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Abstract

Zebrafish (Danio rerio) are important and widely used model organisms in biological and biomedical research.

Imaging is key for studying of the embryonic and larval stages of zebrafish. The dorsal, ventral, and both

lateral views of zebrafish acquired through vertebrate automated screening technology (VAST) imaging are

used for age prediction of larvae of 3, 4 and 5 days post fertilisation. Histogram of oriented gradients (HOG)

is used as a feature extraction method on these images and a machine learning model is trained to perform

a classification on this data. We show that a linear support vector machine achieves an accuracy of 97% in

classifying the age. A distinct image processing, however, including filtering, image smoothing and feature

selection is essential to achieve an adequate classification.
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Chapter 1

Introduction

Zebrafish (Danio rerio), a freshwater fish native to the Himalayan region, is a widely used vertebrate model

organism in biological and biomedical research. [1] Being one of the most important model organisms in

developmental biology, it is increasingly used in toxicology, pharmacology and behavioural studies. [2]

Moreover, there is a large resemblance of human clinical disorders in zebrafish mutant and pathogen induced

phenotypes. [3] Being such an important research organisms, many studies have focused on the imaging of

zebrafish, especially during its larval stages. An aspect of zebrafish is the almost complete transparency during

its embryonic stage which is a great advantage during imaging. Imaging is crucial as it provides information

on the (defect) phenotype of the specimen studied. A wide range of screening technologies exist specialised

in studying zebrafish. [4] Among these is the vertebrate automated screening technology (VAST) capable of

high-throughput in vivo imaging of small specimens such as zebrafish embryos. [5, 6]

During a VAST cycle the system images zebrafish larvae by loading them from either a multiwell plate or a

reservoir, and after detection, passing them through a capillary tube and, positioning and rotating them. [5]

This rotation capability allows for imaging from many different angles. Digital reconstructions into a three

dimensional (3D) volume is then possible [7] which is crucial to get a better understanding of the structural

architecture of biological samples and get a better insight into a disease or defect phenotype. [8] A VAST

microscope is also present at the Institute of Biology Leiden (IBL). With this apparatus a turntable sequence

of 84 two-dimensional (2D) axial-view images are generated. [9] An annotation pipeline reconstructs these

images into 3D shapes and, more importantly, annotates them with various properties such as volume and

surface area. [10]

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Distribution of surface area (top) and volume (bottom)
of 3, 4 and 5 dpf old zebrafish larvae. Y axis: normalised probability
density. The coloured triangles on the x axis indicate the standard
deviation from the mean for each of the distributions. [10]

As organisms get older their phenotype changes.

For example they grow larger or develop new or-

gans. A study by Guo et al. showed the distribu-

tion of volume and surface area of 3, 4 and 5 days

post fertilisation (dpf) wild type (wt) zebrafish

embryos. Figure 1.1 indicates the average size

increases with maturation, but it also shows that

a lot of overlap is present in these features. [10]

Using the descriptors volume and surface area of

the 3D reconstruction of the imaged zebrafish

larvae is therefore not a good indicator for age.

Another way of predicting maturation of the lar-

val stage is using an image based identification

strategy. This may be more distinct and hence

provide more insights in what phenotypic as-

pects of the embryo are defining for age. Various

development effecting mutations or pathogens

can have an effect on the growth of an organism.

A good maturation identification can be very

helpful in understanding how certain diseases,

toxins or mutations may have an effect on age

through effecting these phenotypes.

1.1 Tools for age prediction

A means for making predictions based on data is machine learning. Machine learning is the process of training

a computer or machine on a data set in order to make estimations for future samples of the same data type. [11]

A type of machine learning is the process of classification. During classification a trained machine learning

algorithm (classifier) tries to predict a certain aspect (the class) of the sample. Many different types of classifiers

exist, all with different properties, advantages and disadvantages. Machine learning is a powerful tool used

in image classification and is used widely in many research areas such as artificial intelligence, biology and

security. In this project a classifier will be trained on image data of zebrafish larvae of 3, 4 and 5 dpf in order

to provide an estimation for the maturation of new samples. During training it is especially interesting to note

what happens to wrongly classified specimens as this may provide information on phenotypes which are

characteristic for maturation.

A classifier cannot be trained on the raw input image data. A collection of red, green and blue (RGB) values for

all the pixels does not give any information about what is actually in the image. Therefore a so called feature

extraction has to be performed in order to characterise the image. There are multiple approaches to this of
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which the two major ones are feature engineering and using convolutional layers. The latter one creates its

own form of feature extraction and is used mainly in combination with deep neural networks. This approach,

however, requires large amounts of training data. In this project a custom feature engineering will be applied

to the zebrafish images based on the Histogram of Oriented Gradients (HOG) method first described by

McConnell et al. in 1982. [12] HOG provides a measure for gradients in images and is a good tool for edge

detection. Therefore, HOG features are commonly used for object detection as it provides a good descriptor

for shapes.

1.2 Problem statement and research questions

In the previous section a brief introduction has been given to the research done in this project. A descriptor for

age, or maturation, in zebrafish embryos is necessary in order to provide better insight into what phenotypic

features are defining for this. This led as motivation to our problem statement (PS):

PS: To what extent can we estimate the age of zebrafish larvae based on features extracted from imaging data

using machine learning?

To address this PS we are inclined to train a classifier on images of wild type zebrafish larvae. A feature

extraction method will have to be designed which gives a good indication of phenotypic aspects relevant to

age. This will have to be applied to zebrafish image data which will have to be preprocessed and normalised. A

fitting classifier will have to be selected and trained, and parameters of this classifier will have to be optimised.

Furthermore speed is of relevance in order to integrate the age prediction into the VAST zebrafish annotation

pipeline. To reach our goal we formulate and investigate four research questions (RQs).

As mentioned above and in the previous section a feature extraction method is necessary in order to accurately

train a classifier. Volume and surface area of zebrafish larvae provide an ambiguous descriptor for age.

Histogram of Oriented Gradients (HOG) is a feature extraction method that might fit our goal for shape

detection. Previous research has shown it has potential for bioimage analysis and identification of subtle

details as well as the possibilities for age classification of zebrafish embryos. This will be investigated further

and our first research question is as follows:

RQ 1: To what extent are HOG features a good indicator for maturation in zebrafish and how does this

compare to using volume and surface area?

The image data collected from VAST microscopy consists of 84 RGB images of 1024 by 250 pixels stored in a

single bitmap file per sample. This data has to be processed to be suitable for feature extraction. There are

various approaches to this. We will investigate these in order to define an optimal preprocessing pipeline

which is fast and accurate. Our second research question is thus formulated as follows:

RQ 2: How can we perform and optimise the preprocessing of the zebrafish image data?

Various algorithms for classification exist. Image data is high dimensional, dense data. Classifiers such as a
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support vector machine (SVM) or an artificial neural network (ANN) might be well suited for this type of

data and commonly used in image classification. Both types of classifiers have advantages and disadvantages.

SVMs are, for example, much faster to train and less prone to overfitting (depending on the kernel). ANNs on

the other hand are much more flexible in the way they interpret data. Because these two classifiers have shown

their potential in previous research they will be compared. The requirements for a good classification is a high

F1-score and a short classification time. This leads to our third research question:

RQ 3: How does classification using an artificial neural network compare to using a support vector machine?

In the previous section an outline of the current annotation pipeline has been given. The aim is to integrate an

age annotation into this pipeline and for that reason speed is essential. The pipeline runs on a computer cluster

capable of running many processes in parallel. We will also pay some attention to parallelising computational

expensive parts if necessary. We therefore define our fourth research question as such:

RQ 4: To what extent can we optimise parameters of the classifier and how can we optimise the run time of

classification?

