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Abstract

Understanding network properties is of big interest nowadays. Re-

cently, networks have found their way into many real-world applications.

One of the most striking properties is the community structure of net-

works, which is useful to understand the functionality and organization of

these networks. We here compare two heuristic algorithms to discover

communities in a network, Louvain and Leiden. To make an accu-

rate comparison we have included networks with ground truth commu-

nities. Therefore we have generated two synthetic networks (benchmark

networks) and use three real-world networks of different sizes. We make a

comparative analysis of the performance of the algorithms based on three

metrics: the quality value of the objective functions, the number of com-

munities detected by each algorithm, and the similarity measure NMI that

calculates how similar the communities detected from our experiments are

to the communities provided by the ground truth data. We identify which

combination of algorithms and objective functions would reveal the best

community structure. We have found that the best method for commu-

nity detection was the Leiden algorithm, which found the best community

structure according to the various quality functions.
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1 Introduction

The study of networks sometimes known as graph theory has its genesis in

1736 with a famous paper [6], known to be the first use of graphs in a real-world

problem. Euler used networks to show how things are connected. Over the

last years, graph theory was used in innovative multidisciplinary tools, which

facilitated a way to understand many real-life networks such as biological, tech-

nological and social networks [23]. In that way, scientists are using networks to

represent interaction on proteins, individuals, or computers as a pair of inter-

connected items. Recognizing the unexpected patterns across those networks

is a challenging task that has attracted a substantial amount of attention from

the scientific community [12].

Networks consist of points which are called nodes or vertices, connected with

each other via links or edges. These networks have some properties that depend

on their topological architecture. A key property is community structure, which

deals with finding a group of nodes that are densely connected with each other

within the group and more sparsely with the nodes outside the group. Com-

munity detection plays an important role due to the fact that it provides useful

insights into relationships and the organizational structure of networks.

Detecting the community structure of networks resulted in the development

of many tools and techniques from various disciplines, such as statistical physics,

biology, applied mathematics, computer science, and sociology. Their goal is to

detect relevant communities while minimizing the computational complexity of

the underlying algorithm [29]. The aim of our research is to a make a com-

parative analysis of methods for community detection in networks, in order to

identify the best method that would reveal the best community structure.

Throughout this research, we will consider two heuristic algorithms which

are used to reveal the community structure of networks. We will consider the
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traditional Louvain algorithm by Blondel [3] and the Leiden algorithm pro-

posed by Traag, Waltman and Eck [27]. The heuristic approach of algorithms

focuses on the optimization of an objective function in order to find the commu-

nity structure of the networks. An objective function is defined as a quantita-

tive criterion to quantify the quality of the discovered community structure. For

both algorithms, we will consider four objective functions (also known as quality

functions), map equation proposed by Rosvall [21], Reichardt and Bornholdt

Configuration (rbc) [20], the asymptotic formulation of surprise [2, 25], and

the degree corrected Stochastic Block Model (sbm) [11].

Measuring the performance of our algorithms requires analyzing artificial

networks or real-world networks with a well-defined community structure (known

as a ground truth). For our research we are using synthetic networks (benchmark

networks) proposed by Lancineti, Fortunare and Radichii (lfr) [15] and three

real worlds networks: Email, which represents the relationships between two

persons who have exchanged at least one email and the ground truth communi-

ties representing the community structure of the network where each person is

part of a department (a department represent a community). Amazon, which

represents the frequencies of bought products, and Youtube which represents

friendships groups which users can join. We mention that for Amazon and

Youtube we are not including the ground truth communities.

Attention must also be paid to the metrics used for the comparison of the

algorithms. The metrics used would differentiate the results among algorithms

and functions. We are considering three metrics, firstly the quality value of the

network division into communities by each objective function, indicating which

of the algorithms would perform the best by scoring high values of quality

measure. Secondly, the number of communities found, which we are expecting

to match the number provided from the ground truth communities. Thirdly,

NMI, a similarity measure. NMI is a metric widely used in community de-

tection papers, which compares the communities found by algorithms with the
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ground truth communities. A high NMI indicates that the community structure

detected by our algorithms match the ground truth communities. For our re-

search we have made a comparative analysis of two algorithms namely, Louvain

and Leiden, with the four objective functions map equation, rbc, surprise,

sbm. This leads to the main research question:

Which combination of algorithms and objective functions gives the

best division of a network into communities?

Section 2 illustrates related work, Section 3 covers the notation we are going

to use in the paper and Section 4 describes the methodology which is divided into

two parts: introduction of four objective functions and algorithms to. Section 5

describes the experimental setup, Section 6 summarizes the results from our

experiments, Section 7 describes the conclusions.
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2 Related Work

Some preliminary work in this field has been focused primarily on the graph

theory introduced by Euler [6], who published the first paper in this field, en-

titled ”Seven Bridges of Köningsberg”. The paper provides a description of the

mathematical aspects of networks and the scientist used it as an offshoot to re-

veal new theories about networks. Erdös and Rényi [5], used the theory of Euler

to develop the probabilistic theory of networks. Eventually, the effect of the de-

velopment of the probabilistic network theory inspired other scientists such as

Duncan [28] and Barabasi [1], who focused on the mathematical description of

different network topologies.

However, previous studies on the mathematical aspects of graph (network)

theory found their application in a broad range of life aspects, such as biologi-

cal, information and social networks. Investigating different network properties

caught the interest of many researches like Newman [16], which made a re-

view about different types of networks properties. Some of the most significant

network properties are the small-world effect, clustering coefficient, centrality

measure and community structure.

