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Abstract

In forensic DNA analysis, a selection of highly polymorphic loci with high discriminative power
are used for personal identification of the donor(s) of forensic DNA samples. These loci are
amplified with the polymerase chain reaction (PCR) in order to obtain a DNA concentration that
is sufficient for detection. During PCR, not only exact copies of the targeted DNA, but also hybrid
fragments are formed. The sequences of these hybrids are a combination of two almost identical
DNA fragments or a duplication or insertion of a subfragment in a single sequence. These hybrids
became apparent after massively parallel sequencing (MPS), in which the sequences are read and
counted. Prior to this study, PCR hybrids remained the most predominant type of noise that
was not handled by the Forensic DNA Sequencing Tools (FDSTools). FDSTools is a software
package that is used for the analysis of massively parallel sequencing data in a forensic setting.
With this software package it is possible to recognize and correct for Short Tandem Repeats
(STR) stutter and other PCR or sequencing noise. In this study, two methods were developed to
simulate in silico all possible hybrids given one or two parent fragment sequences. Subsequently,
these hybrids were recognized and marked if observed in the data. Thereafter, a least-squares
model in conjunction with a feature set that characterizes the formation of the hybrids was built
to predict hybrid fragments in unobserved data. The developed hybrid prediction model is able
to quantitatively correct the majority of hybrids that are present in the data. The hybrid marking
and prediction modeling tools will be included in a future version of FDSTools.
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1 Introduction

1.1 Forensic DNA analysis

In the field of forensic DNA analysis, polymerase chain reaction (PCR) is used to duplicate highly polymorphic
loci to attain a DNA concentration that is sufficient for individual identification of a person(s) in forensic
DNA samples. This identification is based on short tandem repeats (STRs), the combination of the number
of times a specific STR appears on a locus is unique for each person. Currently, capillary electrophoresis
(CE) is the industry standard for analysing DNA samples. However, a more sensitive and revealing method
called massively parallel sequencing (MPS) is the state of the art method to use in forensic DNA analysis. It
has a higher discriminative power and exclusion rate than the current industry standard CE method, hence
why it is expected to become the method of choice in the following decade [1]. Stutter artefacts were a
known problem in DNA analysis, these artefacts interfered with the identification of the true allele(s). The
artefacts are formed when a repeat is inserted to or deleted from an STR in the fragment of the true alleles,
this occurs during the multiplication of the DNA strand(s) in a PCR. A software package called the Forensic
DNA Sequencing Tools (FDSTools) has been developed to recognize and subsequently correct the stutter [2].
Solving that complication has lead to the recognition of additional PCR artefacts which are referred to as
hybrids. These artefacts can be observed in MPS data. However, this is a labour intensive job when done
manually. In this process, mistakes are easily made due to the excessive amount of data sequencing generates.

1.2 How are hybrids created

The first description of PCR hybrids dates back to 1989, in that research A.R. Shuldiner et al. observed that
during a PCR DNA fragments were formed that consisted of a combination of two highly similar fragments,
which we will refer to as parent A and parent B [3]. Moreover, a hybrid is formed when a DNA polymerase
enzyme starts extending the complementary DNA fragment of parent A but does not fully extend the fragment,
this results in an incomplete extended fragment which can serve as DNA template in the next PCR cycle.
This can occur in one of two ways, either the polymerase enzyme pauses on the DNA fragment it is copying or
the enzyme prematurely terminates the extension process [4]. In the next PCR cycle the incomplete extended
fragment can bind to parent B since it is highly similar to parent A. Subsequently, a DNA polymerase enzyme
extends the incomplete fragment with nucleotides complementary to parent B. The result is a DNA fragment
which is a combination of parent A and parent B i.e. a hybrid fragment. Both parent fragments are true
alleles present in the DNA sample, i.e. not artefacts.

This process is schematically shown in figure 1 on page 5. In this figure an tube containing: DNA polymerase,
double-stranded DNA fragments and primers is set into a PCR machine to multiply the DNA and increase
the DNA concentration (Fig 1A). Figure 1B displays a close-up of the annealing step of the PCR. In the
denaturation step all double-stranded fragments are melted down to single-stranded DNA fragments, one
single-stranded fragment is shown (parent A) in this figure. Additionally, a primer (blue) attaches to the
strand and thereafter a polymerase enzyme attaches itself to the primer site. In the extension step of the PCR
cycle (Fig 1C), the DNA polymerase starts extending parent A. Generally, the enzyme fully extends the primer
fragment, there is however a chance that the enzyme pauses or stops. This can occur since polymerase is only
a moderately processive enzyme [4], the result is an incomplete extension. Subsequently, the denaturation
step is shown in 1D. In this figure another fragment is present, (parent B, complementary side not shown)
which only differs from parent A on position 13 and 25. These differences, displayed in red in figure 1D.
The nucleotides, displayed in green in figure 1D are the nucleotides that appear in both fragments, and are
referred to as a ‘crossing-over’ window. A hybrid fragment can be formed when the end of the incomplete
fragment falls within the window. During the next PCR cycle all double stranded fragments are again melted
to single stranded fragments. The incomplete fragment from figure 1C can operate as a primer, this is shown
in figure 1E. In this figure the incomplete fragment binds to parent B, which is complementary identical except
for the nucleotide at position 13. A polymerase enzyme will subsequently extend the incomplete fragment.
The result is displayed in figure 1F. This figure shows three fragments: parent A, parent B and a fragment
which is a combination of the complement of the parent fragments i.e. the hybrid fragment. In the following
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PCR cycles this hybrid fragment can now be multiplied. The formed hybrid fragment contains one distinct
nucleotide from parent A and one from parent B. Another hybrid fragment could have been formed if the
incomplete fragment was formed with parent B and subsequently extended with parent A.

In theory, it is possible that more than two parents are involved in the hybrid creation process. However, this
is a case we do not consider in this study because it is not likely to occur within the 29 PCR cycles that are
used in this study. Furthermore, if these fragments were to be formed the number of times they would be
observed in the data would be negligible.

There is an alternative process of creating hybrids which involves the polymerase enzyme to switch templates
during one PCR cycle. However, this process requires a high DNA concentration which is not applicable to
forensic casework [5]. Therefore, this process is not considered in this study. Based on the results of the study
of Meyerhans et al. [4] we expect to detect 5% of hybrid fragments in each dataset.

An additional process of forming hybrids is based on K-mers in a single fragment. A K-mer is a subfragment
with a length of K nucleotides. In order to form a hybrid based on this method at least two copies of the
same K-mer needs to be present. One of those copies, and the portion of the fragment between (if any) can
be deleted or duplicated during a PCR cycle which results in a hybrid. When the K-mers are immediately
adjacent, the resulting fragment can also be identified as stutter. This hybrid creation process is shown in
figure 2 on page 6. The first two steps are identical to step A, B from figure 1 (page 5), only the parent
fragment differs. In this example the size of the K-mer is four nucleotides and the corresponding K-mer
fragment is GATA. To create a hybrid with this method the primer needs to be extended up to and including
the first appearance of the K-mer, this is shown in figure 2A. Thereafter the denaturation step creates single-
stranded DNA fragments, this is displayed in figure 2B. In the next PCR cycle the incomplete fragment binds
to the second K-mer of the same parent. This partially-bound fragment can function as a primer in the
current PCR cycle, this process is shown in figure 2C. Subsequently, the incomplete fragment is extended and
a fragment containing only one copy of the K-mer is produced, visualized in figure 2D. The result is a hybrid
fragment that is shorter in length compared to the parent fragment. A longer fragment can also be obtained
if the incomplete fragment was extended up to and including the second K-mer and subsequently bound to
the first K-mer in the next PCR cycle.

1.3 Accomplishments of previous studies

An important field that conceivably could explain the underlying mechanism as to why and how these hybrids
are formed is the field of thermodynamics. Software packages such as UNAFold have been developed to
simulate hybridization of one or two single-stranded nucleic acid fragments, this simulation is based on free
energy minimization and a full melting profile of the fragment(s) [6]. Unfortunately, as stated in the previous
section, the fragments obtained in forensic DNA samples are highly similar. As a consequence the obtained
thermodynamic values are also highly similar. Therefore, tools based on thermodynamics alone cannot be
used to determine which hybrids are the most likely to be formed, starting on parent A and ‘crossing-over’ to
parent B or vice versa.

PCR hybrids are characterized differently in the field of metagenomics, here hybrids are called ‘chimeras’ or
‘recombinants’. A study of T. Kanagawa showed that the formation of chimeras can be avoided by limiting
the number of PCR cycles [7]. This is not feasible in forensic casework since often only low concentration
DNA samples are available, as a consequence 29 PCR cycles need to be performed in order to obtain sufficient
sensitivity for forensic trace material. An alternative solution from the field of metagenomics is to remove the
hybrids from the sequencing data by using a tool called Chimera slayer. This solution is not applicable since
it is trained on a dataset containing 16S rRNA genes, and does not work properly when the parent fragments
are highly similar [8].
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Figure 1: Overview of the creation of a hybrid fragment during PCR based on two single-stranded
DNA fragments. A): Bottom tip of an tube magnified. The fluid in the tip contains DNA fragments,
primers and DNA polymerase. B): Annealing step of PCR for a single-stranded DNA fragment. As
result of the denaturation, two single-stranded DNA fragments are formed, the sequence of only one
of those is shown. Subsequently, a primer binds to the fragment (blue sequence). Thereafter, a DNA
polymerase enzyme attaches itself to the primer. C): DNA polymerase starts extending the primer,
creating the complementary DNA strand. The polymerase does not complete the extension, this results
in an incomplete fragment. D): Denaturation step of PCR, in this step all fragments are single-stranded.
Another DNA fragment is present (complementary fragment not shown), this fragment differs on position
13 and 25 from the sequence above. These nucleotides are displayed in red, the section in between the
distinct nucleotides shown in green is the region (window) were both sequences are identical. The
shortest fragment is the incomplete extended fragment from C. E): In the next annealing step, the
incomplete fragment partially binds to another sequence. The incomplete sequence operates as primer
for the sequence it is bound to. Subsequently, DNA polymerase attaches itself to the ‘primer’. F):
The fragment is further extended, forming a combination of two fragments. In the following cycles this
sequence can now also be multiplied.
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1.4 Goal of this research

In this study we are going to design our own method to recognize, mark and predict hybrid artefacts in MPS
data. This means that we have to simulate hybrids based on all possible combinations between different
parent fragments and duplications/deletions of K-mers in a single parent. These generated possible hybrids
can subsequently be compared to the sequences in the MPS data and the hybrids that were actually detected
can then be marked. Based on the hybrids that are observed and not observed in the data, a least-squares
regression model will be trained to predict and filter potential hybrid sequences quantitatively. This procedure
could lead to cleaner and more accurate datasets that represent the genuine alleles in the sample [2]. Therefore,
filtering the hybrid artefacts is beneficial for any further DNA analysis procedure.

ACTGTAGCTAGCGATAGATAGCTAGCAGCT

CTAT

A

C D

B

TGACATCGATCGCTAT

ACTGTAGCTAGCGATAGATAGCTAGCAGCT

TGACATCGATCGCTAT

ACTGTAGCTAGCGATAGATAGCTAGCAGCT

TGACATCGATCG

ACTGTAGCTAGCGATAGATAGCTAGCAGCT

CTATCGATCGTCGA

TGACATCGATCG

3'

5'

5'

3'

3' 5'

5' 3'

3'

5'

5'

3'

3'

5'

5'

3'

Figure 2: Overview of the creation of a hybrid fragment during PCR based on one single-stranded
DNA sequence. A): The DNA fragment contains the K-mer GATA, which is present two times in
the sequence (shown in red, the underscore marks the separate K-mers). The primer (blue fragment)
is extended by polymerase up to and including the first appearance of the K-mer. This creates an
incomplete complementary fragment. B): Denaturation step of PCR, in this step all fragments are
single-stranded. The shortest fragment is the incomplete extended fragment. C): In the next annealing
step, the incomplete fragment binds (shown in green) to the same fragment. However, in this cycle it
binds to the second K-mer, resulting in a partial bind. The incomplete fragment operates as primer
for the sequence it is bound to. Subsequently, DNA polymerase attaches itself to the ‘primer’. D):
The fragment is extended and the result is a fragment that is four nucleotides shorter than the original
fragment, this since it contains only one copy of the K-mer. In the next cycles this sequence can be
multiplied.
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2 Methods

This study is divided into three main sections:

1. Marking the possible hybrid sequences in MPS output data

2. Creating a feature dataset that characterizes the observed and not observed hybrids in the MPS data

3. Constructing and training a least-squares prediction model to correct for the hybrid artefacts

All scripts were written in the Python language and after validation will be included in the FDSTools software
package [2]. The scripts were executed on a server with 8GB of memory and a total of 4 cores i.e. Intel(R)
Xeon(R) Gold 6132 CPU with a processor base frequency of 2.60GHz. A virtual environment was set up as
safety measure to prevent any alterations in the scripts from influencing the functionality of FDSTools because
other research was conducted on the same server simultaneously.