1.3 Thesis Overview

In this section the structure of this thesis is outlined. Chapter 1 provides a brief introduction to the research

described in this thesis. It presents an overview of the problem statement and the research questions.

Chapter 2 describes background theory on methods used in this thesis. It contains brief descriptions of

techniques and how they can be applied. Furthermore it provides a short survey of other studies focusing on

related topics. Here we discuss methods which will possibly be influential for our approach as a basis for why

certain decisions and considerations have been made. Moreover we provide a background of research which

led as motivation to this work.

Chapter 3 contains the materials and methods section. Here we elaborate on the software and data, our specific

implementation, and what steps were taken to achieve results.

In Chapter 4 an overview of the results will be given alongside a discussion of these results.

In Chapter 5 we present our conclusions from the research and provide an overview of our findings. The

answers to the research questions and the problem statement are summarised and a glance at possible future

research is given.



Chapter 2

Materials & Methods

In this chapter a description will be given on techniques and methods applied in our research. An overview of

how these are put in practice is given in Chapter 3. Here we will provide background knowledge required for

a full understanding. Furthermore, at the end of the chapter a brief survey of related works is given.

2.1 Zebrafish

Zebrafish (Danio rerio) is an important model organism in biological and biomedical research being commonly

used in toxicology (the study of the effect of toxins), pharmacology (the study of the effect of medicines and

other pharmaceutics), behavioural studies, developmental biology and genetics. [1,2] There are several reasons

for its popularity. The first is the key point of the large resemblance of response to diseases by humans. In

the past mainly mice (Mus musculus) and fruitflies (Drosophila melanogaster) were used for understanding

human disease. Not only do they resemble human mutant or defect phenotypes but their key superiority’s

over other animals are their quick reproduction rate and small size which allows for simple screening. This

also goes for zebrafish but there are some other benefits as well such as ex vivo fertilisation and embryogenesis,

optical transparency of embryos and larvae, fast embryonic development, and relative cheap housing housing

costs. [13] Besides this, the genetics of zebrafish has been studied extensively causing thorough knowledge of

its genetic markup. From mutagenic screens many mutants have generated with defects that are analogous to

human genetic diseases at the molecular and cellular level. Next to genetic disorders, zebrafish also prove to

be good models for several acquired diseases among which are tuberculosis, diabetes and cancer.

During its embryonic (0-72 hours) and larval stages (3-29 days) zebrafish are almost completely optically

transparent. This allows for easy light microscopy imaging. Pathogens can, for example, be labelled with

fluorescence and possibly that way traced through the organism. Along with their small size, about 3.5 mm at

3 days past fertilisation (dpf), they are easily studied. [14] During the embryonic stage rapid development

takes place of cell division to formation of fins and organs. During the larval stage a lot of development occurs

as well. However, it is more difficult to define developmental stages at this point in time as environmental

5
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factors such as temperature, population density, and water quality have much more effect on growth. The

phenotype of zebrafish larvae is thus subject to a certain amount of individual variation. [15, 16]

2.2 Imaging

Bio-imaging is defined as the process of acquiring images of biological samples. There are numerous methods

for this often through microscopy. Popular imaging tools in biology include electron microscopy, confocal

microscopy and light microscopy, all of which have their own specific variations and appliances to fit the

required needs as best as possible. More recent developments have been in the field of three-dimensional (3D)

imaging. This is the process of scanning the sample from multiple angles or at multiple layers and reconstruct-

ing the so obtained 2D planes into a 3D volume. Confocal microscopy can do this at very high magnifications

(up to 63x) with a high resolution but is time-intensive, moreover because of its high magnification it can only

be used to study small (areas of) samples (at 63x a scan area of 246.03 µm2). [17] Other techniques for 3D

imaging include magnetic resonance imaging (MRI), optical projection tomography (OPT), and vertebrate

automated screening technology (VAST) bio-imaging. Last named bio-imaging system will be used in this

study as an image data acquisition method through axial scanning of zebrafish.

2.3 Python

All data processing, the classification and implementation for this research was done in Python 3. Python

is a widely used high-level programming language designed by G. van Rossum in the late 1980’s. [18] The

first version of Python was released in 1991 with the design philosophy of code readability. Python 3 was

launched in 2008 and implemented several major revisions to the language. Its versatility and portability

along with the advantage of speed and good possibilities for data science made it an excellent choice to use as

implementation for this project.

To extend the base functionality of Python, additional packages (libraries) were used. The library NumPy

allows for more complex mathematical operations, data storage and data handling. The library scikit learn is a

widely used data science toolkit containing implementations of many classifiers and analysis methods.

2.4 Data science

As the name suggests data science is the application of techniques from computer science and statistical science

to data sets. This data can have many forms and shapes and can be very unstructured. There are two main

paradigms within the field of data science: question-driven, and data-driven. The first, question-driven, is

common in the social sciences and starts with a research question after which an experiment is set up and the

required data is collected. This data is then analysed and the hypothesis to the research question is then either
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accepted or rejected. The second paradigm, data-driven, starts with the data. The data is explored and from

this a research question is formulated. In order to answer the question the data is structured and annotated so

a machine learning approach can be applied which is then evaluated on the data.1

The research presented in this thesis is without doubt a data-driven type data science study. The data consists

of zebrafish image data collected through VAST microscopy from which the goal is to derive the age of the

larvae. As mentioned above, it is general practice when working with data to process it through various steps

before being able to make some predictions based on the data. In the following paragraphs these steps will be

elaborated specifically for the techniques applied in this research.

2.5 Image processing

In order to make accurate and relevant predictions based on data, this data usually first has to undergo a

distinct stage of processing. This includes structuring and annotating the data, cleaning the data of useless

or empty entries, and extracting representative values or structures from the data through which one can

answer the research question. For image based data a good image processing stage is therefore critical in

order to make proper predictions, which requires thorough knowledge concerning the contents of the data.

Image data is a quite specific type of data when it comes to data processing. As images usually contain a lot of

information, thousands to millions of pixels, the relevant parts usually undergo a cropping and scaling stage

to remove unimportant parts of the image or reduce the size. Moreover feature extraction from images is key

for detection of what is actually in the image.

Preprocessing of images is the task of extracting parts which describe its contents. This usually involves

cropping, scaling, filtering, normalisation, segmentation, and object identification in order to output a set

of significant regions and objects. [19] From the preprocessed image features are extracted which are used

in machine learning, where a computer learns patterns from the data and can then make predictions on

new data of the same type. Extraction of normalised identifiers from a image is critical in image recognition,

identification and classification. A mere collection of RGB intensity values says little about the actual contents

of the image. Moreover it is essential to take the context of each pixel into account. A good method for feature

extraction is critical because the particular features directly influence the efficacy of the classification task. In

image classification features are stored in a feature vector which contains all ”relevant” information describing

the image, or the object in the image. This vector should be considered a mathematical abstraction of the

image, but also a function of one or more measurements. [19]

2.5.1 Image blurring

The HOG feature extraction which is applied in the research presented in this thesis is focused on edge

detection. This edge finding is based on inter-pixel gradients (intensity variations) which is explained in

1Lecture series Data science 2018 - Dr. S. Verberne
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(a) (b)

Figure 2.1: Bilateral filter result after ten iterations. (a) Noisy input test image and (b) result after
filtering. Image source: M. Elad [20]

more detail in the next section. Gradient detection, however, can be negatively impacted by noise present in

images and especially photos. A blur or smoothing filter can therefore be applied before gradient computation.

