quantum state |φ〉 =
∑

i yi |ai〉 |bi〉,
the probability that U and V both accept is 〈φ| (Ũ ⊗ Ṽ) |φ〉. This probability is
maximized at the largest eigenvalue of Ũ ⊗ Ṽ . But the eigenvalues of Ũ ⊗ Ṽ are
exactly the products of the eigenvalues of Ũ and Ṽ . More precisely, for every pair
of eigenvalues λ, µ of U and V , λ · µ is an eigenvalue of Ũ ⊗ Ṽ .

By assumption, the largest eigenvalues of U and V are at most a and b, so the
largest eigenvalue of Ũ ⊗ Ṽ is at most a · b.

The approach of Marriot and Watrous has the advantage that the qubits of
the workspace are encapsulated by the operator Ũ , which allows us to express
acceptance of U , and in turn express perfect play by Merlin, in terms of the
eigenvalues of Ũ :

P [U accepts | Perfect play by Merlin] = max
|ψ〉
〈ψ| Ũ |ψ〉 (2.41)

This quantity is maximized at an eigenvalue of Ũ , and the message that Merlin
will send to maximize Arthur’s probability of acceptance is a corresponding eigen-
vector. The second proof of Theorem 8 shows that if the circuit consists of multiple
non-interacting parts, then one of the maximizing eigenvectors is an unentangled
state. The upshot, then, is exactly what we wanted: Merlin has the ability to en-
tangle his certificates, but he gains no advantage from doing so, because Arthur’s
acceptance probability is maximized at an unentangled certificate.

The next theorem tells us that if some event happens with overwhelming prob-
ability (more precisely, with only exponentially small bias), then the probability

2.2. CLOSURE PROPERTIES OF QMA 21

that the event happens a polynomial number of times in a row is also overwhelm-
ing.

Theorem 9. If {Xi} are nk independent identically distributed random binary
variables with P [Xi = 1] ≥ 1− e−n and k a positive constant, then the probability
that Xi = 1 for all i tends to 1 as n→∞.

Proof. First we express the probability that all Xi = 1.

P (n) = Pr

 nk∧
i=1

Xi = 1

 = (Pr[X1 = 1])n
k

=
(
1− e−n

)nk

(2.42)

Recall the following limit.

lim
n→∞

(
1− 1

n

)n
=

1

e
(2.43)

We simply substitute our probability, which is P (n) = 1 − e−n, and our number
of trials, which is nk:

lim
n→∞

P (n) = lim
n→∞

((
1− 1

en

)en)nk

en

= lim
n→∞

(
1

e

)nk

en

= lim
n→∞

e−
nk

en (2.44)

Now we note that nk

en
tends to 0 as n→∞, which completes the proof:

lim
n→∞

Pr

 nk∧
i=0

Xi = 1

 = e0 = 1 (2.45)

In our setting, the random variable is the probability that a QMA circuit gives
the right output.

From here, it is easy and fun to derive the facts that QMA is closed under (i)
union and (ii) intersection, and (iii) that QMA∩co-QMA is closed under Turing
reductions. To see why QMA is closed under intersection, consider the circuit
in Figure 2.2: one simply asks Merlin for certificates to both problems, measures,
and accepts iff both of the circuits accept.

Theorem 10. QMA is closed under intersection.

22 CHAPTER 2. THE QUANTUM POLYNOMIAL HIERARCHY

Proof. Let A ∈ QMA and B ∈ QMA. For a particular input string x ∈ {0, 1}∗,
we now design a simple QMA protocol for membership in A ∩ B. Let U and V
be the circuits of the QMA protocols for the languages A and B, respectively.
We ask Merlin for two certificates |ψA〉p and |ψB〉q, feed them to the circuits and
measure the outcomes, like in Figure 2.2. We accept iff both circuits accept. The
difficulty is that Merlin can entangle the two certificates, but we will show that he
gains no advantage by doing so.

|ψA〉p
U

|0〉w •

|ψB〉q
V

|0〉w •

|0〉1

Figure 2.2: A circuit which receives two certificates |ψA〉p and |ψB〉q, possibly
entangled, and executes the protocols for languages A and B on them.

Part 1: Completeness. Suppose that x ∈ A ∩ B. Then Merlin can be
honest and send us the state |ψA〉p⊗|ψB〉q. These are two unentangled certificates
for membership of A and B, so the two subcircuits U and V can be analyzed
independently: U will accept with probability |ΠU |ψA〉 | ≥ 9/10 and V will accept
with probability |ΠV |ψB〉 ≥ 9/10. Therefore both circuits accept with probability
at least (9/10)

2 ≥ 2/3, which suffices to show that the protocol has completeness.

Part 2: Soundness. Suppose that x 6∈ A ∩ B, e.g. because x 6∈ A. Then
Merlin may send us any arbitrary, possibly highly entangled state. If U is imple-
mented alone, then it accepts any certificate with probability at most 1/3. Here,
we provide U with a well-initialised workspace of |0〉w, so by the Entanglement
Independence Lemma, U will also accept with low probability, at most 1/3, re-
gardless of how Merlin entangles its input register with the rest of the certificate.
Therefore the probability that the circuit as a whole accepts is also ≤ 1/3, so the
protocol has soundness.

As a warm-up for the proof that QMA is closed under Turing reductions, we
recall why NP has that property.

Theorem 11. NP∩coNP is closed under deterministic Turing reductions. That
is, PNP∩coNP = NP ∩ coNP.

2.2. CLOSURE PROPERTIES OF QMA 23

Proof. The trivial direction is NP ∩ co-NP ⊆ PNP∩co-NP, so we will only show
the other direction, PNP∩co-NP ⊆ NP ∩ co-NP. To this end, it is sufficient to
show that PNP∩co-NP ⊆ NP because P is closed under complement.

Let L ∈ NP∩co-NP be a language and ML a polynomial-time (say t(n)-time,
with n = |x| = length(x)) deterministic Turing Machine with oracle access to L.
Since L ∈ NP ∩ co-NP, there are non-deterministic Turing Machines Y and N
recognizing the languages L and L, respectively, both running in polynomial time
(say t′(n) time). If we manage to simulate ML with a non-deterministic machine,
we will have proved the theorem.

Clearly if we manage to obtain the answers to all the oracle queries ML makes,
then we can faithfully simulate ML and obtain the right answer. The central
insight is that we can obtain the answers by guessing and then verifying them.
Therefore the algorithm will be as follows.

Before we compute anything, (i) we non-deterministically guess the answers
a1, . . . , at(n) to all the queries that ML makes, (ii) we guess that the queries that
ML is going to make are the strings s1, . . . , st(n), and lastly (iii) we guess certificate
strings y1, . . . , yt(n) and z1, . . . , zt(n) for the machines Y and N , respectively.1 The
remainder of the computation is deterministic. The algorithm checks that its
guesses were correct: for each i, it checks that Y (si, yi) = ai and N(si, zi) = ¬ai
(meaning that, for example, if a2 = 1 then Y accepts the certificate y2 we guessed
for s2 and N rejects z2). If any of these checks fail, we have evidently guessed
incorrectly, and we reject.

Lastly, we simulate ML. When it makes the i-th query, we check that it queries

si
?
∈ L; if so, we feed it the answer ai and continue the simulation, but if not, we

immediately reject, because we have incorrectly guessed which strings ML would
query. When ML halts and accepts, we accept; otherwise we reject.

If ML accepts, then our machine accepts. The accepting paths are exactly
those that correctly guessed which stringsML was going to query, what the answers
were, and what certificates would satisfy Y and N . If ML rejects, then our machine
rejects too, because even the paths that obtained correct answers for the oracle
queries still reject when ML halts and rejects.

At long last, we are ready to prove that QMA is closed under Turing reduc-
tions.

1The strings si are not longer than t(n) bits, because ML runs in time t(n) bits. Therefore
the certificates yi are not longer than t′(t(n)) bits.

24 CHAPTER 2. THE QUANTUM POLYNOMIAL HIERARCHY

Theorem 12. The class QMA∩co-QMA is closed under deterministic polynomial-
time Turing reductions. That is, QMA ∩ co-QMA = PQMA∩co-QMA.

Proof. By the observations in Theorem 11, it suffices to give a QMA protocol for
a language in PQMA∩co-QMA. So let L ∈ QMA ∩ co-QMA and let ML be a
deterministic polynomial-time (say t(n)-time) Turing Machine with oracle access
to L, and let {Ys} and {Ns} be the circuit families corresponding to the QMA
protocols for L and L, respectively.

In the previous proof, we fed ML truthful answers to all its oracle queries. Here
we will settle for something which suffices for our purposes: either (i) if x ∈ L,
then with very high probability we will give ML truthful answers to its queries, or
else (ii) if x 6∈ L, with very high probability we will detect any attempt of Merlin
to fool us, and reject. To this end, we assume that Ys and Ns are amplified circuits
such that if s ∈ L, then there is a state that Ys accepts with probability ≥ 1−2−n,
whereas if s 6∈ L, then Ys rejects every state with probability ≥ 1− 2−n.

In this protocol, we expect that Merlin’s message contains (i) answers to the
queries that ML asks, (ii) which (classical) strings the machine queries and (iii)
quantum certificate states |ψ1〉 , . . . , |ψt〉 and |φ1〉 , . . . , |φt〉. These are the only
parts of Merlin’s message that need to be quantum, because parts (i) and (ii) are
simply classical bit strings.

Before we simulate ML, we measure all the qubits which we expect to be
classical bits (the answers and the query strings) in the computational basis. Then
we compute, for each i, whether Ysi accepts |ψi〉 and whether Nsi accepts |φi〉. We
reject if Ysi does not output ai or Nsi does not output ¬ai, just as before. Lastly,
we simulate ML just as in Theorem 11, rejecting if ML queries a string we did not
anticipate or if ML rejects. Otherwise, we accept.

The only part where we use quantum computing is in the evaluation of the
certificates, and we have to argue that this does not influence the soundness of the
protocol.

Part 1: Completeness. Suppose that ML accepts. Then Merlin can be
honest and simply send us good, unentangled certificates for the algorithms Ys
and Ns. In particular, for any query s, if s ∈ L, then Ys will accept the good
certificate |ψi〉 with probability 1− 2−n and Ns will reject its certificate |φi〉 with
the same probability. Because these circuits are implemented independently of
one another and the state |ψi〉 is not entangled with |φi〉, these two events are
independent, so the probability that both happen is at least (1 − 2−n)2. This
needs to happen for all queries, of which there are at most t(n). The probability

2.2. CLOSURE PROPERTIES OF QMA 25

that all query oracles proceed this way is at least

(1− 2−n)2t(n) (2.46)

Because t(n) is a polynomial, this quantity tends to 1 for large n, by Theorem
9, meaning that with probability tending to 1, we obtain correct answers for all
queries. After that, simulating ML is a deterministic computation and we copy
its answer, so we output the correct answer with probability tending to 1.

Part 2: Soundness. Suppose that ML rejects. Then Merlin will send us a
possibly very complicated entangled state. We start by measuring all the registers
which we expect to be classical in the computational basis, so that these registers
are now truly classical bits and are not entangled with the rest of the certificate.
The certificates to the queries remain quantum. The fact that the various cer-
tificates may be entangled with one another presents the principal hurdle in this
proof, which we overcome by the Entanglement Independence Lemma.

Suppose that in our simulation we feed ML only correct answers. Then we will
certainly reject. So in order to make us accept, Merlin must make us compute the
wrong answer for at least one query, which happens when s ∈ L but Ys rejects
and Ns accepts. But according to the Entanglement Independence Lemma, and
because the protocol Ns possesses soundness, the probability that Ns accepts any
certificate state, no matter how the state is entangled with other parts of the
circuit that Ns does not touch, is at most e−n. (Our assymetric focus here on the
protocol Ns instead of Ys is because it is easy enough for Merlin to make Ys reject
by sending a bad certificate. In the classical case he might send a non-satisfying
assignment to the satisfiability problem, for example).

Above we have described the “good event” that the circuit Ns rejects a single
bad certificate. For our simulation to succeed, each query must be a “good event”,
that is, it must happen t(n) times. By Theorem 9, this probability tends to 1.

The following corollary is immediate.

Theorem 13. QMA is closed under complement if and only if it is closed under
polynomial-time Turing reductions.

The next theorem is almost a quantum analogue of the theorem
NPNP∩co-NP = NP. It is an analogue in the sense that QMA is substituted
for NP in three out of four places, and in the sense that it is true for the same
reason. It is not an exact analogue because we show inclusion and not equality,
and we do not substitute QMA for NP in one of four places. The reason we
cannot go all the way and prove that QMAQMA∩co-QMA = QMA, is interesting
in itself.

26 CHAPTER 2. THE QUANTUM POLYNOMIAL HIERARCHY

Theorem 14. NPQMA∩co-QMA ⊆ QMA.

Proof. We ask Merlin for (i) the certificate for the NP machine that we are sim-
ulating and (ii) for the queries and their answers similar to how we asked it in
Theorem 12. The first thing the QMA machine does is measure the certificate in
the computational basis. Merlin is supposed to send a classical string, so if he is
honest, nothing happens. If he is dishonest, then the certificate has now collapsed
to a classical string, and the NP machine will reject this if it receives correct
answers to its queries.

After measuring the certificate Merlin gave for the NP machine, the remaining
computation is a simulation of a deterministic Turing Machine which makes queries
to QMA ∩ co-QMA, that is, it is a PQMA∩co-QMA computation. By Theorem
12, this can be simulated in QMA.

In a similar vein,

Theorem 15. NPQCMA∩co-QCMA ⊆ QCMA.

2.3 A new proof of a theorem by Vyalyi

Is quantum computing more powerful than classical computing? Towards an an-
swer, researchers have studied how the complexity classes BQPand QMA relate to
traditional classes. Unfortunately, most QMA-Complete problems studied thus
far are inherently tied to quantum physics, and it is not obvious what classical
problems can be solved in this model, nor how QMA relates to the landscape of
classical complexity classes. Clearly it can solve NP, but can it solve the rest of
the polynomial hierarchy? Might there be QMA protocols for PP-Complete prob-
lems like MajoritySAT or even for computing the permanent of a matrix? In
2003, Vyalyi showed that there is a surprising connection between these questions:

Theorem 16 (Vyalyi [58]). If QMA = PP then PH ⊆ QMA.

Vyalyi’s Theorem says, in other words, that if there is a QMA protocol for
MajoritySAT, then there are QMA protocols for all languages in the polynomial
hierarachy. Since it is believed unlikely that PH ⊆ QMA, this is taken as evidence
that QMA 6= PP.