2.1 Datasets

There were four DNA datasets available for which it was possible to mark hybrids and build prediction models,
these datasets are described below:

1. Mitochondrial fragments (Mito): samples were analysed with the Mito-mini kit. This kit contains 10
(partially) overlapping fragments (markers) of the control region of the Mitochondrial genome. In total
this dataset comprises of 37 mixed samples with an average sequence length of 126 nucleotides.

2. Mitochondrial fragments with low coverage (Mito-low): the samples in this dataset were also analysed
with the Mito-mini kit, however the sequences are sequenced with lower coverage than Mito dataset.
This results in less data (lower reads) compared to the Mito dataset. The Mito-low dataset consists of
15 mixed samples in which the average sequence length is 127 nucleotides.

3. STR fragments: samples were analysed with the PowerSeq Auto kit, this contains 22 autosomal markers,
one Y-STR (for sex identification) and an Amelogenin marker (not an STR). A total of 465 samples
were analysed, the sequences in these samples have an average sequence length of 160 nucleotides.

4. Microhaplotype/SNP fragments: the 1382 samples were analysed with a set of 19 unique microhaplo-
types. These microhaplotypes are loci were single nucleotide polymorphisms (SNP’s) are in close range
of one another, some of the SNP’s are tetra-allelic. This means that on the position of the SNP any of
the four nitrogenous bases can be present [9]. In comparison to the other datasets this dataset contains
the shortest sequences, the average length is 24 nucleotides, varying only a couple SNP’s.

2.2 Marking possible hybrids in MPS data

The goal is to recognize which sequences present in an FDSTools output file could be explained as hybrid
artefacts, and mark those and the corresponding parent sequences respectively. The FDSTools output file
contains the name of the locus or fragment corresponding to each sequence, the DNA sequence, the total
number of times that sequence has been observed (total reads), the total number of times the forward strand
has been observed (total fw) and the total number of times the reverse strand has been observed (total rev).
The algorithms that were used to simulate and mark the hybrids are displayed in algorithm 1, 2, page 9.
Algorithm 1 and 2 are the two methods that are used to simulate all possible hybrid sequences. A condition
is that only hybrids are simulated for parent sequences that have more than 100 reads, this since the creation
of hybrids is unlikely to occur for sequences below this threshold with the current laboratory protocols. For
the analysis of the hybrids the complementary fragment (i.e. the same orientation as the parents) is always
used, this makes it more straightforward to compare it to the parent fragments. It is possible that hybrids are
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simulated but not observed due to the depth at which the sequences are sequenced. A hybrid sequence can
be simulated in one of two ways:

• ‘Crossing-over’ method (algorithm 1): This method makes all possible combinations of two single-
stranded DNA sequences per marker/fragment and always sets one sequence as reference sequence and
the other sequence to ‘other’ sequence. The difference in nucleotides between each combination is
then calculated with the call_variants function that is built into FDSTools. This function projects
all the differences in nucleotides onto the reference sequence. The output of the function contains the
position, the nucleotide of the reference sequence and the nucleotide of the other sequence. An example
of the output is 75C>G, this translates to: the 75th position of the reference sequence contains a C and
the other sequence a G nucleotide. Two hybrid sequences can be formed by ‘crossing-over’ from one
parent sequence to the other between every adjacent differing nucleotide pair, one by ‘crossing-over’
from parent A to parent B and one for the reverse.

• K-mer method (algorithm 2): The K-mer method uses a sliding window of fixed length (K) to obtain
subfragments (K-mers), if a subfragment is present more than once in the same sequence it is used for
further analysis. In this study we have set the K-sizes accordingly:

– Mito: K-size = 6

– Mito-low: K-size = 6

– STR: K-size = 10

– Microhaplotype: K-size = 4

The sizes of K are defined based on the most equal distribution of the number of observed and not
observed hybrids that could be obtained for K-sizes in the range of 2 to 15. This process has been
performed for two samples per dataset. Pairs of occurrences of K-mers are divided into three categories,
the first category contains pairs of K-mers which have other nucleotides between them, this is defined
as the ‘apart’ category. Furthermore there can be K-mers which have overlapping nucleotides this is
defined as the ‘overlap’ category and the last category contains the K-mers which are ‘adjacent’. The
K-mers of the latter category can also be identified as STRs when the size of K is between two and
five. All these categories are schematically displayed in figure 3. In that example, a total of six hybrids
can be simulated from the three categories, one where the K-mer is inserted and one where the K-mer
is deleted from the DNA fragment in each category. If the sequences are apart from each other, the
fragment between the two copies of the K-mer is duplicated or deleted, along with one copy of the
K-mer. For the overlapping category the nucleotides that overlap are duplicated or deleted and for the
adjacent category one repeat is inserted or deleted.

1 12 3

Figure 3: Categories of K-mer pairs. DNA sequence (black line) containing different categories of K-
mers which are shown as coloured blocks. The orange blocks (#1) illustrate the category ‘apart’, in
this category the unique sequences have some nucleotides between them. The red blocks (#2) show the
K-mers which have a ‘overlapping’ region and the green blocks (#3) are ‘adjacent’ i.e. STRs.
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The possible hybrids are subsequently identified in the input file and are thereafter verified if the number
of total reads of the hybrid is less than the total reads of the parent(s). Provided that these conditions
are true the hybrid and corresponding parent(s) are marked with a unique number, e.g. ‘Hybrid’ [1],
‘parent A’ [1], ‘parent B’ [1]. This shows that Hybrid 1 has two parents and was thus simulated by
the ‘crossing-over’ method, if it had only a parent A it would have been simulated with the K-mer method.
The unique numbering of the hybrids is reset for each marker in the sample. In addition to the marking
of the hybrids and parent(s) with a unique number, a percentage of total reads of the hybrid relative to
the total reads of its parent(s) is calculated, which we call the hybrid ratio. The equation of the hybrid
ratio is shown in equation 1. If a hybrid is simulated with the K-mer method then the number of reads of
parent A is multiplied by two in order to calculate the hybrid ratio since there is no parent B. An example of the
output is displayed as [‘Hybrid’, [1], ‘Percentage reads parent A:’, [[‘8.01’]], ‘Percentage
reads parent B:’, [[‘8.30’]]]. In this example the hybrid contains 8.01% of the total hybrids reads
relative to parent A and 8.30% to parent B. When there is only a parent A the percentage of parent B is set
to zero. The displayed percentages are the hybrid ratios multiplied by 100.

Hybrid ratio = Reads hybrid

Reads parent A + Reads parent B
(1)

Algorithm 1 Simulating possible hybrid sequences (‘crossing-over’ method)

1: Remove all sequences per marker that have less than 100 reads
2: for Every pair of two sequences (parent A, parent B) do
3: Determine positions of all differences between the two parent sequences using one sequence as

reference. . Reference = parent A, Other = parent B
4: for Every determined adjacent pair of nucleotide positions (pos1, pos2) do
5: simulate hybrid: Start with parent A up to and including pos1, extend with parent B starting

immediately after pos1
6: simulate hybrid: Start with parent B up to and including pos1, extend with parent A starting

immediately after pos1.
7: return Simulated hybrids

Algorithm 2 Simulating possible hybrid sequences (K-mer method)

1: for Every parent with more than 100 reads do
2: Use sliding window to detect K-mers in sequence.
3: for Every unique K-mer with count K-mer >= 2 do
4: for Every pair of occurrences do
5: if Occurrences of the K-mer is adjacent then
6: Simulate hybrid: Find first appearance of K-mer and insert K-mer to parent sequence.
7: Simulate hybrid: Find first appearance of K-mer and delete it from parent sequence.
8: if Occurrences of the K-mer overlap then
9: Simulate hybrid: Find first appearance of overlapping nucleotides and duplicate the

overlapping section.
10: Simulate hybrid: Find first appearance of overlapping nucleotides and delete it from

parent sequence.
11: if Occurrences of the K-mer is apart then
12: Simulate hybrid: Find first appearance of K-mers apart from each other and insert

section starting after first K-mer up to and including second K-mer and insert it after
second K-mer.

13: Simulate hybrid: Find first appearance of K-mers apart from each other and delete
section from first K-mer up to second K-mer.

14: return Simulated hybrids
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In order to determine the percentage of hybrid sequences per dataset it is necessary to examine the total
number of reads of observed hybrids per sample. Subsequently, a percentage of observed hybrids per sample
can be obtained by dividing the total number of hybrid reads by the sum of the hybrids reads and the reads
of the corresponding parent(s), this is displayed in equation 2. The total percentage of hybrid sequences per
dataset is the average of all hybrid percentages per sample. If a sample does not contain any observed hybrids
the percentage of this sample will be set to zero since a division by zero is undefined.

% Observed hybrids = hybrid reads
hybrid reads+parent(s) reads × 100 (2)

2.3 Defining features

In order to build and train a hybrid prediction model it is necessary to define features that characterize
the formation of the hybrids and the corresponding parents. These features need to contain the necessary
information to predict the ratio of total reads of the hybrid sequence relative to the total reads of the parent(s),
i.e. the hybrid ratio. All possible hybrids are simulated as described in the previous section 2.2 (page 7), except
now only the two highest (most reads) sequences per marker instead of all sequences with more than 100 reads
will be used. This because there are always more possible hybrids than will be observed (positive examples),
the majority will therefore not be observed (negative examples). By including only the two highest sequences
the amount of not observed sequences will be minimized. This is beneficial for the model since it would
otherwise overfit on the negative examples and not be able to classify the positive examples. The hybrid
ratios of the negative examples were set to zero.

In total, 29 features have been designed, these features were also squared, cubed, raised to the negative power
1, 2 and 3 in order to acquire different polynomial fits on the dataset. If a feature is raised to a negative
power while zero, it was set to zero. A column of ones was added to the features in order to prevent the fit of
the model being forced through the origin. All features were standardized prior to being used in the prediction
model except the column of ones, these would otherwise be transformed to zeros (non-informative). The rest
of the features are centered around 0 and have variance in the same order. In total, the number of features
that were used is 175, an overview of all 29 features including an explanation is shown in appendix A, table 1
on page I.

2.3.1 Feature reduction

The challenge in implementing any machine learning method is to design features that explain the to-be-
predicted variable. It is difficult to determine whether a single feature or a (sub)set of features contribute
to a correct prediction. Therefore, we implemented a genetic algorithm [10] to test the contribution of
the features to the accuracy of the prediction. The output of the algorithm is a subset of features that
resulted in the lowest prediction error. The algorithm calculates a prediction error using all features (feature
vector) and uses that value as baseline. Subsequently, the feature vector (subset) is randomly mutated (in- or
excluding features), the error of this subset is then determined and compared to the error of the baseline. This
process is performed 50 times (generations) using a population size of 100 individuals, meaning 100 mutually
independent mutations are simulated every generation. In each generation the error for every individual is
compared to the baseline error, only the individuals which have a lower error than the baseline error are saved
and used in the next generation (fittest population). In the next generations the errors are compared to the
lowest errors that were obtained in the previous generations. This feature selection method is performed for
every dataset.
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The genetic algorithm has slightly been modified so it could be applied to our data. The algorithm tries to
predict class labels and therefore cannot be applied to a continuous dataset i.e. hybrid ratio. The logistic
regression component of the algorithm has been replaced with a least-squares regression method, instead of
optimizing the classification accuracy the model’s performance is assessed by calculating the mean-squared
error, displayed in equation 3. In this equation ŷi is the predicted value of the ith sample and y the actual
hybrid ratio.

MSE = 1
n

∑n
i=1(yi − ŷi)2 (3)

2.4 Prediction model

In order to predict hybrid sequences in MPS data, least-squares regression models were trained for each
dataset, separately in each individual marker (hereafter referred to as the overlay model) and for all markers
combined (combined model). These models require the feature matrix, weights and the to be predicted
variable which is the hybrid ratio. These matrices are schematically shown in table 1. The leftmost table
is an M × N feature matrix containing one feature per column and a hybrid per row, the middle table (an
N × 1 column vector) contains the weights which will be calculated by the model and the rightmost table
(an M × 1 column vector) contains the to be predicted variable. This is a common representation of systems
of linear equations. Such a system often does not have a solution, therefore the calculated weights can only
approximate the hybrid ratio. The approximation is based on the minimization of the mean squared error,
which is calculated as shown in equation 4. In this equation β̂ is the predicted weight vector that minimizes the
difference between the actual hybrid ratio (y) and the predicted hybrid ratio. In order to build the prediction
models it is necessary to split the data in training and test sets, this is performed with the train_test_split
function of the Python module scikit-learn. The latter function divides the data in a 80% training and 20%
test set. Python’s pseudorandom number generator was seeded with a fixed number.