Various types of blurs exist such as a mean blur, Gaussian blur, or bilateral filtering. A mean blur weighs

all surrounding pixels in the given radius r equally. A Gaussian blur weighs surrounding pixel intensities

according to a Gaussian, or normal, distribution. For that reason it requires the user to specify a standard

deviation σ for the pixels to be considered. Compared to a mean blur, a Gaussian blur has the advantage of

better edge preservation. A third type of blur is a bilateral filter (Figure 2.1). This blur has even better edge

preservation as it takes colour value and spacial information into account. It replaces the intensity of each

pixel with a weighted average of intensity values from nearby pixels. [20, 21]

2.5.2 Histogram of Oriented Gradients

The Histogram of Oriented Gradients (HOG) is a feature descriptor able to accurately identify objects in an

image. After the preprocessing stage a HOG feature extraction is applied to the zebrafish images. Previous

studies have shown the potential for HOG as an identifier for people or object detection, and its advantage of

great dimensionality reduction. Images are a collection of pixels, a standard image can contain millions of

pixels which are a lot of features if directly used for training and classification. For example the cropped and

scaled zebrafish images have a size of 704 by 112 pixels, which is a total of 78848 pixels. Every pixel has a RGB

value, which is a combination of the colour intensities in the RGB (red, green, blue) colour space. Nowadays

it is the standard that every colour can have a value in the range of 0 to 255, which corresponds to 8 bits (1

byte) of information, as 28 = 256. For the total image this would thus result in 78848 ∗ 3 ∗ 8 = 1892352 bits of

information. HOG reduces the size significantly and is therefore a compact way of representing the image.

The HOG feature vector of such an image has a file size about 12 times smaller per image. However, because

the files undergo compression this is not an explicit measure for the theoretical size reduction of an image to

its HOG vector.

Dalal and Triggs [22] propose a method for the calculation of the HOG vector from an image. Preprocessing of
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the input image results in a region of interest on which the feature extraction is then performed (Figure 2.2a).

First colours have to be normalised which can be done by computing the grey scale image, RGB or LAB

(CIELAB) colour spaces. A grey scale image is computed by taking a weighted average of the three RGB colour

channels. This preprocessed sub-image is then divided into a number of equally sized groups of adjacent pixels

called cells (Figure 2.2b). For every pixel in the cells their directed gradient is then computed (Figure 2.2c)

according to the following formulas:

g =
√

g2
x + g2

y

θ = arctan
gy

gx

Where θ is the direction of gradient with magnitude g. This is computed using a 1-D mask with gx kernel:

[−1, 0, 1], and gy kernel:
[
−1
0
1

]
. This means the gradient at a pixel will be the sum of the surrounding pixel

intensities multiplied by the values in the mask.

After gradients for all the pixels in a cell have been computed every pixel adds its gradient magnitude to an

edge orientation histogram based on the orientation of its gradient element (Figure 2.2d). The magnitudes are

summed into a number of bins corresponding to the gradient directions. These orientation bins are evenly

spaced over 0◦ − 180◦. The magnitudes are divided bilinearly over the neighbouring bins to reduce aliasing

for the orientations resulting in a histogram. Figure 2.2d illustrates how the gradient magnitudes are placed in

the histogram determined by the gradient direction at their corresponding position.

Especially in non standardised images, pixel gradient strengths vary significantly due to variations in illumina-

tion and foreground-background contrasts. E.g. in outdoor camera pictures natural lighting varies at every

moment. To compensate for this all cells in the HOG descriptor are normalised using a block normalisation

scheme. One block contains one or multiple cells causing the normalisation to take gradient variation of

various cells into account, thereby accounting for illumination differences between pixels in different cells. The

size of the input image has to be a multiple of the block size which is also the reason for the image scaling

step as mentioned in Section 3.2. However, a large scaling factor would have a considerable impact on the data

by possibly causing distortions. For that reason, ideally, a block and cell size is chosen which fits the cropped

image with the least amount of scaling necessary. This is determined by choosing a block size which is close

divisor of the image width and height.

The histograms are normalised using the L2-Hys normalisation scheme based on the L2-norm

v→ v/
√
‖v‖2

2 + ε2

where v is an unnormalised descriptor vector (the combined gradient histogram for all cells in the block),

‖v‖2 its Euclidean norm as given by ‖v‖2 =
√

v2
1 + v2

2 + ... + v2
n for a vector v of size n, and ε is a very small

constant. The L2-Hys follows the L2-norm by limiting the maximum values of v to 0.2, and then renormalising

if required. [22]
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(a) (b)

(c) (d)

Figure 2.2: Processing steps in HOG feature extraction. (a) Preprocessing of the image. This can
include identifying a region of interest, cropping and scaling, and possibly applying a cropping
mask. (b) Division of the preprocessed image into cells of equal size. (c) Calculation of gradients
per cell. Gradient magnitude and direction is calculated for every pixel. (d) Determination of
Histogram of Oriented Gradients per cell. Afterwards normalised using block normalisation.
Image source: www.learnopencv.com/histogram-of-oriented-gradients

2.5.3 Dimensionality reduction

Figure 2.3: Illustration of three models represented by the dashed lines
fitted to the same training data represented by the black dots. The under-
fitted model does not give a good prediction because it does not represent
the data. The overfitted model does not give a good prediction as it is
not a good generalisation of the data, unseen data will probably not be
estimated correctly. Image source: medium.com

Although feature extraction as discussed

in the previous section already reduces

the size of the image description, the fea-

ture space (the features representing a

sample) is still quite large. HOG can re-

duce tens of thousands of pixels to a cou-

ple thousand features but also includes

redundant features better left out for clas-

sification. This can reduce the complexity

of the data, improve performance by re-

ducing the risk on overfitting (the issue

where the model is shaped too much to

the training data as in Figure 2.3), and gives better interpretable information. The problem then arises, how to

represent the high-dimensional input in a low-dimensional feature space? [23, 24]
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Various methods for dimensionality reduction exist. Traditional ones such as principle component analysis

(PCA) only select features which are uncorrelated with each other and drop the connected features. Another

method is univariate feature selection which works by selecting the best features based on univariate statistical

tests. Every feature undergoes individual statistical analysis to detect variation in the feature across the

complete dataset.

2.6 Classification

Classification is a type of machine learning where an algorithm is trained on existing data in order to predict a

class or type for a new entry of the same data type. Machine learning, a sub-field of artificial intelligence, is

the process in which a given standard algorithm ’learns’ to predict outcomes based on training data without

being explicitly programmed or designed for this. The term machine learning was coined by A. Samuel in

1959 who also notes the philosophical aspects to whether computers can learn. [11] The last few years machine

learning has become quite a hot topic because of the large amount of easy accessible data available which is

often referred to as “big data,” but mainly because of the new advances in computing power in CPUs, GPUs

and memory arrays. This significantly improved the speed of data handling adding to the ease of processing

big data.

Large companies such as Google and Facebook collect huge amounts of personal data which is used for

creation of personalised advertisements. This is a goldmine for data mining and machine learning plays a

major role in this. But that is definitely not its only utilisation. In science machine learning is not just studied

but also applied for making new discoveries or optimising certain processes. Because of the non-specificity of

machine learning its applications are numerous.

Three distinctions can be made in machine learning concerning the type of learning. (1) Supervised learning,

(2) unsupervised learning, and (3) semi-supervised learning. [25, 26]

1. The goal of supervised learning is to train a model to learn a function y = f (x). In other words once the

model is trained on a subset of data X, it should be able to predict a class or value y corresponding to

any given x ∈ X. This requires, however, all the training data to be labelled with some type of class or

value for every entry, which is used as template during the learning stage.

2. Unsupervised differs from the previous type in the sense that there is no defined correct answer. New

data is not used to predict a class or value for new data types, but rather to explore existing data such

as clustering it into groups based on similarities in the data. It is very useful for finding patterns or

“hidden” information in the data.

