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Abstract

The number of people traveling by airplane has been increasing over the last couple of years. Combine this

with the effects of climate change, which increases unpredictable and more extreme weather, and it is easy to

see that it is a difficult task for airlines to make sure their flights arrive according to schedule. Studies have

been done on finding patterns in flight data and weather data, for example on finding causes of flight delays

and comparing quality measures to use with subgroup discovery. This work focuses on finding the best way

for finding patterns in flight data and weather data that help to tell something about flight delays.

The dataset used in this research consists of flight data with corresponding weather data of domestic flights

from the United States in the year 2016. Only data of United Airlines was used from the airports of Denver,

Tampa and San Diego. The Diverse Subgroup Set Discovery (DSSD) algorithm was used for doing subgroup

discovery. With this algorithm, experiments were done in which two quality measures, two equal frequency

discretization techniques, three different bin sizes and two search strategies were compared, resulting in 72

conducted experiments.

In conclusion, experiments showed that there are two ways particularly interesting for finding subgroups with

high delays. The first way results in smaller subgroups with particularly high delays, which can, for example,

be used for doing outlier detection. The second way results in bigger subgroups with lower (but still above

average) delays. This way can, for example, be used for finding/capturing the effects of changes in strategy

and policy made by the management of air carriers.
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Chapter 1

Introduction

Over the last couple of years, popularity of traveling via airplanes has increased. According to the Bureau of

Transportation Statistics [1], the number of airline passengers increased from 724 million in 2017 to 749 million

in 2018 in the United States, which is an increase of 3.5% in just one year. Increases like this are common and

tend to happen every year, which makes the task of ensuring that flights arrive according to schedule difficult

for air carriers.

According to Mirza [2], climate change is currently happening and increased occurrences of extreme weather

conditions will have an effect on every day life. Combine this fact with the yearly increasing number of airline

passengers, and it becomes clear that these phenomena can impact flight schedules in a negative way. It is,

for example, possible that unpredictable weather events and crowded airplanes can contribute to increased

aircraft delays.

Several datamining techniques can be used to analyze data in order to combat aircraft delays. Sternberg et

al. [3] tried to find patterns in flight delays by using data indexing techniques combined with association

rules, while Post [4] did research on finding patterns in flight delays with subgroup discovery in order to find

possible causes of arrival delays.

In his work, Post focused on experimenting with multiple quality measures while making use of different

search strategies. However, the effects of using different search strategies or different discretization techniques

were not studied in detail in his work. Therefore, this work will extend the work of Post by specifically focusing

on comparing the effects of different search strategies and different discretization techniques with subgroup

discovery. This will result in experimenting with multiple ways for discovering patterns in flight data, which

leads to the following research question:

How can subgroup discovery be used in the best way to discover interesting subgroup sets, with flight

delays as target, on a large dataset of flight data and weather data?

This research question will be answered by doing experiments with two different search strategies (standard

beam search and diverse beam search) and two types of discretization (a priori binning and on the fly binning).
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Both types of discretization are a variation of equal frequency binning, where also the effect of the number of

bins will be studied by experimenting with three numbers of bins. Besides, two different quality measures will

be compared, namely Weighted Relative Accuracy and the Mean Test, which will determine the interestingness

of subgroups.

The term “interesting” appears in the research question and will reappear throughout this bachelor thesis,

where interesting refers to a subgroup that tells something about the target, which is the arrival delay. Generally

speaking, subgroups that show big deviations in arrival delays are considered to be interesting, and subgroups

that show smaller deviations in arrival delays are considered to be less interesting. However, the exact definition

for interestingness is given by the quality functions.

1.1 Thesis overview

Firstly, the related work will be discussed, followed by a chapter about the dataset. After that, methods and

techniques used in this work will be explained, which is needed in order to have a better understanding about

the next chapter, in which the experiments and results are shown. The research is then concluded with an

answer to the research question, discussion, and possible future work.
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Chapter 2

Related Work

Research on flight delays is an interesting topic from a business perspective, as these delays can cost businesses

a lot of money. According to statistics from Airlines for America [5], the costs of flight delays in the year 2017

are estimated to be $26.6 billion in the United States alone. Therefore, research on this topic that is useful for

this particular study is already available. This chapter will start with related work on flight delays, after which

related work on subgroup discovery will be discussed.

2.1 Flight delays

Sternberg et al. [3] have done research on flight delays on Brazilian airlines. This research focused on finding

patterns in flight delays by using association rules and indexing techniques. These patterns were then used

to answer questions on causes of flight delays, relations between departure and arrival delays and relations

between Brazilian airports and delays. Not only do answers to these questions contribute to understanding

flight delays in this research, but the techniques used to build the dataset (like concept hierarchy, binning and

temporal aggregation) are also applied in this research on a similar dataset of flight data.

Besides analysis of Brazilian flight data, analysis on domestic United Airlines flights in the United States

was done by Post [4]. The goal of this work was to find causes of flight delays in 2016 by experimenting

with different search strategies and quality measures. Post used the same dataset that will be used in this

research, which means that his work contributes to a better understanding of the dataset, binning techniques

and experiments done in this research. However, Post did not focus on the effects of search strategies and

discretization techniques on results, which is what this work is trying to achieve.

Research on other aspects of delays has also been done on similar datasets. For example, Deshpande et al. [6]

have worked on analyzing the impact flight schedules on flight delays. This work shows what the effects are

of man-made decisions on the costs and development of flight delays, which can also be used to reflect on the

policies and strategies used by the air carrier used in this work, which is United Airlines.
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2.2 Subgroup discovery

Finding patterns in data can be done in multiple ways, with subgroup discovery being one of them. Atzmueller

[7] provides an overview of subgroup discovery techniques, terms, and real-world applications that help

in understanding subgroup discovery. It is a paper that talks about subgroup discovery with a focus on

explanation and understanding of subgroup discovery and related topics such as quality functions, algorithms

and subgroup set selection. Knowledge found in this paper is applicable to this research, because subgroup

discovery will be used to analyze flight delays.

Subgroup discovery is implemented in a variety of ways, making use of different methods and tools. Helal [8]

analyzes different subgroup discovery methods extensively in order to improve understanding these methods.

The analyzes are done with multiple datasets, each with different properties, to see how the methods react

to these kinds of inputs. The DSSD algorithm, which is used in this research, is also analyzed by Helal. This

provides additional knowledge on how DSSD performs on different datasets as compared to other subgroup

discovery algorithms.

The Diverse Subgroup Set Discovery (DSSD) algorithm [9] is used in this research and was proposed by Van

Leeuwen and Knobbe. Their work explains the algorithm in detail, with additional results on sample datasets.

DSSD is able to give diverse subgroups, has different quality functions implemented and can be used for

complex tasks as well, which means it is able to perform the tasks done in this work.

The target in this research is arrival delays, which is a numeric attribute. This means that not all quality

functions can be used for subgroup discovery. Lemmerich et al. [10] give additional information on evaluation

of results, quality functions and subgroup discovery for numeric targets. So challenges and methods for

working with numeric targets in subgroup discovery are addressed, which is useful for this work as well, as

the target (arrival delay) is numeric.

Subgroup discovery is also used for finding patterns in other organizations. Lavrac et al. [11] tried to compare

different subgroup discovery techniques in order to use them as supportive tools for making decisions. Not

only did they apply subgroup discovery to two marketing case studies, they also applied subgroup discovery

to a medical case study as well. This resulted in a list of possible subgroup discovery risks/problems and

solutions, which is useful for this work, as subgroup discovery is used in this work as well.
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Chapter 3

Data

According to the ”garbage in, garbage out“ principle [12], if the input data is of bad quality, the results/output

of research will be of poor quality as well in most cases. The data needs to be from reliable sources, after which

only the useful data is kept for further research. This chapter will firstly explain the source of the dataset, after

which a simple descriptive analysis of single attributes will be discussed. Then, this chapter will conclude

with a section on preprocessing and an overview of the resulting datasets that will be used in the experiments.

3.1 Source

The data used in this research is composed of two parts: one part consists of flight data, while the second

part consists of weather data that matches the other part. The complete dataset contains data from all months

in 2016. Reason for this being that this was the last year in which the data was completely logged before

changing to other formats. It is the same dataset used in the research that was previously done by Post [4].

The dataset contains more information than needed for this research, as the flight data contains data of all

carriers. In order to get accurate results, a scope needs to be defined that limits certain parts of the data.

Therefore, only flight data of United Airlines was used. This decision was made because United Airlines has

kept its policy/strategy relatively constant over the last years. This consistency in management is supported

by the consistency in delays over the years and contributes to data that represents daily operations in regular

circumstances, which reduces outliers and unexpected behaviour in the dataset.

The flight data was gathered from the United States Bureau of Transportation Statistics [1], while the weather

data was gathered from the United States National Oceanic and Atmospheric Administrations [13]. The flight

data contains information of all domestic flights in the United States across different carriers. The weather

data consists of various weather and climate conditions as observed in the United States. The advantage of

these two sources of data is that they provide consistent and relatively complete data, which contributes to

accurate results.
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The entire dataset contains 914495 flights of United Airlines in the United States and 157 attributes, with an

average arrival delay of 5.1 minutes. The way in which this dataset is reduced is given in Chapter 3.3.