Table 1: Least-squares model example illustrating a feature matrix (leftmost table), weights matrix
(middle table) and hybrid ratio matrix (rightmost table). The hybrid ratios are the to be predicted
variable.

M x N Feature1 Feature2 FeatureN Weights Hybrid ratio
Hybrid1 X11 X12 X1n β1 y1

Hybrid2 X21 X22 X2n · β2 = y2

HybridM Xm1 Xm2 Xmn βn yn

β̂ = arg min
β

[‖y −Xβ‖2] (4)

To asses the quality of the obtained regression fits a coefficient of determination (R2) and explained variance
score are calculated per model. The R2 equation is shown in equation 5, where ŷi is the predicted value of
the ith sample and ȳ is the mean. The explained variance equation is shown in equation 6 (page 12), here ŷ is
the predicted target output and y the correct output. For both measures, a score of one is for both measures
the best possible result.

R2 = 1 −
∑n

i=0(yi−ŷi)2∑n
i=0(yi−ȳ)2 (5)
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Explained variance = 1 − V ar(y−ŷ)
V ar(y) (6)

2.4.1 Averaging hybrid ratio

The hybrids that are simulated with the K-mer method can have a relatively high hybrid ratio since these
hybrids can also be classified as stutter, which are known to reach ratios of up to 20% [2]. We have therefore
chosen to divide the ratios and features of these hybrids by the total number of times this hybrid can be
simulated. This is illustrated in example in figure 4. This figure shows a parent sequence with three repeats
and a hybrid sequence with two repeats, either the first, second or third repeat has been deleted from the
parent sequence in order to simulate the hybrid. Therefore, it is possible to simulate the same hybrid three
times. As a consequence, the hybrid ratio needs to be divided by three because the observed amount of the
hybrid is triple the amount obtained by deleting any one repeat.

Parent sequence

Hybrid sequence

Figure 4: parent and hybrid sequence with K-mers. The K-mer is repeated three times in the parent
sequence and two times in the hybrid, the hybrid can be simulated in three different ways.
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3 Results & Discussion

In this chapter the obtained results are displayed and discussed. The first subsection describes the results of
marking hybrid sequences in MPS data. Subsequently, the second subsection discusses the results of creating
and evaluating the features that are used as input for the hybrid prediction model. To conclude, in the third
subsection the hybrid prediction model and results are examined.

3.1 Marking hybrid sequences

3.1.1 Total number of observed and not observed hybrids

In order to mark hybrid sequences in MPS data all possible sequence combinations needed to be simulated.
This has been accomplished by using two methods, the K-mer method and the ‘crossing-over’ method (sec-
tion 2.2, page 7). If a certain hybrid was observed in the data it was marked as ‘Hybrid’ and the corresponding
parent(s) as ‘parent A’ or ‘parent B’. The hybrid ratio (percentage of hybrid reads relative to the parent(s))
was calculated and included in the marking of the hybrids. An overview of the total number of marked hybrids
and the corresponding method is plotted per dataset and visualised as bar charts. It can be observed in
figure 5 on page 15 that most of the hybrids for the Mito dataset were simulated with the ‘crossing-over’
method; a total of 28229 compared to a total of 6463 hybrids which were simulated with the K-mer method.
However, the majority of the hybrids were not observed, 85.56% for the ‘crossing-over’ method compared to
94.40% of the K-mer method. This resulted in a total of 4076 marked hybrids for the ‘crossing-over’ method
and 362 for the K-mer method respectively. In addition, the ‘crossing-over’ method contributed 91.84% to
the total number of observed hybrids and the K-mer method thus 8.16%. It is apparent that more possible
hybrids were simulated than there are found in the samples and that the ‘crossing-over’ method contributed
to the majority of the observed hybrids. Therefore, we can conclude that the sequences in the Mito dataset
contain more variation between pairs of parent sequences than there are K-mers present per parent. This is
as expected since the sequences in the dataset do not contain a substantial amount of identical repetitive
subfragments. These results confirms that both methods perform accordingly.

The Mito-low dataset contained similar sequences to the Mito dataset. However, in this dataset sequencing
coverage is lower, this translates to the sequences having less reads compared to the Mito dataset. In addition,
there is less variation because fewer sequences are read. It can be observed in figure 6 on page 15 that a total
of 2887 hybrids were simulated of which 25.60% by the ‘crossing-over’ method and 74.40% by the K-mer
method. Striking is that 51.42% of the total number of hybrids that were simulated with the ‘crossing-over’
method were observed while this was only 14.44% for the Mito dataset. The number of not observed hybrids
simulated with the K-mer method i.e. 84.63% is still higher compared to the number of observed hybrids i.e.
31.16%. Consequently, the ‘crossing-over’ method contributed for 68.84% to the total number of observed
hybrids and the K-mer method thus 31.16%. In addition, per method the percentage of observed hybrids for
the K-mer method is 8.01%.

It can be observed in figure 7 on page 16 that in the STR dataset more observed and unobserved hybrids
were simulated with the K-mer method than with the ‘crossing-over’ method. In total 147704 hybrids were
simulated of which 15.73% with the ‘crossing-over’ method and 84.27% with the K-mer method. This
difference can be explained due to the fact that the sequences in the STR dataset contain a large number of
repetitive substring sequences. The K-mer method searches for these substrings (K-mers) and subsequently
simulates hybrid sequences based on in which category the K-mer falls (section 2.2, page 8). In this dataset
a total of 26.52% of all hybrids hybrids were simulated with the K-mer method that are observed and 57.75%
that are not observed, compared to 2.86% and 12.87% hybrids that were simulated with the ‘crossing-over’
method respectively. The K-mer method contributed for 90.27% to the total number of observed hybrids and
the ‘crossing-over’ method therefore 9.73%. It can be stated that for this dataset in particular the K-mer
method really contributed to the number of detected hybrids.
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An overview of the observed and not observed hybrids for the Microhaplotype dataset is shown in figure 8,
page 16. In total 37591 were simulated of which 94.88% with the K-mer method and 5.12% with the
‘crossing-over’ method. It is evident that for this dataset a lot of possible hybrids were simulated with the
K-mer method compared to the ‘crossing-over’ method. However, the majority of the hybrids of the K-mer
method were not observed i.e. 98.36% as opposed to 44.92% of the hybrids that were simulated with the
‘crossing-over’ method. A possible explanation as to why the number of possible K-mer hybrids is high, is
the window size of the K-mer method. The sequences in this dataset are approximately 24 nucleotides long,
this limited the maximum size of K to 4, otherwise no repetitive substring sequences could be detected. As
a consequence, it can be stated that the K-mer method is unsuitable for this dataset.

In the Microhaplotype dataset the number of sequences per marker is limited which restrained the number
of hybrids that could be identified in the data. Nevertheless, the K-mer method contributed for 44.92%,
which is comparable to the contribution of the ‘crossing-over’ method. Furthermore, 70.11% of the hybrids
simulated by the ‘crossing-over’ method were observed, whereas only 3.08% of the hybrids simulated by the
K-mer method were observed.

An overview of all aforementioned percentages is illustrated in table 2 on page 17. This table shows that
for the Mito, Mito-low and Microhaplotype dataset the majority of the hybrids were simulated with the
‘crossing-over’ method (91.84%, 68.84% and 55.08% respectively) and that for the STR dataset the K-mer
method simulated the most observed hybrids (90.27%). Additionally, only for the Microhaplotype and Mito-
low dataset, the majority of the hybrids that were simulated with the ‘crossing-method’ were actually observed
i.e. 70.11% and 51.42% respectively.

In order to visualize the number of observed and not observed hybrids per dataset a scatter plot has been
created, this plot is shown in figure 9 on page 17. On the vertical axis of the plot the number of observed
hybrids are displayed and on the horizontal axis the number of not observed hybrids. The circles in the plot
represent all hybrid sequences that have been simulated per dataset, the squares represent the hybrids that
have been simulated with the K-mer method and the triangles the hybrids that have been simulated with the
‘crossing-over’ method. It is apparent that the STR dataset contains the most observed and not observed
hybrids, the majority of these hybrids were simulated with the K-mer method. The ‘crossing-over’ method
of the STR dataset simulated approximately an equal amount of observed hybrids relative to the ‘crossing-
over’ method of the Mito dataset. For the Microhaplotype dataset each method contributed approximately
equally the number of observed hybrids, this in contrast to the number of not observed hybrids which were
predominantly simulated with the K-mer method. The only dataset where the number of observed and not
observed are to some extend within the same range is the Mito-low dataset. This because the data points is
close to the reference line, this line shows were the number of observed and not observed hybrids are equal
(y = x). The Mito and Microhaplotype dataset contain 12.79% and 6.52% observed hybrids relative to the
percentage of not of observed hybrids.
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Table 2: Overview of percentages of observed hybrids relative to the total number of observed hybrids
and to the total number of hybrids per method.

Observed w.r.t.
total observed

Observed w.r.t
total simulated
per method

K-mer method Mito 8.16 5.60
K-mer method Mito low 31.16 8.01
K-mer method STR 90.27 31.47
K-mer method Microhaplotype 44.92 3.08

‘Crossing-over’ method Mito 91.84 14.44
‘Crossing-over’ method Mito low 68.84 51.42
‘Crossing-over’ method STR 9.73 18.18
‘Crossing-over’ method Microhaplotype 55.08 70.11
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Figure 9: Overview of total number of observed hybrids w.r.t. not observed hybrids for each dataset.
The total number of observed and not observed hybrids per dataset are displayed as circles, the number
of hybrids simulated with the K-mer method as squares and the number of hybrids simulated with the
‘crossing-over’ method as triangles.
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3.1.2 Percentage of hybrids per dataset

To determine whether the datasets contain 5% hybrid sequences as approximated by Meyerhans et al. [4], the
percentage of observed hybrid sequences were first calculated per sample per dataset (equation 2, page 10).
These percentages per sample were subsequently averaged to obtain the percentage of hybrids per dataset.
An overview of the percentages per dataset is shown in table 3. This table shows that all datasets contain less
than 5% hybrids, this can be explained by the fact that the 5% of observed hybrids as described by Meyerhans
et al. represents an upper limit because they used high input DNA concentrations. The datasets with the
lowest and highest percentage of hybrids are the Mito-low and STR dataset containing a percentage of 0.82
and 2.56 respectively. The Mito-low dataset is the dataset with the lowest concentration and coverage, it was
therefore expected that this dataset would contain the smallest percentage of observed hybrids. In contrast,
as described in section 3.1.1 (page 13), the STR dataset contains the most number of observed hybrids
relative to the total number of simulated hybrids. Therefore it was expected that this dataset would contain
the highest percentage of observed hybrids. Concerning the Mito and Microhaplotype dataset, they contain
approximately the same percentage of hybrids. It was not expected that the Microhaplotype dataset would
contain more observed hybrids compared to the Mito dataset since there is less variation between sequences
of that dataset. Apparently, the difference in reads of the observed hybrids and corresponding parent(s) of
the Microhaplotype dataset is less in comparison to the Mito dataset.

Table 3: Percentages of observed hybrids per dataset.
Dataset Percentage of observed hybrids
Mito 1.43
Mito-low 0.82
STR 2.96
Microhaplotype 1.56

3.1.3 Total hybrids per marker Mito dataset

In the previous section we analysed how many hybrids were simulated in total with the K-mer and ‘crossing-
over’ method and how many of these hybrids were detected in the datasets. To gain more insight in the data
we have plotted the number of (not)observed hybrids with respect to the method the hybrid was simulated
with, for each marker. This shows for which marker the most or least hybrids were simulated and the method
it was simulated with. Figure 10 on page 19 displays the results of the Mito dataset. It can be seen that for the
‘crossing-over’ method most observed hybrids were simulated within fragment 5, this fragment contributed for
43.60% to the total number of observed hybrids for this method. The markers that simulated the second and
third most observed hybrids were fragments 7 and 8 which contributed 19.43% and 18.03% respectively. In
this dataset there was only one fragment which did not produce any observed hybrids with the ’crossing-over’
method, this was fragment 9. For the K-mer method most of the hybrids were simulated within fragment 8,
this fragment accounted for 69.16% of the total number of observed hybrids for this method. There were
three other markers fragments 2, 7 and 10 for which the K-mer method simulated actually-observed hybrids,
the remaining markers contributed therefore zero percent.