The proof Vyalyi originally gave defines a new complexity class called A0PP
and uses Gap functions to characterize QMA and compare it to A0PP ; then he
uses a special version of Toda’s Theorem. Here we show that, in fact, there is a

2.3. A NEW PROOF OF A THEOREM BY VYALYI 27

simple proof of this theorem using the simplest version of Toda’s Theorem [10]
(that PH ⊆ PPP) and using only elementary closure properties of the classes
mentioned in the statement of the theorem, specifically Theorem 12 and the fact
that PP is closed under complement [19].

Proof of Theorem 16. The proof has three ingredients: (i) Toda’s Theorem, PH ⊆
PPP, (ii) The fact that PP is closed under complement, i.e. PP = coPP and (iii)
Theorem 12, QMA ∩ coQMA = PQMA∩coQMA.

Suppose that QMA = PP. Then QMA is closed under complement, since
PP is closed under complement, so PP = QMA ∩ co-QMA. But we proved
earlier that this class is closed under Turing reductions, so PP is closed under
Turing reductions: PP = PPP. From Toda’s Theorem, we know that PH ⊆ PPP,
and we have the desired inclusion. In summary:

PP =QMA The assumption (2.47)

=QMA ∩ co-QMA PP is closed under complement (2.48)

=PQMA∩co-QMA QMA ∩ co-QMA is closed (2.49)

under Turing reductions (2.50)

=PPP The assumption (2.51)

⊇PH By Toda’s Theorem (2.52)

Examining our new proof, we can derive a stronger consequence than Vyalyi
did: if there is a QMA protocol for MajoritySat, then not only are there
QMA protocols for every language in the polynomial hierarchy, there is also a
QMA protocol for the permanent, which is #P-Complete [14].

Theorem 17. If QMA = PP then QMA = P#P and there is a QMA protocol
for the permanent.

Proof. We are looking for a QMA protocol for the language

Permanent = {〈A, s〉 | s is the permanent of A} (2.53)

Clearly Permanent ∈ P#P. Inspecting our proof of Theorem 16, specifically line
2.51, we get QMA = PPP. We know that PPP = P#P, so QMA = P#P, so
Permanent ∈ QMA.

28 CHAPTER 2. THE QUANTUM POLYNOMIAL HIERARCHY

Using Theorem 14, we can strengthen the consequence to PHPP = QMA, as
in Theorem 18. Note that PPP ⊆ PHPP, so this result supersedes both Theorem
16 and Theorem 17.

Theorem 18. If QMA = PP then QMA = PHPP.

Proof. The class PHPP is defined as ΣP
1
PP

= NPPP and ΣP
i+1

PP
= NPΣP

i
PP

with

PHPP =
⋃∞
i=1 ΣP

i
PP

. In other words, it is as though we define the polynomial
hierarchy as usual, except at the base, we give all NP machines a PP oracle.

The proof is by induction. The base case is that ΣP
1
PP

= QMA, and uses (i)
that PP is closed under complement and (ii) Theorem 14:

ΣP
1

PP
= NPPP = NPQMA = NPQMA∩co-QMA ⊆ QMA (2.54)

The last inclusion is Theorem 14. The induction step assumes that ΣPPP

i = QMA
and derives ΣPPP

i+1 = QMA:

ΣP
i

PP
=QMA Induction hypothesis (2.55)

ΣPPP

i+1 =NPΣPPP

i By definition (2.56)

=NPQMA Induction hypothesis (2.57)

=NPQMA∩co-QMA QMA closed under complement (2.58)

⊆QMA Theorem 14 (2.59)

We have shown that PHPP ⊆ QMA, i.e. relative to a PP oracle, every level
of the polynomial hierarchy is contained in the unrelativized version of QMA.
For the opposite inclusion, we note that QMA ⊆ PP ⊆ PPP ⊆ PHPP is known
unconditionally.

The techniques we developed allow us to improve Theorem 16 in another di-
rection: we can weaken the hypothesis from QMA = PP to QMA = co-QMA.
This hypothesis is decidedly weaker, because it is conceivable that QMA is closed
under complement yet is properly contained in PP. For this reason, we do not
obtain a result similar to Theorem 17, as the permanent problem is only more
difficult than MajoritySAT.

Theorem 19. If QMA = co-QMA then PH ⊆ QMA.

Proof. The proof is by induction. The base case, ΣP
1 ⊆ QMA, is elementary and

is true unconditionally. In the induction step, we assume that ΣP
i ⊆ QMA and

derive ΣP
i+1 ⊆ QMA:

2.3. A NEW PROOF OF A THEOREM BY VYALYI 29

QMA =QMA ∩ coQMA The assumption (2.60)

ΣP
i ⊆QMA Induction hypothesis (2.61)

ΣP
i+1 =NPΣP

i Definition (2.62)

⊆NPQMA By the induction hypothesis (2.63)

=NPQMA∩co-QMA By assumption (2.64)

⊆QMA By Theorem 14 (2.65)

Hence for every i, we have ΣP
i ⊆ QMA, so PH ⊆ QMA, as desired.

The consequence of this theorem can be strengthened from PH ⊆ QMA to
PHQMA ⊆ QMA.

Theorem 20. If QMA = co-QMA then QMA = PHQMA.

Proof. The proof is exactly identical to that of Theorem 18, with QMA in place
of PP in the base and induction hypothesis. That is, the base case will be
ΣPQMA

1 = QMA and the induction step will assume that ΣPQMA

i = QMA and
derive ΣPQMA

i+1 = QMA.

This gives PHQMA ⊆ QMA. For the opposite inclusion, simply note that
QMA ⊆ PQMA ⊆ PHQMA.

Since we do not expect that QMA contains the entire polynomial hierarachy,
much less the entire polynomial hierarchy with a QMA oracle, we take this as
evidence that QMA is not closed under complement.

Note that for the proof of Theorem 19 it is not enough that the hypothesis
implies that NP ⊆ co-QMA. The hypothesis that QMA is closed under com-
plement is a crucial ingredient for the proof to go through. To illustrate,

Theorem 21. If NP ⊆ co-QMA then ΣP
2 ⊆ QMA and more generally, then

ΣP
i+1 ⊆ ΣBQP

i for every i.

Proof. Suppose that NP ⊆ co-QMA. Then NP ⊆ QMA ∩ co-QMA, because
we already knew NP ⊆ QMA. So NPNP ⊆ NPQMA∩co-QMA ⊆ QMA by
Theorem 14. The general case, that ΣP

i+1 ⊆ ΣBQP
i , is proven by induction. We

30 CHAPTER 2. THE QUANTUM POLYNOMIAL HIERARCHY

have just established the base case, namely ΣP
2 ⊆ ΣBQP

1 . In the induction step,
we assume that ΣP

i+1 ⊆ ΣBQP
i and derive ΣP

i+2 ⊆ ΣBQP
i+1 .

ΣP
i+1 ⊆ΣBQP

i Induction hypothesis (2.66)

ΣP
i+2 =NPΣP

i+1 By definition (2.67)

⊆NPΣBQP
i Induction hypothesis (2.68)

⊆QMAΣBQP
i NP ⊆ QMA relativizes (2.69)

=ΣBQP
i+1 By definition (2.70)

It is unclear how to proceed towards a proof that PH ⊆ QMA. There may
be a way, but it will require a novel idea: in the proof as we have set it up, the
hypothesis that QMA = co-QMA is necessary and sufficient.

2.4 Closure properties of QAM

The technique used above to establish the closure properties of QMA readily
extends to showing closure properties of many other classes. In this section we
prove results similar to Theorems 12 and 14 for the classes AM and QAM.

The class AM was introduced by Babai and Moran [11] as the class of languages
decidable by a protocol, or rather a conversation, between a verifier, Arthur, and a
prover, Merlin, as follows. First, Arthur asks Merlin a question, who responds with
an answer. Arthur is allowed to use randomness to decide what question to ask.
Arthur then performs a polynomial-time deterministic computation on the input,
his random coins and Merlin’s message. The protocol must yield the right answer
with probability at least 2

3
, conditioned over the choice of Arthur’s random coins.

Without loss of generality, Arthur’s message can be restricted to be simply his
random seed, because Merlin can simulate the algorithm Arthur uses to produce
his question.

2.4. CLOSURE PROPERTIES OF QAM 31

Definition 3 AM: Arthur Merlin

A language L ⊆ {0, 1}∗ is in AM if there is are polynomials r(n) and m(n)
and a deterministic polynomial-time Turing Machine M such that, for all input
strings x ∈ {0, 1}∗:

• if x ∈ L, then there is a function y : {0, 1}r(n) → {0, 1}m(n) such that

Pr
s∈{0,1}r(n)

[M(x, s, y(s)) = 1] ≥ 2

3
(2.71)

• If x 6∈ L then for all functions y(s),

Pr
s∈{0,1}r(n)

[M(x, s, y(s)) = 0] ≥ 2

3
(2.72)

The class QAM was defined by Marriot and Watrous in [9] as the same class
except Arthur now has a quantum computer at his disposal and Merlin may send
him a quantum state. The protocol still begins with Arthur sending Merlin a
polynomial number of classical random bits. Moreover, the probability of success is
also conditioned on the inherent randomness in the quantum algorithm, in addition
to Arthur’s random coins sent to Merlin.

The literature also considers conversations with more than one round of ques-
tions, but we will not touch upon those here. The topic is known as “interactive
proofs”, as Merlin tries to prove a proposition to Arthur, and Merlin can respond
interactively to Arthur’s questions, as opposed to an oracle, which always answers
questions the same way.

If the number of questions is bounded by a constant, then perhaps surprisingly,
one obtains the class AM again. If the number of questions is unrestricted, one
obtains the class PSPACE [32]. That is, if L is a language in PSPACE (for
example, Chess), and Merlin claims that x ∈ {0, 1}∗ (for example, he claims
that white wins from board position x with perfect play), then whether that is
true can be revealed with great confidence by a polynomial-time “interrogation”
of Merlin. The quantum case behaves differently, if Arthur and Merlin are allowed
to entangle their qubits, because then three rounds suffice for any purpose, i.e.
QMAM = PSPACE [33, 54].

If there are multiple provers who do not communicate during the protocol but
can agree on a strategy beforehand, but the protocol is still required to terminate
in a polynomial amount of time, we obtain the class NEXP [41]. Quantum multi-

32 CHAPTER 2. THE QUANTUM POLYNOMIAL HIERARCHY

prover interactive proofs are known to be equally powerful [42]. However, it is an
open problem to characterize the setting where the provers prepare an entangled
state before the interrogation begins (that is, they share a number of EPR pairs),
but otherwise do not communicate [43]. It is known only that in this setting, where
the provers share EPR pairs, the quantum and classical is equally powerful.

These results all have the surprising implication that interaction greatly in-
creases the computational powers of any verifier from BPP or BQP to PSPACE
or NEXP, even if the verifier is skeptical of the prover(s) and demands that the
probability of error is exponentially small.

Interactive proofs of great interest because they are one of the few known
“non-relativizing techniques”. As a result, they have been instrumental in proving
circuit lower bounds that require defeating the relativization and natural proofs
barriers, namely that PP does not have (quantum) circuits of size O(nk) [59, 25],
that MAEXP does not have polynomial-size circuits [61], and several circuit lower
bounds against the promise version of MA [60]. Unfortunately, all techniques from
interactive proofs fail to defeat the algebrization barrier [26], so better circuit lower
bounds must develop new techniques.

In this Section, we prove that QAM is closed under Turing reductions, and we
prove a statement analogous to Theorem 14. To warm up, we first show the proof
for the classical case. Its structure is identical to the proof of Theorem 11.

Theorem 22. PAM∩co-AM = AM ∩ co-AM.

Proof. Let L ∈ AM∩ coAM be a language and ML be a deterministic t(n)-time
oracle Turing Machine with oracle access to L. If we find an AM protocol to
simulate ML, we will have proved the theorem.

Since L ∈ AM ∩ coAM, there are deterministic Turing Machines Y and N
which execute the AM protocols for L and L, respectively, using r(n) random
bits, running in time t(n) and erring with probability ≤ e−n.

Again, of course, if we obtain the answers to all the queries ML makes, then
we can simulate ML. We obtain those answers by running the machines Y and
N , just as in the proof of Theorem 11, with two differences: (i) the protocol starts
with Arthur generating some appropriate number of random bits and communi-
cating those to Merlin, and (ii) the protocol may err with some small probability
conditioned on those random bits.

The protocols starts with Arthur flipping 2t(n) · r(t(n)) coins and sending the
result to Merlin. This number, 2t(n) · r(t(n)), is an upper bound on the number of
random coins all the upcoming protocols need, as ML makes at most t(n) queries,

2.4. CLOSURE PROPERTIES OF QAM 33

each at most t(n) bits long. Then Y and N will use r(t(n)) random bits each
to answer a query of length t(n). We expect Merlin to send us (i) the answers
a1, . . . , at(n) to the queries ML will make, (ii) the strings q1, . . . , qt(n) that ML will
query given the random coins we just guessed, and (iii) certificates y1, . . . , yt(n) and
z1, . . . , zt(n) for the machines Y and N , respectively.

The first step for Arthur is to check whether the certificates are good. For each
i, he checks that Y (qi, si, yi) = ai and N(qi, si, zi) = ¬ai. Here si is the string of
random coins Arthur flipped at the beginning to feed to the i-th query. If any of
these checks fail, he rejects.

If all checks pass, then Arthur simulates ML as before: If the i-th query of ML

is not the string qi, he rejects; otherwise, he feeds ML the answer ai and resumes
the simulation. When ML halts, he copies its answer as his output.

Part 1: Completeness. Suppose that ML accepts. If good certificates to
our queries exist (a good certificate is one that Y will accept if the answer is yes),
then Merlin will send them and Arthur will feed ML correct answers and accept.
However, the probability that such certificates exist, i.e. the probability that the
AM protocol for qi is successful, is only 1− e−n, conditioned over the random bits
Arthur generates at the beginning. The probability, then, that all AM protocols
are successful, is ≥ (1 − e−n)2t(n), which tends to 1 with n → ∞ by Theorem 9
because 2t(n) is a polynomial.

Part 2: Soundness. Suppose that ML rejects. If we feed ML correct answers
to its queries, we reject too. We only feed ML incorrect answers if one of the AM
protocols failed. Each AM protocol fails with probability ≤ e−n, and there are at
most 2t(n) of them, so with overwhelming probability, all of them succeed.

We now show that QAM ∩ co-QAM is closed under polynomial-time deter-
ministic Turing reductions.