In addition, Fortunato’s paper [9], describes the community structure of the

networks as a modern discipline in the network theory. Fortunato provides a

user guide on how to detect the communities in the networks. The demand to

discover the community structure of networks was followed by the development

of new methods including a variety of community detection algorithms. A lot

of algorithms were introduced among scientists such are: Girvan and Newman

algorithm [10], the ”Fast greedy modularity optimization” by Clauset [4], ”Fast

modularity optimization”by Blondel [3] ”, the algorithm by Radicchi [19], etc.

Furthermore a lot of objective functions or quality functions were introduced.

Mentioning the famous ”Modularity maximization” [17, 18], proposed by New-
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man. Soon, researches proved that modularity has a major drawback known

as ”Resolution limit problem” [8], that prevented to find the correct structures

of the networks. For further explanations the problem is illustrated on the

Appendix 7. As a consequence, several objective functions were developed,

such as: Expansion, Conductance, Normalized cut [22], Map equation [21], Sur-

prise [2, 25], Reichardt and Borhnoldt Configuration [20] etc; which are thought

to overcome the resolution limit of modularity. Due to the variety of algo-

rithms and objective functions, some preliminary work was carried out to make

a comparative analysis of community detection algorithm carried out from Lan-

cichinetti and Fortunato [14].
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3 Preliminaries

This section describes the notations used throughout the paper. Thus, we

explain the definition of a networks, the definition of a community and the

Normalized Mutual Information (NMI) similarity measure.

3.1 Network definition

A network is mathematically represented as a graph, which is a set of nodes

or vertices that can be connected to each other by edges or links. A network

or a graph G is a set of nodes V and a set of edges E, where G = (V,E). Two

nodes i and j are joined by an edge e(i, j) ∈ E. In this case the nodes i and j

are said to be adjacent and edge e is incident to nodes i and j.

Additionally another notation for the definition of a network is used through-

out this thesis, which is the representation of the network as an adjacency ma-

trix. A finite graph G of n vertices can be represented by the n× n adjacency

matrix A = [Aij ]n×n. An entry in Aij equals 1 if there exist a link between

nodes i and j, and 0 otherwise. We use n for the number of nodes and m for

the number of edges.

In this research we consider undirected and unweighted networks. A network

is undirected where edges or links do not have any orientation and is possible

to traverse both ways, so e(i, j) = e(j, i), whereas the opposite stands for the

directed network.

Furthermore to define an unweighted network, first we have to define what

is a weighted network. A weighted network refers to an edge-weight network,

which edges have some weight or values. Those values could represent costs,

lengths or capacities depending on the type of the network. Without the quali-

fication of weighted, the networks becomes unweighted.
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3.2 Community definition

A common topological property of networks is the community structure,

which can be seen as a classification of objects in categories. In the paper by

Radicchi [19], in a community the links within the community are denser com-

pared to the links pointing outside of the community. Those communities are

separated from the rest of the network. We mark that the terms group, module

and community are used interchangeably.

A community is a subgraph G′ = (V ′, E′) of the graph G = (V,E) where

V ′ ⊆ V and E′ ⊆ E, such that for all e = (i, j) ∈ E′, we have that i, j ∈ V ′.

When G′ is a subgraph, then G′ ⊆ G.

Quantity Ki denotes the degree of a node i, where Ki =
∑
j Aij . For a

subgraph G′ ⊆ G and various nodes i ∈ V (G′), the degree could be split two

terms: internal degree and external degree. Internal degree, Kin
i stands for the

number of edges connecting node i to the other nodes belonging to G′, and the

external degree Kout
i , stands for the number of edges toward nodes in the rest

of network. So, Ki = Kin
i (G′) + Kout

i (G′), where Kin
i (G′) =

∑
j∈V ′ Aij and

Kout
i (G′) =

∑
j /∈V ′ Aij [19].

Figure 1: Communities

Two definitions of the community described are [19]:
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1. Definition of community in the strong sense. A community is a group

of nodes or vertices where the number of links within the community is

larger than with the rest of the graph: Kin
i (G′) > Kout

i (G′),∀i ∈ V ′.

2. Definition of community in the weak sense. A community is a group

of nodes or vertices where the sum of all degrees within G′ is larger

than the sum of all degrees pointing to nodes in the rest of the network:∑
i∈V ′ Kin

i (G′) >
∑
i∈V ′ Kout

i (G′).

In our thesis we are working with the communities which are defined in the

strong sense.

Figure 1 shows an illustration of communities. It shows a network with three

groups, where the number of nodes n = 13 and the number of edges between

pairs of nodes m = 18.

3.3 Normalized Mutual Information

A variety of community detection algorithms (including objective functions)

has been developed, which can be used to detect the community structure of

networks. Not all of them lead to the same community structure. Therefore it

is necessary to compare which of the functions would find the best community

structure. For this purpose, we consider the similarity measure named Normal-

ized Mutual Information (NMI).

Normalized Mutual Information (NMI) is a similarity measure widely used

to evaluate the accuracy of community detection algorithms. Unlike other sim-

ilarity measures like Pearson’s linear correlation coefficient that accounts for

linear relationships, or rank correlation coefficients that can detect monotonic

dependencies, NMI considers all types of dependencies [13]. It is a general mea-

sure which quantifies the amount of information obtained between two different
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networks partitioned into communities.