3. Semi-supervised learning falls somewhere in between the two previous named types of machine learning

in the sense that there is a data label present, but not always the complete answer is given to the machine

learning algorithm. Or labelled data is used in combination with unlabelled data, which has proved to

give considerable improvement in learning accuracy.
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Supervised learning can be subdivided into two groups as well: classification and regression. As mentioned

above, classification is the task of predicting a class or type given a new sample. Regression on the other hand

predicts a value. The main difference between these two is that a regression estimator can predict any value

for a given input, whereas a classifier is limited to a number of classes defined during training. In this study

we will focus only on classification as we will predict a distinct age category.

Many algorithms for classification exist, along with a diverse range of platforms for implementation (e.g. Scikit

learn, Weka). The reason for the variety in algorithms is the variability in data such as shapes and sizes (the

number of features), the density over the features (e.g. all features have a value, or some are zero), and the

content can be very different (e.g. image data compared to social media data). This and many more factors

including the amount of training data influence the choice for selecting a proper classifier for the experiments.

In the sections below the two classifiers used in this project are discussed along with with a brief background.

2.6.1 Support vector machines

Support vector machines (SVM) are models used for supervised learning. After training on a dataset, the

algorithm can make predictions for new data points. This can be through classification or regression. During

training SVMs represent the data entries as points in space and divide the examples of the different categories

by a clear gap that is as wide as possible. The defined boundary is a hyperplane in the feature space of the

training data. Figure 2.4 shows an abstracted example of a SVM, the hyperplane H3 divides the data in the

most optimal way, meaning it has the largest minimal distance between all data points.

Figure 2.4: A linear support vector machine finds the best hyperplane in a spacial representation
of the training data. H1 does not divide the data, H2 divides the data not optimal, H3 has the
largest minimal distance between all points and is thus the best fitting divider. Image source:
https://en.wikipedia.org/wiki/Support_vector_machine
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The SVM shown in Figure 2.4 is a linear SVM, it finds linear (flat) hyperplanes as division between the data

points. Using a different kernel it is possible to also make non-linear separations. Figure 2.5 shows how a

different kernel allows for non-linear separation of the data points.

The main advantage of SVMs are their ability to handle small data of about 20 samples, but to also work with

large data. Furthermore their ability to handle high dimensional data even when the number of dimensions

is higher than the number of samples, their versatility due to varying kernel functions, and their memory

efficiency. Disadvantages, however, include that if the number of samples is much lower than the number

of features they can be prone to overfitting (Figure 2.3), this can be regulated by careful selection of a

kernel. Besides this, SVMs do not provide probability estimates, these are calculated using expensive five-fold

cross-validation scores.2,3

Figure 2.5: Overview of data point seperation using different kernels in a support vec-
tor classifier (SVC). LinearSVC is another implementation of the SVC with linear kernel.
A different kernel results in a different separation plane for the data points. Image source:
http://scikit-learn.org/stable/modules/svm

2.6.2 Artificial neural networks

Artificial neural networks (ANN) are based on the principles of neuronal networks present in animal brains.

An animal acquires knowledge on doing tasks by performing them and evaluating the result. This led as an

inspiration to the perceptron, the building block of ANNs. This concept was first proposed by Rosenblatt in

1957 [27]. ANN is considered a supervised learning algorithm which maps an input to an output through

2Lecture series Data science 2018 - Dr. S. Verberne
3Scikit learn Support vector machines, http://scikit-learn.org/stable/modules/svm [last accessed 01-07-2018]
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various mathematical operations. Such that Rm → Ro, where m is the number of dimensions for the input

and o the number of dimensions for the output. Given a set of features X = {x1, x2, ..., xm} and a target

y it can approximate a non-linear function for classification or regression. ANN is composed of so called

perceptrons which can be layered. A perceptron is the most basic form of an ANN. It contains a number of

inputs which are scaled by individual weights, the sum of which passes through an activation function (such

as the sigmoid-function or the rectified linear unit) and then results in a certain output. The input layer consists

of perceptrons {xi|x1, x2, ..., xm} representing the input features. The output layer transforms the values from

the last hidden layer into output values. Hence there are several parameters for an ANN including the number

of hidden layers, the size of the hidden layers, and the activation function.4

ANNs have the advantage of being capable to learn non-linear models and also the ability to keep learning

whilst being used. Moreover, they are very versatile and can handle high-dimensional data. Especially their

modern update, deep learning (an ANN with many hidden layers and nodes), can be applied to many

problems without the need for expert knowledge on the data because the feature engineering step is skipped.

The downside of this, however, is the danger of overfitting (Figure 2.3) on the training data. Over-training is

common and especially risky with a small training dataset. Another disadvantage is ANNs are not always

optimal, as hidden layers have a non-convex loss function where there exists more than one local minimum.

Therefore random weight initialisation can lead to inconsistent results.

2.7 Result interpretation

After training, a classier can make predictions about unseen data, however, how accurate are these predictions?

Training a machine learning algorithm is done on a dataset which is a sample of all possible data, it is therefore

important that the sample is representative for the complete dataset. In our case this means the training data

should contain a general overview of all possible phenotype in wild type zebrafish larvae. If this is not the

case, the trained algorithm will not make optimal predictions on any new data. For that reason it is critical to

test the trained classifier with a separate dataset which is not used for training.

2.7.1 Cross-validation

Cross-validation is a method for training and testing a machine learning model to get an estimate of how

well it will perform in practice. The training data is split up into k parts and the algorithm is trained k times.

Every time one of the data parts is used for testing the model which is trained on the remaining data. This

results in accurate metrics for the quality of the classifier as it is trained and tested over the whole dataset. It

should be noted, however, that increasing k will cause the training and evaluation process to take significantly

more time. For large datasets it is therefore common to choose a k = 5 for instance. For smaller datasets n-fold

cross-validation (leave-one-out) is a good metric for performance quality. Here every individual item in the

4Scikit learn Neural network models, http://scikit-learn.org/stable/modules/neural_networks_supervised [last accessed on
02-07-018]
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dataset is taken as a split for testing, resulting in more training data but less generalised testing. In general it is

essential for every split to have a training and testing containing a representative distribution of all classes. [28]

The dataset used in this research consists of three classes (3, 4 and 5 dpf) with 12 samples for 3 dpf and 24

samples for the 4 and 5 dpf class. A 5-fold cross-validation results in a decent distribution over the class.

2.7.2 Accuracy and F1-score

The cross-validation results in predictions for the training data. In the case of classifications, the predicted

classes can be compared with the actual classes. This delivers a confusion matrix containing the number of

true positives, false positives, true negatives, and false negatives, as shown in Table 2.1. The wrong cases (false

positives and false negatives) differ in their effect depending on the factor that is being predicted.

Table 2.1: Confusion matrix containing predicted and actual values after
training and testing of a dataset. TP, FP, TN, and FN correspond to true
positives, false positives, true negatives, and false negatives.

Predicted
True False

Actual True TP FN
False FP TN

There are various metrics providing the quality of the classifier. The most straightforward is the accuracy, the

percentage of correct decisions, which is given by Correctly classified cases
Total number of items = TP+TN

TP+FP+TN+FN . However, in most

cases of binary, multi-class or multi-label classification, accuracy is not suitable because the classes are often

unbalanced. This means, high accuracy in one class may mean low accuracy in another. Good alternative

metrics are the precision, recall, and their combined F1-score. [29]

The precision of a classifier corresponds to the proportion of the assigned labels which are correctly classified.

The precision p for the True class is given by the following formula: p = TP
TP+FP . The recall of a classifier

corresponds to the proportion of correct labels that are assigned. The recall r for the True class is given by

the following formula: r = TP
TP+FN . These metrics can be extended to include multiple classes besides true

and false. An average of precision and recall is given by the F1-score. This is the harmonic average where

0 ≤ F1 ≤ 1. The F1-score is given by the following formula: F1 = 2∗p∗r
p+r .