Theorem 23. PQAM∩co-QAM = QAM ∩ co-QAM

Proof. In this case there are two uniformly generated quantum circuit families {Ys}
and {Ns} which answer L and L. We exchange random bits and certificates the
same way we did in Theorem 22. We expect Merlin to send us (i) the answers to
the queries, (ii) the strings that ML is going to query and (iii) quantum certificates
|ψ〉 = |ψ1〉 |φ1〉⊗ · · ·⊗ |ψt(n)〉 |φt(n)〉 for the these quantum circuits. As in the proof
of Theorem 12, we measure the bits that we expect to be classical bits before we
execute the QAM protocols.

Part 1: Completeness. If ML accepts, then Merlin will send us the correct
answers and unentangled quantum certificates, if they exist, but as noted before,

34 CHAPTER 2. THE QUANTUM POLYNOMIAL HIERARCHY

good certificates exist with overwhelming probability. However, even if we give Ys
a good certificate, it may still err because it is a quantum circuit. Fortunately,
it is known that QAM protocols such as Ys can be amplified to err with ≤ e−n

error, so the previous completeness argument goes through.

Part 2: Soundness. By previous observations, for Arthur to fail it is nec-
essary that at least one QAM protocol fails. In the classical case, the soundness
of the protocols Y and N was sufficient to reduce the probability that any query
failed. The difference in the quantum case is that Merlin can entangle the certifi-
cates. But if a quantum circuit Ys rejects all input states with probability ≥ p,
then by the Entanglement Independence Lemma (Theorem 8) it rejects all states
regardless of how they are entangled with other qubits that the circuit does not
touch, with probability ≥ p. In our case, p ≥ (1− e−n), so we have soundness by
the same argument as in Theorem 22.

We now proceed to proving a theorem about QAM analogous to Theorem 14.

Theorem 24. NPAM∩co-AM ⊆ AM.

Proof. We will give an AM protocol for a language A ∈ NPAM∩co-AM accepted
by nondeterministic Turing Machine ML. We generate enough random bits, and
Merlin responds with certificates to all the queries we are going to make, and
with the nondeterministic bits which allegedly make M accept. Since the non-
deterministic bits are fixed, the remaining computation is simply a PAM∩co-AM

computation, which is covered in Theorem 22

Theorem 25. NPQAM∩co-QAM ⊆ QAM

Proof. Similar to the previous three theorems, a QAM simulation of a language in
NPQAM∩co-QAM starts with sending enough random bits to Merlin and receiving
a quantum state allegedly representing a classical certificate for the nondetermin-
istic machine and quantum certificates so we can simulate the oracle queries. We
measure these certificate bits in the computational basis, in addition to the qubits
containing the queries and their alleged answers. The nondeterministic input is
fixed now, so the remainder of the protocol simulates a deterministic machine mak-
ing queries to a language in L ∈ QAM ∩ co-QAM, which is covered in Theorem
23.

Theorem 26. If QAM = co-QAM then PH ⊆ QAM.

The proof is very similar to Theorem 19.

2.5. TOWARDS A QUANTUM TODA’S THEOREM 35

Proof. Clearly we have NP ⊆ QAM, and this inclusion relativizes. Therefore
NPNP ⊆ NPQAM∩co-QAM ⊆ QAM. The induction step is NPΣP

i+1 ⊆ NPQAM ⊆
QAM. Hence PH ⊆ QAM.

2.5 Towards a quantum Toda’s theorem

In the classical case, Toda’s Theorem [10] says that PH ⊆ P#P. Is this also true
in the quantum case, i.e. is BQPH ⊆ P#P? A version of this theorem is true,
because it has already been proven that BQP ⊆ P#P and QMA ⊆ P#P. (in
fact, much better upper bounds are known for these classes: BQP ⊆ AWPP
and QMA ⊆ A0PP, but we concentrate on P#P to see if the entire hierarchy
is in there). No pun intended, but to take this to the next level, we ask: Is
BQPQMA ⊆ P#P? It is tempting to hope that simple relativizing inclusions and
lowness properties suffice to prove this statement, but unfortunately, the bottleneck
to that approach seems to be that we do not know (or expect) that QMA is low
for PP. Therefore we must get our hands dirty and look into the proof of Toda’s
Theorem.

The step that looks hardest to adapt is the step where NP ⊆ RP⊕P is estab-
lished by carefully counting the number of certificates an NP machine accepts.
This number of accepting paths is a discrete, nonnegative integer. By constrast,
the number of states that makes a quantum computer accept is uncountably infi-
nite. Nevertheless, interesting progress in this direction has been made, of which
we will now describe two recent developments.

First, the 1983 Valiant-Vazirani Theorem [13] has recently been extended to the
quantum setting by Aharonov et. al [2]. Historically, it was a precursor to Toda’s
Theorem. It states that there is a random reduction from SAT to UniqueSAT,
the problem of deciding whether a Boolean formula is satisfiable given the promise
that it has at most one satisfying assignment. The recent extension is that there is
a randomized reduction from the trivially QCMA-Complete problem of deciding
whether there is a string that makes a QCMA machine accept, to the same
problem but with the promise that there is at most one such string. Here QCMA
is like QMA where we restrict the certificates to be classical strings. The principal
difficulty in showing a similar result for the class QMA lies in establishing what
kind of theorem we should even aim for, given that the solution space is continuous
(One approach the authors suggest is to say that a quantum solution state is a
unique solution if the circuit rejects all states orthogonal to it). This brings us to
our next development.

Second, in [15], Bredariol et al. show that if the good certificates of a quantum

36 CHAPTER 2. THE QUANTUM POLYNOMIAL HIERARCHY

states are restricted to be uniform superpositions over the basis states, then the
completeness property of QMA protocols is preserved. That is, when analyzing
QMA, one may assume without loss of generality that every good certificate |ψ〉n
of n qubits is related to some set S ⊆ {0, 1}n in the following way (where |S|
denotes the size of S):

|ψ〉n =
1√
|S|

∑
x∈S

|x〉n (2.73)

This narrows the solution space down to only 22n candidates, which is doubly-
exponential in n, but at any rate finite (this is still not 2n, as we may wish, but
it is much better than 2ℵ0 !). It is interesting to see whether the two results above
can be combined.

2.5.1 Towards collapsing the quantum polynomial hierar-
chy

We have tried and failed to show that our new hierarchy collapses if QMA =
co-QMA. Classicaly this result follows almost trivially from the fact that NP ∩
co-NP is low for NP, i.e. NPNP∩co-NP = NP. The classical proof is as follows.

Theorem 27. If NP = co-NP then PH = NP.

Proof. Suppose that NP is closed under complement

NP =co-NP The assumption (2.74)

NP =NP ∩ co-NP Implied by assumption (2.75)

ΣP
2 =NPNP By definition (2.76)

=NPNP∩co-NP By line 2.75 (2.77)

=NP Because NP ∩ co-NP is low for NP (2.78)

And there we go! Easy as pie! The higher levels of the polynomial hierarchy
collapse by induction, like so:

ΣP
3 =NPΣP

2 By definition (2.79)

=NPNP We just proved ΣP
2 = NP (2.80)

=ΣP
2 = NP (2.81)

2.5. TOWARDS A QUANTUM TODA’S THEOREM 37

In this subsection, we show where exactly the classical proof breaks down. It
will suffice to analyze why PNP∩co-NP ⊆ NP is easy to prove but BPPNP∩co-NP ⊆
NP is not.

If the simulated machine is deterministic, then our nondeterministic simula-
tor simply runs the machine and only needs its non-determinism to handle the
machine’s oracle queries. However, if the simulated machine is randomized, then
the different branches may query different strings. Which queries should the non-
deterministic machine answer? Which brances should it even investigate? For
example, the BPP machine may flip a coin and ask the oracle for a Hamiltonian
cycle in a graph which depends on the coin. Then even if both graphs contain a
Hamiltonian cycle, there is not necessarily one message that would satisfy both
queries (of course, the prover could send both cycles. But that strategy breaks
down when the simulated machine generates a superpolynomial number of com-
putation paths). At the time of writing, derandomization has not yet shown that
BPP ⊆ NP, so there is no generic nondeterministic simulation of randomized
algorithms.

The same difficulty presents itself in the quantum case. Where a classical
randomized machine flips a coin and obtains a bit a ∈ {0, 1}, a quantum machine
may put a qubit in the superposition 1√

2
(|0〉+ |1〉) and ask a query which depends

on that qubit. Then Merlin’s dilemma is the same: even if the answers to both
queries are yes, it is not obvious what certificate state would convince Arthur.2

A natural next step is to try to prove that the quantum polynomial hierarchy
collapses under a stronger hypothesis than QMA = co-QMA. For example, does
QMA = co-QMA and P = NP = BQP suffice to collapse the hierarchy? Not
as far as we know. We do not even know how to prove BQP = QCMA under this
hypothesis. We know how to prove something almost as good, however, namely if
P = NP = BQP then BQP = ∃ · BQP. Here ∃ · BQP is the class BQPwith
a classical existential quantifier. It consists of all languages L for which there is a
language K ∈ BQP and a polynomial function p(n) such that

x ∈ L ⇐⇒ ∃y ∈ {0, 1}p(n) : 〈x, y〉 ∈ K (2.82)

It is easy to prove from the definition of the classes that NP = ∃ · P. It may
look obvious that ∃ · BPP = MA, but in fact there is an oracle due to Fenner,

2If Merlin is able to entangle his certificate state with Arthur’s query bits, then he can convince
Arthur by constructing the state |0〉 |ψ0〉+ |1〉 |ψ1〉, where |ψi〉 is the certificate state for the query
|i〉. Such interactive proof systems are studied in the literature[9], but they are too powerful for
our purposes.

38 CHAPTER 2. THE QUANTUM POLYNOMIAL HIERARCHY

Fortnow and Kurtz [52], relative to which ∃ · BPP (MA. The catch is that a
Turing Machine in an MA protocol is allowed to accept non-certificates for yes-
instances with arbitrary probability, such as 1/2 or 0, so long as there exists a good
certificate it accepts with high probability. In ∃ · BPP, however, the machine
must always either accept or reject with high probability. For the same reason, it
is unknown whether ∃ ·BQP = QCMA.

Theorem 28. If P = NP = BQP then BQP = ∃ ·BQP.

Proof. The ∃ operator operates purely syntactically on languages and sets of lan-
guages, and in fact has no relation to the underlying models of computation used
to define those languages. Under the assumption, P = BQP. Since NP = ∃ · (P),
we have ∃ · (BQP) = ∃ · (P) = NP = P.

Clearly ∃ ·BQP ⊆ QCMA ⊆ QMA. The next step would be to prove that
P = NP = BQP implies P = QCMA. The principal difficulty lies in how
to handle certificates that are accepted with probabilities in [1/3,

2/3]. In [2],
Aharonov et al. overcome precisely this obstacle to establish a quantum Valiant-
Vazirani theorem. We have good hope that their technique can be useful here as
well.

2.6 Related work and open problems

The guiding motivation in studying the quantum hierarchy in this thesis is to
supply tools that can be of help elsewhere in complexity. So the biggest open
question is: What questions can this object help answer? For example, it is an
open question to find an oracle which puts BQP outside the polynomial hierarchy,
i.e. BQP 6= PH. This chapter suggests a less ambitious goal: put any level of
the quantum polynomial hierarchy outside the classical polynomial hierarchy, e.g.
∆BQP

3 6= PH.

Conjecture 1. There is an oracle relative to which PH 6= BQPH.

It is an open question to find an implication either way between P = NP and
BQP = QMA. We would like to suggest first finding an implication conditioned
upon P = BQP. For example, in this chapter we have pointed out the obvious
truth that if P = NP = BQP then P = ∃ ·BQP. A natural question is whether
that hypothesis implies P = QCMA, and from there we would like to see whether
(or not!) it implies P = QMA. The principal difficulty in adapting the proof is

2.6. RELATED WORK AND OPEN PROBLEMS 39

that a QCMA machine is allowed to accept a bad certificate for a yes-instance
with arbitrary probability.

Conjecture 2. If P = NP = BQP then P = QCMA.

The difficulty in adapting a proof for the conjecture above, if indeed it is true,
to the case P = QMA will lie in the fact that Merlin can choose to send quantum
states that no polynomial-sized quantum circuit can prepare with the necessary
accuracy. In fact, for this reason, we conjecture that the implication does not hold:

Conjecture 3. There is an oracle relative to which P = NP = BQP and yet
P (QMA.

(Of course, in the unrelativized world, the conjecture is likely to hold by virtue
of its hypothesis being false!).

We have failed to prove whether QMA = co-QMA implies that the quantum
polynomial hierarachy collapses. Is this true? We have seen that this hypothesis
implies PH ⊆ QMA; that corollary would be a triviality if the conjecture were
true, so we take it as evidence in favour of the conjecture.

Conjecture 4. If QMA = co-QMA then the quantum polynomial hierarchy
collapses.

Toda’s Theorem [10] states that the polynomial hierarchy is not harder than
counting solutions to Boolean formulae, i.e. PH ⊆ P#P = PPP. We have not
found a way to quantumize Toda’s theorem. We expect, however, that it is possible
to do so, so we conjecture the following:

Conjecture 5. BQPQMA ⊆ PPP and indeed BQPH ⊆ PPP.

Interesting progress in this direction has been made by Aharonov et. al in
[2], who provide a quantum analogue of the Valiant-Vazirani Theorem, which
historically was the first step towards Toda’s theorem. We see extending their
result as the logical next step towards establishing a quantum version of Toda’s
theorem.

One of the first non-trivial unconditional circuit lower bounds was that of
Kannan [20], which states that for each k ∈ N, the class ΣP

2 does not have (classical)
circuits of size O(nk) for any k (that is, there is a language L ∈ ΣP

2 such that no
circuit family whose size is bounded by nk solves L). Can we prove the natural
quantum analogue?

40 CHAPTER 2. THE QUANTUM POLYNOMIAL HIERARCHY

Conjecture 6. The class QMAQMA does not have quantum circuits of size nk

for any k.

Lastly, one conditional collapse seems to have already been partially estab-
lished, namely a quantum version of the Karp-Lipton collapse. Recall the Karp-
Lipton Theorem:

Theorem 29 (Karp-Lipton Theorem [21]). If NP ⊂ P/poly then ΣP
2 = ΠP

2 .

In [7], Aaronson and Drucker establish a quantum analogue:

Theorem 30. Quantum Karp-Lipton Theorem [7] If NP ⊂ BQP/qpoly then

ΠP
2 ⊆ QMAPromiseQMA.

The authors state that it was the first nontrivial result which shows that quan-
tum computers being able to solve NP-Complete problems in polynomial time
has unlikely consequences (In discussion with Aaronson, his opinion is that if the
quantum polynomial hierarchy is to be a useful tool in complexity theory, then this
is the kind of result that would make that case). It is natural to ask whether and
how his theorem generalizes to higher levels of the quantum polynomial hierarchy.

