

Universiteit Leiden

Opleiding Informatica

Interactive Visualization of Large Networks

on a Tiled Display System

Name: G. G. Brinkmann

Date: 31/07/2018

Supervisors: Dr. K.F.D. Rietveld

Prof. Dr. Ir. F.J. Verbeek

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)

Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

Advances in the design and implementation of network drawing algorithms enabled the visu-
alization of large networks with millions of nodes and edges. Given the prevalence of network
data, this enables insights in problems crossing many fields of study. Unfortunately, viewing
the network drawings for large networks on a typical desktop monitor remains challenging, due
to its limited amount of screen space. As such, the use of tiled display systems, composed of
multiple monitors arranged as tiles, has been suggested for network visualization. In this thesis
we extend research on network visualization using tiled display systems, by considering how the
graphics processing units (GPUs) in a tiled display system can be used to both compute net-
work layouts and to subsequently render network drawings, at interactive frame rates. A recent
GPU-based implementation of a force-directed graph layout algorithm is extended to utilize the
processing power of multiple GPUs, and it is combined with a distributed rendering approach
in which each graphics card in the tiled display system renders the part of the network to be
displayed on the monitors attached to it. To the best of our knowledge, this is the first report
discussing a multi-GPU network visualization approach. The multi-GPU implementation of the
force-directed layout algorithm we present, which is based on distributed repulsive force approx-
imation using quadtrees, scales moderately with increasing numbers of GPUs. The multi-GPU
network renderer scales better, but its performance is reduced due to uneven load balancing.
However, our evaluation of the approach on a single-node, 25 megapixel tiled display system
with three GPUs, demonstrated interactive performance at 60 frames per second for real-world
networks with tens of thousands of nodes and edges. This constitutes a performance improve-
ment of approximately 3.9⇥ over our initial single GPU implementation, that uses operating
system support to span drawings across all monitors in the tiled display system.

Keywords: Network Visualization, Tiled Display Systems, Interactive Visualization,
Computer Systems, GPU, CUDA, OpenGL

Contents

1 Introduction 7

2 Methods and Materials 11

2.1 Graphs . 11
2.2 Graph Layout Algorithms . 12
2.3 Graphics Processing Units . 14
2.4 Network Visualization using Tiled Display Systems 15
2.5 BigEye . 16

I Mandelbrot Visualization 18

3 Drawing the Mandelbrot Set 19

3.1 Sequential Drawing Algorithm . 19
3.2 Parallel Drawing Algorithm . 21
3.3 Implementations of the Drawing Algorithms . 22
3.4 Conclusion . 26

4 Tiled Visualization Approach 27

4.1 Single-Monitor Scenario . 27
4.2 Multi-Monitor Graphics on Linux . 30
4.3 Tiled Visualization Approach . 31
4.4 Results . 35
4.5 Conclusion . 37

II Network Visualization 38

5 Real-Time Network Visualization using multiple GPUs 39

5.1 ForceAtlas2 . 39
5.2 GPU Implementation . 42
5.3 Multi-GPU Implementation . 46
5.4 Discussion . 54
5.5 Conclusion . 56

4

6 Network Visualization on a Tiled Display System 57

6.1 Tiled Network Visualization . 57
6.2 Interaction . 60
6.3 Discussion . 62
6.4 Conclusion . 63

7 Discussion and Future Research 64

8 Conclusion 66

A Network Properties 68

B Additional Results 69

5

Unit Prefixes

Unit prefixes from the International System of Units (SI) are used throughout this thesis. As
such 1 KB corresponds to 1000 bytes. If binary prefixes are used, they are according to

ISO/IEC 80000:2008. Hence, 1KiB corresponds to 1024 bytes.

Additional Resources

Additional information, videos and the source code for all programs developed for this study
can be obtained via https://govertbrinkmann.nl/mthesis.

Chapter 1

Introduction

In this study we explore real-time interactive network visualization on a tiled display system,
using its graphics processing units (GPUs). Our focus is on a 25 megapixel non-distributed
tiled display system, composed of twelve monitors connected to a single machine, and on large
networks with tens of thousands of nodes and edges.

A network (or graph) describes relationships between a set of entities, and visualization is
one of the primary techniques people use to analyze these relationships. We consider the most
common visualization method, in which the network’s entities (nodes) are drawn as dots in the
plane, with lines (edges) connecting any two related nodes. Figure 1.1 provides an example, a
drawing of a small protein-protein interaction network.

Figure 1.1: Drawing of a protein-protein interaction network [4, 32]. Nodes represent proteins,
edges the interactions between them.

7

The challenge in drawing a network is positioning the nodes in such a way that the resulting
layout clearly depicts the structure of the network. After all, there are (infinitely) many ways to
draw the same network. In general, one wants to position a given node in proximity of related
nodes, and at distance of unrelated nodes. Also, edge crossings, overlapping nodes and long
edges should be prevented as much as possible. For humans, this becomes di�cult when the
size of the network exceeds a dozen of edges, which led to the development of graph layout
algorithms. Although the first graph layout algorithms were designed to operate on thousands
of nodes, recent algorithms scale to millions of nodes and edges [26]. Besides being a result of
algorithmic improvements, this is also due to improved implementations.

However, visualizing very large networks on a typical desktop computer still poses challenges.
Due to the relatively small amount of screen space that is available, viewing the layout of a very
large network, such as the one depicted in Figure 1.2, results in excessive visual clutter. An
interactive presentation that allows for zooming and panning can overcome this issue, however
this reduces the number of nodes and edges that can be viewed at once, and thereby the viewer’s
ability to grasp the overall structure of the network. As such, applying the standard ‘overview
first, zoom and filter, then details on demand’ information seeking mantra remains challenging
for visualizations of large networks [51].

Figure 1.2: Network drawing for a large network with 391,966 nodes and 1,711,968 edges. Nodes
represent companies, which are connected if their boards of directors share a member [52].

8

To overcome this problem, the use of tiled display systems has been suggested [10, 37]. Tiled
display systems are composed of multiple displays, usually identical models, which are arranged
as tiles to form a single large display area. For an example, see Figure 1.3. Tiled display systems
provide a scalable and cost-e↵ective solution to the limited amount of screen space provided by
a typical desktop computer. Depending on the number of displays, their resolution, and the
demands of the application, the displays connect to a single computer or a distributed cluster
consisting of multiple computers. In this thesis we focus on the former case, in which all monitors
connect to a single machine.

Figure 1.3: ‘BigEye’, the tiled display system we consider for this study.

To the best of our knowledge, earlier studies on the use of tiled display systems for network
visualization relied on the system’s central processing units (CPUs) to compute network layouts.
For the present study we consider using the system’s graphics processing units (GPUs) instead.
Tiled display systems generally contain multiple GPUs, located on the graphics cards that con-
nect the displays to the system, which provide tremendous computational power. It has been
shown that the GPU allows for high-performance implementations of graph layout algorithms
[8, 20, 36]. Therefore we hypothesize that using the GPUs in a tiled display system allows for
high-performance visualization of large-scale networks using its full resolution. More specifically,
we expect to achieve real-time performance, where user’s input is accounted for without visi-
ble delay, for networks with hundreds of thousands of nodes and edges. Real-time performance
combined with interactivity improves the user’s ability to e↵ectively analyze a network. Besides
easing data exploration, it allows users to manually steer the layout process, which can be crucial
to prevent the layout algorithm from converging to a sub-optimal layout.

9

To test our hypothesis, we derive a multi-GPU implementation of ForceAtlas2 [30], a com-
monly used algorithm for network visualization. This implementation is combined with a dis-
tributed rendering approach in which each GPU renders the part of the network to be displayed
on the monitors attached to it. To assess the resulting system’s interactive capabilities, we will
implement a number of interactions using a wireless control device that enables natural inter-
actions with visualizations on the wall-sized display. However, before confronting the network
visualization problem we first implement an interactive visualization of the Mandelbrot set on
the tiled display system. This preliminary exploratory study allows for the development of a
‘framework’ implementing the aforementioned visualization approach, which involves distributed
general purpose computations and distributed rendering using the GPUs in the system. The
preliminary study also enables us to discover any technical challenges related to the specific tiled
display system we focus on for this study.

The content of this thesis is structured as follows. In Chapter 2 we first discuss the methods
and materials used for this study. As such, we discuss graph layout algorithms, tiled display
systems, the GPU as a platform for general purpose computation, as well as definitions for
concepts used throughout the thesis. We also discuss a number of existing approaches to network
visualization on tiled display systems, and we detail BigEye, the tiled display used in this study.
The remainder of the thesis consist of two parts. In Part I we present the preliminary exploratory
study on visualizing the Mandelbrot set. The ‘framework’ resulting from this forms the starting
point for Part II of the thesis, where we apply it for interactive network visualization. Chapters
7 and 8 present a discussion of our results and our conclusion, respectively.

10

Chapter 2

Methods and Materials

In this chapter, we review the methods and materials related to our study on network visualiza-
tion using tiled display systems. For clarity, we also define a number of commonly used concepts.
As such, we first define what a network, or graph, is. In the next section, we introduce graph
layout algorithms in general, and force-directed graph layout algorithms in specific, since the
latter will be used extensively in the remainder of this thesis. Next, we describe tiled display sys-
tems, common designs and their use for network visualization. We also discuss the architecture
of graphics processing units (GPUs), and how they enable high-performance implementations
of certain general purpose computations, given that this is a method which is central to the
approach taken in this thesis. We conclude the chapter by introducing BigEye, the tiled display
system used for this study.

2.1 Graphs

We define a graph G = (V,E), as a set of vertices, or nodes, together with a set of edges, or links.
The set of edges, denoted E, represents a (binary) relationship on the set of vertices, denoted
V , such that for directed graphs E ✓ V ⇥ V , and for undirected graphs E = {{u, v} : u, v 2 V }.
Both for directed and undirected graphs, we denote the existence of an edge between nodes u

and v by (u, v) 2 E and we do not consider networks with self-loops, i.e. edges (u, v) 2 E s.t.
u = v. Instead of (u, v) 2 E, we can also write that node v is adjacent to node u. If (u, v) 2 E

or (v, u) 2 E, then nodes v and u are neighbors.
The density of a graph is defined as the ratio between the number of edges and the maxi-

mum number of edges, given the number of nodes. For directed graphs the density thus equals
|E|/(|V |(|V |� 1)), whereas it equals |E|/(12 |V |(|V |� 1)) for undirected graphs. The out-degree
of node u is defined as the number of nodes adjacent to it, i.e. it equals |{v 2 V : (u, v) 2 E}|.
Similarly, the in-degree of a node v equals the number of nodes to which it is adjacent, i.e. it
equals |{u 2 V : (u, v) 2 E}|. Note that for undirected graphs the out-degree of a node v 2 V

equals its in-degree, and as such we can refer to both as the degree of this node, denoted deg(v).
Two nodes u, v 2 V are connected if a path between them exists. A length-n path between

nodes u and v consists of a sequence of nodes (x0, x1, . . . , xn) such that x0 = u, xn = v and
8i, 0 i < n : (xi, xi+1) 2 E. The shortest path between nodes u and v is defined as the
path with the shortest length that connects nodes u and v, and its length is referred to as the
distance between these nodes, denoted d(u, v). If no path between u and v exists, i.e. they are
not connected, d(u, v) = 1. A graph is strongly connected if all node-pairs are connected. If

11

all node-pairs are connected when disregarding edge direction, i.e. when assuming (u, v) 2 E)
(v, u) 2 E, a graph is weakly connected.

Given a graph G = (V,E), we define the subgraph induced by the set of nodes V 0 ✓ V to be
the graph G

0 = (V 0
, E

0), such that (u, v) 2 E
0 , u, v 2 V

0 ^ (u, v) 2 E. The weakly connected
components (WCCs) of a graph are defined to be its maximal weakly connected subgraphs.
Similarly, the strongly connected components (SCCs) of a graph are defined to be its maximal
strongly connected subgraphs. These components are maximal in the sense that no nodes can
be added without voiding the connectivity property. The WCCs of a graph are sometimes also
referred to as the components of a graph. We focus in particular on the largest weakly connected
component (LWCC) of a network.

In this thesis we do not make a distinction between networks and graphs, but use the terms
interchangeably.

2.2 Graph Layout Algorithms

To reveal the structure of a graph, it is commonly drawn in the plane with vertices represented as
points, and edges as straight lines connecting related vertices. As discussed in the introduction,
the challenge in drawing a graph is assigning a position pv 2 R2 to each v 2 V such that
a ‘readable’ layout emerges. In a readable layout related nodes are generally positioned in
spatial proximity of each other, whereas unrelated nodes are at distance of each other. Also,
overlapping nodes and edge crossings should be avoided. Most importantly, the layout should
reflect the structure of the network. The latter is illustrated by Figure 2.1 which shows that
di↵erent layouts for the same network can suggest structural di↵erences between the network
that is represented. The left layout (correctly) reflects uniformity between the nodes, whereas
node zero is (incorrectly) emphasized in the right layout, due to its position at the center of the
drawing.

1

0

2

3

1 0

2

3

Figure 2.1: Two drawings of the same (fully connected) network.

Figure 2.1 also demonstrates how criteria for a readable layout can be in conflict with each
other. Although the left drawing reflects the topological uniformity between nodes, it does not
avoid edge crossings.

Whilst determining readable layouts for networks with less than a dozen of edges is feasible
for a human, it is desirable to use a computer and a graph layout algorithm as the network
size increases. A graph layout algorithm takes as input the graph G = (V,E), potentially with
additional information on nodes and edges, and computes for each v 2 V a position pv 2 R2,
such that a readable layout emerges. From the di↵erent types of graph layout algorithms that
have been conceived [26, 19], we choose to focus on force-directed graph layout algorithms. As

12

the remainder of this section will describe, force-directed layout algorithms are especially suitable
to the interactive applications this thesis considers.

The force-directed approach to graph layout, considers the layout of a graph to be a physical
system in which nodes interact as physical bodies. The force model describing these interactions
is chosen such that the evolution of the system over time causes a readable layout to emerge.
As such, an attractive force between neighboring nodes generally serves to move related nodes
towards each other. In contrast, a repulsive force moves all node-pairs away from each other
to place unrelated nodes at a distance of each other. A gravitational force that moves nodes
towards the center of the layout can be introduced, to ensure the di↵erent components of the
graph stay in proximity of each other. This force model is also referred to as the spring-electic
model, given that it corresponds to a system with charged particles, i.e. the nodes, connected
by springs, i.e. the edges.

Algorithm 1 formalizes the force-directed approach to graph layout. The values used for
algorithms’ parameters are generally chosen through trial-and-error, increasing the number of
iterations (itmax) with the network size.

Algorithm 1 Force-Directed Graph Layout

Input: Graph G = (V,E), itmax (number of layout iterations), kg (gravitational force
scalar), ka (attractive force scalar) kr (repulsive force scalar), �t (time step size).
Output: For each v 2 V , a position pv 2 R2.

1: for all v 2 V do . Randomize layout
2: pv random()
3: end for

. Start layout process
4: for i = 1! itmax do

5: for all v 2 V do

6: fv � kg

|pv|2 ⇤ pv . Gravity

7: for all w 2 neighbors(v) do
8: fv fv + ka ⇤ pw�pv

|pw�pv| . Attraction
9: end for

10: for all w 2 V,w 6= v do

11: fv fv + kr ⇤ pv�pw

|pv�pw| . Repulsion
12: end for

13: end for

14: for all v 2 V do

15: pv pv + �t ⇤ fv . Displacement
16: end for

17: end for

Force-directed layout algorithms are well suited to interactive applications for multiple rea-
sons. First, their resemblance to physical systems connects to users their intuition. Also, the
iterative approach, which corresponds to a time-continuous process, allows for the entire layout
process to be visualized. As such users can comprehend the layout procedure, and better un-
derstand the e↵ect the di↵erent parameters have. The force-directed method also accounts for
interaction with the layout process, allowing users to manually steer it to avoid the layout from
converging to a local minimum.