2.8 Related Work

In this Section related studies will be discussed which have different uptakes to a similar problem, or a similar

uptake for a different problem or application. Our research can be divided into two parts: (1) creating an

accurate and reliable feature extraction method, and (2) training a classifier to get a good prediction rate for

new zebrafish data. Here we give a brief survey of other studies related to either (1) or (2).
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(1) Histogram of Oriented Gradients feature extraction from biological samples

Histogram of oriented gradients (HOG) is an image feature extraction method related to texture recognition.

It is commonly used for human detection in images. Dalal and Triggs [22] show that HOG descriptors are

significantly superior to other edge and gradient detection based methods for human detection. They display

that a fine-tuning of the parameter settings for the feature extraction is essential to get accurate results. They

report on a well performing preprocessing stage and parameter values for human detection. This provides a

solid basis for other detection purposes.

Dahmane and Meunier [30] propose a system for emotion recognition in human faces. Automated facial

expression analysis is important in human computer interaction (HCI), video analysis, inteligent interfaces and

clinical research in order to figure out the main element of facial human communication and for tracking user

experience. A main issue in this is, however, variability due to environmental changes, appearance variability

under different head orientations, and non-rigidity of the face. A “baseline” method using Uniform Local

Binary Patterns with 8 neighbours and radius 1 to extract appearance features, principal component analysis

to reduce dimensionality, and classification with support vector machines (SVM) with radial basis function

kernels achieved a performance of 56%. From experiments it was found that using a HOG feature extraction

with a variable cell size dependent on the image size gave a significantly better result; the preprocessed image

was divided into 8 rows and 6 columns with an adaptive grid-size depending on the distance between the

two eyes. Classifying using the HOG feature set had a performance of 70%. This performance was explained

as being specifically due to the HOG global characteristics that are based on orientation binning of the local

edges and the corresponding gradient magnitude.

That HOG feature extraction also has a purpose in biomedical research is shown by Acharya et al. [31] who

propose an automated screening tool for dry and wet age-related macular degeneration (ARMD). Dry ARMD

is the formation of small pale yellowish deposits under the retina, causing atrophy at the macula. Wet ARMD

is caused due to the abnormal growth of blood vessels under the retina, which can lead to scarring at the

macula or atrophic changes causing severe visual impairment. ARMD can be fully cured, but early detection

can reduce the visual loss. Manual diagnosis is difficult and subjective. They show that HOG feature extraction

paired with a particle swarm feature selection method, a technique derived from natural computing, achieves

an accuracy of 85.12% for categorising images of dry and wet ARMD using a SVM with radial basis function

kernel.

(2) Classification of zebrafish

A study by Jeanray et al. [32] focused on classification of phenotype (defects) of zebrafish embryos. A dataset

containing images of embryos with their phenotype labelled by three biologists was first classified into 3 classes:

“Dead”, “Chorion” and “Other”. The “Other” class was then reclassified into the various other phenotypes.

Classification and feature extraction was done using dense random subwindows extraction, their description

by raw pixel values and, finally the use of ensembles of extremely randomised trees. The ensembles were
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either directly used for classification or as a feature descriptor and then classified using a SVM. Classification

of “Dead” and “Chorion” was quite accurate with an error rate of respectively 1.12% and 2.6%. The two choice

decision models for other phenotypes had varying results where some had an accuracy of 85-88% but others

such as “Hemostasis” had much lower agreement rates (51.31%).

Alshut et al. [33] propose a method to automatically distinguish between “normal” and “coagulated” zebrafish

embryos. As zebrafish are an important and commonly used model for toxicity studies this tool reduces the

need for manual classification of embryos. Their system can distinguish between many orientations of the

embryos. This causes a high level of variety in the images, hence a very specific feature extraction is required.

They used a combination of 7 feature engineering methods. Of which the first two were found the most

powerful: HOG, and mean intensity value within the chorion centre. Using a Bayes classifier with these top

two features presented an error of 3.6%.

A deep learning-based classification of deformed zebrafish phenotypes proposed by Ishaq et al. [34] shows

the potential of deep learning for accurate high-throughput classification. Using image data of 3dpf larvae in

96-well plates with about 5 larvae per well, of which 79 were intoxicated larvae and 60 untreated larvae. The

data was augmented through flipping and rotation into 8 times as much data. Using 5 fold cross validation

with 2000 iterations on the AlexNet deep convolutional network they achieved an accuracy of 92.8% for a two

class problem classification into treated or untreated.

2.8.1 Relation to our research

The above sections present various techniques and tools used for classification and feature selection. In our

research we will, however, limit the use to standard methods. SVMs have proved their potential in a previous

bachelor thesis by van Heijnen and Neerbos [35]. ANNs have similar properties to SVMs but may require

more training data and will therefore also be investigated. In the next chapter the specific implementation will

be discussed.
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Chapter 3

Implementation

In this chapter the setup of the experiments will be discussed. The data acquisition will be explained and we

will elaborate on the processing and use hereof. Moreover a description of the final workflow (Figure 3.1) will

be presented. Here we discuss our implementation of the before mentioned methods. In Chapter 4 we will

specify and discuss the results.

(1) Raw Data

• RGB image

• Contour image

(2) Preprocessing

1. Segment images

2. Select colour channel

3. Blur image

(3) Feature Extraction

• Histogram of Oriented

Gradients

• Feature selection

(4) Classification

• SVM

• ANN

Figure 3.1: Overview of the workflow as implemented in this research. The number in the top left
corner of each box identifies the corresponding section in this chapter.

3.1 Image data

3.1.1 Animals

Wild type zebrafish (Danio rerio) larvae of 3, 4 and 5 dpf were used for imaging. Zebrafish were grown for 3,

4 or 5 days and fixed in GA 4% fixative, then imaged according to the VAST bioimager based multi-modal

high-throughput axial-view imaging (MM-HTAI) architecture proposed by Guo et al. [10] which will be briefly

summarised below. Although the age of the zebrafish larvae is known there will be some variances in their

19
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actual phenotype due to environmental factors. There is a chance some specific samples can be outliers, as is

also shown by the volume and surface area distribution in Figure 1.1.

3.1.2 Data acquisition

In order to study the phenotype of an organism, that is the shape and morphology caused by the genetics,

environment and possible diseases, imaging is key.

Imaging was performed using an adaptation to the VAST bioimaging system [5], the MM-HTAI architecture.

This system loads zebrafish larvae from a reservoir into a capillary tube with a refraction index equal to water.

The capillary tube can be rotated by two stepper-motors allowing imaging from different angles. The specimen

is detected by a first camera (Allied Vision Systems, Pro Silica GE 1050) which allows for accurate positioning

of the specimen in the field of view of the microscope. The microscope can then capture high resolution images

of (a part of) the whole specimen. In the MM-HTAI method, the original VAST system is adapted to also

use the positioning camera for imaging. This has a wider field of view and can therefore contain the whole

specimen but are of lower resolution due to its lens characteristics. [10] This allows for fast, high-throughput

imaging.

In our research the low resolution images were used. Each dataset consists of 84 bright field images of different

equally distributed views per specimen along with their contour image (Figure 3.3a). Both image sets are in

stored in .tif format and have a resolution of 1024 by 250 per image. In total 60 samples were available. 12 of

3dpf, 24 of 4dpf and 24 of 5dpf.

3.2 Preprocessing

From the preliminary results of a research project by W. Verhoef which used the same dataset a preprocessing

script was acquired through internal communication. This script reads in the raw image data and performs

various preprocessing steps on it (Figure 3.1.1). In the original preprocessing only the fish head was used.