In order to determine the value of each hybrid simulation method, the number of unique observed hybrids that
were simulated with the ‘crossing-over’ and K-mer method were examined. In the latter analysis, a hybrid
is considered unique if it is exclusively simulated with one method. The results of this analysis can be seen
in table 4, page 19. It is evident that both methods simulate unique hybrids, only for fragment 8 and 10
there are hybrids i.e. 32.75% and 23.07% respectively that can be simulated with both methods. However,
if hybrids were solely simulated with the ‘crossing-over’ method, a total of 222 hybrids would not have been
recognised and marked.

The majority of the not observed hybrids for the ‘crossing-over’ method and K-mer method were simulated
within fragment 5 and fragment 8 respectively. These fragments contributed for 33.13% and 28.31% to the
total number of not observed hybrids for the latter specified methods. Nonetheless, both methods are still
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suitable for these markers since 18% of fragment 5 is observed for the ‘crossing-over’ method and 12.02%
of fragment 8 for the K-mer method. An overview of the number of observed hybrids versus the number of
not observed hybrids per marker is displayed in figure 11 on page 20. The horizontal axis range (observed
hybrids) is smaller than the vertical axis range (not observed hybrids). This demonstrates that the number
of not observed hybrids is higher per marker than the number of observed hybrids. The only fragment that
contained a relatively high amount of observed hybrids was fragment 8 with 33.23% observed.
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Figure 10: Number of observed and not observed hybrids in the Mito dataset, per marker for the K-mer
and ‘crossing-over’ method.

Table 4: Number of observed hybrids simulated with ‘crossing-over’ and K-mer method per fragment in
the Mito dataset.

Unique
‘crossing-over’ method

Unique
K-mer method Non-unique

Frag01_mt16009-16129 476 0 0
Frag02_mt16113-16227 158 15 0
Frag03_mt16222-16380 12 0 0
Frag04_mt16381-16489 7 0 0
Frag05_mt16471-33 1777 0 0
Frag06_mt19-155 6 0 0
Frag07_mt133-267 792 42 0
Frag08_mt259-367 521 132 318
Frag10_mt428-589 92 48 42
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Figure 11: Number of observed w.r.t. not observed hybrids in the Mito dataset, per marker.

3.1.4 Total hybrids per marker Mito-low dataset

The K-mer results of the Mito-low dataset are comparable to the Mito dataset, this can be observed by
comparing the right half of figure 12 (page, 21) with that of figure 10 on page 19. In this dataset fragment
8 contributed 57.56% to the total number of observed K-mers compared to 65.19% in the Mito dataset.
For the ‘crossing-over’ method most of the hybrids were also simulated within fragment 8, for this method
the fragment contributed for 55.53% to the number of observed hybrids. An additional marker for which a
relatively high amount of actually-seen hybrids was simulated is fragment 2, i.e. 24.21%. In order to asses the
value of the methods, the numbers of unique observed hybrids were calculated. This is displayed in table 5
on page 21. The majority of the unique hybrid sequences were simulated with the ‘crossing-over’ method i.e.
53.44%, the K-mer method simulated 21.92% unique observed hybrids. This is still a substantial percentage
relative to the total number of observed hybrids. Conclusively, the K-mer method can effectively be applied
to the Mito-low dataset.

For the not observed hybrids, the larger part was simulated within fragment 10 i.e 33.13% for the ‘crossing-
over’ method and fragment 8 i.e 28.31% for the K-mer method. However, within fragment 10 a total of
7.39% hybrids were observed, this was 11.57% for fragment 8. It is therefore necessary to apply both methods
for marking the hybrids in the Mito-low dataset. The number of observed hybrids versus not observed hybrids
have been plotted in figure 13 on page 22. It can be seen in this figure that fragment 7 simulates the most
observed hybrids relative to the not observed hybrids i.e. 28.57% to 73.43% hybrids respectively. In addition,
the percentages of observed hybrids is similar for fragment 2 and 8 i.e. 19.19% and 28.11%. It is apparent
that for all markers in this dataset more not observed that observed hybrids were simulated.
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Figure 12: Number of observed and not observed hybrids in the Mito-low dataset, per marker for the
K-mer and ‘crossing-over’ method.

Table 5: Number of observed hybrids simulated with ‘crossing-over’ and K-mer method per fragment for
Mito-low dataset.

Unique
‘crossing-over’ method

Unique
K-mer method Non-unique

Frag02_mt16113-16227 82 21 15
Frag03_mt16222-16380 4 1 0
Frag05_mt16471-33 30 0 0
Frag06_mt19-155 6 0 0
Frag07_mt133-267 24 18 0
Frag08_mt259-367 136 53 121
Frag10_mt428-589 13 28 0
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Figure 13: Number of observed w.r.t. not observed hybrids Mito -low dataset, per marker.

3.1.5 Total hybrids per marker STR dataset

For the STR dataset, the observed and not observed hybrids per marker are displayed in figure 14 on page 23.
The marker D12S391 simulated the most observed hybrids for both the K-mer method and the ‘crossing-over’
method i.e. 10.75% and 24.07% respectively. It is striking that the K-mer method simulates 2.17% to 9.50%
actually-observed hybrids for each STR marker; a relatively equal performance for each marker. The only
exclusion is the Amel marker in which no K-mer method hybrids are observed. This is probably due to Amel
being the only marker that does not contain any repetitive subsections, it is more comparable to a random
sequence. Additional markers for the ‘crossing-over’ method that simulated a relatively high amount of hybrids
are D21S11, PentaD and D5S818 i.e. 22.82%, 9.63% and 8.73%.

The number of unique observed hybrids per method, per fragment are displayed in table 6 on page 24. It
is apparent that for this dataset the majority of the unique observed hybrids were simulated with the K-mer
method i.e. 93.21% compared to 6.79% that were simulated with the ‘crossing-over’ method. The contribution
of the ‘crossing-over’ method seems insignificant compared to the results of the K-mer method. However, if
the ‘crossing-over’ method would not have been applied a total of 2781 hybrids would have not been marked.
As a consequence, the K-mer method simulates the majority of the seen hybrids but, the ‘crossing-over’
method still contributes an adequate amount of hybrids that would not have been detected with the K-mer
method.

Although, for the K-kmer method, the number of observed hybrids is very similar between markers, the
number of hybrids that were not observed varies significantly. In this dataset, the markers that simulated the
most not observed hybrids for the ‘crossing-over’ method are Amel, D1S1656 and D12S391. These markers
contributed for 29.54%, 15.59% and 14.14% respectively to the number of not observed hybrids for this
method. The number of not observed hybrids for the K-mer method are more evenly distributed compared
to the not observed ‘crossing-over’ hybrids. It is apparent that D21S11 is the outlier, this marker contributed
for 20.78% to the total number of not observed hybrids for the K-mer method. Indeed, marker D21S11
turns out to contain the most repetitive subsections, which as a consequence resulted in the highest number
of not observed hybrids. In addition to marker D21S11, the ‘crossing-over’ and K-mer method for markers
D13S317, D18S51, FGA, PentaD and vWA simulated relatively more not observed hybrids compared to the
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other markers i.e. 6.21% to 8.30%. The markers in which the most not observed hybrids for the ‘crossing-over’
method (Amel) and K-mer method (D21S11) were created contributed for 13.73% and 0.57% respectively
to the number of observed hybrids. It is apparent that although hybrids were marked for the marker Amel
using the ‘crossing-over’ method, that the method is not very efficient for this marker due to the high number
of not observed simulated hybrids.
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Figure 14: Number of observed and not observed hybrids STR dataset, per marker for the K-mer and
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Table 6: Number of observed hybrids simulated with ‘crossing-over’ and K-mer method per fragment for
STR dataset.

Unique
‘crossing-over’ method

Unique
K-mer method Non-unique

CSF1P0 5 989 10
D10S1248 1 986 2
D12S391 807 4070 350
D13S317 37 1545 33
D16S539 66 1898 116
D18S51 18 1282 18
D19S433 104 944 4
D1S1656 335 3691 81
D21S11 520 2541 723
D22S1045 49 1285 110
D2S1338 53 1984 46
D2S441 54 1523 126
D3S1358 24 1651 66
D5S818 156 1282 391
D7S820 75 1733 172
D8S1179 35 1443 39
DYS391 0 1595 11
FGA 10 1322 2
PentaD 323 1542 138
PentaE 0 875 0
TH01 1 848 34
TPOX 71 2148 18
vWA 5 979 2
Amel 32 0 0
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Figure 15: Number of observed w.r.t. not observed hybrids STR dataset, per marker.
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3.1.6 Total hybrids per marker Microhaplotype dataset

Regarding the Microhaplotype dataset, it is clear from figure 8 on page 16 that both the ‘crossing-over’
method and the K-mer method did not simulate a considerable amount of observed hybrids. The contribution
per marker is shown in figure 16, page 26. This figure shows that most of the observed hybrids for the
‘crossing-over’ method were simulated within the rs4652604 marker, this marker accounts for 44.03% of the
total number of observed hybrids for this method. Additionally, marker rs35474228 contributed 50.55% to the
total number of observed hybrids for the K-mer method. There were only four other markers for the K-mer
method that simulated observed hybrids namely rs1721827, rs6595279, rs650433 and rs7632479. However,
each of these individual markers did not contribute a significant amount of observed hybrids i.e. 0.18%, 5.55%,
0.82% and 0.18% of hybrids simulated by the method. For the ‘crossing-over’ method eight additional markers
contributed to the number of total observed hybrids. Regarding these markers, three markers contributed more
than 10% each to the number of observed hybrids i.e. rs13145525 12.08%, rs6595279 12.68% and rs6504633
for 24.83%.

The number of unique hybrids per marker for the ‘crossing-over’ method and K-mer method are displayed in
table 7, page 26. Overall, the percentage of unique observed hybrids that were simulated with the ‘crossing-
over’ method is 55.08%, as a result the percentage that is simulated with the K-mer method is 44.92%. This
demonstrates that each method contributed relatively equally to the number of unique hybrids. Therefore,
this dataset benefits optimally by using both hybrid simulation methods.

For the number of not observed hybrids, marker rs13145525 accounts for 87.13% of the total number of not
observed hybrids for the ‘crossing-over’ method. The ‘crossing-over’ method did not produce many observed
nor not observed hybrids. This is an indication that there is not enough variety between a pair of sequences
in the dataset to simulate more hybrids. This is supported by the fact that the sequences differ only a couple
SNPs.

The K-mer method does not perform better for the observed hybrids. In this method the marker rs35474228
contributes 49.35% to the total number of observed hybrids of this method. This is a higher contribution
for the number of observed hybrids compared to the ‘crossing-over’ method. Nonetheless, the total number
of observed hybrids for the K-mer method is lower. The hybrids that are not observed and produced with
the K-mer method were for the majority simulated within marker rs6504633. This marker contributed for
30.03% to the total number of not observed hybrids for this method. The markers which produced the most
not observed hybrids, contributed for 3.66% and 24.55% to the number of observed hybrids for that marker
respectively. The contribution of rs6504633 appears insignificant but relative to the total number of observed
hybrids for the K-mer method this marker contributes 35.82%. An overview of the total number of observed
hybrids relative to the total number of not observed hybrids per marker is shown in figure 17 on page 27. This
figure shows that marker rs6595279 is the only marker for which the number of not observed versus observed
hybrids is balanced i.e. 51.42% and 48.58%. The outlier, as we have shown in this section is rs6504633, for
this marker the ratio observed to not observed hybrids is 6.56% to 93.44% respectively.

It is interesting to examine the parent sequences of the markers that simulated a significant amount of unique
hybrids i.e. rs35474228 for the K-mer method and rs6504633 for both the ‘crossing-over’ and K-mer method.
These sequences are displayed in item 1, 2 of list 1 on page 26 respectively. It is apparent that the sequence
of item 1 contains many repetitive subsections when a K-size of four is used. It is therefore that many
hybrids can be simulated for the K-mer method for marker rs35474228. Concerning the sequence of item
2, it contains some repetitive sections but apparently there is also an adequate amount of variation between
the parent sequences of this marker. As a consequence an equal amount of hybrids were simulated in marker
rs6504633 with the K-mer and ‘crossing-over’ method. Additionally, it is interesting to analyse the sequences
simulated with the K-mer method which are observed and not observed and determine what can be a possible
explanation for this. Examples of sequences that are observed and not observed are displayed in item 3 and
4 of list 1 respectively. It is apparent that the not observed hybrid (item 4) contains more nucleotides than
the observed hybrid (item 3). In fact, the unobserved hybrid is 2.21 times longer compared to the average
nucleotide length of the hybrids in this dataset (section 2.2, page 8). This while the observed hybrid is only
1.46 times longer. It is less likely that the longer hybrid will be created and is therefore not observed in the
Microhaplotype dataset.
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Figure 16: Number of observed and not observed hybrids Microhaplotype dataset, per marker for the
K-mer and ‘crossing-over’ method.