13

2.3 Graphics Processing Units

For the present study we use graphics processing units (GPUs) for network visualization, i.e. to
implement the layout algorithm and the network renderer that generates network drawing from
the layouts. In contrast to the CPU architecture, that is optimized to achieve low latency on
a wide range of computational problems, the GPU is optimized more to achieve high through-
put on (highly) data-parallel problems [16]. This is partly due to the relatively great number
of functional units that the GPU features, which generally come at the expense of omitting
the advanced, latency-reducing, features employed by the CPU such as branch prediction and
speculative execution. Although the design of the GPU has its origins in computer graphics ap-
plications, which involve the processing of many independent pixels and geometrical primitives,
the architecture has increasingly been applied to achieve high-performance implementations for
general purpose computations [5]. Whereas general purpose computation on GPUs (GPGPU)
initially required formulating problems using graphics APIs such as OpenGL [50], dedicated
GPGPU frameworks such as CUDA [43] and OpenCL [22] have since been released.

Given the large number of independent, per-node, operations used in force-directed graph
layout algorithms, the GPU has enabled high-performance implementations [8, 21, 14] of these
algorithms as well. For the present study we implement the network layout algorithm using
CUDA and the network renderer using OpenGL. The CUDA-OpenGL interoperability API [46]
is used to share the data structures representing the network layout between CUDA and OpenGL.
This approach, which di↵ers from the initial studies on network visualization using GPUs [14],
allows both parts of the visualization process, layout and rendering, to be represented naturally,
whilst avoiding unnecessary data transfers between CPU and GPU memory.

NVIDIA GPUs and CUDA

Since we use the NVIDIA compute unified device architecture (CUDA) platform [43] to imple-
ment our multi-GPU network layout algorithm, which is discussed in Section 5.3, we use this
section to provide some background information on CUDA and the architecture of NVIDIA
GPUs.

CUDA enables programmers to implement general purpose computations on the highly par-
allel architecture provided by NVIDIA GPUs. For our study we use CUDA C, which is an
extension to C programming language. Using CUDA C, programmers can specify kernels, which
are functions to be executed in parallel on the GPU using many threads of execution. Although
threads execute the same kernel (function), they generally operate on di↵erent data elements,
thus parallelizing a computation. CUDA threads are organized by the programmer into a grid
of thread blocks. When launching a grid for execution, the blocks contained therein are assigned
to the di↵erent multiprocessors (MPs) on the GPU, which subsequently subdivides the thread
block into warps of 32 threads. The threads in a warp concurrently execute the same instruction,
through a single instruction multiple threads (SIMT) architecture and the MP is equipped with
dedicated hardware to interleave the execution of di↵erent warps in order to hide latency. To
achieve optimal hardware utilization, it is important that the threads in a warp share execution
paths, since diverged threads in a warp cannot execute concurrently. Also, to e↵ectively utilize
the memory bandwidth provided by the GPU, the threads in a warp should access consecutive
ranges of aligned memory. This allows for multiple memory accesses to be coalesced into single
transactions, which greatly improves memory bandwidth utilization.

14

2.4 Network Visualization using Tiled Display Systems

Tiled display systems, composed of multiple monitors arranged as tiles to form a large display
area, are often a scalable and cost-e↵ective approach to achieve wall-sized high-resolution dis-
plays. Displays can be added and removed depending on the desired display dimensions and
resolution, and reusable ‘o↵-the-shelf’ components can be used for the system’s construction.
The monitors in the system can connect to either a single computer or a dedicated computer
cluster depending on the number of displays, their resolution and the intended application of
the system. The former design, involving only a single computer, might also be considered a
‘multi-head’ setup in the context of desktop workstations. Still, the latter does not necessarily
involve the use of multiple graphics cards, and the resolutions common to the wall-sized displays
we focus on in this study. Although this study focuses on the single-node tiled display system
available to us, we believe our results extend to cluster based tiled display systems as well.

The use of tiled display systems for network visualization has been proposed to reduce the
visual clutter that results from visualizing large networks on a typical desktop monitor. Although
interactive systems that allow users to navigate the visualizations of large networks can partially
solve this problem, this reduces the possibility to reveal structures at a more global level. Besides,
the large display area provided by tiled display systems facilitates collaborative research between
multiple people. We found previous research on the use of tiled display systems for network
visualization by Mueller et. al. (2006), Chae (2013), Jingai et.al. (2015) and Gu et. al. (2015).
In this section we briefly discuss these studies, and compare them to the approach taken for the
present study.

Mueller et. al. [37] present a network visualization approach for distributed (tiled display)
systems, that uses MPI [13] for parallel computation and Chromium [27] for distributed rendering
and display. A distributed force-directed graph layout algorithm is derived, based on the classical
algorithm by Fruchterman and Reingold [15], by considering how di↵erent approaches to data-
and work-distribution a↵ect performance and the layout quality. Realizing performance levels
suitable for interactivity is a clear objective of the authors. The authors evaluate their system
on an eight monitor tiled display system, connected to an eight node cluster, both in terms of its
scalability when using increasing numbers of processors and in terms of the ‘costs’ resulting from
displaying generated layouts. Di↵erent types of randomly generated networks are used for the
evaluation. For networks with 2000 nodes the results show an average performance improvement
of 10⇥ when scaling from one to four processors, after which performance saturates. Using eight
processors allowed for randomly generated networks with 8000 nodes, and up to (approximately)
80, 000 edges, to be visualized at frame rates between 2 to 5 frames per second.

Chae [10, 11] presents distributed algorithms for network visualization, which are evaluated on
a 200 megapixel cluster-based tiled display system composed of 50 monitors. In the development
of the algorithms, techniques are considered to reduce the number of edges crossing between
nodes in the cluster, but also to prevent nodes in the layout from being positioned on the bezels
of monitors. A modified k-means clustering algorithm is evaluated in order to reduce the running
time of the layout algorithm. The algorithms are evaluated both in terms of their scalability and
the layout qualities that result from them.

Jingai et. al. [31] report their intermediary results on adapting the open source Gephi [2]
network analysis and visualization software to run on a cluster-based tiled display system via
a commercial middleware. Since the middleware supports the OpenGL graphics library, that
Gephi uses for network rendering, few changes to Gephi were required. The authors report their
system was successful at visualizing a protein-protein interaction network with 2361 nodes and
7182 edges, with all labels visible, and that the performance of the system should be assessed in
future studies.

15

Gu et. al. [23] present an approach for the interactive visual analysis of image collections by
means of a compound ‘iGraph’ representing the relationships between the images and keywords
in the collection. To visualize the iGraph, a force-directed graph layout algorithm based on
the classical algorithm by Fruchterman and Reingold [15] is first used to compute a layout for
the backbone of iGraph, which consists of images and keywords that are representative for the
collection. This layout is then further refined ‘on demand’ as the user navigates around the
iGraph. The system allows for the interactive filtering and comparison of data in the iGraph,
and uses an approach akin to collaborative filtering to recommend interesting data to users for
further exploration. The approach is evaluated using two datasets on an eight node cluster using
graphs with thousands of nodes and millions of edges. Besides, a method for using the cluster
to visualize results on a 50 megapixel tiled display system is discussed. The GPUs in the system
are used for data pre-processing, whereas the CPUs in the system are used for the graph layout
process. Finally, a user evaluation is discussed.

Similar to the studies discussed in this section, we focus on using force-directed graph layout
algorithms for our visualization system. However, we do not consider significant modifications
to the algorithms to improve their operation in the context of the tiled display system. We
rather focus on improvements in their implementation. Most importantly, we consider using
the GPUs in the tiled display system for their implementation rather than the CPU. Also, we
do not focus on a distributed tiled display system, but on a single machine with 12 monitors
connected to three graphics cards. We consider the multiple GPUs for improved processing
power only, without distributing the data between them for increased an memory capacity. Our
previous work [8] does not suggest that the memory capacity of current systems bounds the size
of networks that can be visualized interactively. In contrast to the studies we discussed in this
section, we use a wider collection of large real-world networks for the evaluation of our system.
Similar to the study of Mueller et. al., we focus on realizing an interactive system. However,
we aim to avoid any perceivable delay between user input and corresponding updates on on the
monitors, since this would degrade the extent to which users experience interactivity. We choose
to focus on obtaining a frame rate of 60 Hz., matching the refresh rate of the monitors in the
tiled display system.

2.5 BigEye

The ‘BigEye’ tiled display system we used for this study, which is depicted in Figure 1.3, consists
of twelve 47” Philips BDL4777XL monitors with a resolution of 1920 ⇥ 1080 pixels, that are
arranged in a 3 ⇥ 4 grid. The four monitors in each column are connected to a single NVIDIA
GeForce GTX660 graphics card via DVI-I, DVI-D, HDMI and DisplayPort connections. Each
graphics card is equipped with 1999MiB of GDDR5 memory. An MSI Big Bang-Marshal (MS-
7670) motherboard hosts the three graphics cards, which are connected to it using the PCI
Express v2 bus, with 8 PCIe lanes available to each card. Note that the graphics cards are not
interconnected via other means, such as an NVIDIA SLI bridge.

Table 2.1 presents some relevant information on the NVIDIA GeForce GTX660 GPU. The
peak number of single precision floating point operations per second (peak FLOP/s), corresponds
to the throughput achieved when executing fused multiply-add (FMA) instructions on all CUDA
cores, at the base clock-frequency. As such it is computed as the product of the number of CUDA
cores and the base clock-frequency, times two.

The system is equipped with an Intel Core i7-2600K CPU and 16GiB of DDR3 (1333 MHz)
memory. Table 2.2 provides some details on the CPU.

The system runs Ubuntu 16.04.3 LTS, which is configured to use the Xfce Desktop Environ-

16

ment and a regular X implementation. Version 9.2.148 of the CUDA toolkit is installed, and the
proprietary NVIDIA driver (version 396.37) is used. The specific versions of all installed software
can be found at the web page for this thesis [7].

Microarchitecture CUDA Cores L2 Cache Base/Peak Clock Peak FLOP/s (sp)
Kepler 960 384 KiB 980/1098 MHz 1881.6 ⇤ 109

Table 2.1: Information on the NVIDIA GeForce GTX660 GPUs used in BigEye.

Microarchitecture Physical/Logical
Cores

L3 Cache Base/Peak Clock

Sandy Bridge 4/8 8 MiB 3.4/3.8 GHz.

Table 2.2: Information on the Intel Core i7-2600K CPU used in BigEye.

17

Part I

Mandelbrot Visualization
To familiarize ourselves with implementing interactive visualizations on the tiled dis-
play system, we conducted a preliminary study on visualizing the Mandelbrot set.
This preliminary study allowed us to realize a visualization ‘framework’ enabling dis-
tributed computation and rendering using all of the tiled display system’s GPUs.
Since the Mandelbrot visualization problem can easily be solved in parallel, select-
ing it for the preliminary study allowed us to focus especially on the technical pro-
gramming challenges related to this rather than on the complexities of parallelizing
algorithms. The preliminary study is organized as follows.

In Chapter 3 we first introduce sequential and parallel algorithms to make drawings
of the Mandelbrot set, as well as CPU and GPU implementations of these algorithms.
We evaluate their performance in terms of running time, considering whether they
enable real-time interactivity on the tiled display system. Next, in Chapter 4, we dis-
cuss the problems related to visualizing Mandelbrot drawings interactively on BigEye,
the tiled display system used for this study. Based on this discussion, we propose
a ‘tiled visualization approach’ in which each GPU in the system renders the visu-
alization to be be displayed on the monitors directly attached to it. This approach
is then evaluated for the Mandelbrot visualization application. The results of the
preliminary study served as the starting point for our study of interactive network
visualization on BigEye, which will be discussed in Part II of the thesis.

18

Chapter 3

Drawing the Mandelbrot Set

Before considering how to visualize the Mandelbrot set on the tiled display system, we discuss
the Mandelbrot drawing problem more generally in this chapter. We present a sequential and a
parallel Mandelbrot drawing algorithm, with implementations for both the CPU and the GPU,
that we evaluate in terms of their running time for di↵erent image dimensions. For the parallel
algorithm, we consider both a CPU implementation that uses SIMD instructions on all CPU
cores, as well as an implementation on the GPU. The latter serves as the starting point for
Mandelbrot visualization on the tiled display system, which will be discussed further in the next
chapter.

3.1 Sequential Drawing Algorithm

The Mandelbrot set M consists of all complex numbers c 2 C, for which the sequence

|z0|, |z1|, |z2|, . . .

remains bounded, taking z0 = 0 and zn+1 = z
2
n + c. Since the Mandelbrot set is a subset

of the complex numbers (M ✓ C), we can visualize it in the complex plane. To do so, we
consider a discretized bounded area of the complex plane, which we refer to as the ‘part’ used
for visualization. For each point c in this part, we then compute zn for successive n, starting
with n = 0. We stop increasing n once |zn| > 2, which is a (well-known) criterion used to reduce
the number of n values to evaluate, or if n = nmax, since n!1 is infeasible. For all c that we
evaluate in this way, we plot the final value of n, called the ‘escape iteration’, in the complex
plane. Here the brightness of the point we plot corresponds to the value of n. In contrast to just
depicting membership of M for each c in the part to be visualized, this reveals the geometrical
structure of the Mandelbrot set in a more detailed way. Note that nmax, and the step-size
used in discretization (�) a↵ect the trade-o↵ between running time and approximation error.
As nmax ! 1 and � ! 0, the visualization starts to reflect the true Mandelbrot set, and the
running time of the computation tends to infinity. Algorithm 2 presents the Mandelbrot drawing
procedure described in this paragraph. The drawing width and height, w and h, correspond to
the bounds of the part of the complex plane for which we visualize the Mandelbrot set, via the
pixel size s, as follows: w ⇤ s = Remax � Remin, y ⇤ s = Immax � Immin.

19

Algorithm 2 Mandelbrot drawing

Input: w, h (drawing width and height, in pixels), s (pixel size in complex plane), Co (origin
of the drawing), nmax (maximum n to check).
Output: I (w ⇥ h rasterized drawing).

1: for (x, y) 2 {0, . . . , w � 1}⇥ {0, . . . , h� 1} do

2: c Co � s⇤w
2 + s⇤h

2 i+ x ⇤ s� (y ⇤ s)i
3: n, zn 0
4: while |zn| 2.0 ^ n < nmax do

5: n n+ 1
6: zn z

2
n�1 + c

7: end while

8: Iy,x = cmap(n) . cmap maps iteration to pixel color
9: end for

Figure 3.1 depicts the drawing resulting from Algorithm 2, with Co = �0.5 + 0i and nmax =
255. One of the characteristic properties of the Mandelbrot set is it its fractal geometry, i.e.
self-similarity exists many di↵erent scales. Figure 3.2 demonstrates this, by showing that the
overall structure can be recognized at in details of itself. For a more extensive discussion of the
properties of the Mandelbrot set, we refer the reader to [12].

Figure 3.1: Drawing of the Mandelbrot set as computed using Algorithm 2, with itmax = 255.
Escape iteration for each point corresponds to color via the index to the right of the drawing.

20

Figure 3.2: Self-similarity in the Mandelbrot set, the overall shape is present at multiple scales.
Escape iteration for each point corresponds to color via the index to the right of the drawing.

3.2 Parallel Drawing Algorithm

The drawing algorithm presented in Section 3.1 can easily be parallelized by computing the
values for pixels concurrently instead of serially. Consider Algorithm 3, which formalizes this by
parallelizing the loop over (x, y) pairs.

Algorithm 3 Parallel Mandelbrot drawing

Input: w, h (drawing width and height, in pixels), s (pixel size in complex plane), Co (origin
of the drawing), nmax (maximum n to check).
Output: I (w ⇥ h rasterized drawing).