Here we use the whole fish image for classification. Using the complete body of the larvae results in an image

of the sample containing much more information on the phenotype. Of the 84 images, four were selected for

further processing: the dorsal, ventral and both lateral views (Figure 3.2). The Python library OpenCV2 is used

for loading in the images and their masks. The selection is done by finding the contour image with the largest

surface area. This is considered the most upright image and hence the left lateral view with image number

i. Since the views are distributed equally, the other three are selected by taking the i + 21mod(84)th images

(Figure 3.3a and 3.3b).

The images are cropped and flipped if necessary. If the head is oriented to the right, the images are flipped

horizontally. The necessity for flipping is determined as follows. From the image mask the moment is calculated

from which the centroid point is extracted. From the mask a contour is computed, this is a curve joining all
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(a)

(b)

(c)

(d)

Figure 3.2: Example of four views automatically selected from series of 84 angles of zebrafish
embryo of 3 dpf. Images acquired using VAST based MM-HTAI system. [10] (a), (b), (c), (d)
respectively correspond to left lateral, ventral, right lateral, dorsal views. Images are cropped with
equal size for specimens of all age groups. Size manually set to get a well fitting result for fish of
all lengths in general.

the continuous points along a boundary having the same colour or intensity according to the algorithm by

Suzuki and Abe [36]. A straight bounding rectangle is drawn along the contour of which the centre point is

determined. If the centroid point of the moment is larger than the centre point of the bounding rectangle (i.e.

the centroid point is oriented more to the left), the head is considered to be oriented to the right and thus the

images are flipped horizontally.

Next, the images are cropped to only contain the actual fish. A cropping size of 704 by 104 pixels is chosen.

This size fully contains each fish without having any redundant information in the image, such as the edge of

the capillary tube, which could possibly lead to a classification bias. Images are then slightly vertically scaled

to 112 pixels in order to fit the block size for the HOG feature extraction. Figure 3.3 shows an overview of the

processing pipeline of the data.

3.3 Feature extraction

A good feature extraction is critical for an accurate representation of the image contents, in this case the age

defining phenotype of the zebrafish larvae. Histogram of Oriented Gradients (HOG) as described in Chapter 2

is a well known feature extraction method and its suitability is investigated in this research. HOG is an image

feature extraction method well suited for object detection. Its functioning is determined by various factors such

as image processing, cell size, block size for normalisation and normalisation schemes. Dalal and Triggs [22]

report a HOG extraction method well suited for human detection which is used as a baseline for our work.
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01

02

...
...

84

(a) Raw data

I

II

III

IV

(b) Processed data

I

II

III

IV

(c) HOG features

Figure 3.3: Overview of image processing pipeline. (a) Raw data is acquired from MM-HTAI
imaging [10] and a set of 84 images is stored per specimen. The provided dataset consists of a
bright field image and a black and white cropping mask. (b) Four out of 84 images are selected
based on orientation of sample: the left lateral, ventral, right lateral and dorsal views (Figure 3.2).
(c) HOG feature extraction is performed after multiplying each view with its corresponding
cropping mask.
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3.3.1 Colour conversion

A gradient can be computed over only one channel. This means that in order to calculate the HOG the three

colour channels (RGB) will have to either be (1) used by themselves or (2) converted to grayscale.

(1) All colour channels are selected individually for HOG feature extraction by limiting to the specific array

element from the segmented image.

(2) The segmented image is converted to grayscale using the OpenCV2 method cvtColor() with colour

space conversion code set to COLOR BGR2GRAY. This converts the colour image to grayscale using the

following weighting scheme: Y = 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B where Y is the output pixel intensity.

The separate colour channels have different intensities as can be seen in Figure 3.4.

(a)

(b)

(c)

(d)

Figure 3.4: Colour channel intensities of the same sample (left lateral view). (a), (b), (c), (d),
respectively correspond to red, green, blue, grayscale intensity. As a original colour image such as
in Figure 3.2 is mostly green, the green channel shows the most contrast.

3.3.2 Image blurring

As mentioned in the section 2.5.1, in order to suppress local gradients a smoothing may result in a better

descriptor. Dalal and Triggs [22] report the effect of applying a Gaussian smoothing has merely a negative

effect on human detection. Various smoothing methods were tested: (1) mean blur (averaging), (2) Gaussian

blur, (3) bilateral filtering. The Python library OpenCV2 contains methods corresponding to these smoothing

filters.

(1) A mean blur is implemented using the OpenCV2 method blur() with various kernel sizes, and default

anchor point and pixel extrapolation method (which corresponds to a reflection at the border without



24 CHAPTER 3. IMPLEMENTATION

reflecting the pixel itself).

(2) Gaussian blurring is implemented using the OpenCV2 method GaussianBlur() with various kernel

sizes and values for σ (automatically computed from kernel size) where σx = σy, and the default pixel

extrapolation method.

(3) Bilateral filtering is implemented using the OpenCV2 method bilateralFilter() with various pixel

diameters and values for σcolour and σspace, and the default pixel extrapolation method.

After applying a mean blur on Figure 3.4b the effect is as in Figure 3.5.

Figure 3.5: Mean blur kernel = 7 applied to segmented green colour channel, result is a much more
vague image.

3.3.3 Histogram of Oriented Gradients

The Python library OpenCV2 contains a method for HOG feature extraction with options for setting parameters.

The HOGDescriptor class is initialised as follows. Window size is set to equal the dimensions of the input

image (704 by 112 pixels), no gamma correction is applied, no Gaussian smoothing is applied here, the L2-Hys

scheme is used for normalisation with a threshold of 0.2, various values are set for block size and block stride

for the normalisation, number of bins per cell, and cell size. Other parameters were kept at their default setting.

The compute() method returns the HOG feature vector for the segmented image. Per sample the feature vector

of every view is flattened using the Python library NumPy to produce one vector per sample.

3.3.4 Feature selection

Dimensionality reduction is applied to reduce the feature space and only train on features with high variability.

Depending on the cell size and number of bins the amount of features is quite high which can result in overfit-

ting and long training times. Univariate feature selection is applied using the method SelectPercentile()

from the Python library Scikit learn [37]. This allows for selecting the top x percent of features with a high

variance according to a scoring function. Three scoring functions are compared: a Chi-squared test, an ANOVA

F-value computation, and estimation of mutual information. Parameter settings, if any, are kept at their default

value(s). Various values for x were tested, but for other experiments the top 20% is used along with an ANOVA

test for variance.
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3.4 Classification

The dataset of feature vectors is used for training a classifier using cross-validation. Five-fold cross-validation

is used for training and testing as this delivers a quick results and causes a representative distribution of all

classes over the splits as explained in section 2.7.1. For this the Scikit learn [37] method StratifiedKFold() is

used which shuffles the data causing a random division of class types for training and testing across each fold.

N-fold cross-validation using the leave-one-out method is used for individual detection of samples which are

wrongly classified. For this the equally named method from Scikit learn is used.

The data is classified using (1) a support vector machine (SVM) and (2) an artificial neural network (ANN). As

mentioned earlier, SVM showed its potential for classification of (bio-)images represented by HOG. Moreover,

because of the small size of our dataset (60 samples with 3 classes) using a SVM is a good choice. Since there

are similarities between SVMs and ANNs in their classification, a comparison is made between these two

classification algorithms.

(1) A SVM is implemented using the Scikit learn method SVC(), which is the support vector classifier

method of that library. Various kernel settings are possible but a linear kernel is used in all experiments.

All other prameters are kept at default.

(2) An ANN is implemented using the Scikit learn method MLPClassifier(), the multi-layer perceptron

method. Three hidden layers of 100 nodes per layer are used for experiments as this configuration

showed good results in early experiments. The result of other layer/node combinations are compared.

The ‘lbfgs’ solver is used, all other parameters are kept at their default setting.