Chapter 3

A QMA-Complete problem: the
Local Hamiltonian

The class BQP formalizes the notion of an efficient algorithm, just as P formalizes
the notion of an efficient classical algorithm. Just as NP is an attempt to capture
efficient classical verifiability, the quantum analogue QMA attempts to capture

the same for quantum computers. Indeed the BQP
?
=QMA question is typically

regarded as the quantum version of the P
?
=NP question.

The class QMA was first defined by Kitaev [62], and he showed that there is a
quantum generalization of the celebrated Cook-Levin theorem, which establishes
that the class NP has complete problems, by exhibiting a QMA-Complete prob-
lem, the Local Hamiltonian Problem. This problem is a natural extension
of constraint satisfaction problems, placing constraints on qubits rather than bits.
This class is of theoretical interest, but also of practical importance, because it
captures problems related to quantum physics that arise in practice but cannot
be characterized by NP or indeed by the polynomial hierarchy, as those objects
deal only with classical computation. For example, the Local Hamiltonian
Problem determines the ground state energy of a quantum state. This chapter
proves that the Local Hamiltonian Problem is QMA-Complete.

Many QMA-Complete problems have been described since. Most of them
are natural analogues of well-known NP-Complete problems. For example, de-
termining whether a quantum circuit implements the identity is QMA complete,
whereas determining whether a classical circuit (with n inputs and n outputs)
implements the identity is NP-Complete. It also is QMA-Complete to decide
whether two quantum circuits implement the same unitary operation, whereas
it is NP-Complete to decide whether two classical circuits implement the same

41

42CHAPTER 3. A QMA-COMPLETE PROBLEM: THE LOCAL HAMILTONIAN

Boolean function.

The Local Hamiltonian Problem has a parameter called its locality, which is
the maximum number of terms (qubits) which may occur together in a single con-
straint. Kitaev’s original proof showed that 5-Local Hamiltonian was QMA-
Complete. Subsequently, in 2003, Kempe and Regev reduced the locality to k = 3.
Finally, in 2006, Kitaev, Kempe and Regev showed that even 2-Local Hamil-
tonian is QMA-Complete. It is easy to show that 1-Local Hamiltonian is
solvable classically in polynomial time, so it is generally believed that, as far as
QMA-Completeness is concerned, k = 2 is rock-bottom. Later still, in 2016, Cu-
bitt and Montanaro provided a classification of all local Hamiltonian problems,
much like Schaeffer’s Dichotomy Theorem does for variations of SAT [45].

All these results together go some way in answering the question “Does the
quantum polynomial hierarchy look like the classical polynomial hierarchy, by as-
certaining that there is a quantum analogue to the class of NP-Complete problems.

Before we tackle the issue of whether the Local Hamiltonian Problem is
in QMA, we warm up with a few preliminaries. First, we review how projective
operator-valued measurements work and review a lemma about Hermitian ma-
trices. Next, we examine a quantum circuit which performs a fair m-sided coin
toss.

Our proof is a detailed exhibition of proofs by Kitaev [62] and by Aharonov
and Naveh [63], tailored to be accessible to readers with very little background in
linear algebra.

3.0.1 Preliminaries on Projection operators

A projection operator is a way to take a vector and preserve only its amplitude
in certain directions and filter out its amplitude in certain other directions. For
example, the operator |0〉1 〈0|1, operating on |φ〉1 = α |0〉1 + β |1〉1, yields

|0〉1 〈0|1 (α |0〉1 + β |1〉1) = α |0〉1 〈0|1 |0〉1 + β |0〉1 〈0|1 |1〉1 = α |0〉1

This way, only the component of |φ〉1 in the direction |0〉1 is preserved. We say
that “|φ〉1 is projected onto the subspace spanned by |0〉1”. It is possible to project
vectors onto multi-dimensional subspaces. Consider the vector

|ζ〉2 = α |00〉2 + β |01〉2 + γ |10〉2 + δ |11〉2

43

Suppose we wished to retain only the components in the directions |00〉2 and
|10〉2, in other words to project |ζ〉2 onto the subspace spanned by |00〉2 and |10〉2.
Clearly the result should be the vector α |00〉2 +γ |10〉2. Therefore the appropriate
projection operator is |00〉2 〈00|2 + |10〉2 〈10|2. This projection can be thought of
as preserving the part of the system that is consistent with the first qubit having
a value of |0〉1.

In general, to project an n-qubit system onto the subspace in which the qubits
i, . . . , i+ k − 1 are in state |φ〉k, we will use the following projection operator:

Π
|φ〉k
n,i = I⊗i ⊗ |φ〉k 〈φ|k ⊗ I

⊗n−k−i

Consider the state |ζ〉2 again. It is equal to the sum of (i) its component
consistent with the first qubit being in state |0〉1 and (ii) its component consistent
with the first qubit being in state |1〉1. This is a more general phenomenon: if
|φ0〉k , . . . , |φ2k−1〉k is an orthonormal base for B⊗k, then, for any state |ψ〉n,

|ψ〉n = Π
|φ0〉k
n,i |ψ〉n + · · ·+ Π

|φ
2k−1

〉
k

n,i |ψ〉n =

2k−1∑
u=0

Π
|φu〉k
n,i

 |ψ〉n
Hence, summing all these operators gives the identity operator:

2k−1∑
u=0

Π
|φu〉k
n,i = I⊗i ⊗

2k−1∑
u=0

|φu〉k 〈φu|k ⊗ I
⊗n−k−i = I⊗n

Projection operators are useful when describing quantum measurements. Given
a quantum state |ψ〉n, the probability of obtaining a state |φ〉k when measuring
qubits i, . . . , i+k−1 is the squared amplitude of the component of |ψ〉n consistent
with that result, in other words the component of |ψ〉n in the direction |φ〉k:

P [|φ〉k] =
∣∣∣Π|φ〉kn,i |ψ〉n

∣∣∣2
With a little more work, one can obtain expressions for scenarios in which the

qubits that are measured are not adjacent, but we will not need it here. We will
need the following elementary theorems from linear algebra.

Theorem 31. Every Hermitian n-dimensional operator H has an n-dimensional
eigenspace, and can be expressed as

44CHAPTER 3. A QMA-COMPLETE PROBLEM: THE LOCAL HAMILTONIAN

H =
n−1∑
i=0

λi |ψi〉n 〈ψi|n =
n−1∑
i=0

λiΠ
|ψi〉n
n,0 ,

where |ψi〉n is an eigenvector with eigenvalue λi.

Theorem 32. The eigenvalues of a Hermitian operator are all real.

Theorem 33. If H =
∑

i λi |ψi〉 〈ψi| is a Hermitian operator whose eigenvalues
λi are all bigger than τ , then 〈µ|H |µ〉 > τ for all unit vectors |µ〉.
Theorem 34. Projections only have the eigenvalues 1 and 0.

Theorem 35. if A and B are non-negative operators, meaning 〈v|A |v〉 and
〈v|B |v〉 for all vectors |v〉, then C = A+B is also a non-negative operator.

Proof. Let |v〉 be any vector. Then 〈v|C |v〉 = 〈v| (A+B) |v〉 = 〈v|A |v〉+〈v|B |v〉
is the sum of two non-negative real values, so 〈v|C |v〉 ≥ 0 is also non-negative.

Theorem 36. If Π1,Π2 are projections with Π1Π2 = 0, then the operator A =
Π1 + Π2 only has the eigenvalues 0 and 1.

3.0.2 Selecting a random qubit

The Hamming Weight w(s) of a string s is the number of ones in that string. We
will endeavour to find a circuit which takes n qubits |s〉n in the standard basis and
outputs a qubit such that the probability of measuring this qubit in state |1〉 is
w(s)
n

. That is, the transformation acts as follows on the vectors |s〉n of the standard
basis and one workspace qubit initialised to |0〉1: 1

|s〉n |0〉1 → |s〉n ⊗

(√
1− w(s)

n
|0〉1 +

√
w(s)

n
|1〉1

)
(3.1)

We leave it as an excercise to verify that (i) the probability of measuring the
last qubit in state |1〉 after application of this circuit and (ii) the probability of
measuring the k-th qubit in state |1〉, having chosen k by tossing a fair n-sided
die, are the same probability, even when the input state is not one of the standard
basis vectors.

1We will follow our convention of specifying the action of the operator only on states whose
workspace is properly initialised. For example, we do not care how the operator above acts on
the state |s〉n |1〉1; filling in any value will do (so long as the operator remains unitary) and there
are many ways to do so.

3.1. THE LOCAL HAMILTONIAN PROBLEM 45

3.1 The Local Hamiltonian Problem

Definition 4 k-local Hamiltonian Problem

Input: A series of T Hermitian operators Ht : B⊗n → B⊗n, each of which
operates nontrivially on at most k qubits, and two numbers a and b, with
0 ≤ a < b ≤ 1.
Output: “Yes” if the Hamiltonian H =

∑
tHt has an eigenvalue of at most

a, or “No” if H only has eigenvalues larger than b, with the promise that one
of these conditions holds.

The lowest eigenvalue of a Hamiltonian is called its ground state energy and
the corresponding eigenvector(s) is called the ground state. To get an intuition for
the Local Hamiltonian problem, let’s first see why it is NP-Hard.

Theorem 37. The 3-Local Hamiltonian problem is NP-Hard

Proof. We give a reduction from the NP-Complete problem 3-SAT: we are given
a Boolean formula φ in conjunctive normal form, and our job is to output a Local
Hamiltonian H and numbers a and b such that if φ is satisfiable, then H has an
eigenvalue of a or less, whereas if φ is not satisfiable, then all eigenvalues of H are
greater than or equal to b.

The Hamiltonian will work on n qubits: one for each variable in φ. We will
take each clause and transform it into a Hermitian term, and H will simply be
the sum of these terms. The idea will be that each term “penalizes” states that
violate a clause by increasing the value of ‖H |ψ〉 ‖. If |ψ〉 is a superposition, then
the terms will penalize those branches of the wavefunction that violate the clause.
We now make this formal.

If the t-th clause is

ct = (x3 ∨ ¬x5 ∨ ¬x11) (3.2)

then we set the t-th local Hermitian operator to the 23 × 23 matrix

Ht = (|0〉1 |1〉1 |1〉1) · (〈0|1 〈1|1 〈1|1) On qubits 3, 5, 11 (3.3)

That is, the Hermitian operator is the outer product of |011〉3. The action of Ht

on the basis vectors is

Ht |x〉n =

{
|x〉n If x violates clause ct
~0 If x satisfies clause ct

(3.4)

46CHAPTER 3. A QMA-COMPLETE PROBLEM: THE LOCAL HAMILTONIAN

The Hamiltonian H is simply the sum of the Hermitians corresponding to each
clause, and the threshold numbers are set to a = 0 and b = 1. The individual
Hermitian operators act non-trivially only on exactly three qubits at a time, so
they are 3-local, as intended.

H =
m∑
t=1

Ht (3.5)

Part 1: Completeness. Suppose that φ is satisfiable. Then there is some
satisfying assignment x ∈ {0, 1}n. Then the lowest eigenvalue of H is obtained at
|x〉n:

H |x〉n =
m∑
t=1

Ht |x〉n =
m∑
t=1

~0 = ~0 (3.6)

Indeed, the number 〈x|H |x〉 is precisely the number of violated clauses, so for
any satisfying assignment x this number will be 0. The eigenvectors of H with
eigenvalue 0 are precisely the satisfying assignments to φ. 2 Because every satisfi-
able formula is mapped to a Hamiltonian with eigenvalue 0, we conclude that our
construction has completeness.

Part 2: Soundness. Suppose that φ is not satisfiable. Then for ev-
ery bitstring x ∈ {0, 1}n, there is some clause that it does not satisfy. Let
v : {0, 1}n → [m] be a function which, for each assignment, outputs the index
of one of the violated clauses. Then the action of H on the basis vectors is as
follows:

〈x|nH |x〉n =
m∑
t=1

〈x|nHt |x〉n ≥ 〈x|nHv(x) |x〉n = 1 (3.7)

We can use some elementary linear algebra to conclude that H has a trivial kernel,
and therefore 0 is not one of its eigenvalues. Nevertheless, let’s do the computation
ourselves for general quantum states. Suppose Merlin gave an alleged certificate
|ψ〉n =

∑2n−1
x=0 yx |x〉n, some highly entangled superposition, and claims that |ψ〉n

is an eigenvector of H with a low eigenvalue. Denote with k(x) the number of

2More precisely, the satisfying assignments to φ span the kernel of H, so states that are
superpositions of satisfying assignments are also zero eigenvectors of H.

3.1. THE LOCAL HAMILTONIAN PROBLEM 47

clauses violated by the assignment x. Then

〈ψ|nH |ψ〉n =

(
2n−1∑
x=0

y†x 〈x|n

)
·

(
m∑
t=1

Ht

)
·

(
2n−1∑
z=0

yz |z〉n

)
(3.8)

=
2n−1∑
x=0

2n−1∑
z=0

y†xyz

m∑
t=1

〈x|nHt |z〉n (3.9)

=
2n−1∑
x=0

2n−1∑
z=0

y†xyz 〈x|n ·
m∑
t=1

{
|z〉n z violates ct
~0 z satisfies ct

(3.10)

=
2n−1∑
x=0

2n−1∑
z=0

yxyzk(z) 〈x|z〉 (3.11)

=
2n−1∑
x=0

|yx|2 · k(x) (3.12)

≥
2n−1∑
x=0

|yx|2 · 1 = 1 (3.13)

So indeed any vector |ψ〉 has 〈ψ|H |ψ〉 ≥ 1, which completes the proof.

The basic idea in the proof above is that 〈ψ|H |ψ〉 is a “penalty function”
which is to be minimized, and that the terms of H aim to penalize wrong states.
This will also be the idea when we construct the Hamiltonian in the proof that the
Local Hamiltonian Problem is QMA-Hard. Before we continue, let’s show
the slightly stronger result that 2-Local Hamiltonian is also NP-Hard, by reducing
from the NP-Complete problem Max2-SAT. Recall that Max2SAT is the problem
to determine whether a given 2SAT formula has an assignment satisfying k or more
clauses.

Theorem 38. The problem 2-Local Hamiltonian is NP-Hard.

Proof. Given a Max2SAT instance (φ, k), we use the construction above for H.
If x is an assignment satisfying at least k clauses, then it violates at most m − k
clauses, so 〈x|H |x〉 ≤ m − k. If no such assignment exists, and all assignments
satisfy less than k clauses, then they violate at least m−k+1 clauses, so all states
have 〈ψ|H |ψ〉 ≥ m− k + 1.