We denote PR for partition R and PS for partition S of a same network. To

define NMI we calculate the marginal probability of a randomly selected node

i being in group r of partition R as PR(r) = nr

n and in group s of partition

S as PS(s) = ns

n , where nr and ns are the number of nodes of group r and s.

Then we calculate the joint probability of node i being in both groups r and s

as PRS(r, s) = nrs

n , where nrs is the number of nodes in both groups. Finally

we can formulate NMI as [30]:

NMI (PR, PS) = 2I(PR, PS)
H(PR) +H(PS)

where I(PR, PS) = H(PR) + H(PR|S), where H(PR) = −
∑
r PR(r) logPR(r)

is the entropy of distribution PR (and analogously for PS), and H(PR|S) is the

conditional distribution where PR|S = PRS(r,s)
PS(s) . The range of values of NMI is

between [0, 1], where 1 stands for the perfect similarity between two divisions

of the network into communities and 0 stands for no similarity.
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4 Methodology

This section describes the methodology of our research. We start describing

four of the objective functions: map equation, rbc, surprise, sbm. Then

we proceed by describing the approach of the two algorithms: Louvain and

Leiden.

4.1 Objective functions

Algorithms are supposed to identify good partitioning of the network into

communities. Therefore it is necessary to have a quantitative criterion to com-

pute the goodness of a network partitioning [7], called an objective function.

All the functions described in the coming sections will be optimized by the two

algorithms described in Section 4.2. Their optimization reveals the community

structure of a network. Each objective function takes as parameter a network

and the outputs consist of the community structure of the network.

4.1.1 Map equation

map equation is an objective function proposed by Rosvall and Axels-

son [21], that highlights different aspects of the network’s structure. Differently

from other objective functions that uncover the community structure based on

the formation of the network, map equation searches for structures in the

network that are relevant with respect to how the information flows through it.

It is a flow-based approach, which focuses on the system behavior of the network.

Considering map equation, optimizing it would result in shortest descrip-

tion length of the flows on the network, picking one that gives the shortest

length. In order to achieve the shortest description map equation sets a theo-

retical limit of how concisely we specify a network path using given communities.

To find the community structure the function looks for a community structure of

n nodes in q modules (communities). For undirected weighted networks, Rosvall
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and Axelsson define it as [21]:

Qmap equation = wy log(wy)− 2
q∑
c=1

wc y log(wc y)−
n∑
i=1

wi log(wi)+

m∑
c=1

(wc y +wc)log(wc y +wc).

Throughout our thesis we calculate map equation for unweighted networks.

For undirected unweighted networks, wi of node i is the total number of links

connected to that node. We calculate the total number of links as a fraction of

the number of links connected to a node (or a community), divide by twice the

total number of links in the network. Here, wi is the total number of links of

node i, then wc =
∑
i∈c wi is the total number of links inside the community

c. Then wc y is the total number of link exiting community c. Ending with

wy which is the total number of links between the communities in the network.

When we want to divide the initial network into communities we only have to

track the changes in wc y.

4.1.2 Reichardt and Bornholdt Configuration (RBC)

Reichardt and Bornholdt Configuration (rbc) is an objective function pro-

posed by Reichardt and Bornholdt [20], based on principles of statistical me-

chanics. They interpret the process of community detection as finding the

ground state of an infinite range spin glass. While using a spin model to cap-

ture the community structure of the network, the energies are interpreted as

objective functions. Thus, the energy of the spin system is comparable to the

objective function that corresponds to the number of the communities found as

the number of occupied spin states.

The objective function for an unweighted, undirected network, uses a linear
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resolution parameter [20]:

Qrbc =
∑
ij

(
Aij − γ

KiKj

2m
)
δ(si, sj)

where Aij is the adjacency matrix, Ki is the degree of node i, m is the total

number of edges, si denotes the community of node i, δ(si, sj) = 1 if si = sj

and 0 otherwise. The number of spin states determines the maximum number

of communities allowed and it could be as large as n, and γ is a resolution

parameter [2]. The parameter is depended in the number of links and the

network size. The resolution parameter prevents detecting smaller communities

in large networks. Also it used to detect community structures at different

hierarchical levels. According to the [24] we note that in our function we are

setting the parameter γ = 1, which guaranties that each community consist of

a number of group of nodes, not only to a node .

4.1.3 Asymptotic Surprise

surprise is a quality function that measures the possible ways of sampling

edges between two nodes, whereof some are internal edges. It is a method

mostly focused on classical probability [2, 25]. The asymptotic formulation of

the function evaluates both the number of links and units in each community.

The function assumes that even though the graph grows the number of internal

edges the number of expected internal edges would remain fixed. The function

is defined as KL divergence measure [25]:

Qsurprise = mD(q||
〈
q
〉
).

Here we adopt a slightly different notation where q =
∑

c
mc

m is the fraction of

internal edges in the community c,
〈
q
〉

=
∑

c

(
nc
2
)(

n
2
) , is the expected fraction of

internal edges, where nc is the number of the nodes in community c. surprise

is formulated as KL (known as Kulllback-Leibler divergence) [24]:

D(x||y) = x ln x
y

+ (1− x) ln 1− x
1− y .
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4.1.4 Degree corrected Stochastic Block Model

Stochastic Block Model (sbm) [11] is a model for generating synthetic net-

works, with a known block (division into groups or communities). sbm consists

on fitting block models to empirical networks data as way to discover the com-

munity structure of the network. It is referred as a posteriori block modeling.