3.4.1 Significance

The significance of the difference in classification was computed using a McNemar’s test for variance. This

statistical test gives a measure for the significance of a difference in results between two classifications on

the same data. It is implemented using the equally named method from the Python library StatsModels. The

correctly classified instances of the two classifiers are compared using a binomial distribution which delivers a

P-value for significance. The H0 of there being no difference in classification result is rejected if p < 0.05.
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Chapter 4

Results

4.1 Performance study

In this section we will present details of the effects of various parameter settings on the classification

performance. As the goal of this study is to create an optimal classification strategy, various parts in the image

processing, feature extraction, and classification are optimised. An overview of these experiments is given

below in order where they appear in the processing and classification pipeline, it should be noted that for

every parameter in the performance study other settings were kept at standardised levels based on the final

optimal settings and earlier observations. Those not given in Chapter 3 are given below. In the following

paragraphs we often refer to the performance of the classification. In this thesis the F1-score as received through

five-fold cross-validation is given as a performance measure. It should, however, be noted that run time of the

preprocessing and classification is also of importance. This will be discussed briefly in section 4.1.5.

4.1.1 Colour conversions

As stated in Chapter 3 HOG calculates gradients from a single channel of the image. Therefore there are two

methods for representation of the original image: using one colour channel, or a grayscale version of the image.

We evaluated the effect of these image representations. Every individual colour channel of the RGB image and

a grayscale pixel representation were compared. The resulting F1-score for classification with a SVM and ANN

are given in Table 4.1. There is a slight performance increase by using just the green channel in comparison to

the others in the F1-score of the ANN classifier.

27
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Table 4.1: Overview of effects on classification performance by colour
channel selection. Results given in F1-scores of classification with a SVM
and an ANN. Grayscale is computed by a weighed average of all three
colour channels. Image blurring with a bilateral filter d = 5, σcolour =
50, σspace = 50. HOG cell size = 16, block size = 16 and number of bins =
8.

Red channel Green channel Blue channel Grayscale

SVM 0.92 0.92 0.92 0.92

ANN 0.83 0.87 0.80 0.83

4.1.2 Filtering

The effects of applying a smoothing filter are noteworthy although inter-differences are subtle. The most

straightforward mean-blur gives the best result. A Gaussian blur and bilateral filter with various settings were

also compared, all on the green colour channel. A complete overview of the three blur types with their optimal

setting is given in Table 4.2. Effect of parameter variances per smoothing filter are given in Table 4.3, 4.4, and

4.5. HOG feature extraction with a cell size = 16, block size = 16, block stride = 16, and number of bins = 8.

Table 4.2: Overview of effects on classification performance by image
smoothing. Results given in F1-scores of classification with a SVM and an
ANN.

No blur Mean blur Gaussian blur Bilateral filter
SVM 0.88 0.93 0.92 0.92

ANN 0.83 0.88 0.85 0.88

Table 4.3: MEAN BLUR. Overview of effects on classification performance
by kernel size setting (dx = dy) using a mean blur. Results given in
F1-scores of classification with a SVM and an ANN.

3 5 7
SVM 0.92 0.92 0.93
ANN 0.85 0.85 0.88

Table 4.4: GAUSSIAN BLUR. Overview of effects on classification perfor-
mance by kernel size setting (dx = dy) using a Gaussian blur. σcolour and
σspace derived automatically from kernel size. Results given in F1-scores
of classification with a SVM and an ANN.

3 5 7

SVM 0.90 0.92 0.92

ANN 0.85 0.83 0.85
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Table 4.5: BILATERAL FILTER. Overview of effects on classification per-
formance by diameter size, σspace, and σcolour settings. Results given in
F1-scores of classification with a SVM (top in cell) and an ANN (bottom
in cell).

σspace 25 50 75

σcolour 25 50 75 25 50 75 25 50 75

D
ia

m
et

er
3

0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

0.83 0.83 0.85 0.85 0.83 0.87 0.85 0.85 0.87

5
0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

0.88 0.85 0.85 0.87 0.87 0.83 0.87 0.87 0.83

7

0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

0.85 0.85 0.85 0.85 0.83 0.87 0.83 0.85 0.87

4.1.3 HOG block size and number of bins

The cropped and filtered input images have a size of 704 by 112 pixels. To reduce this size but still retain a

relevant representation of the image a number of well fitting cell sizes were chosen based on this. A cell size of

16 pixels with a block size of 32 pixels appeared to give the best results. When using a mean blur, 8 bins seem

to be optimal. Values for block size for normalisation and number of histogram bins were compared, all on the

green colour channel. The results of this are given in Table 4.6.

Table 4.6: Overview of effects on classification performance of cell size,
block size, and number of bins for HOG feature extraction. Results given
in F1-scores of classification with a SVM (top in cell) and an ANN (bottom
in cell). Image blurring with a mean blur kernel size = 7.

cell size, block size 8, 8 16, 16 8, 16 16, 32

number of bins
8 0.95 0.93 0.92 0.97

0.90 0.88 0.87 0.88

9
0.95 0.90 0.92 0.95

0.90 0.87 0.88 0.87

However, if the image is smoothed using a bilateral filter the results are somewhat different (Table 4.7).

Although cell and block size have the same optimal values, having an histogram with 9 bins shows better

performance.

Table 4.7: Overview of effects on classification performance of cell size,
block size, and number of bins for HOG feature extraction. Results given in
F1-scores of classification with a SVM (top in cell) and an ANN (bottom in
cell). Image blurring with a bilateral filter d = 5, σcolour = 50, σspace = 50.

cell size, block size 8, 8 16, 16 8, 16 16, 32

number of bins
8

0.90 0.92 0.92 0.90

0.88 0.88 0.87 0.88

9 0.92 0.92 0.92 0.93
0.88 0.88 0.87 0.88
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4.1.4 Dimensionality reduction

Using a HOG cell size of 16 pixels and 8 bins, the total amount of features per sample is 33024 which is quite

a high amount. Dimensionality reduction through feature selection not only improves the speed of training

and testing, but also improves the performance of the classification. Using an ANOVA F-value as univariate

score for selecting the top-x percentage significantly improves classification performance (Figure 4.1). At

x = 20 the F1-score is maximal for classification with a SVM as well as an ANN using green colour channel

and smoothing using a mean blur with kernel size = 7. Other univariate scoring functions performed worse:

Figure 4.1b and 4.1c.

4.1.5 Run time

Continuing on the previous section, it was found classification time is shorter when using a smaller feature

space. Figure 4.2 illustrates this has a somewhat linear relation. Without feature selection the run time for five-

fold cross-validation of the linear SVM was 0.84s. For the ANN this was 63s. After dimensionality reduction to

20% of the features, the cross-validation time for the linear SVM was 0.12s and 11s for the ANN.

The run time for preprocessing of the complete dataset (60 samples) consisting of finding the right views,

orienting, cropping and scaling them, is about 80 seconds. A time performance increase could be achieved by

parallelising this over all samples in the dataset. HOG feature extraction including blurring is relatively quick

and takes only about 1.2 seconds for the complete dataset.

4.1.6 Classifiers

Classification using a SVM with linear kernel gives the best results. Several other kernels were also tested

but had significantly lower performance (Table 4.8). The ANN results are comparable and statistically as

significant. A McNemar’s test gave a P-value of p = 0.0625 which is too high to reject H0. Varying ANN node

and layer combinations had only a slight effect on the classification performance (Figure 4.3).

Table 4.8: Overview of classification performance using different kernels
in a SVM. Results given in F1-scores of classification.