1: parfor (x, y) 2 {0, . . . , w � 1}⇥ {0, . . . , h� 1} do

2: c Co � s⇤w
2 + s⇤h

2 i+ x ⇤ s� (y ⇤ s)i
3: n, zn 0
4: while |zn| 2.0 ^ n < nmax do

5: n n+ 1
6: zn z

2
n�1 + c

7: end while

8: Iy,x = cmap(n) . cmap maps iteration to pixel color
9: end parfor

There exist no dependencies between computations for di↵erent pixels, therefore all (x, y)
pairs can be evaluated concurrently, parallelizing the computation without requiring communi-
cation and synchronization. This is essential to achieve maximum performance on most parallel
architectures, which are expected to provide significant performance benefits over serial proces-

21

sors. However, true peak performance might not be obtained on parallel architectures due to
uneven load balancing between the parallel computations. This is because not all pixels require
iteration up to the same value of n. Note that we assume that parallel computations can concur-
rently access the same memory to store results (cf. ln. 8 of Alg. 3), such that a reduction-phase
which merges partial results from di↵erent memories to a single memory is not required.

3.3 Implementations of the Drawing Algorithms

This section discusses CPU and GPU implementations of the drawing algorithms that were
presented in the previous section. We evaluate each implementation in terms of its running time,
for increasing image dimensions. In doing so we consider if real-time visualization is possible at
BigEye, the tiled display system used for this study. We deem an implementation suitable for
real-time visualization if it is able to compute drawings at the refresh rate of the monitors used
for visualization. Since the monitors in BigEye refresh their contents sixty times per second, this
bounds the maximum running time of the desired implementation to 1

60 s ⇡ 16.67ms. This is
an upper-bound since computed drawings also need to be transferred to the framebu↵ers of the
monitors for display, and since the code might be interrupted, to run some other processes on
the system. The time required to display drawings is discussed in Section 4.1, in the remainder
of this chapter we focus solely on the time required to generate the drawings.

Since the running time of the drawing algorithm depends on the part of the complex plane for
which we visualize the Mandelbrot set, as some pixels require further iteration than others, we we
opt to measure worst-case running times. This corresponds to visualizing a part of the complex
plane that requires iteration up to nmax for all pixels. To achieve true real-time performance,
we need to consider this case since it is possible that the user navigates through such a region
whilst exploring the Mandelbrot set. Thus, for all measurements, we set origin Oc = 0 and pixel
size s = w/0.1, since this corresponds to the worst-case scenario. We set nmax = 255, since we
found this to provide a good compromise between running time and approximation error.

All implementations we discuss are straightforward, and do not involve extensive optimiza-
tion, since this is beyond the scope of this project. Besides the CPU SIMD code, which will be
discussed later, all implementations are original and are accessible via the project web page of
this thesis [7].

CPU Implementation

We first implement Algorithm 3 for the CPU using C++. Besides a serial implementation, we
discuss a parallel implementation that uses Single Instruction Multiple Data (SIMD) instructions
on all cores of the CPU. The 256-bit wide SIMD instructions we use, which are part of Intel’s
Advanced Vector Extensions (AVX) [29], can operate on up to eight 32-bit floating point numbers
simultaneously. The SIMD code we use [53], assigns eight consecutive pixels, each from a di↵erent
column, to a single SIMD register. Through SIMD instructions, these can then be operated on
concurrently instead of sequentially. Assuming a linear speedup, vectorization by using the
SIMD instructions can thus provide a performance improvement of 8⇥ compared to a serial
implementation. This might not be a realistic assumption, given potential side-e↵ects that might
result from using the SIMD instructions. Another degree of parallelism is introduced by using
all CPU cores. Di↵erent rows of pixels are assigned to di↵erent CPU cores, by means of the
OpenMP Application Programming Interface (API) [6]. Due to the 8 logical cores on the CPU
in our system, this would again allow for a speedup of 8⇥, assuming a linear speedup is achieved.
Parallelization through the use of SIMD instructions on all cores of the CPU thus results in a
theoretical speedup of 64⇥ over the serial implementation. Since this expects optimal hardware

22

utilization, which is not likely to be achieved using our straightforward implementation, we do
not expect to achieve this speedup. Still, comparing the achieved speedup with the theoretical
speedup gives an indication of the scalability of our parallel implementation.

We measured the average (wall-clock) running times of the implementations over 25 runs on
BigEye, using an Intel Core i7-2600K CPU, with image dimensions (w⇥h) ranging from 40⇥ 40
to 5120 ⇥ 5120 pixels. We consider the worst-case scenario, with Oc = 0, s = w/0.1, and we
set itmax = 255. The CPU frequency governor was changed to the ‘performance’ setting for all
cores, to stabilize the clock between measurements.

Dimensions (w ⇥ h) Serial (ms) Vectorized (ms) Vectorized + Multi-Core (ms)
40⇥ 40 1.65 (0.03) 0.19 (0.01) 1.07 (1.57)
80⇥ 80 6.60 (0.04) 0.73 (0.01) 0.13 (0.02)
160⇥ 160 26.32 (0.07) 2.91 (0.02) 0.51 (0.03)
320⇥ 320 104.40 (0.88) 11.49 (0.04) 2.51 (1.84)
640⇥ 640 417.24 (4.49) 45.73 (0.17) 9.10 (1.98)

1280⇥ 1280 1660.34 (6.02) 182.67 (0.19) 32.67 (2.04)
2560⇥ 2560 6629.43 (3.27) 733.24 (2.09) 129.38 (1.77)
5120⇥ 5120 26,521.85 (17.10) 2923.70 (4.55) 523.40 (5.97)

Table 3.1: Average running times for the CPU implementations of the Mandelbrot drawing
algorithm, standard deviations between braces.

Dimensions (w ⇥ h) Vectorization Speedup Vectorization + Multi-Core Speedup
40⇥ 40 8.8⇥ 1.5⇥
80⇥ 80 9.0⇥ 49.6⇥
160⇥ 160 9.0⇥ 51.3⇥
320⇥ 320 9.1⇥ 41.6⇥
640⇥ 640 9.1⇥ 45.8⇥
1280⇥ 1280 9.1⇥ 50.8⇥
2560⇥ 2560 9.0⇥ 51.2⇥
5120⇥ 5120 9.1⇥ 50.7⇥

Table 3.2: Speedups for the average running times in Table 3.1, in comparison to the serial
implementation.

As the results in Tables 3.1 and 3.2 show, parallelization through SIMD instructions and
multi-threading results in significant performance improvements. Combined they results in a
speedup of approximately 51⇥ over the serial implementation, as the image dimensions increase
to 5120 ⇥ 5120 pixels. Interestingly, the speedups for the SIMD implementation exceed the
linear speedup of 8⇥, for which we currently do not have an explanation. The speedup achieved
through using SIMD instructions alone is approximately constant for all problem sizes, whereas
the speedup for the multi-core SIMD implementation increases as the problem size increases. We
explain this as a result of the overhead introduced by managing and scheduling multiple threads
for the Multi-Core implementation. For small problem sizes this overhead likely constitutes a
significant part of the running time whereas it becomes negligible as the problem size increases.

Using the CPU implementation of the Mandelbrot drawing algorithm, real-time performance
at 60 fps becomes impossible as we increase image dimensions to 1280 ⇥ 1280 pixels. Since the
tiled display system considered for this study has a resolution of 5, 760⇥ 4, 320 pixels, the CPU
implementation clearly will not su�ce.

23

GPU Implementation

To scale the Mandelbrot drawing algorithm to higher resolutions, we next considered the GPU
as a platform. The throughput-oriented architecture of GPUs provides a significantly greater
degree of parallelism than the general-purpose CPU, which is optimized more to achieve low
latencies on a wide range of computational problems. Since parallelization already proved to be
e↵ective on the CPU, we thus expect further parallelization on the GPU to provide additional
speedups. We implemented Algorithm 3 for the GPU using CUDA C, mapping the many parallel
threads of computation provided by the GPU to di↵erent (x, y) pairs. As such, the GPU can
concurrently compute many di↵erent pixel values. Threads are mapped to (x, y) pairs in such
a way that simultaneous memory accesses by threads located on the same GPU core generally
address consecutive ranges of aligned memory. This allows for multiple accesses to be coalesced
into single transactions, which is important to utilize the GPU’s available memory bandwidth.
Accesses by di↵erent threads to the lookup table (LUT) translating escape iterations to colors
are not necessarily coalesced.

We evaluated our implementation on BigEye, using a single NVIDIA GeForce GTX660 graph-
ics card. As for the CPU implementation, we measure the average (wall-clock) running times
over 25 runs, ranging image dimensions (w⇥h) from 40⇥40 to 5120⇥5120 pixels. The worst-case
scenario is considered, with Oc = 0, s = w/0.1, and we set itmax = 255. Table 3.3 presents our
results, and Figure 3.3 combines these results with our results for the CPU implementation.

Dimensions (w ⇥ h) GPU Time (ms) GPU/CPU Speedup
40⇥ 40 0.04 (0.00) 26.9⇥
80⇥ 80 0.06 (0.00) 2.1⇥

160⇥ 160 0.15 (0.00) 3.4⇥
320⇥ 320 0.51 (0.00) 4.9⇥
640⇥ 640 1.96 (0.00) 4.6⇥
1280⇥ 1280 7.69 (0.20) 4.3⇥
2560⇥ 2560 28.05 (0.00) 4.6⇥
5120⇥ 5120 112.12 (0.01) 4.7⇥

Table 3.3: Average running times for the GPU implementation, with standard deviations between
braces. Speedup (GPU/CPU) is compared to the average CPU SIMD+MC implementation.

As the results show, the highly parallel architecture of the GPU indeed allows for further
performance improvements. We observe that the speedup provided by the GPU approaches 4.7⇥,
compared to the multi-core SIMD implementation on the CPU, as the problem size increases.
The initial decline in the GPU/CPU speedup is explained as a result of the initial increase in
performance by the multi-core CPU implementation, as discussed in the previous section. The
running time of the GPU implementation drops below the threshold for real-time performance
once we increase the resolution to 2560 ⇥ 2560 pixels, whereas this occurred at a resolution of
1280⇥ 1280 pixels for the CPU implementation. Although this is an improvement, it is still not
su�cient for real-time performance on the tiled display system we consider for this study, since
it has a resolution of 5760⇥ 4320 pixels.

24

However, if we consider using all GPUs in the tiled display system, and if we assign each
GPU to compute the part of the complex plane to be displayed on the attached monitors, the
dimensions of the image computed by each GPU reduces to 1920 ⇥ 4320 pixels. If we repeat
the experiments for this resolution, we measure an average running time of 35.50 ms, which
corresponds to an upper bound on the framerate of approximately 28 fps. Although this falls
short of true real-time performance at 60 fps, it might still provide satisfactory results. Hence
we further explore this multi-GPU approach in Chapter 4.

Figure 3.3: Average running times (worst-case) for the CPU (blue) and GPU (green) imple-
mentations of the Mandelbrot drawing algorithm. For the CPU a serial, vectorized (SIMD) and
multi-core vectorized (SIMD+MC) implementation is evaluated.

25

3.4 Conclusion

In this chapter we evaluated a CPU and a GPU implementation of the Mandelbrot drawing
algorithm. Each was evaluated in terms of its running time, to assess whether it is suitable for
real-time interactive visualization on the 5760 ⇥ 4320 pixel tiled display system considered for
this study. It was shown that parallelization allows the drawing algorithm to scale to significantly
greater image dimensions. As image dimensions were increased to 5120⇥5120 pixels, paralleliza-
tion on the CPU using SIMD instructions on all cores provided a speedup of approximately 51⇥
compared to a serial implementation. The GPU implementation provided an additional speedup
of 4.7⇥ over this CPU implementation, corresponding to a 240⇥ speedup over the serial CPU
implementation. Still, this was insu�cient to allow a single GPU to generate drawings at 60 fps
at the full resolution of the tiled display system. However, our results suggest that performance
at 28 fps might be feasible if each GPU in the tiled display system is used to generate drawings
for the monitors attached to it. We further investigate this multi-GPU approach in Chapter 4.

26

Chapter 4

Tiled Visualization Approach

Using the implementations of the Mandelbrot drawing algorithm derived in Chapter 3, we now
consider how to visualize drawings of the Mandelbrot set interactively on BigEye, the tiled
display system used for this study. In doing so, we aim for a system in which the user can
explore the Mandelbrot set interactively through panning and zooming. Whilst this would be
relatively simple on a typical desktop system, as we will discuss in Section 4.1, we face a number
of challenges due to the tiled display system. First, as demonstrated in Chapter 3, generating
visualizations at the full resolution of the tiled display system proves challenging. Also, updates
to the di↵erent monitors have to be synchronized to ensure a coherent image across the display.

To solve these challenges, we propose and implement a ‘tiled visualization approach’ in which
each GPU in the tiled display system renders the visualization to be displayed on the monitors
directly attached to it. This also enables ‘in situ’ visualization, where the data computed by each
GPU is visualized and displayed without transferring it to other parts of the system. The latter
significantly reduces the amount of PCIe bandwidth utilization for each GPU. Finally, through a
multi-threaded implementation of the approach, in which each thread addresses a di↵erent GPU,
we are allowed to improve the coherency of the image that is displayed, by synchronizing the
commands that initiate updates to monitors connected to di↵erent graphics cards.

Before detailing this approach, we study how to interactively visualize the Mandelbrot draw-
ings on a single-monitor machine in Section 4.1. Next, in Section 4.2 we discuss why the multi-
monitor support provided by the Linux operating system does not scale the single-monitor im-
plementation to all of the monitors in BigEye. Finally, in Sections 4.3 through 4.5, we describe
our tiled visualization approach, and discuss our results from implementing the Mandelbrot
visualization using it.

4.1 Single-Monitor Scenario

Before studying how to visualize drawings on the tiled display system, we consider a single-
monitor desktop system. This allows us to isolate the time spent on displaying the Mandelbrot
drawings, without considering any overhead resulting from using the multiple monitors and
graphics cards in the tiled display system.

Display Loop and In Situ Visualization

To interactively visualize the Mandelbrot drawings, we use a display loop that continuously
computes and displays a Mandelbrot drawing for the part of complex plane that the user wants

27

to view. The drawing is first computed using either the CPU or GPU implementation of the
drawing algorithm, and stored in an OpenGL Pixel Bu↵er Object (PBO). The PBO is displayed
on the monitor by setting it as the source of an OpenGL texture that is drawn to a window
spanning the entire monitor. Since this window is a double-bu↵ered drawable, all drawing occurs
to an invisible back-bu↵er. The contents of this back-bu↵er are only displayed once its contents
are exchanged with the visible front-bu↵er through a bu↵erswap. This bu↵erswap completes
the display loop, which then proceeds with its next iteration by recomputing the Mandelbrot
drawing.

For the GPU implementation, this design allows for ‘in situ’ visualization by mapping the
PBO directly into CUDA memory. When computing the Mandelbrot drawing using CUDA,
results can then be stored directly in the PBO, eliminating the overhead of transferring results
from CUDA GPU memory, via CPU memory, to OpenGL GPU memory. Figure 4.1 depicts the
display loop described in this paragraph, for both the CPU, GPU and in situ GPU approaches.

derive what part of the complex
plane to draw

compute Mandelbrot drawing

upload results to PBO/GPU
memory

draw texture from PBO

START

initialize:
select OpenGL context, make

current

bufferswap

(a) CPU

derive what part of the complex
plane to draw

copy results to CPU memory

compute Mandelbrot drawing
using CUDA

upload results to PBO/GPU
memory

draw texture from PBO

START

initialize:
select OpenGL context, make

current

bufferswap

(b) GPU

derive what part of the complex
plane to draw

compute Mandelbrot drawing
using CUDA

map PBO into CUDA

map PBO into OpenGL

draw texture from PBO

START

initialize:
select OpenGL context, make

current

bufferswap

(c) GPU, in situ

Figure 4.1: Overview of the display loop for CPU, GPU and in situ implementations of the
Mandelbrot drawing algorithm. Green boxes correspond to calls to the CUDA API, blue boxes
correspond to calls to the OpenGL API.