Furthermore, in our research, we are using a different formulation of the

standard Stochastic Block Model as a result of which the classic sbm splits the

network into groups with high and low degree, whereas, this approach includes

heterogeneity in the degrees of nodes which improves the results. This is called

the degree corrected stochastic block model. The degree corrected sbm with

degree corrected performs better than the classic sbm. The quality function is

formulated as [11]:

Qsbm =
∑
rs

mrslog
mrs

KrKs

where r and s stand for two different communities, mrs is the number of links

between those two communities, Kr and Ks stand for the total degree (the sum

of node degrees) of two communities. The formulation gives an unnormalized

log-likelihood of the objective function.

We have to note that compared other functions sbm takes a parameter q of

a fixed number of communities. This is used to divide the nodes into communi-

ties such that these assignments maximize the likelihood of the model according

to the observed edges. The problem of sbm is that the quality defined in the

formula explained above is always higher when more communities are assigned.

So if the number of communities is not defined, it will end up with a single par-

tition. In real-world networks where the number of communities is not known,

degree corrected sbm would be inefficient. That is the purpose why we have not

tested sbm for networks where ground truth communities is not known.
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4.2 Algorithms

This section describes the algorithmic approaches. First we describe the

Louvain algorithm and secondly the Leiden algorithm.

4.2.1 Louvain Algorithm

The first algorithm we are going to test is the Louvain algorithm introduced

by Blondel [3]. It follows a local moving heuristic approach, which continuously

searches for an improvement on the objective function by moving nodes from

its current community to a different community.

The algorithm has a simple formulation. It has two phases, where each phase

is repeated iteratively. The first phase consists of the local moving of nodes be-

tween communities. The second phase is the aggregation, which builds a new

network by assigning the nodes in the same community as a single node. After

the second phase is completed the algorithm repeats itself, but now instead of

the single node communities it starts from the community structure built in the

second phase.

In the first phase, we assign each node to a community, which implies that

we have as many communities as there are nodes. Subsequently, the algorithm

uses the local moving heuristic, where for each node i, it finds its neighbors

j. The algorithm evaluates the highest improvement on the quality value of

each of the given objective functions by removing i from its community and by

placing it to the community of j. A node only moves if the quality value strictly

improves; if not the node i stays in its community [3]. The first phase continues

until there are no further improvements on the quality value. We note that

the difference on the quality value on the move node phase for each objective

function is calculated on the Appendix 7.

After the first phase has been successfully completed, the algorithm contin-
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ues with the second phase, the aggregation of the network. This results in a

new network where nodes are the communities found in the first phase. After

two phases are completed, we call it a pass. Afterwards the algorithm starts

to repeat itself, where the local moving heuristic is applied again but this time

in the reduced network. The algorithm stops when a network is obtained that

cannot be aggregated further.

Figure 2: Louvain algorithm

Figure 2 illustrates all the phases of the algorithm. It starts with a singleton

community where each node is a community (a). The algorithm moves around

nodes to find a community (b) and aggregates it at (c). Once all the phases

of the algorithms are completed, it repeats the two phases on the aggregated

graph [27].

However, it was shown that the louvain algorithm has some limitations.

The algorithm may generate badly connected communities. As stated [27],

Louvain may return communities that are internally disconnected, meaning

that a node may be moved to another community while it may have acted as a

bridge between different nodes of its old community. Removing that node from
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its old community will disconnect the old community. Running the louvain

algorithm actually worsens this problem, although it does improve the quality

of the network partition into communities.

4.2.2 Leiden Algorithm

The second algorithm is the Leiden algorithm which overcomes the main

problem of Louvain. In contrast to the Louvain algorithm, Leiden guaran-

tees that the communities are connected.

We consider Leiden as a solution to the aforementioned Louvain problem.

The algorithm consists of three phases: firstly the local moving heuristic of

nodes, secondly, the refinements of the communities and thirdly, aggregation

of the network. Different from classical Louvain, Leiden has the refinement

phase, whose purpose is to identify possible sub-communities before aggregating

the network. Thus, instead of moving around communities after aggregation,

we can move around sub-communities after aggregation.

The refinement phase [27] starts with a singleton partition, where each node

is in its own community. Within each community of the non-refined partition,

we locally merge nodes in the refined partition: nodes that are in their own

community in the non-refined partition can be moved to another community,

therefore a community in the non-refined partition could be split into multi-

ple communities in the refined partition. We only merge nodes in the refined

phase when both parts are well connected to their community in the non-refined

communities. Then the refined partition is used for aggregation of the network.

We must also point out that in the refinement phase nodes are not necessarily

merged with the community that has the largest improvement in the quality

function. Alternatively, a node could be merged with any neighboring commu-

nity that improves the quality function.
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Figure 3: Leiden algorithm

Figure 3 explains the phases of Leiden algorithm. It starts from a singleton

partition (a), the algorithm moves around nodes to find a partition (b), which

is then refined (c). The aggregated network (d) is based on the refined parti-

tions(communities). For example, the green community in (b) is refined in two

sub communities in (c), which after aggregation becomes two separate nodes

in (d), while both are part of the green community. The algorithm then finds

partitioning (e), which remains the same after refinement (f). This is repeated

until the quality function cannot be improved further.

Also, Leiden has been shown to be faster than Louvain in terms of com-

putational time. The difference is more significant in large networks, being up

to 20 times faster in real-world networks [27].
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5 Experimental setup

In this section, we introduce the metrics we are using in our experiments

and the networks that will be tested by our algorithms.