Table 7: Number of observed hybrids simulated with ‘crossing-over’ and K-mer method per fragment for
Microhaplotype dataset.

Unique
‘crossing-over’ method

Unique
K-mer method Non-unique

rs1721827 18 1 0
rs28674745 0 1 0
rs35474228 60 556 0
rs4652604 594 0 0
rs13145525 163 0 0
rs1929060 2 0 0
rs6595279 171 0 0
rs6504633 335 394 0
rs348146 0 148 0
rs7632479 2 0 0
rs2594948 4 0 0

List of parent, observed and not observed hybrid sequences

1. rs35474228, parent:
GGGGCGTCTGTTGGGGGGACCTGGCGTCATTACC

2. rs6504633, parent:
GAAGGCCAGGGAGGTGAAGGGGGGGAAGGAGGTTT

3. rs6504633, observed hybrid:
GAAGGCCAGGGAGGTGAAGGGGGGGGAAGGAGGTTT

4. rs6504633, unobserved hybrid:
GAAGGCCAGGGAGGTGAGTGGGGAGAAGGAGGTGAGTGGGGAGAAGGAGGTTT
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3.2 Genetic feature selection algorithm

In this study, a total of 175 features have been defined that characterize the formation of hybrid sequences.
These features were implemented in a least-squares regression model (chapter 2.3, page 10) to quantitatively
predict hybrid ratios. A genetic feature selection algorithm [10] was used to select features that contributed
to the lowest classification error and exclude the rest. This feature reduction step can increase the compu-
tation speed and accuracy of the hybrid prediction model, a subset of features can contain more descriptive
information to predict the hybrid ratio than all features combined. In this section the results of the feature
selection algorithm are discussed.

3.2.1 Optimal feature set

The features have been designed in order to predict the hybrid ratio (number of reads of a hybrid sequence
relative to the reads of the parent(s)). The feature selection algorithm has been executed three times, this
because the feature selection algorithm and the following steps initialize randomly. Therefore, the selected
feature subset and accuracy can differ per instance. Subsequently, the feature subset that resulted in the
lowest prediction error was used in the prediction model. If the error was lowest when all features were
included then all features were included in the model.

The algorithm starts with calculating the validation error including all features i.e. −2.33×10−5 for the Mito-
dataset. Thereafter, subsets of features were simulated and the corresponding errors evaluated. The subset
with the lowest prediction error consisted of 88 features and a validation error of −2.91×10−5. Consequently,
the feature selection algorithm has reduced the number of features by 87 however was not able to reduce the
validation error on the dataset. Therefore, all features were included for the prediction model of the Mito
dataset. In total, 26 features were selected by the genetic algorithm in all three instances, an overview of
these features is shown in table B.1 on page II. These features presumably contain the most information for
predicting the hybrid ratio for this dataset.

27



For the Mito-low dataset the validation error including all features was −7.88× 10−6, the genetic algorithm
selected a total of 85 features and reduced the error to −5.22 × 10−6. There were 14 features that were
selected in all three experiments, these features are shown in B.2 on page II. We have tested the genetic
algorithm including only these features but this did not further reduce the validation error.

In total 81 features were selected by the genetic algorithm to obtain the lowest validation error in the STR
dataset. However, this validation error was higher than the baseline error which included all features. By
selecting the 81 features the error increased from −2.84×10−6 to −2.89×10−6, this is an error incrementation
of 4.57 × 10−8. A total of 21 features were detected in all three experiments, these are shown in B.3 on
page II.

In the dataset containing Microhaplotype sequences a total of 96 features were selected which reduced the
validation error from −3.95× 10−6 to −3.74× 10−6, this corresponds to an error reduction of 2.10× 10−7.
In total 30 features were selected in all three experiments, which are are displayed in table B.4 on page IV.

Nearly all hybrids in the STR dataset were simulated with the K-mer method, which makes this dataset
different compared to the other datasets. Nonetheless, this dataset has the lowest validation error, this is
probably due to the large amount of data it contains. Consequently, the hybrid prediction model for the STR
dataset should be the most accurate model. This in contrast to the Mito dataset, which has the highest
validation error. As a consequence, the Mito dataset is the most difficult dataset to predict the hybrid ratio.

3.3 Hybrid prediction model

In this section the results of the hybrid prediction model are displayed and discussed per dataset. For each
dataset two hybrid prediction models were build, one where the model is trained and tested on all markers
combined i.e. Combined model and one where the model is trained and tested per individual marker i.e.
individual marker model or Overlay model. The overlay model is the result of the individual predictions per
marker superimposed on each other.

3.3.1 Mito prediction

In order to build a hybrid prediction model that is able to recognise hybrid sequences in MPS data it is
necessary that the model is trained on hybrids that have been observed (positive examples). An overview
of the number of positive examples per marker is shown in table 8. A minimal of 10 positive examples per
marker was set as cut-off value. Below this cut-off, the model cannot be accurately trained and tested. As a
result, fragments 1, 4, 6 and fragment 9 were excluded in the hybrid prediction models.

Table 8: Number of hybrids that have been observed per marker for the Mito dataset.
Markers Number of positive examples
Frag01_mt16009-16129 0
Frag02_mt16113-16227 15
Frag03_mt16222-16380 12
Frag04_mt16381-16489 0
Frag05_mt16471-33 30
Frag06_mt19-155 6
Frag07_mt133-267 106
Frag08_mt259-367 110
Frag09_mt339-439 0
Frag10_mt428-589 66
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A division of the data in a training and test set was performed to create a hybrid ratio prediction model.
The effect of splitting the data on the number of positive and negative data points for both the combined
and individual marker models is displayed in table 9. There is a class imbalance between the positive and
negative examples, the number of negative examples is always higher than the number of positive examples.
As a result, the model is predominantly trained on the not observed hybrids. The fragment with the highest
imbalance is fragment 3 and lowest fragment 7, the imbalance range is between 3.62% and 29.41% positive
examples per fragment respectively. A lower class imbalance is more likely to result in a more accurate hybrid
prediction.

Table 9: Number of positive and negative hybrids included in the training and test set for the Mito
dataset.

Markers Training set
pos. examples

Training set
neg. examples

Test set
pos. examples

Test set
neg. examples

Frag02_mt16113-16227 13 216 2 56
Frag03_mt16222-16380 8 213 4 52
Frag05_mt16471-33 26 124 4 34
Frag07_mt133-267 85 204 21 52
Frag08_mt259-367 81 448 29 104
Frag10_mt428-589 52 485 14 121
Combined model 270 1688 69 421

The results of the hybrid ratio predictions of the combined and overlay models for the test set are shown in
figure 18 on page 30, for the individual plots per marker see appendix C on page V. The vertical axis of these
plots displays the hybrid ratio that is predicted by the least-squares model and the horizontal axis the true
hybrid ratios. A reference line (red line) is drawn where ŷ = y. The closer in range the data points are to the
line the more accurate the prediction of the model is.

If a data point is above the line it will be filtered. In contrast, if a data point is below the line it will not be
completely filtered away, however it is an improvement compared to not being filtered at all. This because
the hybrid might be corrected below the interpretation threshold. By comparing the models visually it is
apparent that in the combined model, hybrids in fragment 10 are under-predicted as is the data point from
fragment 8 of which the true hybrid ratio is highest. These data points, with the highest true hybrid ratio,
are the most important to predict correctly since these can be interpreted as true alleles in DNA analysis.
The under-predicted hybrids are more accurately predicted in the overlay model. This can also be observed in
table 10 on page 31. In this table the coefficient of determination (R2) and explained variance are displayed
for the individual markers and the combined model. By examining these scores it is clear that the models
of the individual markers fragments 3, 6, 7 and fragment 8 are more accurate compared to the combined
model. For the other markers (fragment 2 and fragment 10) the results are suboptimal, these markers were
more accurately predicted in the combined model than in the individual model, this can be due to stochastic
variance in the PCR.
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(a) Hybrid prediction model based on all markers combined of the Mito dataset.
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(b) Hybrid prediction model based separate markers superimposed on each other for the Mito dataset.

Figure 18: Combined (18a) and Overlay (18b) hybrid prediction model for the Mito dataset. The
horizontal axis represents the true hybrid ratios and the vertical axis the predicted hybrid ratio. The
red line is a reference line where ŷ = y. The closer the data points are to the reference line, the more
accurately these points are predicted by the model.
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Table 10: Error measurement, coefficient of determination and explained variance measurements for the
Mito dataset.

Markers R2 Explained variance
Frag02_mt16113-16227 −3.56× 10−2 −1.73× 10−2

Frag03_mt16222-16380 5.47× 10−1 5.56× 10−1

Frag05_mt16471-33 7.99× 10−1 8.04× 10−1

Frag07_mt133-267 7.22× 10−1 7.30× 10−1

Frag08_mt259-367 7.37× 10−1 7.42× 10−1

Frag10_mt428-589 −1.97 −1.83
Combined model 1.55× 10−1 1.55× 10−1

The effect of the hybrid prediction model correction has been visualised in figure 19, the horizontal axis
illustrates the hybrid ratio before the application of the correction model and the vertical axis the hybrid ratio
after the correction. The triangle shapes in the figure represent the individual markers that resulted in the
best prediction and the circles the markers that performed best when included in the combined model. It
is apparent that for the Mito dataset the model does not correct the high hybrid (>0.08) ratios effectively.
The majority of the hybrids that are corrected are within the range of 0.015 to 0.04. However the prediction
model frequently over-corrects data points (hybrid ratio below zero). The hybrid ratio of these points will be
set to zero since a negative hybrid ratio is not possible. If a hybrid corresponds to a true allele of a minor
contributor in a forensic DNA sample, it is possible that a percentage of that allele is over-corrected. As a
consequence, this allele will possibly not be detected in the DNA analysis. The marker that is most often
over-corrected is fragment 8 i.e. 49.62%. In total, 47.10% of all data points are over-corrected, 8.51% is
corrected and 44.39% has not been affected by the prediction model. The latter category is the most difficult
to predict and to correct for because the data points are not affected by the correction model. The marker
that is most unaffected by the prediction model is fragment 10. The data points of this marker are closest
to the reference line (y = x), the hybrid ratio after correction is (almost) identical to the hybrid ratio before
the correction.
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Figure 19: Hybrid ratio prediction correction of the test set of the Mito dataset. The horizontal axis
represents the hybrid ratio before correction and the vertical axis the hybrid ratio after correction. The
triangle shapes are corrected using the individual models (trained and tested per marker) and the circles
are the markers that are included in the combined model.
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3.3.2 Mito-low prediction

For the Mito-low dataset the number of positive examples per marker are shown in table 11. Half of the
markers have more than ten positive examples i.e. fragments 2, 5, 7, 8 and fragment 10, the other markers
were excluded in the prediction models. Subsequently, the data was split in a training and a test set of
which the result is displayed in table 12. The markers with the most and least imbalanced training set are
fragment 10 and 7, these fragments have a range between 9.35% and 26.67% positive examples per fragment
respectively.

Table 11: Number of hybrids that have been observed per marker for the Mito-low dataset.
Markers Number of positive examples
Frag01_mt16009-16129 0
Frag02_mt16113-16227 16
Frag03_mt16222-16380 5
Frag04_mt16381-16489 0
Frag05_mt16471-33 16
Frag06_mt19-155 6
Frag07_mt133-267 38
Frag08_mt259-367 50
Frag09_mt339-439 0
Frag10_mt428-589 33

Table 12: Number of positive and negative hybrids included in the training and test set for the Mito-low
dataset.