3.2 Single attribute statistical analysis

In order to get a better understanding of the dataset, a simple descriptive analysis is done consisting of a

correlation matrix and a look at the target attribute, which is arrival delays. Figure 3.1 shows a correlation

matrix of all raw flight data (excluding weather data) for United Airlines. At first glance, it becomes clear that

most variables are not correlated and probably are linearly independent. The correlations that are present are

obvious ones: CRS ELAPSED TIME (the time it takes a flight to travel from airport A to airport B) shows a

high correlation with the DISTANCE and DISTANCE GROUP (a representation of the distance of the flight).

This is to be expected, as flights that travel longer distances take longer to arrive at the destination. The

departure delays (DEP DELAY) and arrival delays (ARR DELAY) also are strongly correlated. This implies that

flights that depart later than expected, also will arrive later than expected. For this reason, the DEP DELAY

attribute will be removed from the dataset, as it can influence the results with information that is not relevant

for answering the research question. Another reason for leaving out this attribute is that this research only

wants to use data that was available before departure, either through forecasts (for example with weather data)

or schedules and information recorded before departure.

Figure 3.1: A correlation matrix of the variables in the raw domestic flight data of United Airlines in 2016.

When looking at average arrival delays in 2016 (see Figure 3.2), two sudden increases in the average arrival

delays happen throughout the year, namely during summer and December. One possible explanation for this

can be the weather conditions: summer and December are, respectively, very hot and cold periods of the

year, which can affect arrival delays. Another possible explanation could be holidays. During summer and
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December, a lot of people go on vacation. So these two periods can be, besides extreme in weather conditions,

also the busiest times of the year. All of this can contribute to peaks in average arrival delays. These two

possible explanations were suggestions, as it is difficult to find the exact explanations. This research is focused

on finding an answer to the research question, not on finding causes for behavior otherwise seen in the data.

In some cases, though, suggestions for possible explanations for causes will be given.

Figure 3.2: A plot of the average arrival delays in the year 2016 regarding domestic flights in the United States from United
Airlines.

3.3 Selecting specific airports

A dataset that contains all domestic flights of United Airlines in the year 2016, complete with weather data,

is too big given the available resources (time, computing power, etc.). Therefore, a smaller selection of the

data must be made for further research. The data will be reduced to data of three specific airports, namely

Tampa, Denver and San Diego. Each airport has data on at least 18000 flights. This includes incoming as well

as outgoing flights from these airports.

These airports have been selected based on geographical location. The United States have different climates

and weather conditions across the country. Therefore, airports that are not near each other will face different

weather types and climate conditions (according to the Köppen Climate Classification [14]) throughout the

whole year. The airports that are used in the dataset are shown in Table 3.1.

Furthermore, for each of these airports, cancelled and diverted flights will also be removed. In theory, a

cancelled flight could have an infinite arrival delay or no arrival delay value at all. This makes it impossible to

work with cancelled flights, as the target variable is the arrival delay. The same can be said for diverted flights,

7



City State Flights Climate Mean ARR-DELAY
Tampa Florida 24498 Humid, Subtropical 4.7 minutes
Denver Colorado 20978 Semi-Arid, Continental 6.6 minutes

San Diego California 18486 Semi-Arid, Mediterranean 2.9 minutes

Table 3.1: An overview of the selected airports. These airports are spread out across the United States and each airport has
a different climate, so each airport endures different weather conditions to base the results upon. This table shows the
location of the airport (city and state), the number of domestic flights per airport during 2016, the climate of the airport
and the average arrival delays per airport in 2016.

as these flights will never reach the original destinations.

3.4 Removing sparse attributes

In this context, an attribute is said to be sparse when an attribute has many missing values, which can give less

accurate results. So attributes that contain too many missing values will be removed. To determine whether an

attribute contains enough non-missing values or not, a threshold will be used. This threshold is relative to

the size of the airport datasets (e.g. the number of flights). Iff an attribute contains an amount of non-empty

values of at least 3% of the total amount of flights, that specific attribute will not be removed from the dataset.

The threshold is put at 3% because a higher threshold results in no extreme weather condition attributes, as

extreme weather conditions do not appear often. A threshold of lower than 3% would result in columns that

contain too few non-empty values. See the third paragraph of the Discussion section in Chapter 6 for more

information on the extreme weather attributes.

3.5 Overview of attributes after preprocessing

Table 3.2 gives summary information about the dataset that will be used in the experiments. Table 3.3 shows all

the attributes that are used in this research, together with a short description on the attributes. Some attributes

in the table appear with a *. These attributes have three different prefixes regarding weather conditions:

LATEARRIVAL, ARRIVAL, or DEPART. The DEPART prefix indicates that the attribute tells something about

the weather at the departure station at the scheduled time of departure and the ARRIVAL prefix indicates

that the attribute tells something about the weather at the arrival station at the time of departure; and the

LATEARRIVAL prefix indicates that the attribute tells something about the weather at the arrival station at

the scheduled time of arrival. When looking at Table 3.3, for example, Visibility* is present. This means that

LATEARRIVAL Visibility, ARRIVAL Visibility and DEPART Visibility are all different attributes in the dataset.
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City State Flights Climate Mean ARR-DELAY
Tampa Florida 24234 Humid, Subtropical 4.7 minutes
Denver Colorado 20635 Semi-Arid, Continental 6.6 minutes

San Diego California 18297 Semi-Arid, Mediterranean 2.9 minutes

Table 3.2: An overview of the selected airports after removing sparse attributes and diverted/cancelled flights. These
airports are spread out across the United States and each airport has a different climate, so each airport endures different
weather conditions to base the results upon. This table shows the location of the airport (city and state), the number of
domestic flights per airport during 2016, the climate of the airport and the average arrival delays per airport in 2016.

Attribute Description
QUARTER The quarter of the year.
MONTH The month of the year.

DAY OF MONTH The day of the month.
DAY OF WEEK The day of the week.

ORIGIN CITY NAME The name of the origin airport of the flight.
DES CITY NAME The name of the destination airport of the flight.

CRS DEP TIME The originally scheduled departure time.
DEP TIME BLK The hour in which the departure time falls.
CRS ARR TIME The originally scheduled arrival time.

ARR TIME The actual arrival time.
ARR DELAY The arrival delay.

ARR TIME BLK The hour in which the arrival time falls.
DISTANCE GROUP Indicator for the distance of a flight.

Visibility* Whether or not the pilots can see outside or have to rely on systems.
DryBulbCelsius* Measure for the outside temperature.

RelativeHumidity* The humidity of the air outside.
WindSpeed* The speed of the wind.

WindDirection* The wind direction.
ValueForWindCharacter* Describes the character/aggressiveness of the wind.

StationPressure* Air pressure at the weather station.
SeaLevelPressure* Air pressure at sea.

HourlyPrecip* The amount of precipitation per hour.
SKYCONDITION1 Sky condition 1.
SKYCONDITION2 Sky condition 2.
SKYCONDITION3 Sky condition 3.

DEPART FOG Whether or not there was fog at departure.
ARRIVAL FOG Whether or not there was fog at arrival.

SEASON The season.

Table 3.3: An overview of the remaining attributes that will be used in the experiments. A * means that an attribute has
three different variations: a DEPART, ARRIVAL and LATEARRIVAL variation. The DEPART prefix indicates that the
attribute tells something about the weather at the departure station at the scheduled time of departure; the ARRIVAL
prefix indicates that the attribute tells something about the weather at the arrival station at the time of departure and the
LATEARRIVAL prefix indicates that the attribute tells something about the weather at the arrival station at the scheduled
time of arrival.
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Chapter 4

Methods

This chapter will provide information on the techniques and methods used in this research. Firstly, a brief

introduction to the notations used in this chapter will be given. This is followed by an explanation of subgroup

discovery, after which four subgroup discovery properties (the target attribute, subgroup description language,

quality functions and search strategies) will be explained. After that, the binning techniques relevant for this

research are discussed, before ending with a short explanation of the DSSD algorithm.

4.1 Data notation

Let S denote the entire dataset, which consists of a set of attributes A. A contains x description attributes D

(with x ≥ 1) and exactly 1 target attribute T. This means that the dataset S is a collection of tuples over the set

of attributes A = {D1, ..., Dx, T}.

A subgroup G is then a collection of tuples G ⊆ S, with |G| being the size or coverage of the subgroup and |S|

being the size of the entire dataset. The average value of the target attribute T over the collection of tuples G is

denoted with µG, while µS denotes the average value of T over the collection of tuples S.

4.2 Subgroup discovery

Subgroup discovery is a technique for finding interesting subgroups for a specific target attribute. A subgroup

is described by a rule, which can look like this: YEAR = 2016 ∧ DAY = Monday. This means that all rows/cases

in the data where YEAR is equal to 2016 and DAY is equal to Monday are interesting in telling something

about the target attribute (for example, cases for which the target attribute has high or low values), where

interestingness is determined by a quality function. According to Atzmueller [15], four properties are important

for subgroup discovery, namely: the target attribute, the subgroup description language, the quality function,

and the search strategy. Each of these four properties will be discussed next.
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4.2.1 The target attribute

Target attributes can come in a variety of types, of which ordinal, binary, and numeric targets are all possibilities.