According to our definition, we must have a, b ≤ 1, and the values for 〈ψ|H |ψ〉
are all greater than 1, so we cannot simply set a = m − k and b = m − k + 1.
We can repair this by normalizing our Hamiltonian with 1

m
, so our output is

(1
m
H, m−k

m
, m−k−1

m
).

48CHAPTER 3. A QMA-COMPLETE PROBLEM: THE LOCAL HAMILTONIAN

We now prove that there is a Merlin-Arthur protocol for the k-local Hamiltonian
Problem with a small error rate. The theorem is due to Kitaev [62], and later
received a beautiful exposition by Aharonov and Naveh [63]. We will follow these
constructions closely.

Theorem 39. The k-local Hamiltonian Problem can be solved with small prob-
ability of error, in time that is exponential in k, polynomial in the number T of
Hermitian operators and polynomial in 1

b−a , given a message of untrusted advice in
the form of a quantum state from Merlin. That is to say, it is in PromiseQMA.

Proof. The central insight is that it is possible to build a quantum circuit which
takes a Hermitian operator H and a quantum state |µ〉n and rejects with proba-
bility 〈µ|H |µ〉. In this sense it may be said that the circuit evaluates 〈µ|H |µ〉.
Hence if we choose to evaluate one of the T Hermitian operators H1, . . . , HT at
random, then we will reject with probability 1

T
〈µ|H |µ〉:

P (0) =
1

T

T∑
t=1

〈µ|Ht |µ〉 =
1

T
〈µ|

(
T∑
t=1

Ht

)
|µ〉 =

1

T
〈µ|H |µ〉 (3.14)

The classical analogue of this algorithm would be to receive a formula on m
clauses and an assignment |x〉, to choose one of the clauses at random, and reject

if the assignment violates that clause, which happens with probability k(x)
m

=
1
m
〈x|H |x〉.

For the sake of clarity, let us first demonstrate the simplest case in which
we are given one Hermitian operator H, which acts on all the n qubits and has
an eigenspace decomposition of H =

∑2n−1
s=0 λs |ψs〉n 〈ψs|n. We have prepared or

received a state |µ〉n =
∑2n−1

s=0 αs |ψs〉n, and we wish to evaluate 〈µ|nH |µ〉n, i.e. we
wish to build a circuit which rejects with probability 〈µ|H |µ〉. Then we prepare
an ancilla qubit in the state |0〉1 and apply the operation U , which acts as follows
on the basis of eigenvectors of H:

U |ψs〉n |0〉1 = |ψs〉n ⊗
(√

λs |0〉1 +
√

1− λs |1〉1
)

(3.15)

Then the probability of measuring the ancilla qubit in state |0〉1, i.e. the
probability that the machine rejects, is

P (|0〉) =
∣∣∣Π|0〉0 U |µ〉n |0〉1

∣∣∣2 =

∣∣∣∣∣
2n−1∑
s=0

αs
√
λs |Ψs〉n |0〉1

∣∣∣∣∣
2

=
2n−1∑
s=0

|αs|2 λs

3.1. THE LOCAL HAMILTONIAN PROBLEM 49

To verify that this operator U achieves our goal, we now write out 〈µ|nH |µ〉n,

〈µ|H |µ〉n =
2n−1∑
u=0

〈ψu|n α
†
u

2n−1∑
s=0

λs |ψs〉n 〈ψs|n
2n−1∑
a=0

αa |ψa〉n =
2n−1∑
s=0

|αs|2 λs (3.16)

We see that indeed, this circuit rejects with probability P (|0〉) = 〈µ|nH |µ〉n.

Let us now turn to the general case. We are given T Hermitian operators
H1, . . . , HT : B⊗n → B⊗n each acting on a space of n qubits, but acting nontrivially
on only k qubits. Each of these Hermitians Ht is given to us as a 2k × 2k matrix
Mt and an index st, so that this operator acts on st, st + 1, . . . , st + k − 1. The
Hermitians Ht on n qubits and Mt on k qubits are related by

Ht = I⊗st ⊗Mt ⊗ I⊗n−k−st

First, for each Hermitian operator Mt, find an orthonormal basis of 2k eigen-
vectors ψt,0, . . . , ψt,2k−1 with corresponding eigenvalues λt,0, . . . , λt,2k−1. We know
from the lemma above that such a base always exists, because Mt is Hermitian.
Finding such a base may take time exponential in k, but since k is a problem-
specific constant, this is not a problem. We will return to this issue later, because
it is an important detail when other problems are reduced to the k-local Hamilto-
nian.

We will assume that all eigenvalues are nonnegative, and at most 1. If we
find a negative eigenvalue, we simply reject. We will show later that this is not
an obstacle later, when we show that the Local Hamiltonian Problem is QMA-
Complete.

Using the orthonormal base for Mt, construct a quantum circuit Wt on k + 1
qubits. The circuit Wt acts nontrivially on the same qubits as the Hermitian
operator Ht, and one additional output qubit. On the qubits st, . . . , st + k− 1, on
which Ht does not act trivially, the action of Wt is described in terms of the base
vectors |ψt,u〉k, as follows:

|x〉st |ψt,u〉k |y〉n−k−st |0〉1
Wt7→ |x〉st |ψt,u〉k |y〉n−k−st ⊗

(√
λu,t |0〉1 +

√
1− λu,t |1〉1

)
(3.17)

Here 0 ≤ u ≤ 2k − 1. (Again, the size of this circuit may well be exponential
in k, but since k is a constant, the size of this circuit is bounded by a constant, so
this need not bother us.)

50CHAPTER 3. A QMA-COMPLETE PROBLEM: THE LOCAL HAMILTONIAN

Consider the circuit Wt in isolation, without the other circuits. If we use only
this circuit Wt, then Merlin can send us the state |µ〉n = |0〉st |ψt,u〉k |0〉n−k−st , so
that the probability that we measure |1〉 in the output register is 1− λj:

P (1) =
∣∣Π|1〉n Wt · |0〉st |ψt,u〉k |0〉n−k−st |0〉1

∣∣2
=
∣∣∣Π|1〉n |0〉st |ψt,u〉 |0〉n−k−st (√λt,u |0〉1 +

√
1− λt,u |1〉1

)∣∣∣2
=
∣∣∣√1− λt,u |0〉 |ψt,u〉 |0〉n−k−st

∣∣∣2 = 1− λt,u

In general, Merlin may send any message |µ〉n. In that case, let us first express
|µ〉n in terms of the eigenvectors of Ht:

|µ〉n =
2st−1∑
x=0

2k−1∑
u=0

2n−k−st−1∑
y=0

αx,u,y |x〉st |ψt,u〉k |y〉n−k−st

What is the probability that we measure the output qubit in state |1〉1 if we
apply the circuit Wt? This requires only some elementary, albeit tedious algebra:

Pt(1) =
∣∣Π|1〉n Wt |µ〉n |0〉1

∣∣2
=

∣∣∣∣∣∣
2st∑
x=0

2k∑
u=0

2n−k−st∑
y=0

αx,u,y

(√
1− λt,u

)
|x〉st |ψt,u〉k |y〉n−k−st |1〉1

∣∣∣∣∣∣
2

=1−
2k−1∑
u=0

λt,u

2st∑
x=0

2n−k−st∑
y=0

|αx,u,y|2 = 1−
2k−1∑
u=0

λt,u
∣∣Π|ψt,u〉

n,st |µ〉n
∣∣2

=1−
2k−1∑
u=0

λt,u 〈µ|n Π|ψt,u〉
n,st |µ〉n

=1− 〈µ|n
2k−1∑
u=0

λt,u
(
Ist |ψt,u〉k 〈ψt,u|k I

n−k−st
)
|µ〉

=1− 〈µ|n I
⊗st ⊗

2k−1∑
u=0

λt,u |ψt,u〉k 〈ψt,u|k

⊗ I⊗n−k−st |µ〉n
=1− 〈µ|n I

⊗st ⊗Mt ⊗ I⊗n−k−st |µ〉n = 1− 〈µ|nHt |µ〉n

3.1. THE LOCAL HAMILTONIAN PROBLEM 51

The only step that remains is to describe the full circuit. The subcircuit W1

will put its output in qubit n+ 1, subcircuit W2 will put its output in qubit n+ 2,
and so forth. If we measure one of these output qubits at random and accept iff
we measure 1, then we accept with the desired probability. To this end, the circuit
from section 3.0.2 is deployed to select one of the outputs registers for measure-
ment. We skip the complete derivation, because we have already shown that the
result is identical to tossing a die with T sides and measuring the corresponding
output qubit.

Pr(1) =
T∑
t=1

Pr[measure qubit n+ t] · Pr
t

[1]

=
1

T

T∑
t=1

1− 〈µ|nHt |µ〉n

=1− 1

T
〈µ|n

T∑
t=1

Ht |µ〉n = 1− 1

T
〈µ|nH |µ〉n

Part 1: Completeness. Suppose that H has a small eigenvalue λ ≤ a,
corresponding to a unit eigenvector |Ψ〉n. Then Merlin can send us |µ〉n = |Ψ〉n,
and we will conclude “Yes, there is a small eigenvalue” with probability 1− λ

T
≥

1− a
T

.

Part 2: Soundness. If all eigenvalues are greater than b, then by Equation
3.14, any message sent by Merlin can make us accept with probability at most
1 − b

T
. Using parallel repetition, we can amplify this gap to any constant we like

with a number of gates that is polynomial in 1
b−a .

To prove that the Local Hamiltonian problem is QMA-Complete, we will need
several more theorems about linear algebra. The exposition of the proof here
closely follows that of Aharonov et al. [63].

Definition 5 Angle between subspaces
Let V and W be two subspaces of a vector space. Then the angle Θ(V,W)
between them is the unique real number in [0, 1

2
π] such that

cos Θ(V,W) = max
|v〉∈V
|w〉∈W

|〈v|w〉| (3.18)

The angle between subspaces has some subtlety. For example, by this defini-

52CHAPTER 3. A QMA-COMPLETE PROBLEM: THE LOCAL HAMILTONIAN

tion, the angle between the xy plane and the xz plane is 0, because they share
the x vector. Two subspaces have a non-trivial intersection iff their angle is 0,
and are orthogonal iff their angle is 1

2
π. We also have | 〈v|w〉 | ≤ cos Θ(V,W) for

all |v〉 ∈ V, |w〉 ∈ W and cos2 Θ(V,W) = max |v〉 ∈ V : 〈v|ΠW |v〉. The notation
A ≥ λ, where A is an operator, means ∀ |φ〉 : 〈φ|A |φ〉 ≥ λ, so A ≥ 0 means that
A is positive semidefinite, for example. If B is an operator, then A ≥ B means
∀ |φ〉 : 〈φ|A |φ〉 ≥ 〈φ|B |φ〉, so A ≥ λ is equivalent to A ≥ λI. This notation
obeys all the obvious inference rules, such as λA ≥ zB implies λA − zB ≥ 0.
Lastly, if A ≥ 0 is an operator with kernel V , and no nonzero eigenvalue of A is
smaller than λ, then A+ λΠV ≥ λ.

Theorem 40. Let V and W be two subspaces of a vector space, and ΠV and ΠW

the projections onto those spaces. Denote with θ the angle between the spaces.
Then ΠV + ΠW ≤ 1 + cos θ.

Proof. Let |c〉 be an eigenvector of ΠV + ΠW with (ΠV + ΠW) |c〉 = λ |c〉. Since
ΠV and ΠW are projections, and projections are non-negative operators, we must
have λ ≥ 0 by Theorem 35. Then we can (uniquely) express the vectors ΠV |c〉 and
ΠW |c〉 as ΠV |c〉 = x |a〉 and ΠW |c〉 = y |b〉, with x, y nonnegative real numbers
and |a〉 and |b〉 unit vectors. Then x |a〉+ y |b〉 = λ |c〉. Then we have λ = x2 + y2

and λ2 = x2 + y2 + 2xy< 〈a|b〉:

λ = 〈c| (ΠV + ΠW) |c〉 = 〈c|ΠV |c〉+ 〈c|ΠW |c〉 (3.19)

= 〈c|ΠV ΠV |c〉+ 〈c|ΠWΠW |c〉 = |ΠV |c〉|2 + |ΠW |c〉|2 = x2 + y2 (3.20)

λ2 =(λ 〈c|)(λ |c〉) = (x 〈a|+ y 〈a|) (x |a〉+ y |b〉) = x2 + y2 + 2xy< 〈a|b〉 (3.21)

Next, we derive that (1 + δ)λ− λ2 ≥ 0, where δ = |< 〈a|b〉| ≤ cos θ.

(1 + δ)λ− λ2 =λ+ δλ− λ2 = x2 + y2 + δx2 + δy2 − x2 − y2 − 2xyδ (3.22)

=δ(x2 + y2 − 2xy) = δ (x− y)2 ≥ 0 (3.23)

The last inequality is derived from the fact that both δ and (x+y)2 are nonnegative.
This almost completes the proof. Just one last step!

0 ≤ (1 + δ)λ− λ2 so λ2 ≤ (1 + δ)λ so λ ≤ 1 + δ ≤ 1 + cos θ (3.24)

3.1. THE LOCAL HAMILTONIAN PROBLEM 53

Good, next theorem!

Theorem 41. Let A,B ≥ 0 be two positive semidefinite operators with kernels
V,W , with θ the angle between the two kernels. Suppose that no nonzero eigenvalue
of A or B is smaller than λ. Then

A+B ≥ 2λ sin2

(
1

2
θ

)
(3.25)

Proof. Clearly we have A+λΠV ≥ λ and B+λΠW ≥ λ, which gives A ≥ λ(I−ΠV)
and B ≥ λ(I − ΠW). So A + B ≥ λ(I − ΠV) + λ(I − ΠW). We will show that
(I − ΠV) + (I − ΠW) ≥ 2 sin2(1

2
θ), which suffices to prove the theorem. We use

two ingredients; first, the following gem from mathematics: 2 sin2
(

1
2
θ
)

= 1−cos θ.
Second, Theorem 40 applied to the kernels of A and B.

ΠV + ΠW ≤1 + cos θ = 2− 2 sin2(1/2θ) (3.26)

ΠV + ΠW − 2I ≤− 2 sin2(1/2θ) (3.27)

(I − ΠV) + (I − ΠW) ≥2 sin2 (1/2θ) (3.28)

A+B ≥ λ(I − ΠV) + λ(I − ΠW) ≥2λ sin2 (1/2θ) (3.29)

Here is another simple lemma.

Theorem 42. If H =
∑

i λi |ψi〉 〈ψi| is a Hermitian matrix, m its smallest eigen-
value and |φ〉 some unit vector, then 〈φ|H |φ〉 ≥ m.

Proof. We can solve this theorem with simple algebraic manipulations. Decompose
|φ〉 =

∑
i αi |ψi〉 into the orthonormal base of eigenvectors of H.