To enable users to interact with the Mandelbrot drawing that is displayed, an ‘event thread’
waits for keyboard and mouse events to arrive. According to the keyboard and mouse inter-
actions by the user the view-state, which represents the part of the complex plane for which
the Mandelbrot drawing is computed, is updated. As such, a user can navigate around the
Mandelbrot set through panning and zooming.

Display Time

We evaluate the time required to display computed Mandelbrot drawings for each variant of the
display loop discussed in the previous section. This ‘display time’ includes the time spent updat-
ing the PBO, which is not needed for the in situ approach, up-to and including the bu↵erswap.

28

It thus excludes the time required to compute the Mandelbrot drawing. For our experiments,
we temporarily disable synchronization between the bu↵erswap and the monitor’s refresh, to
exclude any time the bu↵erswap operation might spend waiting for the monitor’s next refresh.
This was achieved using the EXT swap control [48] extension to OpenGL.

We measured the average (wall-clock) display time using BigEye, which was configured to
use only one of the 1920 ⇥ 1080 pixel monitors, over the first 25 iterations of the display loop.
The dimensions of the Mandelbrot drawings were ranged from 40⇥ 40 to 5120⇥ 5120 pixels. To
stabilize the CPU clock rate between di↵erent measurements, we set the CPU frequency governor
for all CPU cores to the ‘performance’ setting. Figure 4.2 presents our results.

Figure 4.2: Average display time for the CPU, GPU and in situ GPU display loops.

As one would expect, displaying results through an in situ visualization approach requires
the least amount of time. Still, the display time for the GPU implementation is smaller than
expected. Since the GPU display loop requires each computed Mandelbrot drawing to be trans-
ferred twice between GPU and CPU memory for display, whereas this has to be done once for
the CPU display loop, we would expect the GPU display time to be twice that of the CPU
implementation. We have no explanation why our results do not reflect this, other than that
the transfer from CUDA GPU memory to CPU memory might be implemented more e�ciently
than the transfer from CPU memory to OpenGL GPU memory.

29

Conclusion

For image dimensions up to 640 ⇥ 640 pixels, the overhead of displaying computed Mandelbrot
drawings is limited to milliseconds for all implementations of the display loop. As resolutions in-
crease beyond this threshold, an in situ approach is an order of magnitude faster than the CPU
and GPU implementations. Combining this with our results from Chapter 3, which showed
that the GPU implementation of the Mandelbrot drawing algorithm scales to the greatest image
dimensions, we conclude that the GPU in situ visualization approach is best suited to interac-
tively visualize the Mandelbrot set on BigEye. As such we focus on this implementation for the
remainder of the exploratory study.

4.2 Multi-Monitor Graphics on Linux

In this section we discuss the multi-monitor support provided by the window system and graphics
card drivers on Linux, to evaluate if these can be used to scale the single-monitor implementation
of the Mandelbrot visualization presented in Section 4.1 to span all monitors in a tiled display
system. We focus specifically on the system available to us, which consists of a single machine
running Ubuntu 16.04.3 LTS, with 12 monitors with a resolution of 1920⇥1080 pixels connected
to it through three NVIDIA GeForce GTX660 graphics cards. Full details on the system, named
BigEye, can be found in Chapter 2. For a more general overview of programming tiled display
systems for visualization, we refer the reader to [34].

Window System Support

The X Window System [49] adopted by most Linux distributions has traditionally provided
multi-monitor support through the Xinerama extension. In the X Window System, physical
display devices can be represented by X Screens, which Xinerama can unify in a single logical X
screen. This allows applications to address all physical display devices connected to the system
through a single X screen, instead of multiple X screens. To the best of our knowledge, using
Xinerama thwarts manually implementing distributed rendering using OpenGL on all GPUs,
since the NVIDIA implementation of OpenGL exposes GPUs for accelerated rendering through
the X screen to which they are associated. Merging all X screens into a single logical X screen
through Xinerama thus makes it impossible to manually address di↵erent GPUs.

Besides Xinerama, the X Resize, Rotate and Reflect extension (RandR) also provides multi-
monitor support for systems using multiple graphics cards, since RandR version 1.4 [18]. Unfor-
tunately this version of RandR is not fully supported by latest version of the proprietary NVIDIA
driver (390.42) for the graphics cards in our system [42].

Driver Support

Multi-monitor support is also provided by various graphics card drivers. Here we focus on the
most recent version (390.42) of the proprietary NVIDIA driver that is available for the graphics
cards in our system. Using the NVIDIA driver up to four display devices connected to a single
graphics card can be presented as a single uniform display device to the X window manager.
In doing so, a single frame-bu↵er is allocated for all monitors connected to a graphics card.
Still, when using OpenGL, updates to the monitors connected to a GPU only synchronize with
the refresh of a single monitor [41, 40]. Hence tearing artifacts can still occur between display
devices.

Similar functionality is also available for display devices connected through multiple graphics
cards. Unfortunately this is limited to three display devices, without synchronization, when

30

using the consumer-grade GeForce graphics cards in our system [39]. These restrictions do not
hold when using graphics cards sold for professional use, such as NVIDIA Quadro products.
However, depending on the number of displays and graphics cards, dedicated hardware might
still be necessary to synchronize updates to displays that connect to di↵erent graphics cards.

Evaluation

To scale the single monitor implementation presented in Section 4.1 to all monitors in BigEye,
we configure the NVIDIA driver to present all monitors connected to a given GPU as a single
display device to X. This results in three X screens, each representing a column of monitors,
which we subsequently combine into a single logical X screen using Xinerama. As such, regular
X applications can run across all monitors in the tiled display system.

Unfortunately this resulted in two issues when used to run the single-monitor Mandelbrot
implementation on all monitors in BigEye. First, navigating around the Mandelbrot set resulted
in significant tearing artifacts between monitors connected to di↵erent graphics cards, as depicted
in Figure 4.3. Moreover, we achieved a framerate of approximately 6.5 frames per second (fps).
A multi-GPU implementation of the Mandelbrot drawing algorithm might improve performance,
however even a linear speedup would not improve the framerate beyond 3 ⇤ 6.5 = 19.5 fps. Since
this still falls short of real-time performance, we do not consider this option at this point.

Figure 4.3: Tearing artifacts between di↵erent monitors.

4.3 Tiled Visualization Approach

To solve the performance and synchronization issues discussed in the previous sections, we pro-
pose to employ a ‘tiled visualization approach’ in which each GPU in the tiled display system
renders the visualization to be displayed on the monitors directly attached to it. This allows

31

for ‘in situ’ visualization, where each GPU visualizes and displays the (GPGPU computed) data
residing on it, without transferring this data to other parts of the system. For the Mandelbrot
application we thus assign the part of the complex plane to be computed by a given GPU, to
be the part that is displayed by that GPU. Benefits of the approach are that the computational
power provided by all GPUs is employed to scale to the high resolution of the tiled display
system. Also, no transfers over the PCIe bus are required to visualize results computed on the
GPUs. Also, by individually addressing the di↵erent GPUs, we can potentially reduce tearing
artifacts between di↵erent monitors.

To realize the aforementioned approach on BigEye, we configure the NVIDIA driver to pro-
vide a single framebu↵er and X screen for monitors connected to the same graphics card. For
BigEye, this results in three X screens, each representing a column of monitors. We display the
Mandelbrot drawing for each of these columns using the ‘in situ’ display loop described in Sec-
tion 4.1. This loop runs in parallel, on a di↵erent CPU thread for each of the graphics cards in
the tiled display system. We synchronize the bu↵erswap calls between di↵erent threads through
a thread-barrier, to improve the synchronicity of updates to di↵erent monitors in the system.
Figure 4.4 illustrates this design.

derive what part of the complex
plane to draw

compute Mandelbrot drawing
using CUDA

map PBO into CUDA

unmap PBO from CUDA

draw texture from PBO

thread barrier

bufferswap

initialize system

fork
derive what part of the complex

plane to draw

compute Mandelbrot drawing
using CUDA

map PBO into CUDA

unmap PBO from CUDA

draw texture from PBO

bufferswap

derive what part of the complex
plane to draw

compute Mandelbrot drawing
using CUDA

map PBO into CUDA

unmap PBO from CUDA

draw texture from PBO

bufferswap

wait for input

update view-state from input

join

exit

START

Figure 4.4: Overview of the tiled visualization approach applied to Mandelbrot visualization on
BigEye, and implemented using multiple threads. Green boxes correspond to calls to the CUDA
API, blue boxes to calls to the OpenGL API. Event-processing commands are depicted in purple.
Branches indicated by dashed lines are taken when application should exit.

32

Note that each GPU operates on its own OpenGL and CUDA datastructures, without ex-
changing results with other GPUs or the CPU. Since this approach requires creating a distinct
OpenGL context for each of the GPUs, we have to disable Xinerama.

In the remainder of this section we further discuss a number of implementation details regard-
ing our implementation of the tiled visualization approach, concerning synchronizing updates to
the di↵erent monitors in the system, issues related to input handling and multithreaded access
to the X window system via a client library.

Monitor Synchronization

To ensure a coherent image on the tiled display system, updates to the monitors in the system
need to synchronize to both their vertical refresh, as well as to updates to the other monitors
in the system. If this is neglected, moving imagery can results in discontinuities, that appear as
horizontal or vertical tearing artifacts between past and current input to the display. For an ex-
ample of vertical tearing artifacts, see Figure 4.3. For our study we do not consider synchronizing
updates to the monitors with their vertical refresh, but rather focus on synchronizing updates
between the di↵erent monitors in the system. We deem the latter to be of greatest importance
in ensuring a coherent image across the di↵erent monitors.

Intra-GPU synchronization, of updates to monitors connected to the same graphics card, is
accounted for by the NVIDIA driver, given that we configure it to allocate a single framebu↵er for
all monitors connected to the same GPU, and given that we use double-bu↵ered drawables. Since
multiple graphics cards connect the monitors to the tiled-system, we also need to consider inter-
GPU synchronization, i.e. synchronizing updates to monitors that connect to di↵erent GPUs.
To this end we synchronize the function calls initiating updates for individual GPUs, between the
di↵erent GPUs. That is, we synchronize the the OpenGL bu↵erswap across the di↵erent CPU
threads executing the display loops. As shown in Figure 4.4, a thread-barrier blocks each thread
from advancing until all threads are ready to perform the bu↵erswap. However, by default the
NVIDIA driver synchronizes the OpenGL bu↵erswap operation for a given GPU to the vertical
refresh of one of the monitors attached to it [40]. If the monitors selected for this across di↵erent
GPUs are not synchronized in terms of their vertical refresh, this can introduce delays between
the bu↵erswaps on di↵erent GPUs. These delays can take up to 16.67 milliseconds, assuming a
refresh at rate of 60 Hz. Hence we disable the synchronization between bu↵erswap and vertical
refresh via the EXT swap control [48] extension to OpenGL. The image corruption introduced
by this is relatively minor and limited to one monitor per GPU. Besides, it potentially allows for
significant improvements in the framerate that is achieved, given that the bu↵erswap operation
no longer waits for the next refresh of one of the monitors. This is illustrated in Figure 4.5.

The inter-GPU synchronization approach presented in the preceding section leaves room for
improvement, since it only synchronizes the initiation of the bu↵erswap processes for di↵erent
graphics cards on the CPU, rather than the actual bu↵erswap operations, which occurs on the
graphics cards. For our system, it appeared impossible to enforce a synchronized bu↵erswap at
the level of the graphics card. The NVIDIA provided NV swap group [47] OpenGL extension
that accounts for this, was not available on the consumer-grade GeForce graphics cards we use.

33

Figure 4.5: Relation between the time required to generate a frame (visualization time) and
framerate, both with and without synchronizing bu↵erswaps with monitor refresh, for a monitor
with refresh rate of 60Hz.

The Event-Loop

Threads executing the display loops, i.e. the display threads, and the thread executing the event
loop, i.e. the event thread, concurrently access the view-state that represents the part of the
complex plane that the user wants to view. As such, updates to the view-state from the event
thread could be interleaved with reads by the display threads, during the generation of a single
video frame. For example, imagine that for a given frame the display thread controlling GPU 2
first reads the view state. Next, the view-state is updated from the event thread, after which the
display thread controlling GPU 1 read the view-state. If this occurs the di↵erent GPUs no longer
agree on the part of the complex plane that should be visualized, each working on a di↵erent
version of the view-state. This causes discontinuities in the visualization, as depicted in Figure
4.3.

We solve this by maintaining two copies of the view-state. The event thread only accesses one
of these two copies, the ‘event-view-state’, which it continuously updates based on user input.
The other copy, the ‘display-view-state’, is used by all display threads to determine what needs
to be drawn to the display. A single display thread copies the event-view-state to the display-
view-state, once all display threads have reached the thread-barrier. Display threads are released
from the barrier only after this copy completes.

34

X client library

Since we rely on the X window system to access graphics- and input-devices, choosing the ap-
propriate X client library proved crucial to successfully implement the proposed approach. It
appeared that Xlib [17] was not suited to this. Although we explicitly enabled multi-threading
support through the XInitThreads function, we observed that a call to XNextEvent, to retrieve
events from the event-queue, blocked all display threads. This could not be resolved by using a
distinct connection to the X server for each of the threads.

The ‘X protocol C-language Binding’ (XCB) [54] library did not present these issues. Using
XCB, it was possible to address the X server from all threads through a single connection. As
such, we used it for our implementation.

4.4 Results

We evaluate our implementation of the tiled visualization approach in comparison to the standard
implementation that served as our starting point, i.e. the single-monitor in situ implementation
presented in Section 4.1, running across all monitors of the BigEye system by means of Xinerama.
Note that using Xinerama voids the in situ property, since one GPU generates the entire visu-
alization, which is transferred over the PCIe bus for display on the monitors connected to other
GPUs. In evaluating our results, we consider the two goals for the tiled visualization approach:

1. Improve visualization performance such that real-time interactivity, in which the displayed
visualization reflects user input with the next monitor refresh, becomes a possibility. For
the monitors in BigEye this corresponds to achieving a frame-rate of 60 frames per second
(fps).

2. Achieve a coherent image across all monitors without tearing artifacts occurring as a result
of moving imagery.

Regarding the first goal, we consider both the worst- and average-case frame rates achieved
by both implementations. The worst-case performance is determined by viewing a part of the
Mandelbrot set that requires iteration up to nmax for all pixels. We approximate the average-case
frame rate by displaying the whole Mandelbrot set as it is depicted in Figure 3.1. Note that we
disable synchronization between the OpenGL bu↵erswap and the vertical refresh of the monitors
for both implementations. Table 4.1 provides our results.

Baseline Tiled Approach (Speedup)
Worst Case 4.4 25.2 (5.7⇥)
Average Case 6.5 47.9 (7.3⇥)

Table 4.1: Obtained framerates (fps) for Mandelbrot visualization on BigEye, using both the
single-GPU Xinerama baseline and the three-GPU tiled approach.

As the results demonstrate, the tiled visualization approach improves performance signifi-
cantly. Although true real-time performance at 60 fps is not achieved, we observe an average
performance improvement of 6.5⇥ between the two cases. The average case framerate of 48 fps
enables more responsiveness than the framerate of 7 fps achieved using the baseline Xinerama
implementation.

These performance improvements are in part due to using all GPUs in the system to compute
the Mandelbrot drawings, without requiring inter-GPU communication over the PCIe bus to

35

display resulting drawings on all monitors. The latter is illustrated by Figure 4.6 which compares
the PCIe utilization of each GPU for both implementations. We obtain this metric by querying
the GPUUtilization attribute in nvidia-settings [44], which is provided by NVIDIA and
which communicates with the proprietary NVIDIA driver.