Each type of target can give different insights and answer different questions. It may sometimes be necessary

to change the type of the target. For example, numeric targets may need to be discretized because of a certain

quality function that cannot work with numeric data. So the type of the target attribute is important for the

setup of the research. In case of this research, the target attribute is the arrival delay, which is a numeric

attribute.

4.2.2 Subgroup description language

As said before, a subgroup is a subset of the data that complies with a specific description and there are

multiple ways to build these descriptions. A description consists of conditions. In this research, these conditions

can either have the following operands: =, 6=, > and <. So for example, WEATHER = Sunny and TIME <1200

are valid conditions. A description consists of multiple individual conditions. In this research, these conditions

can only form a description if the conditions are connected with the ∧ operand, i.e., conjunction. When looking

at the previous example, WEATHER = Sunny ∧ TIME <1200 could be an example of a description that is

allowed, but WEATHER = Sunny ∨ TIME <1200 is an example of a description that is not allowed within this

research.

4.2.3 Quality function

Subgroups are prioritized based on ”interestingness“, which can be made explicit by using quality functions. A

quality function generates a score based on the characteristics of the subgroup and/or the entire dataset. This

score then indicates the interestingness of the subgroups, with a higher score implying more interestingness.

For this research, two quality functions are relevant, namely the Weighted Relative Accuracy for numeric

attributes and the Mean Test. These two quality functions are chosen because they work with numeric attributes,

so no discretization of the target attribute is needed.

Weighted Relative Accuracy

The Weighted Relative Accuracy (WRAcc) for numeric attributes is defined as follows:

WRAcc(G) = |G|
|S| (µ

G − µS)

Where G stands for the subgroup and S stands for the entire dataset. So it first divides the size of the subgroup

by the size of the entire dataset, and then multiplies this with the difference between the average value of the

target attribute within the subgroup and the average value of the target attribute within the whole dataset.

This means that this quality function does not only care for subgroups with a high deviation in the target

attribute, but it takes the size of the subgroup relative to the size of the entire dataset into consideration as well.
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So the biggest subgroups with the highest deviations in the target attributes get the highest scores according

to this quality function.

Mean Test

The Mean Test (MT) is defined as follows:

MT(G) =
√
|G|(µG − µS)

Where, again, G stands for the subgroup and S stands for the entire dataset. It looks the same as the WRAcc

quality function, with one big difference: instead of dividing the size of the subgroup by the size of the entire

dataset, the MT uses the square root of the size of the subgroup. This means that the MT only cares for

subgroups with the highest deviations of the target, not taking the size of the subgroups into account. So only

subgroups with the highest deviations get the highest scores, which means it is possible for relatively small

subgroups to make it to the top of the ranking based on just their score.

4.2.4 Search strategy

An exhaustive method of searching the entire search space gives optimal results. Such a search strategy,

however, is often not feasible because of the size of the search space. Therefore, to reduce the search space,

heuristic strategies can be used. For this particular research, beam search was used, which selects only the

most promising attribute subsets, but truncates after a certain number of subsets is reached. This maximal

number is called the beam width. The process of selecting and adding attributes is done level-by-level, where

in each level, the search space is reduced by adding one promising attribute to the subset of attributes. In other

words, subgroups get refined in each level, where the quality function ranks the (refined) candidate subgroup

sets according to which subgroup sets are most promising. In this way, the search space gets smaller with each

level, making beam search more efficient for use with larger datasets.

4.3 Equal frequency binning

Equal frequency binning (or equal frequency discretization) refers to categorizing numeric attributes. Numeric

attributes can potentially have high cardinalities, making the search space large. This large search space can

affect run times of algorithms in a negative way by increasing it. Therefore, discretization is necessary in order

to improve run times and efficiency of algorithms.

There are two types of binning (discretization) strategies: equal interval binning and equal frequency binning.

With equal interval binning, the domain of values is divided into intervals of equal width. However, some

intervals may contain more values than others. Equal frequency binning divides the domain into intervals that

contain the same number of values. The width of the intervals can vary with equal frequency binning. For this
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research, only equal frequency binning will be used. The number of bins will vary based on the distributions

of the attributes.

4.3.1 A priori binning

One way of applying a binning technique is to do the binning before the data is used as input for an algorithm.

This is called a priori binning. For this research, the number of bins will be determined by the distributions

of the attributes and the maximum number of splits, where a maximum of 3 splits uses the fewest bins, a

maximum of 7 splits uses the most bins and a maximum of 5 splits uses in between 3 and 7 splits. For each

numeric attribute, the distribution was manually inspected in order to determine the appropriate number of

bins, which will now be discussed.

Normal and skewed distributions

If the distribution of an attribute is (close to) normal or skewed, three different bins will be used in the

first setup. This is done because a bin is created in the area where the data is most dense, namely in

the middle of the distribution. The number of bins of attributes will increase with two bins, which makes

sure that the bin in the middle (where the data is dense) is kept. The binning setups are visualized in Figure 4.1.

(A) (B) (C)

Figure 4.1: Schematic view of bins per setup for normal and skewed distributions. (A) corresponds to maximal 3 splits, (B)
corresponds to maximal 5 splits and (C) corresponds to maximal 7 splits.

Waved distributions

If the distribution of an attribute appears to have at least two waves (at least two peaks), the following formula

will be used to determine the fewest number of splits:

number o f splits = number o f peaks −1

After that, each wave gets treated like a normal distribution. This means that per wave, a total of 3 bins will be

used. An example with a bimodal distribution is given in Figure 4.2. This distribution has two peaks. The

formula states that 2− 1 = 1, so the smallest number of bins will be 2. Since there are two waves, the second

biggest number of bins will be 6 bins. After that, 4 bins will be added in the largest number of bins, which

results in 10 bins.
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(A) (B) (C)

Figure 4.2: Schematic view of bins per setup for bimodal distributions. (A) corresponds to the smallest number of bins, (B)
corresponds to the second biggest number of bins and (C) corresponds to the largest number of bins.

Constant distributions

If the distribution is (close to) being constant, the smallest number of bins will be equal to 2. After that, the

number of bins is increased by 1. So the second biggest number of bins will be 3 bins, while the biggest number

of bins will be 4. Figure 4.3 shows this graphically. This is done because the density of data is approximately

the same everywhere along the distribution. So there is no part where the data is most dense to isolate, which

is why two initial bins are chosen as the smallest number of bins.

(A) (B) (C)

Figure 4.3: Schematic view of bins per setup for constant distributions. (A) corresponds to the smallest number of bins, (B)
corresponds to the second biggest number of bins and (C) corresponds to the largest number of bins.

4.3.2 On the fly binning

As said earlier, a priori binning is a way of adding bins before the data is used as input by the algorithm.

DSSD offers ”on the fly“ (OTF) binning. With OTF binning, unbinned data is the input of DSSD. DSSD will

then apply its own binning technique when the algorithm runs, in which the values of a numeric attribute

that occur within a subgroup are split into a number of six bins. The number of bins must be determined

before the algorithm starts and cannot be changed during or after finishing the algorithm. After that, the {<,

>}-conditions for each given cut point will be calculated. This process is done after each refinement step in the

algorithm, where refinement is the process of adding a condition to subgroups that are generated, reducing

the search space in a level-wise fashion.

In order to compare a priori binning with OTF binning, the number of bins needs to be comparable. Therefore,

DSSD will be run with three different numbers of splits:

• a maximum of 3 splits to compare with the fewest number of bins with a priori binning

• a maximum of 5 splits to compare with the second biggest number of bins with a priori binning

• a maximum of 7 splits to compare with the biggest number of bins with a priori binning
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An overview of all numeric attributes with their respective bins is given Appendix A. These numbers of bins

are obtained based on the distributions of the attributes, as explained in this chapter.

4.4 Diverse Subgroup Set Discovery

Diverse Subgroup Set Discovery [9] (DSSD) is the algorithm that is going to be used to discover subgroups.

It offers multiple quality functions (WRAcc, Mean Test, ChiSquared Test and (Weighted) Kullback Leibler

Measure), of which the WRAcc and the Mean Test are going to be used in this research. DSSD also has four

beam strategies, of which three are diverse beam search strategies and one standard beam search strategy. In

theory, the diverse strategies should find more diverse subgroups than the standard strategy. For this research,

only the standard beam strategy (named ”quality“ in DSSD) and the cover based diverse strategy are relevant.

4.4.1 Subgroup selection

DSSD offers four different strategies for making selections of subgroups, called quality, description, cover

and compression in DSSD. Quality refers to standard top-k beam search, while the other strategies are DSSD

strategies. Only the cover-based selection strategy was used in this research, which is computationally more

demanding than description-based beam search. With the description-based selection strategy, subgroups are

selected based on their descriptions, while the cover-based search strategy also takes the coverages of the

subgroups into account.