Markers Training set
pos. examples

Training set
neg. examples

Test set
pos. examples

Test set
neg. examples

Frag02_mt16113-16227 14 111 2 30
Frag05_mt16471-33 12 66 4 16
Frag07_mt133-267 28 77 10 17
Frag08_mt259-367 41 205 9 53
Frag10_mt428-589 26 252 7 63
Combined model 128 706 25 184

The combined and overlay hybrid prediction models are displayed in figure 20 on page 34, the horizontal axis
represents the actual hybrid value and the vertical axis the predicted hybrid ratio. A significant number of
data points are close to the origin. The hybrid ratios of some of these points are predicted as zero while they
have a positive hybrid ratio, this also occurs vice versa. The hybrid ratios that are more accurately predicted
in the overlay model compared to the combined model correspond to fragments 2, 8 and fragment 10. This
is confirmed by the R2 and explained variance scores of these markers, displayed in table 13, page 35. The
model is accurate in predicting the hybrid ratio for fragments 2, 8 and 10 per individual marker, fragment
5 and 7 are more accurate predicted in the combined model. It is remarkable that for the Mito-low dataset
fragment 2 is accurately predicted while in the Mito dataset this fragment the predictions are better predicted
in the combined model, this also applies to fragment 10. In addition, fragment 5 and7 are better predicted
individually in the Mito prediction model and fragment 8 is adequately predicted in both the Mito and Mito-low
dataset.
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(b) Hybrid prediction model based separate markers superimposed on each other for the Mito-low dataset

Figure 20: Combined (20a) and Overlay (20b) hybrid prediction model for the Mito-low dataset. The
horizontal axis represents the true hybrid ratios and the vertical axis the predicted hybrid ratio. The
red line is a reference line where ŷ = y. The closer the data points are to the reference line, the more
accurately these points are predicted by the model.
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Table 13: Error measurement, coefficient of determination and explained variance measurements for the
Mito-low dataset

Markers R2 Explained variance
Frag02_mt16113-16227 9.98× 10−1 9.99× 10−1

Frag05_mt16471-33 −7.78E × 10−1 −7.78× 10−1

Frag07_mt133-267 −3.77× 10−1 −3.08× 10−1

Frag08_mt259-367 7.88× 10−1 8.82× 10−1

Frag10_mt428-589 8.91× 10−1 9.13× 10−1

Combined model 7.44× 10−1 7.49× 10−1

The effects of the prediction corrections on the Mito-low dataset are visualised in figure 21. In this figure the
horizontal axis represents the hybrid ratio before the corrections of the prediction model and the vertical axis
the hybrid ratio after the correction. It is clear that the the two highest data points (hybrid ratio between 0.04
and 0.05) are adequately corrected. These data points are the most important to correct because these can
be mistakenly identified as true alleles, which can result in the false determination of additional contributor(s)
in DNA analysis of forensic casework samples. Furthermore, fragments 7, 8 and fragment 10 are occasionally
over-corrected, of which the majority can be assigned to fragment 8 i.e. 77.42% and the highest over correction
is applied to a data point of fragment 5 i.e. -0.024. In total, 63.59% of all data points are over-corrected,
2.30% is corrected and 34.11% of the points is not corrected. Conclusively, about a third of all hybrids is
unaffected by the prediction model, but there is a large degree of overcorrection for some fragments.
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Figure 21: Hybrid ratio prediction correction of the test set of the Mito-low dataset. The horizontal
axis represents the hybrid ratio before correction and the vertical axis the hybrid ratio after correction.
The triangles shapes are the markers that obtained the best predictions when trained on the individual
markers, the circles represent the markers that performed best in the combined model.
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3.3.3 Mito-combined prediction

The applied corrections on the Mito and Mito-low dataset are adequate however a more accurate model can
possibly be obtained by combining these two datasets. The advantage of a combined model is that instead
of four models all hybrids can be predicted on two models. An additional advantage is that the training and
test set for this model is larger compared to the training and test set for the individual datasets, all data
can subsequently be analysed simultaneously. This can result in additional markers being included in the
prediction model as a consequence of the number of positive examples exceeding the cut-off value i.e. ten
positive examples. The number of positive examples per marker is displayed in table 14. This table shows that
in the Mito-combined dataset fragment 6 is included in the prediction model, while it was excluded in both
the Mito and Mito-low datasets. The fragments that are not included in the prediction model are fragments
1, 4 and fragment 9, these fragments did not at all simulate any hybrid examples that were observed in the
Mito or Mito-low dataset. Based on the available data, it is unlikely that hybrid artefacts are formed within
these markers. For the markers that were included in the prediction model, a train-test split was made of the
data, this split is displayed in table 15. The fragments that have the most and least imbalanced training set
are fragment 3 and 7 with a range between 3.29% and 27.60% positive examples per fragment respectively.
Striking is that fragment 6 only contains positive examples, as a consequence the individual model may not
be able to predict a hybrid ratio of zero for this marker.

Table 14: Number of hybrids that have been observed per marker for the Mito-combined dataset
Markers Number of positive examples
Frag01_mt16009-16129 0
Frag02_mt16113-16227 31
Frag03_mt16222-16380 17
Frag04_mt16381-16489 0
Frag05_mt16471-33 46
Frag06_mt19-155 12
Frag07_mt133-267 144
Frag08_mt259-367 160
Frag09_mt339-439 0
Frag10_mt428-589 99

Table 15: Number of positive and negative hybrids included in the training and test set for the Mito-
combined dataset

Markers Training set
pos. examples

Training set
neg. examples

Test set
pos. examples

Test set
neg. examples

Frag02_mt16113-16227 27 328 4 85
Frag03_mt16222-16380 12 353 5 87
Frag05_mt16471-33 36 192 10 48
Frag06_mt19-155 9 0 3 0
Frag07_mt133-267 109 286 35 64
Frag08_mt259-367 125 651 35 159
Frag10_mt428-589 80 736 19 185
Combined model 395 2551 114 623

The hybrid prediction results for all markers combined and per individual marker are shown in figure 22 on
page 37. The only markers that were more accurately predicted when trained on the individual markers were
fragment 2 and fragment 8 (figure 22b), the other markers performed better when incorporated in a model
including all markers (22a). The accuracy of the predictions of the models is displayed in table 16, page 38.
It is noticeable that the R2 and explained variance of fragment 2 and 8 are accurate for the prediction model
when trained on the individual corresponding markers and that the scores are almost identical to the scores
of the Mito-low dataset (table 13, page 35). The hybrids of the other markers are more accurately predicted
in the combined model.
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For the current Mito and Mito-low dataset it is preferred to predict hybrid ratios per dataset as opposed to
combining these and subsequently predict the hybrid ratios. The constructed models per dataset are more
precise in predicting the hybrid ratios. This approach is at the expense of fragment 6. However, the R2

and explained variance scores are low for this fragment, which as a consequence makes it insignificant for
predicting the hybrid ratio in the overlay model.
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(b) Hybrid prediction model based separate markers superimposed on each other for the Mito-combined dataset

Figure 22: Combined (22a) and Overlay (22b) hybrid prediction model for the Mito-combined dataset.
The horizontal axis represents the true hybrid ratios and the vertical axis the predicted hybrid ratio.
The red line is a reference line where ŷ = y. The closer the data points are to the reference line, the
more accurately these points are predicted by the model.
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Table 16: Error measurement, coefficient of determination and explained variance measurements for the
Mito-combined dataset

Markers R2 Explained variance
Frag02_mt16113-16227 9.97× 10−1 9.97× 10−1

Frag03_mt16222-16380 −6.67× 10−1 −6.63× 10−1

Frag05_mt16471-33 2.18× 10−1 2.27× 10−1

Frag06_mt19-155 −2.28 −1.96
Frag07_mt133-267 −1.15 −8.75× 10−1

Frag08_mt259-367 7.83× 10−1 7.91× 10−1

Frag10_mt428-589 −9.98× 10−2 −9.95× 10−2

Combined model 3.98× 10−1 3.98× 10−1

The hybrid predictions of the most accurate model per marker have been applied as corrections to the test
set and visualized in figure 23. The horizontal axis of the figure describes the hybrid ratio before applying
the prediction model corrections and the vertical axis the hybrid ratio after the corrections. It is evident that
57.74% of fragment 8 is over-corrected and that the data point with the highest hybrid ratio i.e. fragment
10 is barely affected by the applied correction. Furthermore, the only markers of which the hybrid ratios are
more accurately predicted when trained on the individual markers are fragment 3 and 8, the hybrid ratio of
the other markers are more accurately predicted in the combined model. The hybrid ratios that are most
difficult to predict correspond to fragment 10, this is illustrated in figure 19 (page 32) and 23. Fragment 10
contains the highest hybrid ratios (between 0.095 and 0.12), however these ratios are not corrected by the
prediction models even though these are the most important hybrids to filter. In total, 34.51% of all hybrids
in the Mito-combined dataset is over-corrected, 5.88% is corrected and 59.61% has not been affected by the
predictions of the model. These results confirm that combining the Mito and Mito-low datasets for hybrid
prediction is less optimal compared to developing models for the individual datasets.
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Figure 23: Hybrid ratio prediction correction of the test set of the Mito-combined dataset. The horizontal
axis represents the hybrid ratio before correction and the vertical axis the hybrid ratio after correction.
The triangle shapes are the individual models (trained and tested per marker) and the circles are the
markers that are included in the combined model.
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3.3.4 STR prediction

The STR dataset contains more samples and longer sequences relative to the Mito and Mito-low dataset.
Therefore, there are significantly more positive examples per marker simulated, this is displayed in table 17.
It is apparent that Amel contains the smallest number of positive examples i.e. 34, this is due to the fact
that Amel does not contain any repetitive subsections and in general resembles more or less a random
sequence. As a consequence, it was expected that Amel generated the smallest number of positive hybrids.
The hybrid simulating algorithm simulated a substantial amount of positive examples i.e. 845 to 4014 for the
remaining set of markers. All markers were therefore included in the prediction model for the STR dataset.
Subsequently, a split of the data in training and test set was performed. The number of positive and negative
examples per marker for the training and test set is depicted in table 18, page 40. Marker Amel has the
most imbalanced training set containing 0.342272% positive examples, this in contrast to D12S391 contains
69.29% positive examples. For the latter marker the number of positive examples in the training set are
therefore overrepresented.

Table 17: Number of hybrids that have been observed per marker for the STR dataset.
Markers Number of positive examples
CSF1P0 1005
D10S1248 1130
D12S391 2829
D13S317 1819
D16S539 1990
D18S51 1465
D19S433 1057
D1S1656 4014
D21S11 2697
D22S1045 1359
D2S1338 1911
D2S441 1684
D3S1358 1905
D5S818 1683
D7S820 3551
D8S1179 1489
DYS391 1603
FGA 1466
PentaD 2750
PentaE 881
TH01 845
TPOX 1006
vWA 2068
Amel 34

The results of the hybrid prediction models for the STR dataset are shown in figure 24, page 41. On the
horizontal axis of these figures the actual hybrid ratios are displayed, the vertical axis represents the predicted
hybrid ratios. The prediction model that is trained on all markers combined (24a) under-predicts all hybrids
that have a ratio higher than 0.02. For these data points the model is not able to make valid predictions. This
is unfortunate since these data points are more important to recognize and filter, this because the higher the
hybrid ratio the more likely it is to be interpreted as true allele in forensic DNA analysis. The markers that
correspond to the hybrids with the highest ratio are D3S1358, D8S1179, D5S818 and D13S317, the majority
of the remaining data-points are centred around the origin. In the overlay model (24b) the hybrids with a
ratio of more than 0.02 are more accurately predicted compared to the combined model (close in range of red
line). However, the highest data point of this model e.g. hybrid ratio of 0.18 is under-predicted. In general,
the overlay model predicts the higher hybrid ratios more accurately compared to the combined model. This
as opposed to the lower ratios (≤ 0.02), some of these hybrids are significantly over and under-predicted in
the overlay model i.e. D13S317, D12S391, D1S1656, D8S1179, D5S818 and Amel.
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These results can be verified by the prediction accuracy of the combined and overlay model which are displayed
in table 19 on page 42. The R2 and explained variance score confirm that the above mentioned markers are
more accurately predicted in the combined model. From the remaining markers there are eight markers
that are predicted accurately i.e. D19S433, CSF1P0, D3S1358, PentaE, D18S51, D22S1045, D10S1248 and
TPOX. In addition, also the explained variance of these markers is above 0.85. Therefore, more than 85% of
the variance of the data of the markers can be explained by the model. Striking is that for marker D12S391
which had the most positive examples in the training set the hybrid prediction model trained on the individual
marker performs poorly. A possible explanation is that due to an over-representation of the positive examples
the model is not able to accurately predict negative examples. This can be seen in figure 24b (41). The hybrid
ratio for negative examples for marker D12S391 are indeed incorrect predicted, these ratios are over-predicted.

Table 18: Number of positive and negative hybrids included in the training and test set for the STR
dataset.

Markers Training set
pos. examples

Training set
neg. examples

Test set
pos. examples

Test set
neg. examples

CSF1P0 809 4040 196 1017
D10S1248 915 1473 215 383
D12S391 2272 1007 557 263
D13S317 1479 8318 340 2110
D16S539 1590 3398 400 847
D18S51 1174 11483 291 2874
D19S433 845 9226 212 2306
D1S1656 3214 3696 800 928
D21S11 2133 10243 564 2530
D22S1045 1096 1368 263 354
D2S1338 1538 4668 373 1179
D2S441 1339 4361 345 1081
D3S1358 1533 6134 372 1545
D5S818 1350 5493 333 1378
D7S820 2825 6308 726 1558
D8S1179 1196 5442 293 1367
DYS391 1267 5209 336 1284
FGA 1180 6412 286 1613
PentaD 2204 13908 546 3483
PentaE 712 3590 169 907
TH01 683 9905 162 2485
TPOX 814 3368 192 854
vWA 1647 11290 421 2814
Amel 27 7907 7 1977
Combined model 33776 148324 8465 37060
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(a) Hybrid prediction model based on all markers combined of the STR dataset
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(b) Hybrid prediction model based separate markers superimposed on each other for the STR dataset

Figure 24: Combined (24a) and Overlay (24b) hybrid prediction model for the STR dataset. The
horizontal axis represents the true hybrid ratios and the vertical axis the predicted hybrid ratio. The
red line is a reference line where ŷ = y. The closer the data points are to the reference line, the more
accurately these points are predicted by the model.