Figure 4.6: PCIe utilization for each GPU during two runs of the Mandelbrot visualization, once
using Xinerama and once using the tiled visualization approach

The second goal, preventing tearing artifacts between di↵erent monitors, was approached
by synchronizing the calls that initiate the OpenGL bu↵erswap for each of the GPUs. As
discussed, this approach leaves room for improvement since it only synchronizes the initiation
of the bu↵erswap process on the CPU rather than the actual bu↵erswap on the GPU. Still, our
approach significantly reduces tearing artifacts compared to the implementation using Xinerama.
When operating at high framerates, only slight tearing artifacts between di↵erent monitors could
be observed. Tearing artifacts can be more significant when frame rates were reduced. The latter
is an additional motivation to disable the synchronization of the OpenGL bu↵erswap and the
vertical refresh of selected monitors.

36

4.5 Conclusion

In this chapter we presented and evaluated the tiled visualization approach in which each GPU in
a tiled display system renders the visualizations to be displayed on the monitors directly attached
to it. The approach was devised to improve over a standard solution using Xinerama in terms
of performance, i.e. the framerate that can be achieved, and in order to reduce tearing artifacts
between di↵erent monitors in the system. For our tiled display system, the approach enables
interactive visualization of the Mandelbrot set at its full resolution of 5760⇥4320 pixels. Although
true real-time performance at 60 fps was not realized, the worst-case framerate we achieved
was 25.2 fps, which is a performance improvement of 5.7⇥ over an implementation which uses
Xinerama to visualize Mandelbrot drawings generated using a single GPU. Besides improving
performance, the tiled visualization approach also reduces the tearing-artifacts between di↵erent
monitors to an acceptable level.

37

Part II

Network Visualization
The second part of this thesis presents our study of real-time interactive network visu-
alization on BigEye, the tiled display system used for this study. We focus especially
on large networks with tens of thousands of nodes and edges. Our starting point is
the tiled visualization approach presented in the previous part of the thesis. Guided
by this approach, an existing GPU implementation of the ForceAtlas2 graph layout
algorithm has been adapted to run on multiple GPUs. This resulted in a system en-
abling real-time interactive visualization for networks with tens of thousands of nodes
and edges, at a resolution of 5760⇥ 4320 pixels. To assess the interactive capabilities
of the system, we implemented basic navigation and a number of interactions using
the Nintendo WiiMote. This proved to be a more natural form of interaction on the
wall-sized display than standard keyboard and mouse interaction.

The chapters in this part of the thesis are organized as follows. In Chapter 5 we
first present the ForceAtlas2 algorithm, an existing GPU implementation of it, and
a GPU accelerated network renderer that allows for the visualization of the layout
process. Next, we evaluate the performance of the layout algorithm and network
renderer to determine the components that might benefit from an implementation
using multiple GPUs. The remainder of the chapter describes how we extend the
ForceAtlas2 implementation and network renderer by using multiple GPUs, as well
as the performance benefits this yields. In Chapter 6 we combine the distributed GPU
implementation of ForceAtlas2 and the network renderer with the tiled visualization
approach, to realize interactive network visualization on BigEye. Chapter 6 also
presents our assessment of the interactive capabilities of the resulting system using
the Nintendo Wii remote.

38

Chapter 5

Real-Time Network Visualization
using multiple GPUs

We approach network visualization on BigEye by means of the tiled visualization approach
described in the previous part of this thesis. To e↵ectively use this approach, we thus require
a network visualization code that runs on all GPUs in the system, which implements both the
network layout algorithm as well as a network renderer that generates network drawings from
the resulting layouts. In this chapter we describe our implementation of this, and we evaluate
whether it meets the demands of real-time visualization for a range of real-world networks.

However, we first present the ForceAtlas2 graph layout algorithm that we will use for the
remainder of this study, as well as an existing GPU implementation of it. Next, we describe
how we implemented a network renderer using OpenGL, to visualize the layouts computed us-
ing the GPU implementation of ForceAtlas2. Together, the network renderer and ForceAtlas2
implementation comprise our network visualization code, which we evaluate in Section 5.2 on a
range of real-world networks, to establish an initial threshold on the size of networks that can be
visualized in real-time using a single GPU. In Section 5.3 we determine to what extend we can
improve on this threshold, by adapting our network visualization code to run on multiple GPUs.
The final two sections present a discussion of our results as well as our conclusions.

5.1 ForceAtlas2

For the remainder of our study, we focus on the ForceAtlas2 [30] graph layout algorithm, which
we selected for a number of reasons. First, it is designed for interactive applications, due to its
origins in the well-known Gephi [2] network analysis software. Second, we presented an open
source implementation of the algorithm for the GPU in previous work [8], which will serve as the
starting point for the visualization system presented in this study. Finally, the algorithm largely
follows the general force-directed approach to graph layout, which potentially allows our results
with ForceAtlas2 to extend to other force-directed graph layout algorithms.

Like other force-directed graph layout algorithms, ForceAtlas2 approaches the graph layout
problem by considering the layout of a graph to be a physical system. Here nodes represent in-
teracting physical bodies, and the layout process corresponds to a simulation of their interactions
over time. An iterative procedure repeatedly displaces each node in the network in accordance
to the resultant force acting on it, which is composed of repulsive forces away from all other
nodes, attractive forces towards neighboring nodes, and a ‘gravitational’ force towards the origin

39

of the layout space. The repulsive forces between all node-pairs serve to move unrelated nodes
away from each other, whereas the attractive forces between neighboring nodes should cause
related nodes to move towards each other. The ‘gravitational’ force towards the origin of the
layout ensures that disconnected components remain in proximity to the other components of
the graph. To allow users to adapt the algorithm to their use-case, the magnitudes of repulsive
and gravitational forces are parameterized. Note that this design does not aim to reflect any
physical laws. Although this approach is similar to an n-body simulation, there are di↵erences.
For example, not the gravitational, but the the repulsive force in ForceAtlas2 corresponds to the
gravitational force as it is used in n-body simulations. Yet, the gravitational forces in n-body
simulations move bodies towards each other, whereas the repulsive forces in force-directed graph
layout algorithms move nodes away from each other.

Since force-directed graph layout algorithms simulate the evolution of the graph’s layout using
discrete time-steps, a time-step size needs to be selected. ForceAtlas2 rephrases this problem
as ‘speed’ selection, to make the concept more intuitive to users of the algorithm. High speeds
correspond to long time-steps, and thus to a faster evolution of the layout, but with a lower
precision. Low speeds correspond to small time-steps, and thus to a slower evolution of the
layout, but with a higher precision. A given node’s displacement, due to the resultant force
acting on it, is proportional to the node’s local speed. A node’s local speed, in turn, is based
on the extend to which it oscillates around a certain point, described as the node’s ‘swing’, as
well as a ‘global-speed’ a↵ecting all nodes. The global-speed is adapted as the layout process
advances in order for the layout to converge to some configuration. We do not discuss how the
global speed is updated between consecutive iterations, as well as a number of settings that allow
users to adapt the force-model employed by the algorithm, but refer the reader to [30] for more
details.

A direct implementation of ForceAtlas2, as described in the preceding paragraph, would
result in evaluating all node-pairs to calculate the repulsive force acting on each node. As such
it would yield a computational complexity in ⇥(|V |2). Naturally this does not scale well to large
networks. Repulsive forces between all node pairs are thus approximated using the Barnes-Hut
algorithm [1], which employs a quadtree 1 representation of the graph layout to approximate
the pair-wise force interactions. The quadtree is constructed by recursively splitting the layout
space into four equally-sized rectangular cells, until no cell contains more than a single node. The
resulting structure is stored as a quadtree with cells represented by the nodes in the quadtree,
and leaves in the quadtree representing the nodes in the graph layout. See Figure 5.1 for an
example. Each node in the quadtree holds aggregate information, such as the center of gravity,
of the graph nodes nested in the sub-tree rooted at it.

To approximate the repulsive force acting on a given node in the layout using the quadtree,
one traverses the tree from its root. The traversal of the quadtree stops at tree nodes whose
center of gravity is too distant from the position of the graph node for which we traverse the
tree. In this case the aggregate information on nested graph nodes is used. As such, the number
of nodes to be considered when computing the repulsive force can be reduced from ⇥(|V |) to
⇥(log |V |). Since the computational complexity of computing attractive forces is in ⇥(|E|), and
since gravitational forces can be applied in ⇥(|V |) time, the computational complexity of one
iteration of the ForceAtlas2 Algorithm is then in ⇥(|V | log (|V |) + |E|).

Algorithm 4 presents pseudocode for ForceAtlas2, which describes the procedure discussed in
this paragraph more formally.

1For three-dimensional spaces an octree is used.

40

Algorithm 4 Pseudocode for a simplification of the ForceAtlas2 graph layout algorithm, adapted
from [8]. Full details on the original ForceAtlas2 algorithm can be found in [30].

Input: Graph G = (V,E), itmax (number of layout iterations), kg (gravitational force scalar)
and kr (repulsive force scalar), ✓ (Barnes-Hut accuracy).
Output: For each v 2 V , a position pv 2 R2.

. Initialize variables
1: global speed 1.0
2: for all v 2 V do

3: pv random()
4: fv (0.0, 0.0)> . Net force on node v

5: f
0
v (0.0, 0.0)> . f

0
v is fv of preceding iteration

6: end for

. Start layout process
7: for i = 1! itmax do

8: BH.build() . (Re)build Barnes-Hut tree
9: for all v 2 V do

10: fv fv � kg ⇤ (deg(v) + 1) ⇤ pv . (Strong) Gravity
11: fv fv + kr ⇤BH.force at(pv, deg(v), ✓) . Repulsion
12: for all w 2 neighbors(v) do
13: fv fv + (pw � pv) . Attraction
14: end for

15: end for

16: global speed UpdateGlobalSpeed()
17: for all v 2 V do

18: pv local speed(v) ⇤ fv . Displacement
19: f

0
v fv

20: fv (0.0, 0.0)>

21: end for

22: end for

23: function local speed(v) . for a node v

24: return
global speed

1.0+global speed
p

swing(v)

25: end function

26: function swing(v) . for a node v

27: return |fv � f
0
v|

28: end function

41

0 1

2

5
3

4
1

2 3

0 5 4

Figure 5.1: Network drawing (left) with corresponding quadtree (right), as it would be con-
structed for the purpose of repulsive force calculation using the Barnes-Hut[1] approximation
algorithm.

5.2 GPU Implementation

Due to the parallel nature of force-directed graph layout algorithms, which involve many in-
dependent per-node force calculations, parallel implementations have the potential to scale to
significantly larger networks than serial implementations. For our study we consider the open
source CUDA implementation of ForceAtlas2 described in [8]. Figure 5.2 depicts the di↵erent
CUDA kernels comprising this implementation, as well as how they relate to the pseudocode of
the ForceAtlas2 algorithm presented in Algorithm 4. Note that the CUDA implementation of
the Barnes-Hut algorithm used by this ForceAtlas2 implementation is due to [9]. For further
details on these implementations, we refer readers to corresponding papers.

Drawing Networks Using OpenGL

To visualize the layout process, we extend the GPU implementation of ForceAtlas2 with a network
renderer, implemented using OpenGL 4.1 (Core Profile) [50]. OpenGL was chosen since it is
currently the only GPU accelerated graphics library whose data structures can be mapped into
CUDA memory [46]. Since we use a CUDA implementation of ForceAtlas2, in situ visualization
of the layout process can thus only be achieved using OpenGL. We represent the network data

42

Gravity AttractiveForce

each each

l. 12-14l. 10

Displacement

each

l. 18

ForceApproximation

each

l. 11

Init & Start

TreeBuild

each

Cell Node

l. 8

UpdateSpeed

each

l. 16

BodyRepulsion

End
Δ global speed

Figure 5.2: Di↵erent CUDA kernels (depicted as boxes) as they used in our GPU implementation
of ForceAtlas2. For each kernel, the unit processed by CUDA threads is depicted (topright
corner), as well as line numbers corresponding to the pseudo code in Algorithm 4 (gray boxes).
Figure reproduced from [8].

in OpenGL as follows.
All node positions are stored in an OpenGL bu↵er object, which is indexed by node identifiers

(node IDs) that range from 0 to |V |. Both the CUDA implementation of ForceAtlas2, as well
as the OpenGL network renderer, operate directly on this OpenGL bu↵er. Additional node
attributes can be represented in additional bu↵ers, or can be interleaved with the data on nodes’
positions. Such data could be accounted for in di↵erent stages of the OpenGL pipeline, and as
such could be reflected in the appearance of nodes. For example, this would allow nodes to be
sized or colored based on a property, such as their degree. The network’s edges are also stored
in an OpenGL bu↵er object, by consecutively storing the source- and target-node IDs for each
edge. This data is uploaded only once to OpenGL, and is not shared with CUDA, given that it
remains static throughout the layout process.

To draw the a network from this data, we use a shader-based approach. We draw the network’s
nodes by generating OpenGL point primitives, of which the positions are specified using the bu↵er
object containing node positions. A fragment-shader is used to transform the square shapes that
result from this into circles as described in [38]. The fragment shader implements this by reducing
the opacity of each primitive’s fragments based on their distance to center of the primitive
by means of the smoothstep function. In contrast to simply discarding fragments beyond a
certain radius, this ensures smooth rather than ragged circles. Edges are drawn as OpenGL line
primitives, whose starting- and end-points are specified by using the bu↵er representing edges
using their source- and target-IDs, as indices into the bu↵er storing node positions.

In order to enable user navigation, a vertex shader contains uniforms representing the current
view. Using the vertex shader, all vertices are translated according to these uniforms, which are
updated in correspondence to users their interactions.

43

Display Loop for Network Visualization

The network visualization approach described in the preceding sections, comprising graph layout
using CUDA and network rendering using OpenGL, results in the the display loop depicted in
Figure 5.3. As shown, networks are visualized by alternating between the CUDA implementation
of ForceAtlas2 to advance the layout process, and drawing the results using the OpenGL network
renderer.

map node positions
into CUDA

map node positions
into OpenGL

ForceAtlas2 iteration

update view uniforms
from input

draw nodes

START

init
load graph, initialize CUDA and

OpenGL data structures

draw edges

buffer swap

Figure 5.3: Display loop used for our network visualizer. Green boxes correspond to calls to the
CUDA API, blue boxes correspond to calls to the OpenGL API.

Performance Measurements

We evaluated the network visualization approach described in the preceding section on a range
of real-world networks, to establish a threshold on the size of networks that can be visualized
interactively in real-time. As for the preliminary study on Mandelbrot visualization, we consider
real-time visualization feasible when frames are generated and displayed at the refresh rate of
the monitors. Since the monitors in BigEye operate with a refresh rate of 60 Hz., this bounds
the time available time to generate a frame to 1

60 s ⇡ 16.67ms. As such, the combined running
time of the ForceAtlas2 layout algorithm and the network renderer must remain below 16.67ms.
Note that, as for the Mandelbrot visualization problem, this is an upper bound since resulting
drawings need to be transferred to the framebu↵er for display, and since this time is shared with
other processes on the system.

We evaluated our approach on BigEye using a single NVIDIA GTX660 graphics card. We
use a range of real-world networks for our experiments, which are further detailed in Appendix
A. We measured the average iteration duration over the first 500 iterations of the display loop,

44

setting fr = 80, fg = 1 and ✓ = 1 with the gravity mode set to ‘strong’. Drawings were rendered
at a resolution of 5760⇥ 4320 pixels, matching the resolution of the BigEye tiled display system
we use for this study. Note that we do not display drawings, but only consider the time required
to generate them. Table 5.1 presents our results.