After subgroups are found, dominance pruning is applied to improve the quality of subgroups. This can

potentially improve the quality of the subgroup if, for example, the quality of the subgroup would be higher if

a specific condition were to be removed. This pruning is done based on the dominance of the subgroup. Let us

have two subgroups, Gy and Gz. Gy dominates Gz iff the quality of Gy, as generated by the quality function, is

equal to or greater than the quality of Gz and the conditions that appear in the description of Gy are a strict

subset of the conditions that appear in the description of Gz.
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Chapter 5

Experiments

This chapter will show the results obtained from the experiments, which will be used to support an answer to

the following research question:

How can subgroup discovery be used in the best way to discover interesting subgroup sets, with flight

delays as target, on a large dataset of flight data and weather data?

Firstly, an overview of the 72 conducted experiments will be given. This is followed by an in-depth analysis

of the results, in which the following categories of results will be discussed: diversity, quality measures, and

obtained flight delays. Each category will answer a different question:

• Diversity

– Which parameters give the largest diversity?

• Quality Measures

– Do quality measures give higher rankings to certain experiments?

– What parameters give the largest coverage?

• Obtained Flight Delays

– What parameters result in the biggest delays?

This means that the results of the experiments will be judged based on diversity, quality measures and flight

delays. The diversity gives information on how diverse the obtained subgroups are, which depends on the

number of the same conditions that appear in the subgroup descriptions. For example, if the same conditions

appear many times over across the different subgroup descriptions, results are not diverse. Ideally, results

need to be as diverse as possible, which is why diversity is one of the three evaluation criteria. The second

evaluation criteria is the quality measure, of which there are two in this research. Each quality measure works

differently and gives different results. Therefore, it is interesting to see what these quality measures do in terms

of the subgroup sizes they generate and whether some experiments get higher scores than other experiments.

The third evaluation criterion is flight delays. Flight delays are important in this research, as the goal is to find

subgroups that give interesting results regarding flight delays.
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5.1 Setup of experiments

The experiments vary in the number of bins, the type of discretization, the search strategy, quality measures

and the datasets used (since every airport utilizes a different part of the data). An overview is given in Table 5.1,

of which each of the columns will be discussed next.

Number of Splits Type of Discretization Beam Search Strategy Quality Measure
3 AP Diverse WRAcc
5 OTF Standard Mean Test
7

Table 5.1: An overview of the experiments. Each experiment has four different parameters, namely the maximum number
of splits for binning (exact number of bins can differ), the type of binning (a priori (AP) or on the fly (OTF)), the type of
beam search (standard or diverse) and the quality measure (WRAcc or Mean Test). These experiments need to be repeated
three times, once for each airport, giving a total of 72 experiments.

5.1.1 Number of splits

Three different variations of the data will be used, with each variation differing in the number of bins used

when binning numeric attributes. The first variation of the data will consist of numeric attributes binned with

at most three splits, while the second data variation consists of numeric attributes binned with at most five

splits. The third and last data variation consists of at most seven splits in the binning of numeric attributes.

See Chapter 4 for more information on binning.

5.1.2 Type of discretization

Two ways of discretization are compared, namely a priori binning (denoted with AP in tables) and on the

fly binning (denoted with OTF in tables). With a priori binning, Python will be used to apply the number of

bins before the DSSD algorithm is used. DSSD offers an ”on the fly“ binning option as well, which will be

used as the second way of discretization of data. When using on the fly binning, DSSD will use its built-in

discretization method to bin the numeric attributes (see Chapter 4 for more information on DSSD on the fly

binning).

5.1.3 Beam search strategy

DSSD offers standard beam search (denoted with BS) as well as diverse beam search (denoted with DBS). In

order to discover what effects these two different search strategies have on the results, the two beam search

strategies will be compared to each other.

17



5.1.4 Quality measures

Post [4] compared different quality measures to each other in detail on the same dataset. Therefore, only two

quality measures will be compared in this research, namely Weighted Relative Accuracy (WRAcc) for numeric

data and the Mean Test.

5.1.5 DSSD parameter settings

Although the DSSD algorithm has many parameters to tune, the parameters discussed in this part were the

only parameters that were tuned for this research. All other parameters were left at the default settings. With

regards to the top-k setting, which relates to the number of results to keep during the initial search phase of

the algorithm, the value was put at 1000. A top-k setting that was higher than 1000 did not result in more

interesting subgroups (where the exact amount of interestingness is determined by the quality measures),

which is why this number was chosen. The same can be said for the beam width, which is put at 100. Lastly,

the maximum number of conditions that could appear in a rule is 3. This is done because a number greater

than 3 resulted in extra attributes that did not contribute to better results, as these attributes repeatedly added

the same conditions to multiple subgroups.

5.2 Diversity of the results

5.2.1 Unique Conditions as a metric for diversity

For both the top-10 and top-100 subgroups generated with each experiment, the structure of the rules was

analyzed to describe diversity. The number of unique conditions is used as a metric for measuring diversity.

The terms “unique conditions” and ”diverse“ are explained with the following example shown in Table 5.2. A

description (the rule of the subgroup) consists of at most three conditions. The top-10 subgroups shown in

Table 5.2 contain fourteen unique conditions in total, which is the result of counting the occurrence of each

individual condition before removing duplicate conditions. A result is said to be diverse when the amount of

unique conditions is relatively high. So the example from Table 5.2 is not diverse, as many conditions across

multiple subgroups are the same.

5.2.2 Results

The experiments showed that, regardless of the number of splits, type of discretization and quality measure,

diverse beam search resulted in more unique conditions (so more diverse subgroups) as compared to standard

beam search. This was true for both the top-10 (see Table 5.3 and Table 5.4, where DBS scores higher than

BS in almost all experiments) and top-100 results per result file. This shows that diverse beam search indeed

results in more diverse subgroups compared to standard beam search.
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Sg Quality #Conditions Description
1 253 3 CRS ARR TIME=Late ∧ ARR TIME 6=Late ∧ ARR TIME BLK 6=1700-1759

2 42 3 CRS DEP TIME=Late ∧ ARR TIME 6=Late ∧ DEST CITY NAME=Dallas-TX
3 113 3 CRS ARR TIME=Late ∧ ARR TIME=Early ∧ ARR TIME BLK 6=2300-2359

4 252 3 CRS ARR TIME 6=Early ∧ ARR TIME=Early ∧ ARR TIME BLK 6=1200-1259

5 135 3 CRS ARR TIME=Late ∧ ARR TIME=Early ∧ CRS DEP TIME 6=Early
6 133 3 CRS ARR TIME=Late ∧ ARR TIME=Early ∧ DISTANCE GROUP 6=F
7 282 3 CRS ARR TIME=Late ∧ ARR TIME 6=Late ∧ DEP TIME BLK 6=1400-1459

8 111 3 CRS ARR TIME=Late ∧ ARR TIME=Early ∧ DEP TIME BLK 6=2200-2259

9 266 3 CRS ARR TIME 6=Early ∧ ARR TIME=Early ∧ DEP TIME BLK 6=0800-0859

10 281 3 CRS ARR TIME=Late ∧ ARR TIME 6=Late ∧ CRS DEP TIME 6=Middle

Table 5.2: An example of what the top-10 results of a single results file look like. The columns show respectively the index
of the subgroup, the score of the quality measure for the subgroup, the size of the subgroup, the number of conditions of
the rule that describes the subgroup and the description of the subgroup itself.

Another finding was that in general, on the fly binning resulted in more diverse subgroups compared to a

priori binning. This was again true for both the top-10 and top-100 results. This is also shown in Table 5.3 and

Table 5.4, as the OTF columns score better than the AP columns. This can possibly be explained by the fact

that DSSD on the fly binning can apply binning in a more efficient and precise way than a priori binning.

The top-100 results with the WRAcc quality measure showed that the number of bins seems to influence the

number of unique conditions positively: as the number of bins increases, the number of unique conditions also

increases. This is not the case when looking at the top-10 results, where the number of bins does not seem to

affect the number of unique conditions.

The next observation is about the Mean Test quality measure in both the top-10 (see Table 5.4) and top-100

results. When looking at the number of unique conditions found with on the fly binning, the number of unique

conditions increased as the number of bins increased. So the number of bins influences the number of unique

conditions when using the Mean Test quality measure with on the fly binning.

Regarding the unique conditions, the quality measures showed something interesting. With the top-10 results,

both quality measures showed roughly the same number of unique conditions. When looking at the top-100

results, however, the Mean Test resulted in more unique conditions compared to the WRAcc quality measure.

So when looking at all results, the Mean Test outperformed the WRAcc quality measure when it comes to

unique conditions.

Max. Splits: 3 Max. Splits: 5 Max. Splits: 7

AP OTF AP OTF AP OTF
BS DBS BS DBS BS DBS BS DBS BS DBS BS DBS

Denver 11 8 15 22 4 14 19 20 4 12 18 19
Tampa 10 10 18 23 8 12 19 23 4 12 15 25

San Diego 12 17 18 24 11 11 17 23 10 14 12 22

Average 11 11.7 17 23 7.7 12.3 18.3 22 6 12.7 15 22

Table 5.3: The amount of unique conditions in the top-10 results with WRAcc. The columns represent the maximum
number of splits in binning, standard beam search (BS) and diverse beam search (DBS), a priori binning (AP) and on the
fly binning (OTF).
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Max. Splits: 3 Max. Splits: 5 Max. Splits: 7

AP OTF AP OTF AP OTF
BS DBS BS DBS BS DBS BS DBS BS DBS BS DBS

Denver 15 12 18 20 18 16 21 22 15 20 20 19

Tampa 13 14 17 17 12 12 18 18 12 14 18 20
San Diego 13 14 15 18 15 19 15 21 11 16 19 21

Average 13.7 13.3 16.7 18.3 15 15.7 18 20.3 12.7 16.7 19 20

Table 5.4: The amount of unique conditions in the top-10 results with Mean Test. The columns represent the maximum
number of splits in binning, standard beam search (BS) and diverse beam search (DBS), a priori binning (AP) and on the
fly binning (OTF).