5.1 Description of experiments

This part explains all the metrics we are using to compare the performance of

our methods: the algorithms (Leiden and Louvain) and the objective functions

(map equation, rbc, surprise and sbm). The hardware used is a MacBook-

Pro with a 2,6 GHz Intel Core i5 processor and a memory of 8 GB. Also, the

experiments evaluation would include networks with ground truth communities

to make more accurate comparison of the three metrics being used throughout

this research. Especially they will be used to compute the similarity measure

NMI, which is an important metric for the comparison between two different

networks partitioned into communities.

Firstly we are going to test our methods based on the quality measure. For

each network we are going to measure the ratio of the quality value uncovered

from each algorithm and objective function and the quality of the ground truth

communities provided for each network. We are calculating the ratio in order

to make the difference in the quality more comparable. The ratio should be

close to 1 if the community detection works well, or greater than 1 if the quality

uncovered from our algorithms is higher than the quality of the ground truth

communities.

Secondly we would measure the number of communities detected from our

algorithms and objective functions. The number of communities found should

match the number of communities provided in the ground truth communities

(GT), allowing us to estimate how accurately the algorithms performed.

Thirdly we calculate the similarity measure NMI, which is explained in Sec-
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tion 3.3. NMI is applied to asses to what extent the communities found from

match the ground truth communities. Thus, we would have a more accurate

picture of how well our methods performed. We emphasize that for ground

truths which have overlapping communities, where one node could be part of

one or more communities, NMI is not calculated. NMI is not well-defined for

overlapping communities, and our algorithms do not find overlapping commu-

nities.

Furthermore, as a limitation to our experiments, we note that for SBM, the

calculation of the quality measure, the number of communities and NMI, are

not possible for large networks, because of the large computational time.

We replicated our experiments 5 times and took the average of the quality

score and the NMI.

5.2 Benchmark networks

To test the algorithms and the objective functions, we require networks which

have well-defined community structure. We are using synthetic networks (bench-

mark networks) for our experiments, due to the fact that there are not many

accessible real-world networks with predefined community structure.

5.2.1 Benchmark parameters

We will use the benchmark suggested by Lancichinetti, Fortunato, and Radic-

chi (LFR) [15], generating undirected, unweighted networks. LFR is used ex-

tensively among scientists to test algorithms for community detection, as it

has many realistic properties, similar to real-world networks. The benchmark

accounts for heterogeneity in the node degrees and community size. Heterogene-

ity stands for the variety of the node degree in the structure of the network,

confirming that many real-world networks have a skewed distribution. Also it
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generates communities with different sizes, which is very common in real world

networks. LFR benchmark networks are suitable for testing community detec-

tion algorithms as they can be constructed very quickly, and can span several

orders of magnitude in network size.

The construction of the benchmark networks includes parameters [15]:

1. Each node has a degree taken from a power law distribution with exponent

γ. The extremes of the distribution, the minimum degree, Kmin and

maximum degree, Kmax, are selected such that the average degree is 〈K〉.

2. We define a mixing parameter µ which assigns the links for each node.

Each node shares a fraction 1 − µ of its links with the other nodes in its

community and a fraction µ with the other nodes in the network.

3. The size of communities are taken from a power law distribution with

exponent β such that the sum of all communities matches the number of

nodes in the network.

The benchmark is generated so that in the beginning all the nodes are con-

sidered to be single community. In the first iteration every node is part of a

randomly chosen community. Then if the community size is greater than the

internal degree of the nodes then the nodes become part of the community, if

not then the node remains in its own community. The procedure stops when

there are no more single nodes left [15].

5.2.2 Benchmark parameter settings

The parameter settings for our benchmark networks are:

1. We are generating benchmark networks of different sizes. We start with a

benchmark network of 1000, 5000, 100, 000 and 500, 000 nodes. The pur-

pose of generating different sizes of benchmark networks is that we want
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to understand how our algorithms and objective functions perform in large

and small networks.

2. Degree distributions often follow a power law in real networks. The re-

alistic range of the power law exponent falls between 2 and 3. For our

experiments, we have set the degree distribution γ = 2, because for a

value in the range between 2 and 3, the parameter values has a negligi-

ble effect for the task of community detection. The maximum degree is

related to the networks size, so we have set the parameters of Kmax = 50

and 〈K〉 = 15 fixed for all the benchmark networks.

3. The mixing parameter is known to be the most influential parameter in

the generation of the benchmark. It is used to generate the community

structure of the ground truth communities. For our experiment we have

used different values of the mixing parameter, ranging from µ = 0.2 to

µ = 0.9. A low mixing parameter indicates a clear community structure

because there are only few links between communities, which makes the

communities clearly separated. As µ increases the proportion of inter-

community links becomes higher making community identification a more

difficult task.

4. The community size distribution is set to β = 1, which is similar to real-

world networks. As in the case of the degree distribution, the changes in

β between the values 1 and 2 have a negligible effect on the results for

community detection.

5.3 Real-world networks

For our research we have also included real-world networks with ground

truth communities. Even though artificial networks seems to be an appro-

priate alternative to test community detection algorithms, we can never be

completely assured that the generated networks are perfectly realistic. The

networks we are going to use are from the Stanford data collection ( https:
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//snap.stanford.edu/data/). In table 1 we summarize the properties of the

networks such are the number of nodes, number of edged and the average clus-

tering coefficient. Clustering coefficient is a measure of the degree to with the

nodes in the network tend to cluster together.

• The first real-world network is Email, which was generated using email

data from a large European research institution. It is an unweighted and

undirected network. An edge exists between two persons if they have ever

exchanged an email with each other. The network also includes ground-

truth communities. A community represents one of the 42 departments

at the research institute. It contains 1,005 nodes and 25,571 edges.