Network Nodes Edges tfa2 tdn tde ttotal

CA-GrQc 4,158 13,422 1.79 (0.09) 0.13 (0.03) 1.92 (0.62) 3.85
petster 1,788 12,475 1.34 (0.05) 0.11 (0.03) 3.99 (0.42) 5.44
ppi dip swiss 3,766 11,922 1.82 (0.05) 0.13 (0.03) 3.67 (0.44) 5.62
PGPgiantcompo 10,680 24,316 3.84 (0.32) 0.21 (0.03) 2.90 (1.38) 6.95
ca-HepTh 8,638 24,806 3.68 (0.19) 0.19 (0.03) 4.44 (1.17) 8.31
dip 19,928 41,202 7.85 (0.36) 0.32 (0.04) 8.28 (2.14) 16.45
ca-CondMat 21,363 91,286 8.28 (0.39) 0.33 (0.04) 15.85 (4.44) 24.46
Newman-Cond mat 22,015 58,578 9.64 (0.23) 0.34 (0.05) 16.14 (2.19) 26.12
ca-HepPh 11,204 117,619 4.64 (0.19) 0.21 (0.02) 26.27 (5.06) 31.13
wiki-Vote 7,066 100,735 3.33 (0.21) 0.17 (0.03) 32.77 (4.10) 36.26
ppi 37,333 135,618 14.16 (0.93) 0.52 (0.06) 22.35 (7.67) 37.03
GoogleNw 15,763 148,585 6.50 (0.35) 0.26 (0.03) 42.64 (10.11) 49.40
ca-AstroPh 17,903 196,972 7.22 (0.25) 0.29 (0.03) 43.51 (7.70) 51.02
email-Enron 33,696 180,811 12.56 (1.13) 0.46 (0.04) 44.89 (9.98) 57.91
p2p-Gnutella31 62,561 147,877 24.26 (1.12) 0.78 (0.08) 42.26 (5.57) 67.30
Brightkite 56,739 212,945 22.80 (1.22) 0.75 (0.07) 44.64 (9.65) 68.18
Cit-HepPh 34,401 420,784 14.26 (0.55) 0.49 (0.05) 63.14 (19.03) 77.88
Cit-HepTh 27,400 352,021 11.60 (0.40) 0.41 (0.05) 74.53 (16.44) 86.54
soc-Epinions1 75,877 405,738 30.90 (1.87) 0.93 (0.09) 123.24 (19.09) 155.08
email-EuAll 224,832 339,924 100.63 (25.76) 2.73 (0.11) 87.69 (37.80) 191.06
soc-Slashdot0902 82,168 504,230 35.62 (1.40) 1.02 (0.08) 182.22 (12.45) 218.86
Average 52.67% 1.43% 45.90%

Table 5.1: Average running times for di↵erent components of the display loop used for network
visualization. We report on the time spent on advancing the layout (tfa2), drawing the nodes
(tdn) and the drawing edges (tde). Times are in milliseconds, and averaged over the first 500
iterations. Standard deviations are denoted between braces and the dashed line indicates the
real-time threshold.

The results in Table 5.1 demonstrate that the majority of the time in the display loop is spent
on computing the layout (tfa2) and on drawing the edges (tre). The time required to draw the
nodes (trn) is small, taking only a few percent of the total iteration time for most networks. We
did not expect the edge drawing time to constitute a significant part of the total visualization
time. Further analysis, see Figure 5.4, did not suggest a superlinear relationship between the
number of edges and the edge drawing time. For future implementations of the network renderer
we would consider the use of OpenGL triangle primitives to draw the edges, instead of using the
provided line primitives. Given the prevalence of triangle drawing in most 3D computer graphics
applications, to which the GPU platform and software is optimized, we hypothesize that this
primitive might yield better performance than the line primitive.

45

Figure 5.4: Relation between the time required to draw the edges in a network, and the number
of edges.

5.3 Multi-GPU Implementation

To scale our network visualization approach to larger networks, we considered the performance
benefits that could be obtained by using multiple GPUs. Given that the majority of the visualiza-
tion time is spent on ForceAtlas2 and on network rendering, we focus exclusively on distributing
these components between multiple GPUs. Our objective in doing so is to use the increased
processing power provided by multiple GPUs, rather than using the increased amount memory
that is available. This, given that the former limits the size of networks that can be visualized in-
teractively in real-time. For example, the email-EUAll network, with 224,832 nodes and 339,924
edges, requires at most 100 MiB of memory, which is approximately 5% of the memory available
on a single NVIDIA GTX660 graphics card. As such, we allocate a copy of all data structures on
each GPU. Besides simplifying our implementation, duplicating data across di↵erent GPUs also
reduces the need for communication between GPUs, potentially improving performance. Only
the partial results computed by each GPU need to be transferred to the other GPUs.

We evaluate the degree to which the performance of our multi-GPU implementations scales
with the number of GPUs using a dedicated multi-GPU machine of which we use six GPUs.
Besides, we also evaluate the combined e↵ect of our multi-GPU ForceAtlas2 implementation
and network renderer on BigEye, using the using the same set of real-world networks used in

46

preceding experiments.

Distributing ForceAtlas2

As shown in Table 5.1, a significant part of the visualization time is spent on the ForceAtlas2
graph layout algorithm. To further analyze this result, we measured the running times for
individual components of our ForceAtlas2 implementation using the NVIDIA nvprof profiler
tool [45]. Our results for a number of datasets, presented in Figure 5.5, demonstrate that
force approximation using the Barnes-Hut algorithm accounts for approximately 80% of the
running time, on average. Hence, we initially focused on utilizing multiple GPUs to improve the
performance of the force approximation component of ForceAtlas2.

To this end, we initially considered using the Bonsai [3] tree-code for force approximation,
given that it is designed to operate on (large) distributed GPU systems. Although the Bonsai
code is available as open source software, motivating our initial interest, incorporating it has
proven to be too challenging and time consuming for the present study. This was mainly due
to the time that was required to extract the subset of Bonsai’s functionality that is required for
graph layout. This involved, for example, adapting numerous data structures and procedures,
each involving (very) low-level optimizations, to operate in a two-dimensional graph layout space
instead of the three-dimensional space used in simulating the evolution of galaxies. This was
not feasible within the time constraints for the present study. As such we decided to adapt the
existing force approximation code [9] that is used in our ForceAtlas2 implementation, to run on
multiple GPUs.

The repulsive force approximation computation was distributed between GPUs by partition-
ing the network’s nodes into equally sized parts, and assigning a di↵erent part to each GPU.
We partition the set of nodes after they have been sorted according to their spatial proximity,
such that nodes assigned to the same streaming multiprocessor on a given GPU are in spatial
proximity of each other. As described by the authors of the force approximation code [9], this
is important to achieve good performance. After approximating the repulsive forces on each
GPU, a reduction process takes place in which each GPU transfers its results to a designated
master GPU. The master GPU aggregates the partial results, updates the global speed based
on the results, and displaces nodes according to the force acting on them. Note that these three
steps occur only on the master GPU. To complete the iteration of the ForceAtlas2 algorithm,
the master GPU broadcasts updated node positions to other GPUs, such that each GPU again
holds an up-to-date copy of all data. As shown in Figure 5.5 the speed-update and node displace-
ment comprise a small fraction of the total iteration duration, which is why we do not consider
distributing them between the GPUs.

Note that our work distribution does not assign the nodes displayed by a given GPU to
that same GPU for repulsive force approximation. Although this would allow for true in situ
visualization, it would pose a number of problems. For example, if nodes move between monitors
connected to di↵erent GPUs, either as a result of user interaction or as the result of layout process,
they would need to be assigned to a di↵erent GPU. Especially during the initial iterations of
the layout algorithm, which involves large displacements for most nodes, this would result in
significant amounts of inter-GPU communication. Besides, distributing nodes to di↵erent GPUs
based on their location in the layout would not always allow for a balanced computational load
between the di↵erent GPUs.

Scalability

We evaluate the scalability of our multi-GPU implementation on a dedicated multi-GPUmachine.
For our experiments we use six NVIDIA GeForce GTX 980Ti graphics cards, which are based on

47

Figure 5.5: Fraction of the time spent in di↵erent components of ForceAtlas2, averaged over the
first 500 iterations. Running times and numeric results can be found in Table B.1.

the NVIDIA Maxwell microarchitecture. The system runs CentOS 7.5, and uses the propriatary
NVIDIA driver (version 396.26), and version 9.2.88 of the CUDA Toolbox. The peak performance
of the GPUs in this system is significantly greater than the peak performance of the GPUs
installed in BigEye, the tiled display system used for this study. As such we (temporarily)
consider a set of larger networks for our experiments. As for the networks used in preceding
experiments details on these networks can be found in Appendix A. In our experiments we
measure the speedup of the average iteration duration, over the first 500 iterations of the layout
algorithm, using up to six GPUs. We set fr = 80, fg = 1, ✓ = 1 and set the gravity setting
of ForceAtlas2 to ‘strong’. Figure 5.6 depicts the speedups we observed, as well as the speedup
that would from a linear speedup in the force approximation component that we distribute
across multiple GPUs. The latter is derived from the average fraction of time spent on force
approximation, across the di↵erent networks we evaluate, and denoted as ‘Linear Speedup of
82.91%’.

48

Figure 5.6: Performance scaling of our multi-GPU implementation of ForceAtlas2. Legend de-
notes network name and (|V |, |E|).

As our results in Figure 5.6 depict, the speedup of ForceAtlas2 we obtained for the di↵erent
networks generally follow the trend corresponding to the speedup that would follow from a linear

49

speedup of the force approximation component. The speedup gained by using additional GPUs
diminishes as the number of GPUs increases, given that parts of ForceAtlas2 other than the
multi-GPU force approximation start to dominate the layout time. Although this limits the
scalability of our approach, this e↵ect is less severe for our intended use-case with three GPUs.
The obtained speedups generally increase with network size, which can be explained as the result
of an increasing degree of parallelism being available to the system. Still, the ‘wiki’ and ‘orkut’
networks, the two largest we consider used for our experiments, yield small speedups given their
size. We attribute this to the relatively large number of edges in these networks, i.e. their higher
density, compared to the other networks. Indeed, as the single-GPU evaluation in Figure 5.7
shows, the wiki and orkut networks spend a larger proportion of the layout time on computing
attractive forces between neighboring nodes. Given that only the repulsive force calculation is
distributed between di↵erent GPUs, the speedup we obtain will be less for networks that spend
more time in other components.

Figure 5.7: Fraction of the time spent in di↵erent components of ForceAtlas2 for the single GPU
implementation, and the datasets and GPU model used in the scalability experiments. Derived
from average running times for the di↵erent components over the first 500 iterations.

Multi-GPU Workload Composition

To determine how the multi-GPU implementation of ForceAtlas2 a↵ects the fraction of time
spent in di↵erent components of the algorithm, we reproduce Figure 5.5 for the multi-GPU im-
plementation running on two of the GPUs in BigEye. The result, shown in Figure 5.8, illustrates
that the the force approximation component still comprises the majority of the running time for a
single iteration of ForceAtlas2. Still, as expected, the fraction of time spent in other components
does increase. Figure 5.8 also shows the time spent on inter-GPU memory transfers is negligible
compared to the time spent on the most time-consuming components.

We discuss the overall speedup obtained using the multi-GPU implementation of ForceAtlas2
on BigEye after discussing our distributed network rendering approach.

Distributing Network Rendering

Since rendering network drawings comprises approximately 46% of the visualization time, of
which 45% is due to the time spent on drawing the network’s edges, we also distributed the

50

Figure 5.8: Fraction of the time a GPU spends in di↵erent components of ForceAtlas2, for the
multi-GPU implementation running two GPUs in BigEye. Derived from average running times
for the di↵erent components over the first 500 iterations.

network renderer across multiple GPUs. As for the distributed ForceAtlas2 implementation, all
datastructures are duplicated on the di↵erent GPUs.

To distribute the render work across GPUs, the layout space was partitioned into equally
sized columns, and each GPU was assigned a column for which to render the network drawing.
See Figure 5.9 for an illustration. Although the same render commands are issued to each GPU,
vertices on each GPU are translated di↵erently to reflect the partitioning of the layout space.
This causes each GPU to discard vertices which are part of the layout space assigned to other
GPUs, via vertex clipping in the OpenGL pipeline.

We evaluated the scalability of our multi-GPU rendering approach using the same machine
used to evaluate the multi-GPU implementation of ForceAtlas2. The same set of networks is
used, and we again determine the speedup for the average iteration duration over the first 500
layout steps, setting fr = 80, fa = 1,, ✓ = 1 and the gravity mode to ‘strong’. During the layout
process, we adapt the view after each iteration to ensure that the layout continues to span the
image which we render. This is important to, for example, ensure that no parts of the layout get
clipped and discarded, which would a↵ect performance.

As our results in Figure 5.10 depict, performance scales up to six GPUs without significant
saturation for most datasets. Notable are the reduced speedups when using uneven numbers of

51

Figure 5.9: Partitioning of the layout when using six GPUs, numbers in parts correspond to
GPUs responsible to render network in corresponding part.

GPUs. This e↵ect is strongest when using three GPUs, and it diminishes as the number of GPUs
increases. We explain this as the result of sub-optimal load balancing between the GPUs. When
using an odd number of GPUs, the layout space is partitioned into an odd number of columns.
As a result, the center of the layout will be assigned to a single GPU for rendering. Since the
layouts that are generated are circular, there might be a tendency for most edges to cross the
center of the layout, which would result in an increased amount of work being assigned to the
GPU rendering the center of the layout.

Since the majority of the network rendering time consists of drawing the network’s edges,
see Table 5.1, we would expect networks with many edges to benefit especially from a multi-
GPU implementation of the network renderer. This is not the pattern revealed by Figure 5.10.
To investigate the cause of this, we considered the layouts for the ‘com-amazon’ and ‘cnr 200’
networks, since these are the networks that benefit the most, and the least from a multi-GPU
implementation, respectively Figure 5.11 depicts the layouts for both networks. Clearly, the
‘cnr 2000’ network is more structured than the ‘com-amazon’ network. This might explain the
di↵erences in scalability for these networks. Although the layout for the ‘com-amazon’ network
is not readable, it is uniform. This ensures a more uniform load-distribution between GPUs,
given our work distribution.

52

Figure 5.10: Performance scaling of our multi-GPU network renderer. Legend denotes network
name and (|V |, |E|).

Multi-GPU Visualization on BigEye

The combined performance improvements provided by the multi-GPU visualization approach on
BigEye, involving both multi-GPU layout and rendering, are presented in Table 5.2. For our

53

(a) cnr 2000 (b) com-amazon

Figure 5.11: Layouts for two datasets from the experiments. Saturation of node colors correspond
to degree.

experiments we used all of the three GPUs in BigEye and the same set of real-world networks
used in our initial evaluation of the single GPU visualization approach, of which the results are
presented in Table 5.1. Note that we now enable peer-to-peer data transfers between the GPUs
in BigEye, thus bypassing CPU memory. This was not possible between all of the GPUs used
for the scalability experiments, which is why we only consider this option at this point.

As shown in Table 5.2, the multi-GPU approach provides speedups for all networks we evalu-
ated. As the network size increases, a speedup of approximately 1.7⇥ is realized. Consequently,
this extends the set of networks that can be visualized in real-time with the ‘ca-CondMat’,
‘Newman-Cond mat’ and ‘ca-HepPh’ networks.

5.4 Discussion

We were able to obtain performance improvements for our network visualization approach through
the use of multiple GPUs. However, we expect that significant improvements can still be made.

For future work on the distributed ForceAtlas2 implementation, we would initially consider
improving the performance of the force approximation component. As Figure 5.8 reveals, the
force approximation component of ForceAtlas2 continues to comprise the majority of the iteration
duration, even after parallelization using multiple GPUs. Further performance improvements
might also be realized by distributing additional ForceAtlas2 components, besides the force
approximation computation, across multiple GPUs. As the scalability results in Figure 5.6
shows, this is crucial to ensure performance scales when using increasing numbers of GPUs.
Distributing the computation of attractive forces between di↵erent GPUs might be considered
first to account for dense networks. Finally, alternative force approximation approaches could
be considered to improve performance. For example, the Bonsai code [3], which is designed to
utilize multiple GPUs.