5.2.3 A closer look at a diversity outlier

Table 5.3 shows that a result for the Denver airport is different from the rest: the experiment with max. splits

3, a priori binning and standard beam search resulted 11 unique conditions, whereas diverse beam search

resulted in 8 unique conditions. This is the only case in the table where standard beam search scores higher

than diverse beam search with WRAcc. Both of these cases, with standard beam search and diverse beam

search, are shown in Table 5.5 and Table 5.6 respectively.

These tables do not appear to be special. As stated before, the rules in Table 5.5 are less diverse than in Table 5.6

due to the different beam search strategies. Also, in both tables, the average delays are higher than the average

delay for the whole airport of Denver, which is 6.6 minutes, and the amount of delays tend to decrease as the

ranking (based on the scores) of the subgroups decrease. These remarks make sense, as the WRAcc quality

measure (as well as the Mean Test) give the highest scores to subgroups that tend to deviate the strongest from

the total average delay of Denver airport. Unfortunately, these tables do not appear to show anomalies, which

means that based on these tables, it is not possible to explain why BS outperformed DBS with Denver, max.

splits 3 and a priori binning.

5.2.4 Which parameters give the biggest diversity?

Based on the results, the experiments with generally the biggest diversity had the following parameters:

• Quality Measure: Mean Test

• Type of Binning: OTF

• Beam Search Strategy: Diverse Beam Search

• Maximum Number of Splits: 7
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size AvgDelay Condition 1 Condition 2 Condition 3

0 6561 19.1 CRS ARR TIME 6=Early ARR TIME 6=Middle MONTH 6=Nov
1 6609 18.9 CRS ARR TIME 6=Early ARR TIME 6=Middle MONTH 6=Feb
2 7038 18.2 CRS ARR TIME 6=Early ARR TIME 6=Middle ARR TIME BLK 6=1200-1259

3 7053 18.1 CRS ARR TIME 6=Early ARR TIME 6=Middle DEP TIME BLK 6=0800-0859

4 6934 18.2 CRS ARR TIME 6=Early ARR TIME 6=Middle DEP TIME BLK 6=2100-2159

5 7091 17.9 CRS ARR TIME 6=Early ARR TIME 6=Middle ARRIVAL WindDirection 6=Varied
6 7098 17.9 CRS ARR TIME 6=Early ARR TIME 6=Middle -
7 7311 16.9 CRS DEP TIME 6=Early ARR TIME 6=Middle ARR TIME BLK 6=0001-0559

8 7745 16.4 CRS DEP TIME 6=Early ARR TIME 6=Middle DEP TIME BLK 6=2300-2359

9 7512 16.5 CRS DEP TIME 6=Early ARR TIME 6=Middle MONTH 6=Nov

Table 5.5: Top-10 results of experiment Denver, max. splits 3, with WRAcc, a priori binning and standard beam search with average delays for the subgroups. This table does not
show any unexpected results and does not appear to be diverse.

size AvgDelay Condition 1 Condition 2 Condition 3

0 6561 19.1 CRS ARR TIME 6=Early ARR TIME 6=Middle MONTH 6=Nov
1 7525 16.4 CRS DEP TIME 6=Early ARR TIME 6=Middle MONTH 6=Feb
2 10868 11.1 DEPART SeaLevelPressure 6=High QUARTER 6=Fourth MONTH 6=Sep
3 9474 12.2 CRS ARR TIME 6=Early SEASON 6=WINTER MONTH 6=Nov
4 8818 12.2 LATEARRIVAL RelativeHumidity 6=Low DEST CITY NAME 6=Charlotte-NC DEPART SeaLevelPressure 6=High
5 10606 11.3 ARR TIME 6=Middle ARR TIME BLK 6=1100-1159 DEP TIME BLK 6=0700-0759

6 11599 10.9 CRS DEP TIME 6=Early MONTH 6=Apr MONTH 6=Feb
7 7776 13.3 ARR TIME 6=Middle ARR TIME BLK 6=1100-1159 DEPART DryBulbCelsius 6=Low
8 9129 12.0 CRS ARR TIME 6=Early MONTH 6=Sep QUARTER 6=Fourth
9 9373 11.8 CRS ARR TIME 6=Early SEASON 6=WINTER MONTH 6=Sep

Table 5.6: Top-10 results of experiment Denver, max. splits 3, with WRAcc, a priori binning and diverse beam search with average delays for the subgroups. This table does not
show any unexpected results, but it does show diversity

2
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5.3 The influence of quality measures on coverage

5.3.1 Coverage as a metric for quality measures

The metric with which the impact of the quality measures of the results is judged, is the coverage. Each

subgroup has a size attribute in the result files, which refers to the number of flights that fulfill the rule

belonging to that subgroup. Size is also known as coverage and coverages of all experiments have been

compared, resulting in some interesting findings.

5.3.2 Results

The first noticeable observation in the data is with regard to the different quality measures. The WRAcc

quality measure gives bigger coverages as compared to the Mean Test. This is caused by the way in which

the quality measures work. The Mean Test does not take the size of the subgroup compared to the size of the

total dataset into account, while the WRAcc quality measure does take this into account, thus caring more for

bigger subgroups. This is supported by Table 5.7 and Table 5.8: the coverages in Table 5.7 are way bigger.

With regard to the WRAcc quality measure, a priori binning seems to give the biggest coverages. Table 5.7

supports this with higher coverages in general for the AP columns as compared to the OTF columns. This is,

however, not the case with the Mean Test, where on the fly binning appears to give the biggest coverages as

seen in Table 5.8. So the quality measures can influence which type of discretization gives bigger coverages.

The number of bins appear to be influencing coverage. Results showed that the number of bins and the

coverage appear to have a positive relation: as the number of splits increases, the coverage also increases. This

is also shown in Table 5.7. The Mean Test, however, does not show this positive relation, as the coverages in

Table 5.8 do not appear to increase or decrease as the maximum number of splits increases.

Lastly, diverse beam search gives bigger coverages than standard beam search with both quality measures.

This is to be expected, since diverse beam search allows for subgroups to me more diverse. So with diverse

beam search, it is possible to look at more promising, bigger subgroups than with standard beam search,

which generally explores a smaller search space due to lack of diversity.

Max. Splits: 3 Max. Splits: 5 Max. Splits: 7

BS DBS BS DBS BS DBS
AP OTF AP OTF AP OTF AP OTF AP OTF AP OTF

Denver 7095 6769 9173 9232 8513 7137 10568 8878 12067 6668 12610 9374

Tampa 7738 8688 11121 11412 10837 8224 12114 11218 14304 8547 13832 11046

San Diego 5351 6941 8166 8140 8970 6714 9015 7458 11133 7283 9912 7082

Average 6728 7466 9486 9594 9440 7358 10565 9184 12501 7499 12118 9167

Table 5.7: The average coverages of the top-10 results generated by the WRAcc quality measure. The columns represent the
maximum number of splits in binning, standard beam search (BS) and diverse beam search (DBS), a priori binning (AP)
and on the fly binning (OTF).
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Max. Splits: 3 Max. Splits: 5 Max. Splits: 7

BS DBS BS DBS BS DBS
AP OTF AP OTF AP OTF AP OTF AP OTF AP OTF

Denver 187 218 321 625 315 224 212 358 279 189 290 303
Tampa 264 296 256 1146 283 143 370 508 261 165 332 484

San Diego 142 263 167 507 232 340 215 434 420 244 307 323

Average 198 259 248 759 277 236 266 433 320 199 309 370

Table 5.8: The average coverages of the top-10 results generated by the Mean Test quality measure. The columns represent
the maximum number of splits in binning, standard beam search (BS) and diverse beam search (DBS), a priori binning
(AP) and on the fly binning (OTF).

5.3.3 What parameters give the biggest coverage?

The quality measures have the biggest impact on coverage, with the WRAcc resulting in the biggest coverages.

Other parameter settings that resulted in the highest coverage were the highest number of splits, AP binning

and DBS.

So based on the results, the experiments with the biggest coverage in general had the following parameters:

• Quality Measure: WRAcc

• Type of Binning: AP

• Beam Search Strategy: Diverse Beam Search

• Maximum Number of Splits: 7

5.4 The behaviour of quality measures on experiments

5.4.1 Evaluation based on rankings

Each quality measure gives scores that determine how interesting a subgroup is: generally, more interesting

subgroups get higher scores than less interesting subgroups. Of each experiment, the average scores for the

top-10 subgroups are shown in Table 5.9 for WRAcc and Table 5.10 for the Mean Test. These tables provide

a ranking, as experiments with higher average scores are more interesting, and are therefore ranked higher

than experiments with lower average scores. So with these tables, it is possible to see whether or not quality

measures give higher scores (and therefore rank experiments higher) to certain experiments.