〈φ|H |φ〉 =
∑
i

λi |αi|2 ≥
∑
i

m |αi|2 = m
∑
i

|αi|2 = m (3.30)

We are now ready to proceed to the main result.

Theorem 43. The Local Hamiltonian Problem is QMA-Complete.

54CHAPTER 3. A QMA-COMPLETE PROBLEM: THE LOCAL HAMILTONIAN

Proof. We will show a construction to take a circuit and produce a local Hamil-
tonian. Let U = U1 . . . , UT be a series of gates which act on qubit sets S1, . . . , ST
respectively. The circuit U acts on n = w + m qubits: there are w qubits in the
work space, initialised as |0〉w, and there are m qubits in the message from Merlin,
|µ〉m. It is promised that this circuit decides with high probability, that is:

Either ∃ |µ〉m :
∣∣∣Π|1〉n,1U |µ〉m |0〉w∣∣∣2 ≥ 1− 1

2n
, (3.31)

or ∀ |µ〉m :
∣∣∣Π|1〉n,1U |µ〉m |0〉w∣∣∣2 ≤ 1

2n
(3.32)

We will create a Hamiltonian H which has a small eigenvalue if and only if
Equation 3.31 is true, and has only large eigenvalues if Equation 3.32 is true. H
consists of three parts:

H = Hin +Hprop +Hout (3.33)

The three terms are themselves the sum of many Hermitian operators, each
operating on only a small number of qubits. This Hamiltonian will act on m+w+T
qubits. The last T qubits will be used to bookkeep time; this register is a counter.
At the end of the proof, we will revisit the counter and make sure that it satisfies
the locality and normalization constraints.

Let us return to the proof that SAT is NP-Complete. The reduction from
an arbitrary language L to SAT constructs a Boolean formula which encodes a
computation of the Turing Machine. A satisfying assignment to the variables
provides a transcript of a succesful, accepting computation. The clause may be
interpreted as, There exists a computation path such that, if the Turing Machine
is initialised to the empty tape, and the execution is carried out for a number of
steps, then there is a transcript of a computation in which each transition follows
the previous one, ending in an accepting configuration. We will attempt to emulate
this proof for the present problem.

The quantum analogue of an assignment which satisfies a formula is a unit
vector |ζ〉w+m+T which satisfies |H |ζ〉| ≤ a. Hence Merlin will try to find a state
|ζ〉w+m+T which minimizes the penalty function p(|ζ〉) = |〈ζ|H |ζ〉| (the minimum
of this function is found at an eigenvalue). We will interpret the state |ζ〉 as
a transcript of a computation by the given circuit and choose H such that it
penalizes Merlin (i.e. it increases p) when he (a) gives a transcript in which the
work qubits are not initialised to |0〉n, or (b) his transcript does not encode a valid

3.1. THE LOCAL HAMILTONIAN PROBLEM 55

computation, i.e. the states do not follow from one moment to the next in the way
specified by the circuit U , or (c) the computation does not accept. Scenario (a) is
covered by Hin, scenario (b) is covered by Hprop (for propagation) and scenario (c)
is covered by Hout:

Hin =
w∑
i=1

Π
|1〉1
n,i ⊗ |0〉T 〈0|T (3.34)

Hprop =
T∑
t=1

I ⊗ |t〉 〈t|+ I ⊗ |t− 1〉 〈t− 1| − Ut ⊗ |t〉 〈t− 1| − U †t |t− 1〉 〈t| (3.35)

Hout =Π
|0〉1
n,1 ⊗ |T 〉T 〈T | (3.36)

(3.37)

We proceed in three steps. First, we show that the reduction satisfies com-
pleteness: If there is a |µ〉 which the circuit accepts, then the Hamiltonian has
a small eigenvalue. Second, we show that the reduction has soundness: If there
is no message |µ〉 which the circuit accepts, then the Hamiltonian has no small
eigenvalues (we will find a lower bound for its eigenvalues). Third and last, we
will reformat the counting register to make sure that (i) all terms are 5-local and
(ii) for each term, the eigenvalues are 0 ≤ λ ≤ 1.

3.1.1 Completeness: A small eigenvalue when the answer
is “yes”

We will look at the Hamiltonian from Merlin’s perspective and ask, for each term
H in H: what message |µ〉n+T should he send to minimize 〈µ|H |µ〉? From the
outset, Merlin may send an arbitrary state |µ〉n+T , where for convenience we distill
|σt〉 for 0 ≤ t ≤ T . Note that |σt〉 is not necessarily a unit vector, and in fact may
be the zero vector.

|µ〉n+T =
T∑
t=0

2n−1∑
x=0

αt,x |x〉n |t〉T |σt〉n =
2n−1∑
x=0

αt,x |x〉n (3.38)

The idea will be that Merlin’s message is a transcript of a succesful computa-
tion. Impatient readers may find it in Equation 3.44, but to stress the similarity

56CHAPTER 3. A QMA-COMPLETE PROBLEM: THE LOCAL HAMILTONIAN

between this proof and the original Cook-Levin theorem, it is instructional to
derive this fact from the Hamiltonian.

Consider the task of minimizing the first term,
∣∣Hin |µ〉n+T

∣∣:
∣∣Hin |µ〉n+T

∣∣ =

∣∣∣∣∣
w∑
i=1

Π
|1〉1
n,i ⊗ |0〉T 〈0|T |µ〉n+T

∣∣∣∣∣ =

∣∣∣∣∣
w∑
i=1

Π
|1〉1
n,i ~σ0

∣∣∣∣∣ (3.39)

Merlin can do this one of two ways. Either he sets |σ0〉 = ~0, the zero vector,
or, if |ζ〉m is a certificate that the circuit accepts, he can set |σ0〉 = 1√

T+1
|0〉w |ζ〉m.

Note that the latter option is an honest transcript: at time t = 0, the system is
in state |0〉n |ζ〉m. We show that the latter is a good strategy, and in fact, that
choosing for each 0 ≤ t ≤ T : ||σt〉| = 1√

T+1
is a good strategy.

To minimize 〈µ|Hout |µ〉, Merlin should set ~σT to

~σT =
1√
T + 1

U |0〉w |ζ〉m (3.40)

So |Hout · |µ〉| =
∣∣∣∣ 1√
T + 1

Π
|1〉
n,1U |0〉w |ζ〉m

∣∣∣∣ ≤ ε√
T + 1

(3.41)

Note that this is again an honest transcript of the computation, because at
time t = T , the system is in the state U |0〉 |ζ〉. Of course, Merlin is free to set
|σT 〉 = |1〉1 |0〉n−1 instead of |σT 〉 = U |0〉 |ζ〉, minimizing the penalty function, but
that would be cheating, and since the computation is accepting, there is no need
for that.

Consider, lastly, Hprop:

〈µ|Hprop |µ〉 =
1

2

T∑
t=1

‖~σt‖2 + ‖~σt−1‖2 − 〈σt|Ut |σt−1〉 − 〈σt−1|U †t |σt〉 (3.42)

=
T∑
t=1

1

2
‖~σt‖2 +

1

2
‖~σt−1‖2 −<〈σt−1|U †t |σt〉 (3.43)

To maximize this term, Merlin should maximize 〈σt−1|U † |σt〉 for 1 ≤ t ≤
T . This is easily done by setting |σt〉 = Ut |σt−1〉, so that 〈σt−1|U †t |σt〉 =

3.1. THE LOCAL HAMILTONIAN PROBLEM 57

〈σt−1|U †U |σt−1〉 = 1. This is an honest transcript, as the state at time t is
related to the state at time t − 1 by |σt〉 = U |σt−1〉. Hence, all told, Merlin may
send the following state:

|µ〉n+T =
1√
T + 1

T∑
t=0

Ut . . . U1 |ζ〉m |0〉n |t〉 (3.44)

Let us verify that this strategy works. We know that 〈µ|Hin |µ〉 = 0 and
〈µ|Hout |µ〉 = ε

T+1
. The terms of Hprop contribute nothing:

〈µ|Hprop |µ〉 =
1

T + 1
· 1

2

T∑
t=1

2− 2< 〈σt−1|U † |σt〉 = 0 (3.45)

Great! We can express 〈µ|H |µ〉 at long last:

〈µ|H |µ〉 = 〈µ| (Hin +Hout +Hprop) |µ〉 (3.46)

= 〈µ|Hin |µ〉 + 〈µ|Hout |µ〉 + 〈µ|Hprop |µ〉 (3.47)

= 0 +
ε

T + 1
+ 0 (3.48)

=
ε

T + 1
(3.49)

By Theorem X we know that there must exist an eigenvalue m ≤ 〈µ|H |µ〉 =
ε

T+1
. Hence Merlin can send |µ〉, or he can send the smallest eigenvector; both will

convince Arthur.

3.1.2 Soundness: Lower bound when the answer is “no”

Suppose that the circuit rejects all certificates with high probability. Denote with
ε the probability with which the circuit accepts the “best” certificate:

ε = max
|µ〉m ∈ B

⊗m

∣∣∣Π|1〉1 U |µ〉m |0〉w
∣∣∣2 ≤ 1

2T
(3.50)

58CHAPTER 3. A QMA-COMPLETE PROBLEM: THE LOCAL HAMILTONIAN

We will have to show that in this case, the Hamiltonian H produced by the
construction above has only large eigenvalues. To this end, we divide the Hamil-
tonian in two parts, H = H1 +Hprop, with H1 = Hin +Hout. Having written H as
the sum of two operators, we may invoke Theorem 41 to obtain a lower bound on
the eigenvalue of H.

The plan is as follows. Theorem 41 will give us a lower bound for the eigenvalues
of H when we (i) find a λ which lower bounds the nonzero eigenvalues of H1 and
Hprop and (ii) find the angle between the subspaces of the kernels of H1 and Hprop.
Let V = ker(H1) and W = ker(Hprop). Then if we can find the angle Θ(V,W), we
have a good lower bound:

H = H1 +Hprop ≥ 2λ sin2

(
θ(V,W)

2

)
(3.51)

First, the eigenvalues of H1 and Hprop. The operator H1 is a projection, so its
only eigenvalue is 1. For Hprop, it turns out the operator is better represented in
a rotated basis. The rotation R is

R =
T∑
t=0

Ut · · ·U1 ⊗ |t〉 〈t| (3.52)

This operation is unitary because it is a block matrix in which each block is
unitary (the t-th block is Ut · · ·U1). Therefore, we can change the basis through
which we view Hprop, and obtain a new Hamiltonian H̃prop. It suffices to analyze
this new Hermitian, because eigenvalues are invariant under a change of basis.

H̃prop =R†HpropR =
T∑
t=1

I ⊗ (|t〉 〈t|+ |t− 1〉 〈t− 1| − |t〉 〈t− 1| − |t− 1〉 〈t|)

(3.53)

Now H̃prop = I ⊗ A where A = I −B and B is as follows (for T = 4):

A =

1
2
−1

2
0 0 0

−1
2

1 −1
2

0 0
0 −1

2
1 −1

2
0

0 0 −1
2

1 −1
2

0 0 0 −1
2

1
2

 = I − 1

2

1 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 1

 = I −B (3.54)

3.1. THE LOCAL HAMILTONIAN PROBLEM 59

The smallest eigenvalue of A is at least 1
2(T+1)2 . This is a result from the

theory of random walks [63]. Therefore we take λ = 1
2(T+1)2 , as it lower bounds

the eigenvalues of both H̃prop and H̃1.

For (ii) we will express all operators in the rotated basis, with H̃in = R†HinR =
Hin and H̃out = R†HoutR = U †HoutU⊗|T 〉 〈T |. Let V = ker(H̃1) = ker(H̃in+H̃out)
and W = ker(H̃prop). Then

ker(H̃1) = |0〉w ⊗ B
⊗w ⊗ |0〉 ⊕ B⊗w+m ⊗ (|1〉 ⊕ · · · ⊕ |T − 1〉) (3.55)

⊕U † · |1〉1 ⊗ B
⊗n+m−1 ⊗ |T 〉 (3.56)

ker(H̃prop) =B⊗n ⊗
T∑
t=0

|t〉 (3.57)

Here the last register in each term pertains to the clock. The projection onto
V = ker(H̃1) breaks into three parts, denoted Π1,Π2,Π3:

ΠV = Im |0〉w 〈0|w |0〉 〈0|︸ ︷︷ ︸
Π1

+ I⊗n
T−1∑
t=1

|t〉 〈t|︸ ︷︷ ︸
Π2

+ U †Π|1〉U |T 〉 〈T |︸ ︷︷ ︸
Π3

(3.58)

Instead of finding the angle θ(V,W), we will find cos2 θ(V,W). Any vector
|ψ〉 ∈ W can be represented as |ψ〉 = 1√

T+1
|φ〉
∑T

t=0 |t〉 for some |φ〉 ∈ B⊗n. Note

that 〈ψ|Π2 |ψ〉 = T−1
T+1

.

cos2 θ(V,W) = max
|ψ〉∈W
|α〉∈V

| 〈ψ|α〉 |2 = max
|ψ〉∈W

〈ψ|ΠV |ψ〉 (3.59)

= max
|φ〉∈B⊗n

1

T + 1
〈φ|
(

Π|0〉w + U †Π
|1〉
1 U

)
|φ〉+

T − 1

T + 1
(3.60)

This forces us into a brief aside in which we estimate the largest eigenvalue
of the projection Π|0〉w + U †Π|1〉U . Since this is a sum of two projections, we can
invoke Theorem 40 if we can find the angle Θ(X, Y) between the spaces onto which
they project. We have X = B⊗m |0〉w and Y = U † · |1〉⊗B⊗n−1. Again, we will not
estimate Θ(X, Y) directly, but we will find cos2 Θ(X, Y), which turns out to be
exactly ε, the maximum probability with which our circuit accepts any certificate.
A vector from X can be expressed as |µ〉m |0〉w for some |µ〉m.