We suggest future work on the network rendering implementation to focus on two prob-
lems. First, the factors limiting the performance of the edge drawing implementation could be

54

Network Nodes Edges tfa2 (Speedup) trender (Speedup) ttotal (Speedup)
CA-GrQc 4,158 13,422 2.00 (0.9⇥) 1.39 (1.5⇥) 3.39 (1.1⇥)
petster 1,788 12,475 1.62 (0.8⇥) 2.75 (1.5⇥) 4.37 (1.2⇥)
ppi dip swiss 3,766 11,922 2.00 (0.9⇥) 2.40 (1.6⇥) 4.39 (1.3⇥)
PGPgiantcompo 10,680 24,316 2.73 (1.4⇥) 1.95 (1.6⇥) 4.68 (1.5⇥)
ca-HepTh 8,638 24,806 2.63 (1.4⇥) 2.65 (1.7⇥) 5.28 (1.6⇥)
dip 19,928 41,202 4.99 (1.6⇥) 5.23 (1.6⇥) 10.21 (1.6⇥)
ca-CondMat 21,363 91,286 5.39 (1.5⇥) 9.33 (1.7⇥) 14.72 (1.7⇥)
Newman-Cond mat 22,015 58,578 5.86 (1.6⇥) 8.87 (1.9⇥) 14.73 (1.8⇥)
ca-HepPh 11,204 117,619 3.45 (1.3⇥) 13.06 (2.0⇥) 16.51 (1.9⇥)
wiki-Vote 7,066 100,735 2.62 (1.3⇥) 18.91 (1.7⇥) 21.53 (1.7⇥)
ppi 37,333 135,618 7.85 (1.8⇥) 10.51 (2.2⇥) 18.36 (2.0⇥)
GoogleNw 15,763 148,585 3.96 (1.6⇥) 26.01 (1.6⇥) 29.97 (1.6⇥)
ca-AstroPh 17,903 196,972 4.57 (1.6⇥) 25.71 (1.7⇥) 30.28 (1.7⇥)
email-Enron 33,696 180,811 7.40 (1.7⇥) 26.88 (1.7⇥) 34.28 (1.7⇥)
p2p-Gnutella31 62,561 147,877 13.48 (1.8⇥) 24.50 (1.8⇥) 37.99 (1.8⇥)
Brightkite 56,739 212,945 12.42 (1.8⇥) 26.43 (1.7⇥) 38.84 (1.8⇥)
Cit-HepPh 34,401 420,784 7.69 (1.9⇥) 28.65 (2.2⇥) 36.33 (2.1⇥)
Cit-HepTh 27,400 352,021 6.96 (1.7⇥) 39.85 (1.9⇥) 46.80 (1.8⇥)
soc-Epinions1 75,877 405,738 17.30 (1.8⇥) 78.88 (1.6⇥) 96.19 (1.6⇥)
email-EuAll 224,832 339,924 51.27 (2.0⇥) 53.07 (1.7⇥) 104.34 (1.8⇥)
soc-Slashdot0902 82,168 504,230 20.05 (1.8⇥) 106.99 (1.7⇥) 127.03 (1.7⇥)

Table 5.2: Average layout (tfa2), render (trender) and total iteration times (ttotal) obtained using
our multi-GPU visualization approach with the three GPUs in BigEye. Times are in milliseconds,
speedups are between braces and in comparison to the initial single GPU implementation. Real-
time threshold indicated by dashed line.

assessed. We hypothesize that performance might be improved by using OpenGL triangle prim-
itives instead of line primitives to draw the edges, given the prevalence of this procedure in most
computer graphics applications. Second, the multi-GPU implementation could be improved by
assuring a more uniform work distribution between the di↵erent GPUs. Given our results, we
would consider partitioning the render work on a geometrical basis, e.g. by assigning individual
edges and nodes to GPUs, rather than through the spatial partitioning we employed. The e↵ect
this would have on inter-GPU communication would need to be considered.

More thorough analysis of the relationship between network (layout) properties and the per-
formance of our distributed network visualization approach could also be valuable in guiding the
design of future systems.

55

5.5 Conclusion

In this chapter we evaluated our approach to real-time network visualization using a CUDA im-
plementation of the ForceAtlas2 algorithm and a network renderer we implemented in OpenGL.
We first evaluated a single GPU implementation of this approach. Our results showed that the
majority of the visualization time is spent on repulsive force approximation in the ForceAtlas2
algorithm and on drawing the network’s edges. As such these components were distributed be-
tween multiple GPUs. Our multi-GPU implementation is sub-optimal regarding scalability, and
demonstrates the importance of uniform load balancing. However, it did show promising results
for both the network renderer and force approximation algorithm. Using our approach, the net-
work visualization time was reduced by approximately 1.7⇥, as network sizes increased, for the
three-GPU system used for this study.

56

Chapter 6

Network Visualization on a Tiled
Display System

In this chapter we describe how we achieved interactive network visualization on BigEye by
combining the tiled visualization approach presented in Part I of this thesis, with the multi-
GPU network visualization approach discussed in Chapter 5. The interactive capabilities of the
resulting system are assessed by implementing a number of interactions using a Nintendo Wii
remote. We evaluate our results in comparison to a standard single GPU visualization approach
that uses Xinerama to display network drawings across all monitors in the tiled display system,
and we suggests di↵erent approaches to further improve the visualization system.

6.1 Tiled Network Visualization

To realize interactive network visualization on BigEye, we combine the tiled visualization ap-
proach described in Chapter 4 with the multi-GPU network visualization approach discussed in
Chapter 5. As shown in Figure 6.1, the architecture of the resulting system is very similar to
the architecture of the Mandelbrot visualization system presented in Chapter 4. Three display
loops, that run on di↵erent CPU threads, each address one of the GPUs in the system. For
each GPU, the display loop repeatedly advances the layout algorithm, after which the part of
the layout to be displayed on connected monitors is rendered and displayed. However, compared
to the Mandelbrot implementation an additional synchronization point between the threads is
required, besides the thread barrier that synchronizes the bu↵erswap.

Due to the work distribution used in the ForceAtlas2 implementation, force approximation
results computed by the di↵erent GPUs have to be integrated before each GPU can proceed
and render the network drawing to be displayed on the attached monitors. This integration step
occurs on one of the GPUs, to which the partial results of other GPUs are transferred. The
aggregated results are subsequently transferred to the other GPUs in the system. This is in
contrast with the Mandelbrot application, where true ‘in situ’ visualization was employed, and
each GPU rendered visualizations from data computed on the same GPU. Also, OpenGL is now
used to render images, whereas for the Mandelbrot problem it only served to display the pixels
that were computed using CUDA.

Figure 6.2 depicts our system in use on BigEye. We evaluate its performance in comparison
to a baseline implementation, that uses a single GPU for the layout and rendering processes, and
Xinerama to display resulting visualizations across all monitors of the tiled display system. The

57

map node positions
into CUDA

map node positions
into OpenGL

ForceAtlas2 iteration

update view uniforms
from input

draw nodes

thread barrier

bufferswap

initialize system

fork
map node positions

into CUDA

map node positions
into OpenGL

ForceAtlas2 iteration

update view uniforms
from input

draw nodes

bufferswap

map node positions
into CUDA

map node positions
into OpenGL

ForceAtlas2 iteration

update view uniforms
from input

draw nodes

bufferswap

wait for input

update view-state from input

join

exit

START

draw edges draw edges draw edges

reduction

Figure 6.1: Network visualization on BigEye by means of the tiled visualization approach, imple-
mented using multiple threads. Green boxes correspond to calls to the CUDA API, blue boxes
to calls to the OpenGL API, and event-processing commands are depicted in purple. Branches
indicated by dotted lines are taken when the application should exit.

baseline system uses the implementations of the layout algorithm and the network renderer that
served as the starting point for the multi-GPU variants we discussed in Chapter 5.

We evaluate both systems on BigEye, comparing the average framerate over the first 500
frames. As for previous experiments, we set fr = 80, fg = 1, ✓ = 1 and the gravity setting
to ‘strong’. After each layout step, we update the view such that the entire network drawing
remains on the displays. Table 6.1 presents our results for a number of real-world networks.

As shown in Table 6.1, the performance improvements obtained using the tiled visualization
framework, over a baseline implementation, approach 4.5⇥ as the network size increases. This is
in part due to the multi-GPU implementation of the layout algorithm and network renderer, as
discussed in Chapter 5. However, we observe an additional speedup that can be attributed to the
performance benefits of using the tiled visualization approach instead of Xinerama. Real-time
visualization at 60 fps is now possible for an additional number of the networks, compared to
the baseline implementation.

58

Figure 6.2: The resulting network visualization application running for two di↵erent networks
on BigEye. Bottom-right image depicts the local repulsion mode.

Network Nodes Edges Baseline Tiled (Speedup)
CA-GrQc 4,158 13,422 82.04 228.96 (2.8⇥)
petster 1,788 12,475 64.93 200.97 (3.1⇥)
ppi dip swiss 3,766 11,922 64.91 182.68 (2.8⇥)
PGPgiantcompo 10,680 24,316 61.29 168.37 (2.7⇥)
ca-HepTh 8,638 24,806 51.10 155.86 (3.1⇥)
dip 19,928 41,202 28.07 88.28 (3.1⇥)
Newman-Cond mat 22,015 58,578 15.86 62.34 (3.9⇥)
ca-CondMat 21,363 91,286 16.67 62.26 (3.7⇥)
ppi 37,333 135,618 11.30 49.85 (4.4⇥)
ca-HepPh 11,204 117,619 11.69 46.38 (4.0⇥)
wiki-Vote 7,066 100,735 9.38 45.81 (4.9⇥)
GoogleNw 15,763 148,585 7.05 33.10 (4.7⇥)
ca-AstroPh 17,903 196,972 6.86 31.85 (4.6⇥)
email-Enron 33,696 180,811 6.73 31.01 (4.6⇥)
p2p-Gnutella31 62,561 147,877 6.20 25.68 (4.1⇥)
Brightkite 56,739 212,945 5.90 24.37 (4.1⇥)
Cit-HepPh 34,401 420,784 4.17 23.96 (5.8⇥)
Cit-HepTh 27,400 352,021 4.03 21.14 (5.2⇥)
soc-Epinions1 75,877 405,738 2.39 10.74 (4.5⇥)
email-EuAll 224,832 339,924 2.58 9.64 (3.7⇥)
soc-Slashdot0902 82,168 504,230 1.68 7.13 (4.2⇥)

Table 6.1: Average framerates (in fps), over the first 500 frames, for the tiled visualization
approach, in comparison to the baseline implementation using Xinerama.

59

6.2 Interaction

To assess the interactive capabilities of our network visualization system we implemented a
number of interactions. All interactions were controllable by means of standard X keyboard
and mouse events. Besides simplifying development, this provides an interface that many input
devices can target. Basic navigation, i.e. panning and zooming, was implemented by means
of mouse dragging and mouse scrolling, respectively, as well as via the keyboard’s arrow-keys
and the +/– keys. Next, we enabled control over a number of the network layout algorithm’s
parameters, as well as parameters for the network renderer, through the keyboard. As such users
can adapt the scalars used for repulsive and gravitational forces during the layout process, and
adjust the opacity of nodes and edges. The network renderer can also be set to color nodes based
on their degree. Finally, we added three special interaction modes:

1. Local repulse mode, which causes the mouse pointer to act as a repulsive force. Nodes will
move away from the pointer, with a displacement proportional to their distance to it and
a scalar that the user can control through the keyboard. Using the local repulse mode, it
is possible to destabilize the layout locally, potentially causing it to converge to a di↵erent
configuration.

2. Local heat mode, which causes the local speed to increase for nodes near the mouse pointer.
This increases the distance by which nodes around the pointer are displaced. As such, we
expect it can also aid to further develop certain parts of the layout that may have converged
to a sub-optimal layout.

For our evaluation of these interactions, we used a Nintendo Wii remote, see Figure 6.3, as
input device. The WiiMote connects to the system via Bluetooth and reports on button presses,
its acceleration along three dimensions and on its position in relation to infrared light sources
that it tracks using an embedded camera. The latter allows the position of the WiiMote to be
determined in relation to a ‘sensor bar’, which contains a number of infrared light sources. In
our system the sensor bar is mounted underneath the middle column of displays.

The open source XWiimote [25] software was used to convert WiiMote data into the keyboard
and mouse events to be processed by our visualization system. We configured the X input driver
provided by XWiimote such that the mouse pointer followed the location to which the WiiMote
was pointed, and mapped the left mouse button to the button on the back of the WiiMote,
which is controlled using the index finger. Buttons on the top of WiiMote were configured to
control zooming, the opacity of nodes and edges, and the two interaction modes described in the
preceding paragraph.

Since an evaluation of the human computer interaction (HCI) aspects related to these in-
teractions is beyond the scope of this study, which focuses rather on the technical challenges
related to facilitating interactivity, we do not consider any usability experiments. Still, for the
reader’s information, we will report on our personal observations, and provide a number of videos
demonstrating our results on the web page associated with this thesis [7].

In our experience the WiiMote was e↵ective at allowing users to navigate through networks.
By means of simple point-and-drag gestures most users of the system were able to navigate
around large networks, to reveal and inspect its substructures. We perceived that the wireless
connectivity provided by the controller, enabling one to freely position oneself in front of the
displays, was both e↵ective and natural whilst exploring networks. Positioning oneself at dis-
tance of the displays improved the contrast between di↵erent parts of the network, causing the
overall structure of the network to be better perceivable, most likely due to the blending of fine
structures. The ability to interactively adjust the opacity of nodes and edges also proved to be

60

Figure 6.3: The Nintento Wii remote, also referred to as the WiiMote.

valuable in revealing the structure of the network. This is illustrated in Figure 6.4, which depicts
how the structure of dense parts layouts can be revealed by reducing the opacity of edges.

(a) Initial opacity for nodes and edges (b) Decreased opacity for edges

Figure 6.4: Interactively adjusting the opacity of nodes and edges allow di↵erent structural
properties of the network to be emphasized.

Regarding the two interaction modes, we found that the local repulsion mode indeed allowed
users to force parts of the layout to converge to a di↵erent configuration. Based on the our
specific experience it is not possible to conclude whether this enables better layouts in general.
However, we did observe an interesting, and unintended, use for the local repulsion mode. As
illustrated in Figure 6.5, the local repulsion mode can be used to arrange nodes based on their
degree. When positioned at the origin of the layout, the local repulsion mode imposes a ‘sorting’
on the layout, forcing low-degree nodes to the periphery of the layout. This likely results from
the combined e↵ects of gravitational forces and the local repulsive force. Local repulsion forces
nodes away from the origin of the layout, whereas the gravitational force moves nodes towards
the origin, but with a magnitude proportional to the node’s degree. The magnitude by which
nodes are forced to the periphery of the layout is thus based on their degree. If a network consists

61

of di↵erent components, the components with a similar topology, are likely to be positioned in
proximity of each other.

(a) Without local repulse (b) With local repulse

Figure 6.5: The same network visualized with and without a local repulsive force at the origin
of the layout. Saturation of node color corresponds to degree.

The local heat mode proved to be less intuitive to use. Correctly configuring the temperature
o↵set to be used near the mouse was important to prevent chaotic displacements of all nodes.
Once a correct setting was found, nodes near the pointer were indeed displaced by a larger
distance than other nodes in the network. However, in our experience this had no clear e↵ect on
the layout quality in this part of the network.

6.3 Discussion

The tiled visualization approach enabled performance levels suitable to real-time interaction for
a number of networks of the network we evaluated. We successfully exploited this possibility
in our assessment using the WiiMote. We consider our results a proof-of-concept, which is not
directly applicable for data-exploration and -analysis. This is mainly due to the limited number
of interactions we implemented. In the context of the standard ‘overview first, zoom and filter,
then details on demand’ information seeking mantra [51], we now provide overview for larger
networks, but still lack filter and details on demand.

In future work our primary goal would thus be to realize interactions that allow user to obtain
information on selected nodes and edges. This information could be presented in the form of
labels, but we could also imagine that a dedicated ‘inspector window’ could be added, possibly
on a separate desktop system, to present such information. The possibility to highlight the nodes
and edges connected to a given node would be a good means to improve the system’s capability
to depict the topology of the network. The same holds for the possibility to dynamically change
the appearance, e.g. color or size, of nodes based on di↵erent network properties. In order to
enhance users’ sense of context, a map of the layout indicating the part that is in view could be
superimposed in one of the display’s corners.