5.4.2 Results

The top-10 results show that both the Mean Test and WRAcc give higher rankings to experiments done with

beam search compared to diverse beam search. This can also be observed in Table 5.9 and Table 5.10, where

the BS columns get higher scores (on average) than the DBS columns.
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With regard to the maximum number of splits (and the number of bins), both quality measures do not appear

to give higher scores to certain experiments and therefore, do not rank certain experiments higher than other

experiments. Table 5.9 and Table 5.10 show this with scores that do not get noticeably higher or lower as the

maximum number of splits increases.

When taking a look at the AP columns in Table 5.9, it becomes clear that, in general, WRAcc ranks AP

experiments higher than OTF experiments. With the Mean Test, this is only the case when looking at a

maximum number of splits of three, as seen in Table 5.10. With a higher number of maximum splits, OTF

experiments get ranked higher than AP experiments.

Max. Splits: 3 Max. Splits: 5 Max. Splits: 7

BS DBS BS DBS BS DBS
AP OTF AP OTF AP OTF AP OTF AP OTF AP OTF

Denver 3.8 2.8 2.7 2.4 3.5 2.9 2.6 2.6 3.1 2.9 2.4 2.6
Tampa 3.0 2.9 2.4 2.3 3.2 2.8 2.5 2.4 2.8 2.8 2.4 2.4

San Diego 2.6 2.2 2.0 1.9 2.4 2.2 2.0 2.0 2.4 2.3 2.1 2.0

Average 3.1 2.6 2.4 2.2 3.0 2.7 2.4 2.3 2.7 2.7 2.3 2.3

Table 5.9: The average scores of the top-10 results generated by the WRAcc quality measure, where higher average scores
are said to be ranked higher than lower average scores. The columns represent the maximum number of splits in binning,
standard beam search (BS) and diverse beam search (DBS), a priori binning (AP) and on the fly binning (OTF).

Max. Splits: 3 Max. Splits: 5 Max. Splits: 7

BS DBS BS DBS BS DBS
AP OTF AP OTF AP OTF AP OTF AP OTF AP OTF

Denver 2115.5 1997.9 1527.1 1333.3 1819.5 2004.9 1561.3 1588.5 1740.8 1940.3 1576.2 1543.2
Tampa 1704.3 1676.3 1438.7 1177.7 1760.9 2090.6 1494.2 1530.4 1794.2 1802.0 1513.7 1485.1

San Diego 1560.4 1415.0 1387.3 1112.7 1476.6 1547.1 1265.0 1112.9 1480.4 1584.3 1245.4 1309.3

Average 1793.4 1696.4 1451.1 1207.9 1685.7 1880.9 1440.2 1410.6 1671.8 1775.5 1445.1 1445.9

Table 5.10: The average scores of the top-10 results generated by the Mean Test quality measure, where higher average
scores are said to be ranked higher than lower average scores. The columns represent the maximum number of splits in
binning, standard beam search (BS) and diverse beam search (DBS), a priori binning (AP) and on the fly binning (OTF).

5.4.3 Do quality measures give higher rankings to certain experiments?

Standard beam search experiments get higher rankings than diverse beam search experiments with both

quality measures. When using WRAcc, experiments with a priori binning get higher ranks than experiments

with on the fly binning. With the Mean Test, this is only true for experiments with a maximum number of

splits of three. With more splits, on the fly binning experiments get ranked higher. The maximum number of

splits in itself does not seem to influence rankings.
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5.5 The best strategy for finding subgroups with high delays

In the end, the goal of this work is to find interesting subgroups, so subgroups with a high deviation regarding

arrival delays. This is done by looking at the average delays, which is calculated over all subgroups found

per experiment. The average delays are shown in Table 5.11 and Table 5.12 for both WRAcc and Mean Test

respectively.

5.5.1 Results

An important difference is seen in the quality measure. With the Mean Test quality measure, the average delays

tend to be around 80 minutes, with some delays going well over 100 minutes. This is observed in Table 5.12.

The Mean Test does, however, result in smaller subgroups (generally with a coverage below 1000). The WRAcc

quality measure gives relatively lower delays, as seen in Table 5.11. The subgroups found with WRAcc are

bigger than the subgroups found with the Mean Test. The smaller subgroups found with the WRAcc quality

measure tend to have a coverage of +/- 5000, while the biggest coverages can go over 13000.

In Table 5.11 can also be seen that the OTF columns contain higher values than the AP columns, indicating

that on the fly binning generally results in higher flight delays compared to a priori binning. This is true for

the WRAcc quality measure. For the Mean Test, the opposite is true: Table 5.12 shows that AP columns tend to

have bigger values than the OTF columns. This means that when using the Mean Test, a priori binning results

in higher delays than on the fly binning in most cases.

The WRAcc quality measure and the Mean Test have in common that with both quality measures in general,

standard beam search tends to give higher flight delays than diverse beam search. This is also noticeable in

Table 5.11 and Table 5.12. The number of bins used does not appear to affect the flight delays found with

the Mean Test. With the WRAcc quality measure, however, there seems to be a negative relation between the

number of bins and the delays. Table 5.11 shows that, as the maximal number of splits increases, the delays

tend to be lower.

Max. Splits: 3 Max. Splits: 5 Max. Splits: 7

BS DBS BS DBS BS DBS
AP OTF AP OTF AP OTF AP OTF AP OTF AP OTF

Denver 17.2 15.8 12.3 10.8 7.9 10.3 6.9 8.3 6.6 10.7 6.2 8.1
Tampa 8.8 8.1 6.4 6.6 7.0 8.7 6.2 6.8 6.0 8.6 5.7 6.7

San Diego 8.1 8.9 7.3 7.3 9.2 8.8 6.6 8.1 8.0 8.7 6.7 7.8

Average 10.3 11.0 8.7 8.3 8.1 9.3 6.5 7.7 6.9 9.3 6.2 7.5

Table 5.11: The average flight delays for all experiments done with the WRAcc quality measure. The columns represent the
maximum number of splits in binning, standard beam search (BS) and diverse beam search (DBS), a priori binning (AP)
and on the fly binning (OTF).
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Max. Splits: 3 Max. Splits: 5 Max. Splits: 7

BS DBS BS DBS BS DBS
AP OTF AP OTF AP OTF AP OTF AP OTF AP OTF

Denver 174.4 95.7 106.9 93.4 127.7 129.6 102.5 157.8 154.3 110.5 85.5 65.9
Tampa 111.6 119.3 100.5 79.2 101.7 128.1 92.6 72.8 105.4 104.5 104.8 63.5

San Diego 121.3 97.1 113.2 59.1 89.8 63.8 121.2 40.5 109.1 89.3 82.0 69.0

Average 138.0 104.0 106.0 77.2 110.5 107.2 105.4 90.4 130.3 101.4 89.2 66.1

Table 5.12: The average delays for each experiment according to the Mean Test quality measure. The columns represent the
maximum number of splits in binning, standard beam search (BS) and diverse beam search (DBS), a priori binning (AP)
and on the fly binning (OTF).

5.5.2 What parameters result in the biggest delays?

Based on observations in the data, a trade-off occurs when it comes to finding subgroups with the biggest

delays. The Mean Test results in the biggest delays, but gives smaller coverages, while WRAcc gives smaller

delays, while giving larger coverage.

If the Mean Test is chosen, a priori binning combined with standard beam search results in the biggest delays.

The maximum number of splits does not seem to influence the delays, so the largest number of bins is prefered

as it had the least amount of information loss. So in this case, the following parameters are chosen:

• Quality Measure: Mean Test

• Type of Binning: AP

• Beam Search Strategy: Standard Beam Search

• Maximum Number of Splits: 7

This combination of parameters results in smaller subgroups with the highest delays and less diversity due to

the AP binning. The fact that these parameters give smaller subgroups with the highest delays can mean that

these parameters are, for example, suited for outlier detection.

If WRAcc is chosen, on the fly binning combined with standard beam search with a maximum number of

splits of 3 will result in the biggest delays. This is represented with the following parameters:

• Quality Measure: WRAcc

• Type of Binning: OTF

• Beam Search Strategy: Standard Beam Search

• Maximum Number of Splits: 3

This combination of parameters does result in bigger subgroups and more diversity due to OTF binning, but

with lower average delays. The relatively larger subgroups with lower delays can make that these parameters

are suited for finding the effects of policy/strategy changes made by the management of carriers, as these

changes can increase (or decrease) delays for specific subgroups.
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5.5.3 Subgroups with highest delays

WRAcc

Table 5.13 takes a closer look at the top-10 rules for the experiment WRAcc, Denver, max. splits 3, BS and OTF

binning. Note that this table shows many rules that contain ”MONTH 6=Nov“, ”MONTH 6=Feb“ and some

rules contain “SEASON 6=WINTER”. A possible explanation for these rules showing up in the top-10 could be

that these variables indicate the coldest period of the year. This cold weather, in combination with the holidays,

different schedules and possibly less flights, could possibly explain the higher delays. Besides, Table 5.13 also

shows many rules implying arrival and departure times later than 12:00 hours in the afternoon. This could

imply that there are fewer delays in the morning. As these delays increase in amount, they can stack, resulting

in growing delays as the day progresses.