• The second network we are going to use is Amazon: it has 334,863 nodes

and 925,872 edges. It represents the Amazon product network. The

network describes the frequency of bought products. If a product i is

frequently co-purchased with product j, an edge exists between two prod-

ucts. Even though the network is weighted, for our experiments we are

using it as an unweighted network, because of map equation which is

not applicable to weighted networks. For the Amazon network, we are

not considering the ground truth as it has overlapping communities.

• The third network is Youtube. The network describes the users as

nodes, and users can form friendships (edges) with the other users. It

has 1,113,890 nodes and 2,987,624. For the Youtube network, we are

also not considering the ground truth communities, because of overlap-

ping communities.
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Nodes Edges Average clustering coefficient

Email 1005 25, 571 0.3994

Amazon 334, 863 925, 872 0.3967

Youtube 1, 113, 890 2, 987, 624 0.0808

Table 1: Network properties

6 Results

In this section we provide the results on the performance of the algorithms

and objective functions. First we describe the results from the benchmarks in

terms of the ratio of the quality measure, the number of communities found and

the NMI. Secondly we describe the results on real-world networks.

6.1 Benchmark networks results

This section demonstrates the performance of the experiments on the bench-

mark, beginning with the quality measure,the number of communities, finishing

with NMI.

6.1.1 Results on quality measure and number of communities

The experiments have been carried out on the LFR benchmark described in

Section 5.2. We have included different sizes of the benchmark networks. We

would like to emphasize that we are using a range of values of mixing parameter

µ = [0.2; 0.9], which consists of different community structure for the ground

truth data. Even though all the results depend on all parameters of the bench-

mark, we are setting the parameter γ = 2 and β = 1 as constants.

Moreover, we tested the benchmark networks on two algorithms the Lou-

vian and Leiden algorithm, including the four objective functions map equa-
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tion, rbc, surprise and sbm. We ran the algorithms five times and took the

average of the quality value of each objective function. For the quality measure

we measured the ratio of the quality value detected from our algorithms and

the quality value of the ground truth communities. The ratio would imply how

similar the score on the quality value is compared with the ground truth. Yet,

for the comparison of the number of the communities found we have included

the number of the ground truth communities as GT in our charts.
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Figure 4: Quality measure

In Figure 4, we illustrate on a logarithmic scale the quality measure as the

number of nodes in the benchmark increases. We remark that not all func-

tions have the same scale on the quality value (especially map equation) but

we want to emphasize that all objective functions scales with the number of

nodes/edges. sbm is not included as we were not able to measure it in large

networks. sbm is available only for the benchmark of 1000 and 5000 nodes.

We begin our comparative analysis with the benchmark of 1000 nodes until

500, 000 nodes.
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Figure 5: Quality measure

In Figure 5 we illustrate the result of the quality measure of map equation.

In all benchmark networks Leiden algorithm seems to have better results than

Louvain. The ratio of the quality is close to 1 for the mixing parameter µ = 0.2

and this is significant for larger benchmark networks of 100, 000 and 500, 000

nodes.
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Figure 6: Quality measure

However, from Figure 6 we can not say the same for rbc, where for some

values of µ Louvain has better results than Leiden. The difference in both

algorithms is so small that is unobservable from the charts. Moreover, we infer

that the ratio of the quality measure is mostly 1 for all the benchmark networks,

except case of map equation. If the ratio equals 1, then this implies that the

quality value uncovered from our algorithms is equal with the quality value of

the ground truth communities.
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Figure 8: Quality measure

Figures 7 and 8 outline the results of the quality measure for surprise and

sbm. Similar to map equation, surprise scored higher values on the quality

measure with the Leiden algorithm compared to the Louvain algorithm. In
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common with rbc the ratio is equal to 1 for most of the values of µ, which

means that the functions rbc and surprise find the community structure of

the benchmark networks, similar to the ground truth communities.

Differently from other functions, we want to point out the performance of

sbm, which has some limitation. As we have explained in Section 4.4, sbm takes

a parameter of the predefined number of communities, which in our case would

always be 30 for the benchmarks of 1000 nodes and 250 for the benchmark of

5000 nodes. That parameter also influences the quality measure of sbm, because

every time we generate sbm it consists of a different partition of the network.

Still, that does not mean that sbm does not reveal the community structure of

the network. The score on the quality ratio for sbm seems to be unpredictable.

In the benchmark of 1000 nodes it has scored higher in the Louvain algorithm,

meanwhile for the benchmark network of 5000 nodes is the opposite.
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Figure 9: Number of communities
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Figure 10: Number of communities
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Figure 11: Number of communities

Figures 9, 10 and 11 measure the number of communities found in the bench-

mark networks. We see that for the small benchmark networks, where the mix-

ing parameter µ = 0.2, the methods found the correct number of communities

compared to the ground truth communities. map equation and surprise de-

tected the exact number of communities, yet we can not say the same for rbc.

For benchmark networks larger than 1000 the function is not accurate.