60CHAPTER 3. A QMA-COMPLETE PROBLEM: THE LOCAL HAMILTONIAN

cos2(X, Y) = max
|x〉∈X
|y〉∈Y

| 〈x|y〉 |2 (3.61)

= max
|µ〉∈B⊗m

〈0|w 〈µ|m U
†Π|1〉U |µ〉m |0〉w (3.62)

= max
|µ〉∈B⊗m

∣∣Π|1〉U |µ〉m |0〉w∣∣2 = ε (3.63)

We have cos(X, Y) =
√
ε. Theorem 40 translates this cosine into an upper

bound: Π|0〉w + U †Π|1〉U ≥ 1 + cos θ = 1 +
√
ε. We resume finding cos2(V,W):

cos2(V,W) =
T − 1

T + 1
+

1 +
√
ε

T + 1
= 1− 1−

√
ε

T + 1
(3.64)

We’re almost done. For the lower bound of H, we have to reason about
sin2(1/2Θ(V,W)).

sin2(Θ(V,W)) =1− cos2(Θ(V,W)) =
1−
√
ε

T + 1
(3.65)

sin2(
1

2
Θ(V,W)) ≥1

4
sin2(Θ(V,W)) (3.66)

We are now ready to substitute sin2(1
2
Θ) and λ into Equation 3.51:

H ≥ 1

2
λ sin2 (Θ(V,W)) ≥ 1

2
· 1

2(T + 1)2
· 1−

√
ε

T + 1
=

1−
√
ε

4(T + 1)3
(3.67)

3.1.3 Realization of the counter

We now turn our attention to ensuring that all terms are 5-local by specifying
how the operators that act on the clock space are implemented. For example,
Hout = |0〉1 〈0|1 ⊗ In−1 ⊗ |T 〉 〈T | acts on one qubit and the clock register. We
could, of course, write T in binary and use the operator Hout = |0〉1 〈0|1⊗ I⊗n−1⊗
|T 〉log(T) 〈T |log(T), but then the operator acts on log(T) + 1 qubits, and not on 5
qubits.

3.1. THE LOCAL HAMILTONIAN PROBLEM 61

Instead, we will implement the clock register as numbers in unary repre-
sentation using T + 1 qubits. For example, t = 0 will be represented as
|0〉T+1 = |100 · · · 00〉T+1 and t = 3 is represented as |3〉T+1 = |111100 · · · 00〉T+1.
The clock operators are represented as follows:

|t〉 〈t| 7→I⊗t−1 ⊗ |110〉3 〈110|3 ⊗ I
⊗T−t−1 (3.68)

|t〉 〈t− 1| 7→I⊗t−1 ⊗ |110〉3 〈100|3 ⊗ I
⊗T−t−1 (3.69)

|t− 1〉 〈t| 7→I⊗t−1 ⊗ |100〉3 〈110|3 ⊗ I
⊗T−t−1 (3.70)

|t− 1〉 〈t− 1| 7→I⊗t−1 ⊗ |100〉3 〈100|3 ⊗ I
⊗T−t−1 (3.71)

For the cases t = 0 and t = T we make an exception, dropping the first
and last qubit, respectively, so as not to refer to qubits which do not exist. So
|0〉 〈0| 7→ |10〉 〈10| and |T 〉 〈T | 7→ I⊗T−1 ⊗ |11〉 〈11|. So for example, Hout will be
implemented as |0〉1 〈0|1 ⊗ I⊗n−1 ⊗ I⊗T−1 |11〉2 〈11|2, which acts non-trivially on 3
qubits. The t-th term of H̃prop is implemented as

H̃prop = I⊗n ⊗ I⊗t−1 ⊗ (|110〉 〈110|+ |100〉 〈100| − |100〉 〈110| − |110〉 〈100|)⊗ I⊗T−t−1

(3.72)

The argument above for the completeness of the protocol still goes through
with this scheme. Merlin will simply have to send the state in Equation 3.44 with
|t〉 represented in unary. However, the argument for soundness does not go through
anymore, because Merlin may send states whose clock register is not unary (for
example, the state |0〉n |00100〉5 is not affected by any Hermitian). To rectify this,
we add one last term, Hclock, to the Hamiltonian which penalizes states which do
not represent their clock register as a unary number:

Ht =
T∑
t=0

I⊗n ⊗ I⊗t |01〉2 〈01|2 ⊗ I
⊗T−1 (3.73)

Then the final Hamiltonian is as follows:

H = Hin +Hprop +Hout +Hclock (3.74)

In this setting, the soundness argument goes through because we take H1 =
Hin+Hout+Hclock, whose eigenvalues are all 1, and whose kernel does not intersect
the kernel of Hprop, and which has the same angle to it.

62CHAPTER 3. A QMA-COMPLETE PROBLEM: THE LOCAL HAMILTONIAN

3.1.4 Some remarks about the proof

This proof is sometimes called the quantum Cook-Levin theorem because it demon-
strates the “quantum NP-Completeness” of a quantum analogue of the SAT prob-
lem. The connection is very deep. First, the MAX − k − SAT problem can be
reduced to the k-local Hamiltonian problem in a way that shows that the k-local
Hamiltonian problem is a natural generalization of SAT. Second, the structure of
the two proofs (the proof of the Cook-Levin theorem and the proof above) are
very similar: they show how to interpret a computation as the specification for
how a system evolves over time, and show that the question of whether a certain
input-output combination exists relative to this time evolution can be translated
into a satisfiability problem.

Lastly, they map a satisfying assignment in one problem to a satisfying assign-
ment in another. This property is much stronger than is necessary for a reduction.
Any reduction preserves membership of instances, but the Cook-Levin reduction
also preserves the structure of the solution space. That is, whereas a reduction
need only be a function f for which x ∈ L ⇐⇒ f(x) ∈ SAT, the Cook-
Levin Theorem gives us a way to transform, in polynomial time, a certificate for a
non-deterministic machine into a satisfiable assignment to φ. Moreover, the map
between satisfying assignments and accepted certificates is bijective, so the number
of solutions to the problems is preserved. A reduction which preserves the number
of solutions is called a parsimonious reduction.3

Our reduction to the Local Hamiltonian Problem gives the following map-
ping between satisfying certificates for a circuit and the right eigenvectors for the
Hamiltonian:

|µ〉m 7→
T∑
t=0

Ut · · ·U1 |µ〉m |0〉w |t〉 (3.75)

This transformation is easily implemented in a quantum circuit. One sim-
ply puts the time register in the superposition

∑T
t=0 |t〉 (for example, using a

Fourier transform) and then acts on the system with the operator |µ〉m |0〉w |t〉 7→
Ut · · ·U1 |µ〉 |0〉 |t〉, in other words, we execute the first t gates of the circuit.

3The concept of parsimonious reducibility is not always applicable, as not all complexity
classes are defined with non-deterministic Turing Machines in mind, and of course because not
all languages are accepted by polynomial-time nondeterministic Turing Machines. The concept,
to the best of our knowledge, pertains only to reductions between (the decision versions of) search
problems, i.e. to NP problems and, by the reduction we have just given, to QMA problems.

3.2. A RELATIVIZED VERSION OF THE LOCAL HAMILTONIAN PROBLEM63

The reduction in Kitaev’s proof, then, preserves the structure of the underlying
solution space via a linear map, so it is a parsimonious reduction in the sense just
described. It is a longstanding open question whether parsimonious reductions
exist between all NP-Complete problems. In 2008, Goldreich mentioned that
parsimonious reductions exist between all known NP-Complete languages [5]. To
the best of the author’s knowledge, that statement still holds at the time of writing.

This open problem is not to be confused with a conjecture, by Berman and
Hartmanis, called the isomorphism conjecture [6], which posits that all NP-
Complete languages are interreducible by polynomial-time invertible bijections,
which is to say: for every pair L,K of NP-Complete languages, there is a
polynomial-time Karp reduction f from L to K such that f is bijective and f−1

can be computed in polynomial time. This conjecture only pertains to instances
of the languages and not to the solution spaces of machines that recognize them.
Both of these conjectures are likely to remain unsolved for some time, as they
require (if they are true) proving P 6= NP as a first step, as the isomorphism
conjecture implies P 6= NP.

3.2 A relativized version of the Local Hamilto-

nian problem

The Satisfiability problem captures NP-Completeness in the unrelativized
world. In some sense the fact that Satisfiability is NP-Complete is a non-
relativizing statement: there are oracles O, relative to which NPO is a class of
languages with complete problems, but Satisfiability is not one of those com-
plete problems. For certain purposes, this is an immensely useful fact: apparently
Satisfiability captures some unique fact about computation in the real world
that is lost when the Turing Machine gets access to an oracle.

In other contexts, however, it is useful to have a natural NP-Complete problem
even in a relativized world. Fortunately, if Satisfiability is modified to allow
oracle predicates in the formula, then it is NP-Complete again. Whereas usually
only clauses of the form (x1 ∨ x5 ∨ ¬x9) are allowed, we now allow clauses of the
form (x1 ∨ x5 ∨ ¬O(x2, x1, x4, x8, x1)), where O(x2, x1, x4, x8, x1) evaluates to true
iff the binary string q ∈ {0, 1}5 of five characters obtained by concatenating the
literals x2, x1, x4, x8, x1, is in O, i.e. if q ∈ O.

Theorem 44. For every oracle O ⊆ {0, 1}?, the problem SatisfiabilityO is
NPO-Complete, where SatisfiabilityO is the Satisfiability problem, aug-
mented to allow oracle terms to appear in the clauses.

64CHAPTER 3. A QMA-COMPLETE PROBLEM: THE LOCAL HAMILTONIAN

In this spirit, we now show how to modify the Local Hamiltonian problem
to account for the presence of oracles. This problem will be complete for Promise-
QMA, instead of the class QMA studied in Chapter 2. The class QMA is neither
known nor expected to have Complete problems.

The unrelativized version of QMA has a natural complete promise prob-
lem that we know and love: the Local Hamiltonian Problem. Kitaev
proves that this problem is in PromiseQMA, and then proves that it is hard
for PromiseQMA, reducing from the trivially Complete does-this-QMA-
machine-accept-a-state-problem.

We give an extremely brief sketch of the original proofs, first of QMA-Hardness
and then QMA-Completeness, containing only the parts that we will need to
change to account for oracles.

Theorem 45. As a promise problem, the Local Hamiltonian Problem is
PromiseQMA-Hard.

Proof. Given is a circuit and the promise that either the circuit either accepts
some state |ψ〉 confidently, or it rejects them all confidently, but the maximum
acceptance probability is never 1/2 or something silly like that. The circuit has a
ancilla qubits that are initialised to |0〉a, an answer qubit that should be |1〉 at the
end, and a third register for the input state, |ψ〉.

The Hamiltonian that is constructed will encode the computation history, a
transcript, of a computation by the circuit. It is the sum of three parts. The first
two parts “penalize” the Hamiltonian if the transcript encodes a computation that
does not end up accepting the input, or if the transcript “cheats” by initializing
the ancilla bits to some other value than |0〉a:

Hin =
a−1∑
i=0

I i ⊗ |1〉 〈1| ⊗ I Hout = I ⊗ |1〉 〈1| (3.76)

The important part, which we will have to revisit, is the part where for each
gate in the circuit, the Hamiltonian has a term to ensure that the transcript shows
a computation which executes this gate faithfully. If the t-th gate is U , then add
the following term, Ht, to the Hamiltonian:

Ht =
1

2
I ⊗ (|t〉 〈t|+ |t− 1〉 〈t− 1|)− 1

2
U |t〉 〈t− 1| − 1

2
U † |t〉 〈t− 1| (3.77)

3.2. A RELATIVIZED VERSION OF THE LOCAL HAMILTONIAN PROBLEM65

Then a bunch of mathematics happens, and tada! You can find good bounds
α and β, which are separated by a mile, α < β. If the computation was rejecting,
then the Hamiltonian has all eigenvalues > β, whereas if it was rejecting, then it
has an eigenvalue < α, which proves the theorem.

Next we rehearse how a quantum circuit evaluates a Local Hamiltonian.

Theorem 46. The Local Hamiltonian problem is in PromiseQMA.

Proof. For each non-oracle term H, find all eigenvalues of H, say they are
H =

∑
λi |ψi〉 〈ψi|. Then build a circuit W which acts as follows on this basis

of eigenvalues with an ancilla qubit:

W |ψi〉 |0〉 = |ψi〉 ⊗
(√

λi |0〉+
√

1− λi |1〉
)

(3.78)

(We will need the proof up to here) For each circuit, use a different ancilla
qubit. Lastly, measure one of the ancilla qubits at random. Then a bunch of
mathematics happens, and it all works out neatly: the circuit accepts with an
admissible error rate.

Alright, we are ready to get into this oracle business! For an oracle A, the class
Promise-QMAA is the set of tuples 〈Lyes, Lno〉 of languages with a yes-part Lyes
and a no-part Lno, disjoint, Lyes ∩ Lno = ∅ for which there is a uniform quantum
circuit family {CAx } with the following behaviour,

• If x ∈ Lyes then there is a quantum state |ψ〉 such that P [CAx |0〉 |ψ〉 |0〉 =
1] ≥ 2/3, and

• If x ∈ Lno then for all quantum states |ψ〉, P [CAx |0〉 |ψ〉 |0〉 = 0] ≥ 2/3.

By CAx we mean a circuit whose gate set includes {A0,A1,A2, . . .}. This gives
our quantum algorithms oracle access to A. Here An is a gate on n + 1 qubits
which operates as follows on the basis vectors:

A |x〉n |a〉1 = |x〉n |a⊕A(x)〉1 =

{
|x〉n |a〉 If x 6∈ A
|x〉n |a⊕ 1〉 If x ∈ A

(3.79)

66CHAPTER 3. A QMA-COMPLETE PROBLEM: THE LOCAL HAMILTONIAN

Theorem 47. For any oracle A, the promise problem Local HamiltonianA is
Hard for Promise-QMAA.

Proof. The input in the Hardness reduction is a series of gates, including some
oracle gates. Kitaev has already done the heavy lifting and showed what we are
aiming for: Given an oracle gate Ak, we would like to add the term

Ht =
1

2
I ⊗ (|t〉 〈t|+ |t− 1〉 〈t− 1|)− 1

2
Ak ⊗ |t〉 〈t− 1| − 1

2
A†k ⊗ |t− 1〉 〈t| (3.80)

to the Hamiltonian. This seems very difficult; one might think that we would
have to write out a 2k by 2k matrix, where k is non-constant and possibly very
large. Instead, we will cheat: we will write something to the tune of “and here is
where we would like to apply the oracle gate to qubits 3, 5, 4, 13 and 23”, it being
understood that the term we have in mind is the one in Equation 3.80. This is
similar to when we relativize the SAT problem and get a formula that looks like

∃y ∈ {0, 1}n : (y1 ∨ y2 ∨ ¬y3) ∧ (y2 ∨ ¬A(x1, x2, y1, y3, y5) ∨ y5) (3.81)

∧(x1 ∨ y6 ∨ A(x3, x2, y1, y2, y3)) ∧ . . . (3.82)

So that’s settled, then: it’s hard. How do you evaluate this Hamiltonian, when
you get it as an input? This is the part where we prove Local HamiltonianA ∈
Promise-QMAA. With some effort finding an oracle’s eigenvalues, the proof of
Kitaev goes through as usual.

Theorem 48. For every oracle A ⊆ {0, 1}?, the problem Local HamiltonianA

has a PromiseQMAA protocol.