The corrections of the most accurate prediction model (individual or combined) per marker have been visualized
in figure 25 on page 42. It is evident that the majority of the hybrids have a low ratio (≤ 0.02) of which
the greater part is (over)corrected. Of the hybrids that have a higher ratio almost all hybrids are corrected.
However, this correction is generally minor, this applies to markers D8S1179 and D5S818. The most effective
corrections were applied to marker D2S441, all actual hybrid ratios in the range of 0.04 to 0.11 have been
reduced to a ratio of approximately 0.01 to 0.03. In total, 54.93% of all data points are over-corrected, 9.96%
is corrected and 35.11% has been unaffected by the prediction model.
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Table 19: Error measurement, coefficient of determination and explained variance measurements for the
STR dataset.

Markers R2 Explained variance
CSF1P0 9.32× 10−1 9.32× 10−1

D10S1248 9.60× 10−1 9.60× 10−1

D12S391 −3.52× 10−1 −3.38× 10−1

D13S317 −2.98 −2.97
D16S539 7.19× 10−1 7.19× 10−1

D18S51 8.92× 10−1 8.92× 10−1

D19S433 8.72× 10−1 8.75× 10−1

D1S1656 1.03× 10−1 1.03× 10−1

D21S11 4.54× 10−1 4.56× 10−1

D22S1045 9.26× 10−1 9.26× 10−1

D2S1338 2.85× 10−1 2.94× 10−1

D2S441 6.73× 10−1 6.74× 10−1

D3S1358 8.70× 10−1 8.70× 10−1

D5S818 5.59× 10−2 6.02× 10−2

D7S820 8.32× 10−1 8.33× 10−1

D8S1179 −8.03× 10−1 −8.01× 10−1

DYS391 5.84× 10−1 5.88× 10−1

FGA 5.87× 10−1 5.95× 10−1

PentaD 2.49× 10−1 2.51× 10−1

PentaE 8.96× 10−1 8.97× 10−1

TH01 3.62× 10−1 3.88× 10−1

TPOX 9.47× 10−1 9.48× 10−1

vWA 4.29× 10−1 4.32× 10−1

Amel 4.26× 10−2 4.36× 10−2

Combined model 1.89× 10−1 1.91× 10−1
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Figure 25: Hybrid ratio prediction correction of the test set of the STR dataset. The horizontal axis
represents the hybrid ratio before correction and the vertical axis the hybrid ratio after correction. The
triangle shapes are the individual models (trained and tested per marker) and the circles are the markers
that are included in the combined model.
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3.3.5 Microhaplotype prediction

The Microhaplotype dataset contains the most samples compared to the Mito, Mito-low and STR dataset.
However, the Microhaplotype dataset also contains the shortest sequences. Therefore, there is less variation
in one sequence or between sequence pairs and consequently less combinations are possible to form hybrids
compared to the other datasets. This can be observed in table 20. In total, the Microhaplotype dataset
comprises of 21 markers of which the majority did not simulate any positive example with the K-mer method
or ‘crossing-over’ method. There were only 7 markers that resulted in more hybrids than the cut-off value,
marker RS6504633 contained the most positive examples i.e. 729. The train-test split of the markers that
were included in the prediction model are illustrated in table 21. It is apparent that marker rs1721827 has
the most imbalanced training set i.e. 0.34% positive examples respectively. The most balanced training set
corresponds to marker rs6595279, this marker contains 47.86% positive examples.

Table 20: Number of hybrids that have been observed per marker for the Microhaplotype dataset.
Marker Number of positive examples
rs6504633 729
rs6595279 171
rs2594948 4
rs1721827 19
rs7610981 0
rs7610981V2 0
rs4332095 0
rs6870979 0
rs4652604 594
rs348146 148
rs1929060 2
rs35474228 590
rs58329356 0
rs12625560 0
rs13145525 163
rs1738442 0
rs7218712 0
rs28674745 1
rs28674745V2 0
rs1612734 0
rs7632479 2

Table 21: Number of positive and negative hybrids included in the training and test set for the Micro-
haplotype dataset.

Markers Training set
pos. examples

Training set
neg. examples

Test set
pos. examples

Test set
neg. examples

rs6504633 570 8325 159 2065
rs6595279 134 146 37 33
rs1721827 17 5058 2 1267
rs4652604 474 1684 120 420
rs348146 118 696 30 174
rs35474228 472 3955 118 989
rs13145525 130 399 33 100
Combined model 1923 20257 491 5054

43



The hybrid ratio predictions for the combined marker model and per-marker model are presented in figure 26
on page 45. On the horizontal axis the actual hybrid ratios are displayed and on the vertical axis the predicted
hybrid ratios. The accuracy of the hybrid predictions of both models is very similar, the main difference being
the hybrid ratio prediction of marker rs35474228. This marker is adequately predicted in the combined model,
however in the individual model some hybrids, with a ratio between 0.04 an 0.10 are significantly under
predicted. Striking is marker rs4652604, this marker contains the most variation in both models in the true
hybrid ratio direction, while the predicted hybrid ratios contains significantly less variation. The actual hybrid
ratios for the latter mentioned marker vary between 0.05 and 0.14. All these simulated hybrids could be traced
back to a single parent-hybrid combination. A possible explanation for the hybrid ratio variance within this
marker could be stochastic variation that occurs during the PCR process. The same hybrid is formed earlier
in one sample relative to another sample, as a consequence, this hybrid is multiplied more.

For each individual marker model and the combined model the R2 and explained variance score were calculated
in order to determine which model results in a more accurate hybrid ratio prediction, see table 22. It is
clear that for the Microhaplotype dataset all markers are more accurately predicted in the combined model
than the individual marker models. Additionally, markers rs6504633, rs6595279 and rs4652604 do perform
exceptionally well in both models, nonetheless the combined model is more accurate.

Table 22: Error measurement, coefficient of determination and explained variance measurements for the
Microhaplotype dataset.

Markers R2 Explained variance
rs6504633 8.51× 10−1 8.51× 10−1

rs6595279 8.72× 10−1 8.76× 10−1

rs1721827 7.16× 10−1 7.16× 10−1

rs4652604 9.69× 10−1 9.70× 10−1

rs348146 1.90× 10−1 1.92× 10−1

rs35474228 5.45× 10−1 5.47× 10−1

rs13145525 2.77× 10−2 2.79× 10−2

Combined model 9.74× 10−1 9.74× 10−1

The results of the hybrid predictions of the combined model (26a, page 45) have been converted to a correction
model, this model is displayed in figure 27 on page 46. The majority of the data points with a ratio smaller
than 0.01 are within close range of the reference line, as a consequence these points will not be corrected by
the prediction model. However, the hybrids with a ratio between 0.06 and 0.14 are all corrected adequately.
In particular, marker rs4652604 is significantly corrected, 54.20% of this marker is over-corrected, 11.95% is
corrected and 89.05% is unaffected by the prediction model. For the complete correction model, a total of
53.33% of all data points are over-corrected, 6.47% is corrected and 40.20% is unaffected by the hybrid ratio
prediction model.
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(b) Hybrid prediction model based separate markers superimposed on each other for the Microhaplotype dataset

Figure 26: Combined (26a) and Overlay (26b) hybrid prediction model for the Microhaplotype dataset.
The horizontal axis represents the true hybrid ratios and the vertical axis the predicted hybrid ratio.
The red line is a reference line where ŷ = y. The closer the data points are to the reference line, the
more accurately these points are predicted by the model.
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Figure 27: Hybrid ratio prediction correction of the test set of the Microhaplotype dataset. The horizontal
axis represents the hybrid ratio before correction and the vertical axis. The prediction corrections are
based on the combined model.

3.3.6 Hybrid prediction correction summary

In order to compare the hybrid ratio corrections of all datasets, an overview of all aforementioned percentages
is displayed in table 23. The hybrid ratios of the Mito-low dataset are more accurately predicted compared
to the other datasets. The larger part of the data points of this dataset are over-corrected, these corrections
will all be set to zero in the finished version of the automated prediction and correction model. As a result
these hybrids will be filtered from the dataset. The correction model for the Mito-combined dataset performs
worse than the individual correction model for the Mito and Mito-low dataset. This because approximately
three-fifths of all data points are not corrected at all. In addition, about a third of the points have been
unaffected by the prediction model and only 2.30% is corrected. This confirms that hybrid ratios of the Mito
and Mito-low datasets are more accurately predicted independently. The over-correction percentages for the
Mito, STR and Microhaplotype are all very similar. Of these datasets the majority of the data points are
corrected in the STR dataset, approximately 10%.

Table 23: Overview of the results of the prediction model applied corrections to each individual dataset
displayed in percentages.

Dataset Over-corrected Corrected Identical
Mito 47.10 8.51 44.39
Mito-low 63.59 2.30 34.11
Mito-combined 34.51 5.88 59.61
STR 54.93 9.96 35.11
Microhaplotype 53.33 6.47 40.2
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4 Conclusion

Using MPS for forensic DNA analysis reveals artefactual sequences that originate from the PCR. These
artefacts were already existing in traditional CE-based profiles, but with the exception of stutter artefacts,
these were not visible due to the lower sensitivity of CE and the inability to detect sequence variation. The
most predominant type of artefacts used to be the stutter artefacts. A software package called FDSTools was
developed by J. Hoogenboom [2] to apply a correction to these artefacts. This has lead to the recognition
of additional interferences by a type of artefacts called ‘hybrid sequences’. Hybrid artefacts can wrongfully
be interpreted as true alleles, which in forensic DNA analysis can result in overestimating the number of
contributors, they can even overshadow true minor contributors which makes it difficult to characterize these.
Therefore, in this study, a method has been developed to recognize and predict these hybrid artefacts. The
creation of these artefacts could not be avoided by adjusting the PCR protocol, an in silica solution was
developed in this study.

A hybrid sequence can be formed in two ways i.e. the ‘crossing-over’ method or the K-mer method. For the
recognition of the artefacts all possible hybrid sequences were simulated per sample and subsequently marked
if present. This procedure was performed on four datasets: Mito, Mito-low, STR and Microhaplotype.
The number of not observed hybrids was always significantly higher compared to the number of observed
hybrids, this illustrates that there are always more possible hybrids than will be present in the dataset. The
contribution of both methods was checked by examining the number of unique (mutually exclusive) observed
hybrids each method simulated. This analysis showed that the ‘crossing-over’ method contributed to the
majority of observed hybrids in the Mito and Mito-low dataset i.e. 91.84% and 68.84% respectively. In
addition, the K-mer method contributed to the majority of the observed hybrids of the STR dataset i.e.
90.27% and the ‘crossing-over’ and K-mer methods contributed equally to the number of observed hybrids
of the Microhaplotype dataset i.e. 55.08% and 44.92%. Conclusively, both methods are necessary in order to
obtain the most exhaustive hybrid marking tool.

It is not possible to calculate an error of the hybrid marking method for the datasets since the hybrids are not
known prior to the marking procedure. In order to calculate an error a synthetic dataset where all the hybrids
are known needs to be created. This possibility is further discussed in chapter 5. To quantify the marking
and to allow for quantitative correction, a least-squares hybrid prediction model was constructed. This model
predicts the hybrid ratio of artefacts based on a feature set that characterizes the formation of the hybrids;
observed (positive examples) and not observed hybrids (negative examples) were included in this model. A
total of 175 features were created for the prediction model. Subsequently, a genetic algorithm was used to
simultaneously lower the prediction error of the model and reduced the number of features to obtain a more
computationally efficient model. This worked successfully for the Mito-low and Microhaplotype dataset, the
number of features were reduced to 85 and 96 respectively. For the other datasets all 175 features were used
for the hybrid ratio prediction model.