In Figure 10 we can easily distinguish the difference between the ground

truth (GT) and the communities uncovered by our algorithms. That comes as

the problem of the resolution parameter, which prevents the algorithm to find

communities smaller than a scale, and for the large benchmark networks this

problem seems to be more significant.
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6.1.2 Results on NMI

In the previous section we described the ratio of the quality measure of com-

munities discovered by both algorithms. In this part, we will investigate the

similarity of the communities found compared to the ground truth communi-

ties. As described in Section 3.3 we are measuring the similarity based on NMI.
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Figure 12: NMI measure
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Figure 13: NMI measure
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Figure 12, shows the NMI values for the Louvain algorithm for all objective

functions for each of the benchmark networks. We show that in general all the

functions scored high on NMI except the rbc. rbc for large benchmark net-

works has the lowest value as a consequence of the resolution parameter. It is

clearly visible that surprise is the most stable function because even for large

µ the NMI is almost 1.

Figure 13 shows the NMI values for the Leiden algorithm. Like Louvain

the functions have scored high values of the NMI. Similar to the case of Lou-

vain, rbc has scored low values of the NMI. We infer that all the algorithms and

functions, except rbc, found comparable communities with the ground truth,

up to µ = 0.5.

6.2 Real-world networks results

This section describes the results form the real-world networks including

Email, Amazon, and Youtube. The experiments follow the same order as in

the section on the benchmark networks results.

6.2.1 Results on quality measure and number of communities

We display the performance of the experiments on real-world networks as

they tend to have a more complex structure in comparison with the benchmarks.

We are going to show the experiments on quality measure and the number of

the communities for the three real-world networks. We begin with the smallest

network Email, continuing with the largest that is Youtube.
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Louvain Leiden

map equation 6.711 6, 718

rbc 22512.024 22511.046

surprise 5449, 916 5449, 916

sbm −503423.179 −502853, 777

Table 2: Email quality measure

Louvain Leiden

map equation 92 84

rbc 27 27

surprise 1004 1004

sbm 42 42

Table 3: Email number of communities

Table 2 shows the results of the Email network. Clearly map equation

and sbm performed better on the Leiden algorithm, whereases we could not

say the same for rbc, which scored low values of quality for the Leiden and

surprise, which shows no difference between both algorithms.

Furthermore, Table 3 indicates the number of communities found by each

algorithm. We remark that sbm has the same number of communities because

they are predefined. surprise surprisingly found the same number of commu-

nities in both algorithms, which explains the value on the quality measure. Yet,

map equation seems to be the one that has the best results so far on real-world

networks.
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Louvain Leiden

map equation 18.793 18.865

rbc 1721238 1728799

surprise 6552873 6577454

Table 4: Amazon quality measure

Louvain Leiden

map equation 46812 44779

rbc 252 421

surprise 18057 18087

Table 5: Amazon number of communities

Table 4 and 5 summarize the results of the Amazon network. Obviously,

all objective functions seem to reach their optimum on the Leiden algorithm

which was not the same in the Email network. The values of the quality of

rbc and surprise are higher in Leiden than in Louvain.

Louvain Leiden

map equation 15.340 15.359e

rbc 4322403 4371268

surprise 11990201 11861928

Table 6: Youtube quality measure
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Louvain Leiden

map equation 218155 215833

rbc 7734 3675

surprise 179857 152173

Table 7: Youtube number of communities

Tables 6 and 7 show the results on the Youtube network. The results match

those for Amazon, except rbc which has scored low values of quality with the

Leiden algorithm.

6.2.2 Results on NMI

In this section, we show the results on the similarity measure NMI for the

Email network. As explained in Section 5.3, we are not testing Amazon and

Youtube as they have overlapping communities.

0.655	

0.59	

0.648	

0.675	

0.66	

0.589	

0.648	

0.697	

Map	 RBC	 Surprise	 SBM	

NMI	
Louvain	 Leiden	

Figure 14: NMI of Email

Figure 6.2.2 shows the NMI score of the functions on the Email network. In

general, all of them have scored an NMI above 0.5. The results highlight that

sbm scored the highest on NMI, because we predefine the number of communi-
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ties we want as q = 42, which equals the number of communities in the ground

truth.

However, from the comparison of other functions which reveal the commu-

nities while optimizing them, we conclude that map equation has the best

similarity value. map equation out-performed all the other functions, espe-

cially with the Leiden algorithm. rbc is the worst performer according to the

NMI metric.
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7 Conclusion

We made a comparative analysis of the performance of two algorithms (Leiden

and Louvain) for community detection and four objective functions (map equa-

tion, rbc, suprirse and sbm). We focused on the ratio of the quality measure

between the value scored by our algorithms and the value of the ground truth

communities, the number of the communities found and the similarity measure

NMI. The experiments have been conducted on LFR benchmark networks and

in three real-world networks (Email, Amazon and Youtube). The networks

have been interpreted as undirected and unweighted.

As a result from the experiments on the quality measure, we conclude that

the Leiden algorithm outperforms Louvain. We found that in most of the

benchmark networks and real-world networks the ratio of the quality of the

Leiden algorithm scored close to 1, which emphasizes that the value detected

from our algorithms matches the values of the ground truth communities. Even

though the difference compared to the Louvain algorithm was not that big,

we conclude that the community structure of the networks detected from the

Leiden algorithm is as good as the ground truth communities.

In our research we found that the most stable objective functions were

surprise and map equation as they performed very well in benchmark net-

works and in real-world networks. Benchmark networks and real-world networks

scored almost equal with respect to the number of communities in the ground

truth data. The only objective function that did not detect the correct number

of communities was rbc because of the resolution parameter. Yet, we want to

add that the best results of each objective function were detected while they

were part of the Leiden algorithm.

Another result from NMI is that map equation and surprise while be-

ing part of Leiden algorithm are the best performer among all other objective

42



functions. The values on the NMI are the highest meaning that they found

communities that are similar to the ground truth communities.