SVM-kernel Linear Polynomial Radial basis function Sigmoid
F1-score 0.97 0.60 0.65 0.66

4.1.7 N-fold cross-validation

The above listed results are the product of classifier validation using 5-fold cross-validation. This is a faster

way for validation than using n-fold cross-validation (or leave-one-out). Because the dataset in this project

is relatively small (60 samples) n-fold cross-validation may be a more accurate measure for the quality of
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(a)

(b)

(c)

Figure 4.1: Overview of classification performance using a SVM and an ANN and feature selection
using different univariate scoring methods. (a) Univariate scoring based on ANOVA F-value, (b)
scoring based on Chi2 statistics, (c) scoring based on estimated mutual information for a discrete
target variable.



32 CHAPTER 4. RESULTS

Figure 4.2: Overview of training and testing using 5-fold cross-validation time for classification
with a SVM and an ANN. Feature selection using univariate scoring based on ANOVA F-value
and different percentages of feature set used for classification.

the classification. Using n-fold cross-validation produces slightly different results, the performance of the

classification goes down from 0.97 to 0.92 for the SVM and from 0.88 to 0.87 for the ANN.

4.2 Discussion

Overall, there are several notable findings in this work but they require some side notes. Here we will discuss

the above listed results in the same order. Through using the green colour channel an increased performance

is found. A possible explanation for this is the superiority in contrast. Figure 3.4b illustrates this, more subtle

shapes are visible here than in those of the other colour channels which could possibly explain its superiority

as a phenotype descriptor. The reason for this may be the configuration of the camera sensor. As the pixel

matrix in a photo sensor has twice as many green pixels than red or blue pixels, there is an improved sensitivity

in the green channel.

Our results show applying any type of blur before feature extraction gives a significant increase in classification

performance compared to no blurring. Although Dalal and Triggs [22] report image smoothing before HOG

feature extraction has a negative effect on human detection, our results are contradictory to this. Image

smoothing reduces small local gradients but retains the general contrast structure in the image. Our higher

resolution images of 1024 by 112 pixels may therefore benefit from smoothing due to noise reduction, where

the images in [22] of 64 by 128 pixels would only suffer detail loss. This would also explain the improved

performance through a cell size of 16 pixels. As this results in a similar cell to image size proportion as in [22],

since 112/16 = 7 and 64/8 = 8.

Thirdly dimensionality reduction boosts classification performance quite significantly from 92% to 97% in
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Figure 4.3: Heatmap corresponding to the percentage accuracy of classification using
an ANN with different node and (hidden) layer combinations.

SVM classification (Figure 4.1a). Moreover feature selection also increases cross-validation speed from about

63 to 11 seconds in ANN classification (Figure 4.2).

The classifiers used to produce these classification results perform quite well. Variations such as a different

kernel in SVM, or different hidden layer and node combinations in ANN have a negative or only a slightly

positive performance impact. It is possible there is a moderate bias to these results, as all other settings in

preprocessing and feature extraction have been optimised for these classifiers.

4.2.1 Incorrect classified samples

It is possible to individually identify the incorrectly classified samples. These appear to commonly be the

same samples in all experiments done. When these are looked up in the volume and surface area probability

distributions by Guo [10], they demonstrate to lie in the 2σ-tail in those distributions (Figure 1.1). This shows

that these specific samples probably are slightly outside of their labelled age category. From this we can

conclude HOG really describes the maturation phenotype as it is correlated in some sense with how volume

and surface area represent age.

4.2.2 Noise

A small side experiment was done to probe the effect of using a larger dataset for classification. Although no

new data was available, a dataset can be enlarged by duplicating data and adding noise. When Gaussian noise
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was added to copies of the original data and the combined data was used for classification it resulted in a

F1-score of 1.0 for both the SVM and the ANN. This reliability of this outcome is highly subject to discussion,

though. As all images underwent a mean blur, this may completely remove the effect of the added noise

thereby essentially causing the cross-validation to use nearly identical data in the test and training sets.



Chapter 5

Conclusions

In this thesis we have investigated the potential of using histogram of oriented gradients (HOG) as a feature

descriptor for the phenotype of zebrafish larvae defining for age. VAST imaging delivers a revolution sequence

of 84 images per zebrafish larva. Applying HOG feature extraction on the dorsal, ventral, and both lateral

views after fine-tuned preprocessing demonstrates to be an accurate measure for age prediction using a linear

support vector machine (SVM) or artificial neural network (ANN) classifier.

We can conclude that HOG features are a good indicator for maturation in zebrafish. However, it is difficult

to make a quantitative comparison to using volume and surface area as there is no classification done on

these features in [10]. Commonly incorrect classified samples are also outliers in the surface area and volume

probability distributions by Guo [10]. An important condition for the quality of HOG as a feature descriptor is

to what extent it can represent the age of the larvae. As cross-validation shows a 97% accuracy we can deduce

this condition has been met.

The preprocessing of the zebrafish image data has been optimised to increase the classification performance.

Choosing a precise cropping size, using the right colour channel, and applying an image blur are essential

factors in the image preprocessing. We show that after segmentation, using the green colour channel for

feature extraction has some impact on the classification performance. Applying a mean blur with a kernel size

of seven pixels gives a 0.05 increase in F1-score. Additionally the settings for the HOG feature extraction have

been optimised.

A SVM with linear kernel is better fit for classification than an ANN. Although the higher performance is

statistically not significant, five-fold cross-validation of the SVM is about 100 times faster than of the ANN.

The combined classification accuracy and training times make the SVM a superior choice over the ANN. It

is possible though that more training data would result in a better classification through using an ANN. In

general about 20 samples per class (as is about the case of the dataset used in this study) is plenty for a SVM

but relatively small for an ANN. Future research could investigate the effect of a using larger training dataset.

It should be noted that although the ANN performs slower in the cross-validation the speed would not be an

issue. If integrated in the final annotation pipeline it would have a shorter run time than other processes such

35
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as the 3D reconstruction. Besides this it would be possible to speed up by parallelising parts in the processing

pipeline including the preprocessing of the four views.

In summary we can address our problem statement as follows. Using 5-fold cross-validation we show that a

linear SVM can make predictions for the age of zebrafish larvae with a F1-score of 0.97. The trained estimator

can be implemented in the annotation pipeline to label zebrafish larvae of 3, 4 or 5dpf with their age which

will enable high throughput scanning of larvae of various ages combined.

5.1 Future work

In its current form the classification performs well and achieves a maximal F1-score of 0.97. However, as

mentioned before, the dataset used for training is quite small. More data is required in order to get a more

generalised model. This should include zebrafish larvae from various batches to represent variation. This

would probably also allow for better training of the ANN which requires larger amounts of training data in

general.

Another use of a larger dataset would be to investigate deep learning. As deep learning composes its own

feature extraction method through training of convolutional layers. Although this requires much training data,

a deep learning approach would not be limited to the features presented. It would be interesting to study how

a deep learning method would differ from the more traditional data science approach presented in this thesis.

For an increased classification performance, a combination between the HOG features and the descriptors

volume and surface area of the reconstructed 3D model might provide an even more solid representation of

age. Using these three descriptors as a model for age may be more reliable than only using HOG features.

In this study there was a limited evaluation of techniques. There was a focus on two classifiers and only three

types of dimensionality reduction were compared. As there exist many other algorithms for classification,

others could be investigated. Besides this, other feature extractions and different dimensionality reductions

could be experimented with.

Additionally classification of larvae with a mutant or defect phenotype through the trained classifier could

show an interesting outcome. This method would allow for studying how a disease or mutation effects the

maturation of a larva. A high throughput screen of diseased or intoxicated zebrafish may provide new insights

in how the pathogen or chemical influences growth by comparing the predicted age to the actual maturity. A

regression approach instead of classification might be more insightful in this case as ageing is a constant factor

and not just defined in days. A regression approach may therefore provide a more detailed overview of the

age as deduced through HOG feature extraction.
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