When looking at the top-10 rules for the Tampa and San Diego airports with the same parameters (see

Table 5.14 and Table 5.15 respectively), the same conclusions can be made as with the Denver airport. However,

Table 5.14 shows some rules containing “LATEARRIVAL RelativeHumidity>54.00000”, while Table 5.15 has

some rules that contain “DEPART SeaLevelPressure<30.02000”. It is most likely that these conditions apply to

the different climates in which the airports operate as, for example, San Diego is positioned near the west coast

of the United States. This can make that the DEPART SeaLevelPressure variable influences the aircraft delays.

size µDelay Condition1 Condition2 Condition3

0 8366 13.7 CRS ARR TIME>1546.00000 MONTH 6=Nov -
1 4639 19.3 CRS ARR TIME>1736.00000 MONTH 6=Nov SEASON 6=WINTER
2 8286 13.7 CRS ARR TIME>1203.00000 CRS DEP TIME>1240.00000 MONTH 6=Nov
3 5700 16.9 CRS ARR TIME>1736.00000 MONTH 6=Nov MONTH 6=Feb
4 5700 16.9 MONTH 6=Nov CRS ARR TIME>1736.00000 MONTH 6=Feb
5 5700 16.9 CRS ARR TIME>1736.00000 MONTH 6=Feb MONTH 6=Nov
6 5700 16.9 MONTH 6=Feb CRS ARR TIME>1736.00000 MONTH 6=Nov
7 8272 13.6 CRS ARR TIME>1203.00000 CRS DEP TIME>1240.00000 MONTH 6=Feb
8 6902 15.0 CRS ARR TIME>1546.00000 SEASON 6=WINTER -
9 8422 13.5 CRS DEP TIME>1340.00000 MONTH 6=Nov -

Table 5.13: The top-10 rules and average delays for the experiment WRAcc, Denver, max. splits 3, BS and OTF binning.
Note that these descriptions describe mainly the colder periods of the year and arrival/departure times scheduled later
than 12:00 hours.
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size µDelay Condition1 Condition2 Condition3

0 8083 13.3 QUARTER 6=Fourth CRS ARR TIME>1254.00000 LATEARRIVAL RelativeHumidity>54.00000

1 9856 11.7 MONTH 6=Nov CRS ARR TIME>1251.00000 LATEARRIVAL RelativeHumidity>54.00000

2 8100 13.2 CRS ARR TIME>1250.00000 LATEARRIVAL RelativeHumidity>54.00000 QUARTER 6=Fourth
3 9864 11.7 CRS ARR TIME>1250.00000 LATEARRIVAL RelativeHumidity>54.00000 MONTH 6=Nov
4 8110 13.2 LATEARRIVAL RelativeHumidity>54.00000 CRS ARR TIME>1249.00000 QUARTER 6=Fourth
5 9878 11.7 LATEARRIVAL RelativeHumidity>54.00000 CRS ARR TIME>1249.00000 MONTH 6=Nov
6 8125 13.2 LATEARRIVAL RelativeHumidity>54.00000 QUARTER 6=Fourth CRS ARR TIME>1246.00000

7 9160 12.2 LATEARRIVAL RelativeHumidity>54.00000 CRS DEP TIME>1179.50000 MONTH 6=Nov
8 7547 13.8 LATEARRIVAL RelativeHumidity>54.00000 CRS DEP TIME>1179.50000 QUARTER 6=Fourth
9 8162 13.1 CRS DEP TIME>1025.00000 LATEARRIVAL RelativeHumidity>54.00000 QUARTER 6=Fourth

Table 5.14: The top-10 rules and average delays for the experiment WRAcc, Tampa, max. splits 3, BS and OTF binning.

size µDelay Condition1 Condition2 Condition3

0 5327 10.7 ARR TIME>1643.00000 CRS ARR TIME<2057.00000 -
1 7144 8.6 DEPART SeaLevelPressure<30.01000 CRS ARR TIME>1404.00000 -
2 7956 8.0 CRS ARR TIME>1179.50000 DEPART SeaLevelPressure<30.02000 ARR TIME BLK 6=1300-1359

3 8075 7.9 CRS ARR TIME>1179.50000 DEPART SeaLevelPressure<30.02000 MONTH 6=Feb
4 7375 8.4 CRS ARR TIME>1179.50000 DEPART SeaLevelPressure<30.02000 ARRIVAL SKYCONDITION1 6=Clear
5 7375 8.4 CRS ARR TIME>1179.50000 DEPART SeaLevelPressure<30.02000 ARRIVAL SKYCONDITION2 6=Clear
6 7375 8.4 CRS ARR TIME>1179.50000 DEPART SeaLevelPressure<30.02000 ARRIVAL SKYCONDITION3 6=Clear
7 6949 8.7 DEPART SeaLevelPressure<30.01000 DEP TIME BLK 6=0700-0759 CRS ARR TIME>1403.00000

8 6815 8.7 CRS ARR TIME>1410.00000 DEPART SeaLevelPressure<30.00000 -
9 5019 10.8 ARRIVAL SeaLevelPressure<30.01000 CRS ARR TIME>1346.00000 DEPART SeaLevelPressure<30.00000

Table 5.15: The top-10 rules and average delays for the experiment WRAcc, San Diego, max. splits 3, BS and OTF binning.
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Mean Test

The top-10 rules for Denver, Tampa and San Diego are shown, respectively, in Table 5.16, Table 5.17 and

Table 5.18 for the experiments with Mean Test, max. splits 7, BS and AP binning. These tables contain rules

with many common conditions, which means that these results are not diverse. For example, the conditions

“CRS ARR TIME=Very-Late” and “ARR TIME 6=Very-Late” appear together in rules many times. This does not

provide any information, as it basically means that the flight did not arrive at the time it was supposed to

arrive. The same can be said for the conditions “CRS ARR TIME=Very-Early” and “ARR TIME 6=Very-Early”,

which appear many times in Table 5.17.
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size µDelay Condition1 Condition2 Condition3

0 234 131 CRS ARR TIME=Very-Late ARR TIME 6=Very-Late ARR TIME 6=Late
1 331 105 ARR TIME=Very-Late CRS ARR TIME 6=Very-Late DEP TIME BLK 6=2200-2259

2 331 105 ARR TIME=Very-Late CRS ARR TIME 6=Very-Late ARR TIME BLK 6=0001-0559

3 328 105 ARR TIME=Very-Late CRS ARR TIME 6=Very-Late CRS DEP TIME 6=Very-Late
4 330 101 CRS ARR TIME=Late ARR TIME 6=Late ARR TIME 6=Middle-Late
5 329 100 ARR TIME=Very-Late CRS ARR TIME 6=Very-Late CRS ARR TIME 6=Very-Early
6 166 138 CRS ARR TIME=Very-Late ARR TIME 6=Very-Late DISTANCE GROUP 6=F
7 295 105 ARR TIME=Very-Late CRS ARR TIME 6=Very-Late ORIGIN CITY NAME 6=Charlotte-NC
8 324 100 ARR TIME=Very-Late CRS DEP TIME 6=Very-Late ARR TIME BLK 6=2100-2159

9 121 159 CRS ARR TIME=Very-Late ARR TIME 6=Very-Late DISTANCE GROUP=C

Table 5.16: The top-10 rules and average delays for the experiment Mean Test, Denver, max. splits 7, BS and AP binning.

size µDelay Condition1 Condition2 Condition3

0 153 156 CRS ARR TIME 6=Very-Early ARR TIME=Very-Early ARR TIME BLK 6=2300-2359

1 293 112 CRS ARR TIME 6=Very-Early ARR TIME=Very-Early ARR TIME BLK 6=0900-0959

2 213 129 CRS ARR TIME 6=Very-Early ARR TIME=Very-Early ORIGIN CITY NAME 6=Charlotte-NC
3 212 129 CRS ARR TIME 6=Very-Early ARR TIME=Very-Early DISTANCE GROUP 6=C
4 292 110 CRS ARR TIME 6=Very-Early ARR TIME=Very-Early CRS ARR TIME 6=Early
5 302 108 CRS ARR TIME 6=Very-Early ARR TIME=Very-Early DEP TIME BLK 6=0700-0759

6 302 107 CRS ARR TIME 6=Very-Early ARR TIME=Very-Early CRS DEP TIME 6=Early
7 230 122 CRS ARR TIME 6=Very-Early ARR TIME=Very-Early DEP TIME BLK 6=2200-2259

8 293 106 CRS ARR TIME 6=Very-Early ARR TIME=Very-Early DEPART SeaLevelPressure 6=Very-High
9 317 102 CRS ARR TIME 6=Very-Early ARR TIME=Very-Early CRS DEP TIME 6=Very-Early

Table 5.17: The top-10 rules and average delays for the experiment Mean Test, Tampa, max. splits 7, BS and AP binning.
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size µDelay Condition1 Condition2 Condition3

0 450 73 ARR TIME=Very-Late CRS ARR TIME 6=Very-Late CRS ARR TIME 6=Very-Early
1 450 73 ARR TIME=Very-Late CRS ARR TIME 6=Very-Late ARR TIME BLK 6=0001-0559