Proof. In Kitaev’s proof, the algorithm must first find all the eigenvalues of the
Hermitians in the input. Clearly, since A may be queried on an arbitrary number
of qubits, say k qubits, and k may be very large and non-constant, we do not have
time to write out the 2k by 2k matrix and compute the eigenvectors that way.
Fortunately, that is easily circumvented by querying the oracle. Let A(x) = 1 if
x ∈ A and A(x) = 0 otherwise, as described above. Then the oracle acts on the
computational basis as:

A |x〉 |a〉 = |x〉 |a⊕A(x)〉 (3.83)

The eigenvectors of the gate A are {|x〉 |a〉 |x 6∈ A} ∪ {|x〉 |+〉 |x ∈ A} with
eigenvalue 1 and {|x〉 |−〉 | |x〉 ∈ A} with eigenvalue −1. This is almost what we

3.2. A RELATIVIZED VERSION OF THE LOCAL HAMILTONIAN PROBLEM67

want; we wanted to know the eigenvectors to Ht, from Equation 3.80 so that we
can build a circuit which behaves according to Equation 3.78. Fortunately, the
eigenvalues of Ht can be described as follows (here Ht is the Hermitian term from
Equation 3.80 and H is the Hadamard gate):

Let |τ0〉 =
1√
2

(|t〉+ |t− 1〉) |τ1〉 =
1√
2

(|t〉 − |t− 1〉)

(3.84)

Then Ht |x〉H |i〉1 |τk〉 ≡λ(x, i, k) |x〉H |i〉1 |τk〉 (3.85)

With λ(x, i, k) =A(x) ∧ (i⊕ k) ∨ (¬A(x) ∧ k) (3.86)

So the eigenvalues of Ht are |x〉H · |i〉1 |τk〉 with x ∈ {0, 1}n, i ∈ {0, 1}, k ∈
{0, 1}. The eigenvalues are λ(x, i, k).

Because λ(x, i, k) is a simple function on three Boolean values, it can be im-
plemented on a small quantum (or even classical) circuit. The circuit W has the
following action:

W (|x〉H · |i〉1 |τk〉 |0〉1) = |x〉H · |i〉1 |τk〉 |1⊕ λ(x, i, k)〉1 (3.87)

Perhaps we need some more convincing that λ can be implemented. After all,
this term involves A. Here we go, the circuit W is implemented as follows:

|x〉
A|0〉1 • X • X

H · |i〉1 H • H

|k〉1 • •
|0〉1 •
|0〉1 ∨ •
|0〉1 •
|0〉1 X

Figure 3.1: A circuit implementing W in Equation 3.87. It receives five ancilla
qubits initialised to |0〉1 as workspace.

The circuit W can be implemented, so the Hamiltonian can be evaluated, just
as in the unrelativized case. This proves the theorem.

68CHAPTER 3. A QMA-COMPLETE PROBLEM: THE LOCAL HAMILTONIAN

Chapter 4

Acknowledgements

I woud like to thank Scott Aaronson, Harry Buhrman, Ralph Bottesch and Mikhail
Vyalyi for many fruitful discussions, my supervisor André Deutz for his enthusiastic
support of my work, and my friends for the things they put up with to try to
understand what my research was about.

69

70 CHAPTER 4. ACKNOWLEDGEMENTS

Bibliography

[1] Arora, Sanjeev, and Boaz Barak. Computational complexity: a modern ap-
proach. Cambridge University Press, 2009.

[2] Aharonov, Dorit, et al. ”The pursuit for uniqueness: Extending Valiant-
Vazirani theorem to the probabilistic and quantum settings.” arXiv preprint
arXiv:0810.4840 (2008).

[3] Meyer, Albert R., and Larry J. Stockmeyer. ”The equivalence problem for
regular expressions with squaring requires exponential space.” SWAT (FOCS).
1972.

[4] Stockmeyer, Larry J. ”The polynomial-time hierarchy.” Theoretical Computer
Science 3.1 (1976): 1-22.

[5] Goldreich, Oded. ”Computational complexity: a conceptual perspective.”
ACM Sigact News 39.3 (2008): 35-39.

[6] Berman, Leonard, and Juris Hartmanis. ”On isomorphisms and density of NP
and other complete sets.” SIAM Journal on Computing 6.2 (1977): 305-322.

[7] Aaronson, Scott, and Andrew Drucker. ”A full characterization of quantum
advice.” Proceedings of the forty-second ACM symposium on Theory of com-
puting. ACM, 2010.

[8] Agrawal, Manindra, Neeraj Kayal, and Nitin Saxena. ”PRIMES is in P.”
Annals of mathematics (2004): 781-793.

[9] Marriott, Chris, and John Watrous. ”Quantum arthur–merlin games.” Com-
putational Complexity 14.2 (2005): 122-152.

[10] Toda, Seinosuke. ”PP is as hard as the polynomial-time hierarchy.” SIAM
Journal on Computing 20.5 (1991): 865-877.

71

72 BIBLIOGRAPHY

[11] Babai, László, and Shlomo Moran. ”Arthur-Merlin games: a randomized proof
system, and a hierarchy of complexity classes.” Journal of Computer and
System Sciences 36.2 (1988): 254-276.

[12] Sipser, Michael. ”A complexity theoretic approach to randomness.” Proceed-
ings of the fifteenth annual ACM symposium on Theory of computing. ACM,
1983.

[13] Valiant, Leslie G., and Vijay V. Vazirani. ”NP is as easy as detecting unique
solutions.” Theoretical Computer Science 47 (1986): 85-93.

[14] Valiant, Leslie G. ”The complexity of computing the permanent.” Theoretical
computer science 8.2 (1979): 189-201.

[15] Grilo, Alex Bredariol, Iordanis Kerenidis, and Jamie Sikora. ”QMA with sub-
set state witnesses.” International Symposium on Mathematical Foundations
of Computer Science. Springer, Berlin, Heidelberg, 2015.

[16] Baker, Theodore, John Gill, and Robert Solovay. ”Relativizations of the
P=?NP question.” SIAM Journal on computing 4.4 (1975): 431-442.

[17] Fortnow, Lance. ”The role of relativization in complexity theory.” Bulletin of
the EATCS 52 (1994): 229-243.

[18] Hartmanis, Juris, and Richard E. Stearns. ”On the computational complex-
ity of algorithms.” Transactions of the American Mathematical Society 117
(1965): 285-306.

[19] Gill, John. ”Computational complexity of probabilistic Turing machines.”
SIAM Journal on Computing 6.4 (1977): 675-695.

[20] Kannan, Ravi. ”Circuit-size lower bounds and non-reducibility to sparse sets.”
Information and Control 55.1-3 (1982): 40-56.

[21] Karp, Richard M., and Richard J. Lipton. ”Some connections between nonuni-
form and uniform complexity classes.” Proceedings of the twelfth annual ACM
symposium on Theory of computing. ACM, 1980.

[22] Köbler, Johannes, Uwe Schöning, and Jacobo Torán. ”Graph isomorphism is
low for PP.” Computational Complexity 2.4 (1992): 301-330.

[23] Adleman, Leonard M., Jonathan DeMarrais, and Ming-Deh A. Huang.
”Quantum computability.” SIAM Journal on Computing 26.5 (1997): 1524-
1540.

BIBLIOGRAPHY 73

[24] Kobayashi, Hirotada, François Le Gall, and Harumichi Nishimura. ”Gener-
alized quantum arthur-merlin games.” Proceedings of the 30th Conference
on Computational Complexity. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2015.

[25] Aaronson, Scott. ”Oracles are subtle but not malicious.” 21st Annual IEEE
Conference on Computational Complexity (CCC’06). IEEE, 2006.

[26] Aaronson, Scott, and Avi Wigderson. ”Algebrization: A new barrier in com-
plexity theory.” ACM Transactions on Computation Theory (TOCT) 1.1
(2009): 2.

[27] Aaronson, Scott. ”Quantum computing, postselection, and probabilistic
polynomial-time.” Proceedings of the Royal Society of London A: Mathe-
matical, Physical and Engineering Sciences. Vol. 461. No. 2063. The Royal
Society, 2005.

[28] Aaronson, Scott. ”On perfect completeness for QMA.” arXiv preprint
arXiv:0806.0450 (2008).

[29] Aaronson, Scott. ”Quantum lower bound for recursive Fourier sampling.”
Quantum Information & Computation 3.2 (2003): 165-174.

[30] Aaronson, Scott. ”Impossibility of succinct quantum proofs for collision-
freeness.” arXiv preprint arXiv:1101.0403 (2011).

[31] Aaronson, Scott. ”A counterexample to the generalized Linial-Nisan conjec-
ture.” arXiv preprint arXiv:1110.6126 (2011).

[32] Shamir, Adi. ”Ip= pspace.” Journal of the ACM (JACM) 39.4 (1992): 869-
877.

[33] Watrous, John. ”PSPACE has constant-round quantum interactive proof sys-
tems.” Foundations of Computer Science, 1999. 40th Annual Symposium on.
IEEE, 1999.

[34] Drucker, Andrew, and Ronald de Wolf. ”Quantum proofs for classical theo-
rems.” arXiv preprint arXiv:0910.3376 (2009).

[35] Cheung, Kevin KH, and Michele Mosca. ”Decomposing finite abelian groups.”
arXiv preprint cs/0101004 (2001).

[36] Okamoto, Tatsuaki, and Keisuke Tanaka. Graph Non-Isomorphism Has a Suc-
cinct Quantum Certificate. Tokyo Institute of Technology. Department of In-
formation Sciences, 2001.

74 BIBLIOGRAPHY

[37] Aaronson, Scott, et al. ”The space just above bqp.” Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science. ACM,
2016.

[38] Yao, A. Chi-Chih. ”Quantum circuit complexity.” Foundations of Computer
Science, 1993. Proceedings., 34th Annual Symposium on. IEEE, 1993.

[39] Watrous, John. ”Quantum algorithms for solvable groups.” Proceedings of the
thirty-third annual ACM symposium on Theory of computing. ACM, 2001.

[40] Hayden, Patrick, Kevin Milner, and Mark M. Wilde. ”Two-message quantum
interactive proofs and the quantum separability problem.” Quantum Infor-
mation & Computation 14.5&6 (2014): 384-416.

[41] Babai, László, Lance Fortnow, and Carsten Lund. ”Non-deterministic expo-
nential time has two-prover interactive protocols.” Computational complexity
1.1 (1991): 3-40.

[42] Kobayashi, Hirotada, and Keiji Matsumoto. ”Quantum multi-prover interac-
tive proof systems with limited prior entanglement.” Journal of Computer
and System Sciences 66.3 (2003): 429-450.

[43]

[44] Fortnow, Lance, and John Rogers. ”Complexity limitations on quantum com-
putation.” Computational Complexity, 1998. Proceedings. Thirteenth Annual
IEEE Conference on. IEEE, 1998.

[45] Cubitt, Toby, and Ashley Montanaro. ”Complexity classification of local
Hamiltonian problems.” SIAM Journal on Computing 45.2 (2016): 268-316.

[46] Childs, Andrew M., and Wim Van Dam. ”Quantum algorithms for algebraic
problems.” Reviews of Modern Physics 82.1 (2010): 1.

[47] Bernstein, Ethan, and Umesh Vazirani. ”Quantum complexity theory.” SIAM
Journal on Computing 26.5 (1997): 1411-1473.

[48] Bennett, Charles H., et al. ”Strengths and weaknesses of quantum comput-
ing.” SIAM journal on Computing 26.5 (1997): 1510-1523.

[49] Aaronson, Scott. ”Quantum lower bound for the collision problem.” Proceed-
ings of the thiry-fourth annual ACM symposium on Theory of computing.
ACM, 2002.

BIBLIOGRAPHY 75

[50] Razborov, Alexander A., and Steven Rudich. ”Natural proofs.” Journal of
Computer and System Sciences 55.1 (1997): 24-35.

[51] Aydinlioglu, Baris, and Eric Bach. ”Affine Relativization: Unifying the Alge-
brization and Relativization Barriers.” Electronic Colloquium on Computa-
tional Complexity (ECCC). Vol. 23. 2016.

[52] Fenner, Stephen, et al. ”An oracle builder’s toolkit.” Information and Com-
putation 182.2 (2003): 95-136.

[53] Watrous, John. ”Quantum computational complexity.” Encyclopedia of com-
plexity and systems science. Springer New York, 2009. 7174-7201.

[54] Jain, Rahul, et al. ”QIP=PSPACE.” Communications of the ACM 53.12
(2010): 102-109.

[55] Beigi, Salman, Peter W. Shor, and John Watrous. ”Quantum interactive
proofs with short messages.” arXiv preprint arXiv:1004.0411 (2010).

[56] Pereszlényi, Attila. ”On quantum interactive proofs with short messages.”
arXiv preprint arXiv:1109.0964 (2011).

[57] Hayden, Patrick, Kevin Milner, and Mark M. Wilde. ”Two-message quantum
interactive proofs and the quantum separability problem.” Quantum Infor-
mation & Computation 14.5&6 (2014): 384-416.

[58] Vyalyi, Mikhail. ”QMA=PP implies that PP contains PH.” ECCCTR:
Electronic Colloquium on Computational Complexity, technical reports. 2003.

[59] Vinodchandran, N. V. ”A note on the circuit complexity of PP.” Theoretical
Computer Science 347.1-2 (2005): 415-418.

[60] Fortnow, Lance, Rahul Santhanam, and Ryan Williams. ”Fixed-polynomial
size circuit bounds.” Computational Complexity, 2009. CCC’09. 24th Annual
IEEE Conference on. IEEE, 2009.

[61] Buhrman, Harry, Lance Fortnow, and Thomas Thierauf. ”Nonrelativizing sep-
arations.” Computational Complexity, 1998. Proceedings. Thirteenth Annual
IEEE Conference on. IEEE, 1998.

[62] Kitaev, Alexei Yu, Alexander Shen, and Mikhail N. Vyalyi. Classical and
quantum computation. Vol. 47. Providence: American Mathematical Society,
2002.

76 BIBLIOGRAPHY

[63] Aharonov, Dorit, and Tomer Naveh. ”Quantum NP-a survey.” arXiv preprint
quant-ph/0210077 (2002).

[64] Kempe, Julia, and Oded Regev. ”3-local Hamiltonian is QMA-complete.”
arXiv preprint quant-ph/0302079 (2003).

[65] Kempe, Julia, Alexei Kitaev, and Oded Regev. ”The complexity of the local
Hamiltonian problem.” SIAM Journal on Computing 35.5 (2006): 1070-1097.

[66] Complexity Zoo. Retrieved from https://complexityzoo.uwaterloo.ca/Complexity Zoo.