Moreover, sbm is inefficient to optimize for networks where the ground truth

is not known. That as a result of the q parameter, the number of communities

we want to reveal, which for large networks takes a lot of computation time to

determine.

The experiments conducted in small benchmark networks of 1000 and 5000

nodes and in the Email network, resulted in comparable values in all metrics in

both algorithms, Louvain and Leiden. The values on the NMI and the quality

value, for the Email network showed that sbm had found a better community

structure with the Leiden algorithm than Louvain. Therefore we say that sbm

performed better as part of Leiden algorithm.

Some limitation should be noted. The limitation we had due to unavail-

ability of large networks with ground truth data that do not have overlapping

communities, made the calculation of NMI impossible. Hence, we are not sure

how comparable the communities found from our algorithms are with the ground

truth communities. Also, we were not capable to calculate the sbm for large

networks, as a consequence of the parameter q and the large computational time

it takes to detect the community structure of the networks.

Future work is required to answer our limitations. Firstly we suggest to

test sbm in larger networks. Secondly, testing all the methods including algo-

rithms and objective functions in large real-world networks with ground truth

communities.
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Appendix A

Here we explain the difference on the quality when we want to move nodes

from an old community to a new community. This is important to highlight,

because the algorithms disused in the Section 4.2 constantly look for the im-

provement of the quality. Therefore, optimizing the community structure of

the given networks goes along with the optimization of the quality function or

objective function itself.

We denote the old community with r and the new community with s. The

difference in change would consist with the delta on the quality measure for

each function described in Section 4.1. For each of the objective functions the

difference is:

• Map Equation [21]:

4Qmap equation = [w′ylog(w′y) − wylog(wy)] − 2
∑m
c=1[w′c y log(w′c y

)− wc y log(wc y)] +
∑m
c=1[(w′c y +w′c)log(w′c y +w′c)−

(wc y +wc)log(wc y +wc

The first terms that includes the sing (′) calculates the difference of the

links between the communities after moving node i to community s and

before when node i was part of community r, followed by the difference

of the exit links, and the last terms equals the difference of the exit links

of the community plus the strength of node i.

• RBC [20]: ∆Qrbc = Kir −Kis − γ
2mKi(Kr −Ki −Ks)

Where Kr and Ks is the sum of the degrees of nodes in the old community

and new community, Ki the degree of the node i, Kis the number of links

between i and new community and Kir the number of links between the

i and the old community.
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• Surprise [2, 25]:

∆Qsurprise =
[
D′(q′||

〈
q′
〉
)−D(q||

〈
q
〉
)
]

The sing (′) stand for the calculation after the movement of the node

i for old community r to the new community s. The term q′ = m′
int

m′ ,

where m′int is the internal number of edges after node i has been moved

from community r to new community s, and m′ the total number of edges

after the movement of the node i into new community. For n nodes the

term 〈q′〉 = m′
int

m′ , where m =

n
2

 are the possible ways of drawing m

edges after the movement, and m′int =

nc
2

 are possible ways of drawing

internal edges.

• SBM [11]:

∆Qsbm =
∑
t 6=r,s[a(mrt−Kit)−a(mrt)+a(mst+ Kit)−a(mst)]+a(mrs+

Kir − Kis) − a(mrs)+ b[mrr − 2(Kir + ui)] − b(mrr) + b[mss + 2(Kis +

ui)]− b(mss)− a(κr −Ki) + a(Kr)− a(Ks + ki) + a(Ks).

Where mrt is the number of link between the old community to the rest

of the network not including the new community, Kit is the number of

edges between the nodes i and the nodes in group t without including

the self-edges, ui is the number of the self-edges of the node i, mst is the

number of links between the new community and t, Kir is the number

of node i inside the old community, Kis is the number of links between

node i and the new community, mss is the internal number of links of new

community, mrr is the internal number of links of old community, Kr is

the total degree of the old community and Ks is the total degree of the

new community. a(p) = 2p log p and b(p) = p log p.
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Appendix B

The most widely known objective function for community detection is mod-

ularity. As mentioned in [26], modularity finds the best divisions based on the

optimization of the function itself. It makes a comparison of the number of links

within each community with the expected number of links in a random graph of

the same size and same distribution of node degrees, then sums the differences

between the expected and observed values for all the communities.

As explained [17], suppose we have a division of the network into two groups

r and s. If node belongs to group r then ri = 1 and if node is belong to group

s then si = 1. Then, modularity Q is given by the sum of Aij −KiKj/2m over

all pairs of nodes i, j that falls in the same group.

Q = 1
2m

∑
i,j

(
Aij −

KiKj

2m
)
(r, s)

Q is the quality function.

Figure 15: Resolution limit illustration [17]

However, modularity is not consistent, because of the resolution limit prob-

lem. It favors network partition with groups of modules combined into larger
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sub-communities therefore it prevents the detection of smaller communities in

larger networks.

In Figure 15 we highlight the problem of resolution limit. The natural com-

munity structure of the network, represented by the individual cliques (circles),

is not recognized by optimizing modularity if the cliques are smaller than a

scale depending on the size of the network. In this case, the maximum mod-

ularity corresponds to a partition whose clusters include two or more cliques.[18]

The roots of the problem derive from the sum of each term, because modu-

larity is a sum of terms, where each of them corresponds to a module. Therefore,

it might miss important structures of the network. This complication leads to a

new challenge, finding the correct objective function that would be focused on

the local definition of community, regardless its size.

47



References
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