2 450 73 ARR TIME=Very-Late CRS ARR TIME 6=Very-Early CRS ARR TIME 6=Very-Late
3 450 73 CRS ARR TIME 6=Very-Early ARR TIME=Very-Late CRS ARR TIME 6=Very-Late
4 452 73 ARR TIME=Very-Late CRS ARR TIME 6=Very-Late CRS DEP TIME 6=Very-Late
5 151 123 CRS ARR TIME 6=Very-Early ARR TIME=Very-Early CRS ARR TIME 6=Early
6 461 71 ARR TIME=Very-Late CRS ARR TIME 6=Very-Late DEP TIME BLK 6=2100-2159

7 433 73 ARR TIME=Very-Late CRS ARR TIME 6=Very-Late ARR TIME BLK 6=2100-2159

8 441 73 ARR TIME=Very-Late CRS ARR TIME 6=Very-Late ARRIVAL SeaLevelPressure 6=Very-High
9 463 71 ARR TIME=Very-Late CRS ARR TIME 6=Very-Late DEP TIME BLK 6=2200-2259

Table 5.18: The top-10 rules and average delays for the experiment Mean Test, San Diego, max. splits 7, BS and AP binning.
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Chapter 6

Conclusions

This chapter will provide an answer to the research question, after which this work will be discussed and

aspects of this work that can be improved upon will be given.

6.1 Answering the research question

The goal of this work was to find the best way to find interesting subgroups with regard to arrival delays. This

was done by doing 72 experiments, with each experiment differing in binning techniques (a priori binning

vs. on the fly binning), the maximum number of splits (3, 5 and 7 splits), the beam search strategy (standard

beam search vs. diverse beam search) and quality measures (WRAcc vs. Mean Test). These experiments were

done on flights from three different sized airports with different weather conditions and climates. By judging

the results of experiments on diversity, coverage and flight delays, the following research question can be

answered:

How can subgroup discovery be used in the best way to discover interesting subgroup sets, with flight

delays as target, on a large dataset of flight data and weather data?

Based on the experiments, two answers can be given to this question and they are summarized in Table 6.1.

Each of these answers has advantages and disadvantages. The first answer in Table 6.1 is finding subgroups

with the Mean Test, a priori binning, standard beam search and maximum 7 splits, while the second answer

consists of finding subgroups with WRAcc, on the fly binning, standard beam search and a maximum of 3

splits. The first answer results in finding subgroups with higher delays than the second answer, but the first

answer also results in the smallest coverages as compared to the second answer. When looking at diversity, the

second answer scores better with a higher diversity than the first answer.

So, when finding subgroups with the highest delays has priority, doing subgroup discovery with the Mean

Test, a priori binning, standard beam search and a maximum of 7 splits provides the best answer to the
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research question. When diversity and coverage are important, doing subgroup discovery with WRAcc, on the

fly binning, standard beam search and a maximum of 3 splits answers the research question best.

This results in a trade-off between results that give smaller, less diverse subgroups with high average delays

(see first answer in Table 6.1); and results that give larger, more diverse subgroups with lower average delays

(see second answer in Table 6.1). The properties of the first answer make the combination of parameters

well-suited for tasks like outlier detection, as the small number of flights per subgroup with relatively large

delays can possibly be classified as outliers. When the goal is to analyze larger subgroups with more diversity,

the second answer will give the best results. This combination of parameters can, for example, be used for

finding effects of policy or strategy changes, as the coverages of subgroups are relatively large with lower

delays as compared to the first answer. These changes can then possibly increase or decrease the arrival delays

for specific subgroups, which can be found with the second answer from Table 6.1.

# Quality Measure Type of Binning Beam Search Strategy Max. Splits
1 Mean Test AP Standard 7

2 WRAcc OTF Standard 3

Table 6.1: The two possible answers to the research question.

6.2 Discussion

In Chapter 4, equal frequency binning techniques used in this work were explained. The number of bins is

chosen based on the distribution of the attributes in order to capture areas where data is most dense. This is,

however, an approximation, as it is not certain that the data will be split perfectly as presented in Chapter 4

due to the fact that equal frequency binning results in bins of equal size, not equal width.

Furthermore, Chapter 5 describes how the number of unique conditions is used as a metric for diversity.

However, it could be the case that with some experiments, rules were selected with more patterns than other

experiments. This means that experiments where this is the case have less unique conditions per definition, in

which case it can be unfair to compare results of these experiments.

Regarding the preprocessing step, a lot of the extreme weather conditions were left out of the dataset because

the threshold was put at 3% (see Chapter 3). Flights that did not endure extreme weather conditions had

empty values in the dataset, and only a very small number of flights endured extreme weather conditions. This

means that a lot of the extreme weather condition attributes were removed from the dataset, which had an

advantage and a disadvantage. During test runs of the algorithm with the extreme weather condition attributes

still included in the dataset, the majority of the subgroups found had descriptions that showed conditions

implying that extreme weather did not occur. This was not useful, as they did not add much information and

took up the space of at least one condition in the descriptions of subgroups. So the advantage of removing

such attributes is that there was more room for conditions that could potentially add more useful information.

However, the disadvantage is that removing the majority of the extreme weather condition attributes means
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that the few cases where the extreme weather conditions did appear in the descriptions, were not found during

this study.

Lastly, one mistake was made during the selection of attributes. The ARR TIME and CRS ARR TIME attributes

were left in the dataset, but should have been removed during preprocessing. These attributes represent

the time of arrival and scheduled time of arrival, respectively. In some experiments, these two attributes

appeared frequently, representing that a flight did not arrive at the scheduled arrival time and thus was

delayed. However, this did not add any new information, as subgroups that showed up in the results of

experiments always had flights that were delayed. Therefore, these attributes should have been removed.

6.3 Future work

Several aspects of this work can be improved upon in the future. First of all, the size of the dataset used is a

relatively small part of all available data, since only domestic flights of three airports were used. The use of

more airports will give a better understanding of the effects of weather and climate, airport sizes and other

factors on arrival delays. Furthermore, almost no extreme weather conditions appeared in the preprocessed

dataset, as there were too few occurrences of such weather conditions with just three airports. Increasing the

size of the dataset will also result in more extreme weather conditions to use for further research.

Secondly, this work is limited to only using cover based diverse beam search. Besides this diverse beam

search strategies, DSSD offers other two other variants of diverse beam search, known as “description” and

“compression” in the DSSD settings file. Future works could include comparisons between the description

based and compression based beam search strategies on the same type of dataset, to see what different results

they give.

Thirdly, only the domestic flights of one carrier (United Airlines) were used. This work could be extended by

comparing flights of multiple airlines in order to compare delays per carrier. This can be used to study the

effects of strategies and policies of individual carriers on delays and competitiveness.

Lastly, as described in Chapter 4, the number of splits for numeric attributes was determined by manually

inspecting the distributions of attributes. Future work could include a way of doing this automatically, which

will save time and be more accurate as compared to the manual inspections.
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Appendix A

Overview of bins per attribute

Attribute Max. 3 splits Max. 5 splits Max. 7 splits
CRS DEP TIME 3 5 7

CRS ARR TIME 3 5 7

ARR TIME 3 5 7

ARR DELAY - - -
DryBulbCelcius* 3 5 7

RelativeHumidity* 3 5 7

WindSpeed* 3 5 7

ValueForWindCharacter* 3 5 7

StationPressure* 2 6 10

SeaLevelPressure* 3 5 7

HourlyPrecip* 2 3 4

Table A.1: An overview of the numeric attributes and their number of bins. ARR DELAY was not binned as it was the
target attribute. A * means that an attribute has three different variations: a DEPART, ARRIVAL and LATEARRIVAL
variation. The DEPART prefix indicates that the attribute tells something about the weather at the departure station at the
scheduled time of departure; the ARRIVAL prefix indicates that the attribute tells something about the weather at the
arrival station at the time of departure and the LATEARRIVAL prefix indicates that the attribute tells something about the
weather at the arrival station at the scheduled time of arrival.

Attribute Bins Number of bins
QUARTER First, Second, Third, Fourth 4

MONTH Jan, Feb, ... , Nov, Dec 12

DAY OF MONTH Weekday, Weekend 2

DAY OF WEEK Monday, Tuesday, ... , Saturday, Sunday 7

DISTANCE GROUP A, B, C, D, E, F, G, H, I, J 10

SEASON Summer, Autumn, Winter, Spring 4

Visabiltity* IFR, VFR 2

WindDirection* All 8 wind directions plus a value for when there is no wind 9

Table A.2: An overview of the numeric attributes and their binning that stayed constant across experiments. A * means
that an attribute has three different variations: a DEPART, ARRIVAL and LATEARRIVAL variation. The DEPART prefix
indicates that the attribute tells something about the weather at the departure station at the scheduled time of departure;
the ARRIVAL prefix indicates that the attribute tells something about the weather at the arrival station at the time of
departure and the LATEARRIVAL prefix indicates that the attribute tells something about the weather at the arrival station
at the scheduled time of arrival.

The SKYCONDITION attributes, together with all weather attributes not listed in this appendix, were used in

exactly the same way as Post [4] did.
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