The ratios of certain hybrids were not accurately predicted, this can be due to the combination of the least-
squares model and features being sub-optimal for predicting these hybrids. In addition, stochastic variance in
PCR can result in variance in the dataset for identical hybrid-parent combinations, complicating the prediction
of the hybrid ratio for this combination. A hybrid ratio can either be predicted by a model that is specifically
trained on that marker or by a model that is trained on all markers of a particular dataset combined. The
hybrid ratio prediction model that is most accurate in predicting the ratios is selected as correction model for
that marker. Accurate correction of hybrids with high ratios is most important since these interfere most with
the interpretation of the true alleles, these hybrids are best corrected in the Mito-low, STR and Microhaplotype
dataset. Overall, the majority of the hybrids in the test set of the Mito-low dataset are (over)corrected i.e.
65.59%. However, the Mito-low dataset contained the least amount of observed hybrids. This as opposed to
the STR dataset of which 64.89% of the data points were (over)corrected. For the Mito and Microhaplotype
datasets 55.91% and 59.8% of the data points of the test set were (over)corrected.

Although the developed recognition and prediction model is already able to correct the for the majority of
the data, with further development it can be applied to reduce the number of hybrid sequences in MPS data
even more. Conclusively, the hybrid prediction model will be automated and included in FDSTools so it can
be a component of the forensic DNA analysis pipeline for casework samples.
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5 Future work

The aim of this study was to develop an automated hybrid artefact recognition, prediction and correction
tool. Currently, a model has been established that is able to display the predicted hybrid ratio for each hybrid
sequence. However, the hybrid sequences are not automatically corrected in the data as of right now. The
finished product of this study is a tool that is incorporated in the FDSTools pipeline that is able to filter all
possible hybrids sequences that are present in the data.

In order to automate the correction process, a threshold range for the hybrid ratio needs to be determined for
which a sequence can be marked as hybrid sequence. All hybrid ratios that fall within this range can be marked
as hybrids and filtered from the data. A set of test and validation experiments needs to be performed to set
this threshold. This can be accomplished with a synthetic created dataset of which all hybrids are known.
Subsequently, the hybrid prediction method simulates the hybrids, calculates the corresponding features and
predicts the hybrid ratios based on the pre-trained model. Thereafter, the predicted hybrids can be compared
to the true hybrids and a threshold range wherein prediction is sufficiently accurate. As a consequence, the
model can be included in the FDStools pipeline.

The least-squares regression model that is used to predict the hybrid ratios of DNA sequences in sample data
has been selected because of the simplicity of the model. The functionality of the model is straightforward
and can be explained in court if elaboration on the data processing section of MPS is necessary. However,
a drawback of the model is that it is linear and is therefore limited to linear relationships and is sensitive to
outliers. If there is a nonlinear relationship the model can give inaccurate predictions, all features were raised
to the negative power of one, two and three and also squared and cubed in an attempt to compensate for this.
An implication of a linear model is that it considers all features to be uncorrelated even though this is often not
true. Additionally, a linear model cannot make combinations of features but rather includes all the provided
features. An alternative nonlinear model that can cope with these drawbacks is the DecisionTreeRegressor
of the scikit-learn package of python [11]. The predominant advantages of this model are that it is not affected
by outliers and that nonlinear relationships between parameters do not affect the performance of the tree [12].

It requires minimal effort to change from one prediction model to another in code, however the model will
still need to be optimized and validated. The hybrid ratio prediction model using least-squares regression
will therefore be automated and included in FDSTools, while leaving the option open to switch to a different
model like the decision tree regressor. If the latter model proves to be the more accurate hybrid ratio predictor
it will be applied instead of the least-squares model.
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Appendices

Appendix

A Feature overview

Table A 1: Overview of designed features including explanation how these are calculated.
*‘Ratio’ features are always calculated by dividing the smaller number by the larger number
Feature Explanation
Length_parentA The sequence length of parentA
Length_parentB The sequence length of parentB
Length_Hybrid The sequence length of the hybrid

Ratio_parent The ratio of the total reads of one
parent divided by the total reads of the other parent

ReverseA_ForwardA The ratio of the reverse reads and the forward reads of parentA
ReverseB_ForwardB The ratio of the reverse reads and the forward reads of parentB

ForwardA_ForwardB The ratio of the forward reads of parentA and
the forward reads of parentB

ReverseA_ReverseB The ratio of the reverse reads of parentA and
the reverse reads of parentB

TotalReverse_TotalForward The ratio of the total reverse reads and
forward reads of parentA and parentB

Range_window The size of the window in which the hybrid can be formed

Window_ratio_ref The ratio of the size of the window relative to the size
of the reference sequence

Window_ratio_other The ratio of the size of the window relative to the size
of the other sequence

GC_ratio The ratio of GC nucleotides in the window
Start_pos_ref The start position of the window on the reference sequence
End_pos_ref The end position of the window on the reference sequence
Start_pos_other The start position of the window on the other sequence
End_pos_other The end position of the window on the other sequence

Start_pos_ref_ratio The ratio of the start position of the reference sequence relative to
the total length of the reference sequence

End_pos_ref_ratio The ratio of the end position of the reference sequence relative to
the total length of the reference sequence

Start_pos_other_ratio The ratio of the start position of the other sequence relative to
the total length of the other sequence

End_pos_other_ratio The ratio of the end position of the other sequence relative to
the total length of the other sequence

TM_window The melting temperature of the nucleotides in the window
TM_ref The melting temperature of the reference sequence
TM_other The melting temperature of the other sequence
TM_Hybrid The melting temperature of the hybrid sequence

TM_ratio_ref The ratio of the melting temperature of the window relative to
the melting temperature of the reference sequence

TM_ratio_other The ratio of the melting temperature of the window relative to
the melting temperature of the other sequence

Minor_parent_ratio The ratio of the parent with the lower total reads relative to
the total reads of both parents

Major_parent_ratio The ratio of the parent with the higher total reads relative to
the total reads of both parents
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B Feature selection genetic algorithm

Table B.1: Most informative features Mito dataset

Mito dataset features Exponent
X = feature

End_pos_other_ratio X
Length_parentA X2

Length_Hybrid X2

ReverseA_ForwardB X2

Minor_parent_ratio X2

Ratio_parent X3

ReverseA_ForwardB X3

GC_ratio X3

Start_pos_ref X3

Start_pos_ref_ratio X3

ReverseA_ForwardA 1/X
ForwardA_ForwardB 1/X
TotalReverse_TotalForward X
End_pos_other 1/X
Start_pos_ref_ratio 1/X
ReverseB_ForwardB 1/X2

Range_window_minus_two 1/X2

Window_ratio_ref X
Start_pos_other X/X2

TM_window 1/X2

TM_ratio_other 1/X2

TotalReverse_TotalForward X
GC_ratio 1/X3

Minor_parent_ratio 1/X3

Ones X

Table B.2: Most informative features Mito-low dataset

Mito-low dataset features Exponent
X = feature

Length_Hybrid X
TM_other X
TM_ratio_ref X
Window_ratio_other X2

End_pos_other X2

Major_parent_ratio X2

Start_pos_other X3

Length_parentA X | 1/X
Length_Hybrid 1/X
Start_pos_other 1/X2

TM_Hybrid 1/X2

Minor_parent_ratio 1/X2

Window_ratio_ref 1/X3

End_pos_ref 1/X3
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Table B.3: Most informative features STR dataset

STR dataset features Exponent
X = feature

Length_parentA X
TotalReverse_TotalForward X
GC_ratio X
Major_parent_ratio X
TM_Hybrid X2

TM_ratio_other X2

Window_ratio_ref X3

TM_Hybrid X2

Length_parentB 1/X
Window_ratio_ref 1/X
GC_ratio 1/X
TM_window 1/X
TM_other 1/X
ReverseA_ForwardA 1/X2

TM_ratio_ref 1/X2

ForwardA_ForwardB 1/X3

Window_ratio_ref 1/X3

Window_ratio_other 1/X3

GC_ratio 1/X3

TM_ratio_ref 1/X3

Minor_parent_ratio 1/X3
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Table B.4: Most informative features Microhaplotype dataset

Microhaplotype dataset features Exponent
X = feature

Length_parentB X
Ratio_parent X
Range_window X
GC_ratio X
TM_other X
TM_Hybrid X
Window_ratio_other X2

GC_ratio X2

TM_ratio_other X2

ReverseA_ForwardA X3

Range_window X3

Start_pos_ref_ratio X3

TM_other X3

ReverseB_ForwardB 1/X
Window_ratio_other 1/X
TM_other_minus 1/X
TM_ratio_other 1/X
ReverseB_ForwardB 1/X2

ForwardA_ForwardB 1/X2

Window_ratio_other 1/X2

GC_ratio 1/X2

TM_window 1/X2

TM_ref 1/X2

TM_ratio_other 1/X2

Length_Hybrid 1/X3

Window_ratio_other 1/X3

End_pos_ref 1/X3

TM_ref 1/X3

TM_ratio_ref 1/X3

Minor_parent_ratio 1/X3
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C Least-squares fit per marker Mito dataset
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(c) Hybrid ratio prediction: Fragment 5
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(e) Hybrid ratio prediction: Fragment 8
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(f) Hybrid ratio prediction: Fragment 10

Figure C.1: Predicted hybrid ratio w.r.t. true hybrid ratio displayed per marker for Mito dataset. The
red line is a reference line where ŷ = y, the closer the points are to the line the more accurate the
prediction is.
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D Least-squares fit per marker Mito-low dataset
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(b) Hybrid ratio prediction: Fragment 5
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(d) Hybrid ratio prediction: Fragment 8

−0.0075 −0.0050 −0.0025 0.0000 0.0025 0.0050 0.0075 0.0100
Hybrid ratio: testing target val es

−0.010

−0.005

0.000

0.005

0.010

Hy
br
id
 ra

tio
: p

re
di
ct
ed
 ta

rg
et
 v
al
 e
s

Predicted vs. act al val es Mito-low dataset
Frag10_mt428-589

(e) Hybrid ratio prediction: Fragment 10

Figure D.1: Predicted hybrid ratio w.r.t. true hybrid ratio displayed per marker for Mito-low dataset.
The red line is a reference line where ŷ = y, the closer the points are to the line the more accurate the
prediction is.
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E Least-squares fit per marker Mito combined dataset
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(b) Hybrid ratio prediction: Fragment 3
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(c) Hybrid ratio prediction: Fragment 5
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(d) Hybrid ratio prediction: Fragment 6
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(e) Hybrid ratio prediction: Fragment 7
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(f) Hybrid ratio prediction: Fragment 8
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(g) Hybrid ratio prediction: Fragment 10

Figure E.1: Predicted hybrid ratio w.r.t. true hybrid ratio displayed per marker for Mito-combined
dataset. The red line is a reference line where ŷ = y, the closer the points are to the line the more
accurate the prediction is.
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F Least square fit per marker STR dataset
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(a) Hybrid ratio prediction: Amel
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(b) Hybrid ratio prediction: CSF1P0
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(c) Hybrid ratio prediction: D10S1248
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(d) Hybrid ratio prediction: D12S391
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(e) Hybrid ratio prediction: D13S317
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(f) Hybrid ratio prediction: D16S539
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(g) Hybrid ratio prediction: D18S51
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(h) Hybrid ratio prediction: D19S433
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(i) Hybrid ratio prediction: D1S1656
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(j) Hybrid ratio prediction: D21S11
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(k) Hybrid ratio prediction: D22S1045
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(l) Hybrid ratio prediction: D2S1338
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(m) Hybrid ratio prediction: D2S441
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(n) Hybrid ratio prediction: D3S1358
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(o) Hybrid ratio prediction: D5S818
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(p) Hybrid ratio prediction: D7S820
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(q) Hybrid ratio prediction: D22S1045
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(r) Hybrid ratio prediction: D8S1179
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(s) Hybrid ratio prediction: DYS391
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(t) Hybrid ratio prediction: FGA
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(u) Hybrid ratio prediction: PentaD
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(v) Hybrid ratio prediction: PentaE
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(w) Hybrid ratio prediction: TH01
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(x) Hybrid ratio prediction: TPOX

Figure F.1: Predicted hybrid ratio w.r.t. true hybrid ratio displayed per marker for STR dataset. The
red line is a reference line where ŷ = y, the closer the points are to the line the more accurate the
prediction is.
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G Least-squares fit per marker Microhaplotype dataset
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(a) Hybrid ratio prediction: rs13145525
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(b) Hybrid ratio prediction: rs1721827

−0.006 −0.004 −0.002 0.000 0.002 0.004 0.006 0.008
Hybrid ratio: testing target values

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

H 
br
id
 ra

tio
: p

re
di
ct
ed

 ta
rg
et
 v
al
ue

s

Predicted vs. actual values Microhaplot pe dataset
rs348146

(c) Hybrid ratio prediction: rs348146
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(d) Hybrid ratio prediction: rs35474228
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(e) Hybrid ratio prediction: rs4652604
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(f) Hybrid ratio prediction: rs6504633
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Figure G.1: Predicted hybrid ratio w.r.t. true hybrid ratio displayed per marker for Microhaplotype
dataset. The red line is a reference line where ŷ = y, the closer the points are to the line the more
accurate the prediction is.
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