62

6.4 Conclusion

We described how the tiled visualization approach presented in Part I of this thesis was combined
with the multi-GPU network visualization approach presented in Chapter 5, to achieve interac-
tive network visualization on tiled display systems. Our experiments with the resulting system
on BigEye, a 25 megapixel tiled display system equipped with three graphics cards, demon-
strated a speedup approaching 4.5⇥ as network sizes increases, over the single GPU baseline
implementation we considered. Consequently, we achieved performance levels suitable to real-
time interactive visualization of networks with tens of thousands of nodes and edges. Using the
Nintendo Wii remote as input device, we assessed the interactive capabilities of the system. The
result was an e↵ective proof-of-concept system, that enabled real-time interactive exploration of
large networks.

63

Chapter 7

Discussion and Future Research

Before discussing directions for future research, we consider our results in relation to the previ-
ous work on interactive network visualization using tiled display systems that was discussed in
Chapter 2. We specifically consider the work by Mueller et. al. [37], given that it also describes
a general-purpose interactive network visualization system.

Mueller et. al., consider an eight node cluster-based tiled display system composed of eight
monitors, whereas we consider a single-node system with three GPUs connected to twelve moni-
tors for the present study. Although Mueller et. al. do not report the resolution of their system,
the photos in the paper do not suggest it exceeds the 25 megapixel resolution of the system
considered for the present study. Mueller et. al. report frame rates of up to 5 frames per second
(fps) for randomly generated graphs with 8000 nodes and (approximately) 80,000 edges. For a
real-world graph of similar size we achieve a frame rate of approximately 60 fps. This corresponds
to a performance improvement of 12⇥, at at least the same (but most likely higher) resolution.

Although we consider the results presented in this thesis a valuable addition to existing re-
search, we expect improvements can be made regarding: (multi-GPU) performance, interactivity
and synchronization between the monitors. In the remainder of this section we describe how we
expect these improvements can be obtained.

• Performance improvements of the multi-GPU network visualization approach depend on
improvements to the layout algorithm and renderer.

– We expect performance improvements of the layout algorithm to be realized through
improvements to the force approximation component and by distributing additional
components between multiple GPUs. Force approximation comprises the majority of
the time spent on computing layouts, even after distributing this computation over two
GPUs. As such, it can be considered a performance bottleneck. In future research, we
would evaluate the performance of the implementation we use for this component [9]
against alternatives such as Bonsai [3] and a recent approach based on graph topology
[36], to evaluate whether replacing it can be a means to improve performance.

To improve the performance of our multi-GPU ForceAtlas2 implementation, we would
also consider distributing additional components of the algorithm between the GPUs.
For our current implementation we opted to only distribute the repulsive force approx-
imation component between di↵erent GPUs, considering that this required approxi-
mately 80% of the layout time for the networks we considered. Yet, doing so limits the
scalability of our approach as the number of GPUs is increased or if denser networks,
with relatively many edges, are considered. As such we suggest future research to

64

consider distributing additional components of the layout algorithm between di↵erent
GPUs.

– In our implementation of the multi-GPU network renderer, we distribute the render
work between di↵erent GPUs through a spatial partitioning of the layout space. In the
context of tiled display visualization, this has the advantage that each GPU can render
the graphics to be displayed on attached monitors, reducing inter-GPU data transfers.
However, as our results demonstrated, this work distribution does not necessarily
ensure a uniform load balancing between di↵erent GPUs. We would suggest future
research to evaluate the trade-o↵ between the cost of inter-GPU data transfers and
the benefits of a balanced workload between GPUs. Initially this could amount to
distributing geometrical primitives, i.e. the lines for edges and circles for nodes,
uniformly between GPUs, rather than through a segmentation of the layout space.

– Future research could also consider using a dedicated GPU server (cluster) to compute
and render network drawings. We expect ensuring real-time, low-latency, interactiv-
ity is most challenging when using this approach. For example, to provide the 25
megapixel tiled display system used in this study with video frames at the 60 Hz.
refresh rate of the monitors, would result in a data stream of approximately 47 Gbit/s
from the server to the tiled display system. Facilitating this, through high-speed
interconnects and system I/O, or reducing the stream’s data rate, possibly through
compression, would be challenges posed by this approach. Since the code developed
for this study supports server-based OpenGL network rendering without requiring a
window system, by means of the Khronos EGL API [28], it could serve as a starting
point.

• With the purpose of evaluating the interactive capabilities of our system, we implemented a
number of interactions, enabling users of the system to navigate the network and to locally
destabilize it through the ‘local repulse’ and ‘local heat’ modes. There are various other
interactions that we did not consider here, which would yield a significant improvement in
the system’s data-exploration capabilities, based on our experience with the system and
users’ comments. Especially useful would be means for the user to obtain properties of
selected nodes and edges in the networks, for example through pop-up menu’s or node
labels providing information on selected nodes, or by highlighting the nodes and edges
connected to a selected node. The possibility to filter for nodes or edges with certain
properties, or to color and size them based on these properties, would also be valuable for
the purposes of data-exploration. To improve users’ sense of context, i.e. what part of the
drawing they are viewing, a map of the network drawing indicating the part that is viewed
could be superimposed in one of the display’s corners.

• The tiled visualization approach we employed has to synchronize updates to the di↵erent
monitors in the system to ensure a coherent image spans all monitors. To this end we
synchronize the initiation of the OpenGL bu↵er swap procedure for di↵erent GPUs, on the
CPU. As discussed this is a sub-optimal approach, since it synchronizes the initiation of
the bu↵er swap process rather than the actual bu↵er swap. Given the importance of image
coherency we deem improvements in this area valuable.

65

Chapter 8

Conclusion

In this thesis we presented an approach to using the graphics processing units (GPUs) in a tiled
display system for interactive network visualization at high resolutions. We hypothesized that
using the GPU as a platform for both network layout and network drawing would allow for high
performance levels, enabling real-time interaction for networks with hundreds of thousands of
nodes and edges. We evaluated this hypothesis using a visualization approach that incorporates
multi-GPU force-directed graph layout and a distributed rendering approach in which each GPU
in the system draws the part of the network to be displayed on the monitors attached to it. An
evaluation of our approach demonstrated real-time performance at 60 frames per second (fps)
for networks with tens of thousands of nodes and edges, on a 25 megapixel tiled display system
with twelve monitors and three NVIDIA GeForce GTX660 graphics cards. This constitutes a
performance improvement of 3.9⇥ over the standard single GPU implementation that served as
the starting point for our multi-GPU approach. We were able to successfully implement real-
time navigation and a number of interactions with the layouts using a Nintendo Wii remote as
input device. Our results are promising, and present three main challenges to realize further
improvements in future work. First, the performance of our multi-GPU network visualization
approach appears to be limited due to the time spent on repulsive force approximation, due
to a number of non-distributed components in our implementation of the layout algorithm,
and potentially also due to the approach used for distributed rendering. Second, additional
interactions need to be realized to facilitate e↵ective data-analysis and exploration. Finally,
we need to be able to enforce synchronous updates between the di↵erent monitors in the tiled
display system. This would resolve the remaining discontinuities that currently appear, especially
if frame rates decrease as result of increased network sizes. We believe these problems can be
resolved without a major revision of the approach presented in this study, and as such we expect
future work to be e↵ective at scaling the approach to networks with hundreds of thousands of
nodes and edges.

66

Acknowledgment

I would like to thank Kristian Rietveld and Fons Verbeek, for their encouragement and advice
during this study. The (often technical) discussions with Kristian Rietveld were always insightful,
motivating and introduced me to numerous interesting topics. Similarly, the suggestions, support
and enthusiasm by Fons Verbeek resulted in improvements to many di↵erent aspects of this work.
Thank you both for the pleasant collaboration on this project.

67

Appendix A

Network Properties

Table A.1 provides a number of properties for the network data used in this thesis. Most data
was obtained from the KONECT [33] and SNAP [35] repositories.

Network Nodes Edges Density Avg. Degree
Amazon0505 410,236 2,439,437 0.0000 11.9
Brightkite 56,739 212,945 0.0001 7.5
CA-GrQc 4,158 13,422 0.0016 6.5
Cit-HepPh 34,401 420,784 0.0007 24.5
Cit-HepTh 27,400 352,021 0.0009 25.7
GoogleNw 15,763 148,585 0.0012 18.9
Newman-Cond mat 22,015 58,578 0.0002 5.3
PGPgiantcompo 10,680 24,316 0.0004 4.6
auto 448,695 3,314,611 0.0000 14.8
ca-AstroPh 17,903 196,972 0.0012 22.0
ca-CondMat 21,363 91,286 0.0004 8.5
ca-HepPh 11,204 117,619 0.0019 21.0
ca-HepTh 8,638 24,806 0.0007 5.7
cnr 2000 325,557 2,738,969 0.0001 16.8
com-amazon 334,863 925,872 0.0000 5.5
dblp20080824 511,163 1,871,070 0.0000 7.3
dip 19,928 41,202 0.0002 4.1
email-Enron 33,696 180,811 0.0003 10.7
email-EuAll 224,832 339,924 0.0000 3.0
orkut 3,072,441 117,185,083 0.0000 76.3
p2p-Gnutella31 62,561 147,877 0.0001 4.7
petster 1,788 12,475 0.0078 14.0
ppi dip swiss 3,766 11,922 0.0017 6.3
ppi 37,333 135,618 0.0002 7.3
soc-Epinions1 75,877 405,738 0.0001 10.7
soc-Slashdot0902 82,168 504,230 0.0001 12.3
wiki-Vote 7,066 100,735 0.0040 28.5
wiki 1,791,489 25,444,207 0.0000 28.4
ydata-ysm-ad 653,260 2,278,448 0.0000 7.0
youtube 1,134,890 2,987,624 0.0000 5.3

Table A.1: Additional properties for the network data used in this thesis. Original data was
filtered for the LWCC, self-loops were removed and the resulting graph was considered to be
undirected. All properties were computed using NetworkX (version 2.1) [24].

68

Appendix B

Additional Results

Dataset Force Approximation Tree Summarize Tree Building
petster 0.91 (77.41%) 0.14 (11.88%) 0.04 (3.36%)
ppi dip swiss 1.24 (76.08%) 0.24 (14.83%) 0.05 (3.00%)
CA-GrQc 1.26 (75.95%) 0.25 (15.21%) 0.05 (2.90%)
wiki-Vote 2.38 (74.94%) 0.49 (15.27%) 0.07 (2.19%)
ca-HepTh 2.83 (80.06%) 0.48 (13.55%) 0.09 (2.58%)
PGPgiantcompo 2.80 (77.33%) 0.58 (15.93%) 0.10 (2.67%)
ca-HepPh 3.45 (76.93%) 0.68 (15.11%) 0.10 (2.28%)
GoogleNw 4.88 (78.86%) 0.91 (14.63%) 0.13 (2.06%)
ca-AstroPh 5.50 (78.34%) 0.99 (14.15%) 0.14 (1.94%)
dip 6.20 (81.98%) 1.00 (13.19%) 0.14 (1.84%)
ca-CondMat 6.55 (80.99%) 1.12 (13.84%) 0.15 (1.80%)
Newman-Cond mat 7.96 (84.59%) 1.04 (11.10%) 0.14 (1.54%)
Cit-HepTh 9.06 (79.70%) 1.47 (12.90%) 0.18 (1.56%)
email-Enron 9.62 (78.72%) 1.92 (15.74%) 0.21 (1.71%)
ppi 11.20 (80.44%) 2.05 (14.74%) 0.23 (1.62%)
Cit-HepPh 11.40 (81.44%) 1.62 (11.55%) 0.20 (1.45%)
Brightkite 18.20 (81.41%) 3.13 (13.98%) 0.34 (1.50%)
p2p-Gnutella31 19.39 (81.47%) 3.29 (13.84%) 0.36 (1.51%)
soc-Epinions1 24.37 (80.00%) 4.39 (14.43%) 0.46 (1.51%)
soc-Slashdot0902 27.94 (79.62%) 4.90 (13.96%) 0.50 (1.44%)
email-EuAll 86.19 (83.79%) 12.70 (12.35%) 1.63 (1.59%)
Average 79.53% 13.91% 2.00%

Table B.1: Average amount of time (in ms) spent on the three most time consuming components
of the ForceAtlas2 algorithm, during a single iteration. Fractions, relative to all components,
are given between braces. Results are averaged over the first 500 iterations of the algorithm and
obtained using a single GPU on BigEye.

69

Dataset Force Approximation Attractive Force Tree Building
com-amazon 15.65 (88.02%) 0.41 (2.33%) 0.66 (3.73%)
cnr 2000 14.91 (81.42%) 1.72 (9.41%) 0.66 (3.61%)
Amazon0505 20.35 (85.93%) 1.15 (4.87%) 0.83 (3.51%)
auto 22.36 (85.39%) 1.42 (5.44%) 0.88 (3.34%)
dblp20080824 24.76 (86.12%) 1.08 (3.75%) 1.07 (3.72%)
ydata-ysm-ad 52.23 (85.85%) 4.12 (6.77%) 1.49 (2.45%)
youtube 110.85 (90.50%) 3.02 (2.47%) 3.03 (2.47%)
wiki 222.16 (79.25%) 43.27 (15.44%) 5.44 (1.94%)
orkut 497.25 (63.71%) 255.16 (32.69%) 10.71 (1.37%)
Average 82.91% 9.24% 2.91%

Table B.2: Average amount of time (in ms) spent on the three most time consuming components
of the ForceAtlas2 algorithm, during a single iteration. Fractions, relative to all components,
are given between braces. Results are averaged over the first 500 iterations of the algorithm and
obtained using a single GPU for the datasets and GPU used during the scalability experiments

Dataset Force Approximation Tree Summarize Tree Building
petster 0.87 (76.25%) 0.14 (12.12%) 0.04 (3.42%)
ppi dip swiss 1.17 (74.32%) 0.24 (15.35%) 0.05 (3.12%)
CA-GrQc 1.19 (74.18%) 0.25 (15.74%) 0.05 (3.03%)
wiki-Vote 1.36 (62.35%) 0.49 (22.21%) 0.07 (3.17%)
ca-HepTh 1.49 (66.68%) 0.49 (21.85%) 0.09 (4.12%)
PGPgiantcompo 1.48 (63.29%) 0.58 (24.78%) 0.10 (4.17%)
ca-HepPh 1.87 (63.71%) 0.68 (22.96%) 0.10 (3.48%)
GoogleNw 2.94 (68.63%) 0.90 (20.90%) 0.13 (2.96%)
dip 3.38 (70.36%) 1.00 (20.76%) 0.14 (2.91%)
ca-AstroPh 3.28 (67.56%) 0.99 (20.48%) 0.14 (2.81%)
ca-CondMat 3.34 (67.70%) 1.11 (22.51%) 0.15 (2.94%)
Newman-Cond mat 4.06 (72.95%) 1.04 (18.62%) 0.14 (2.59%)
Cit-HepTh 5.13 (68.17%) 1.47 (19.54%) 0.18 (2.36%)
email-Enron 4.98 (64.77%) 1.93 (25.09%) 0.21 (2.73%)
Cit-HepPh 5.86 (68.47%) 1.61 (18.87%) 0.20 (2.39%)
ppi 5.92 (67.62%) 2.05 (23.45%) 0.22 (2.56%)
Brightkite 9.73 (69.18%) 3.13 (22.27%) 0.34 (2.40%)
p2p-Gnutella31 9.80 (68.05%) 3.30 (22.90%) 0.36 (2.50%)
soc-Epinions1 12.34 (66.15%) 4.39 (23.54%) 0.46 (2.48%)
soc-Slashdot0902 14.58 (66.31%) 4.89 (22.24%) 0.51 (2.30%)
email-EuAll 42.85 (71.49%) 12.48 (20.82%) 1.60 (2.66%)
Average 68.49% 20.81% 2.91%

Table B.3: Average amount of time (in ms) spent on the three most time consuming components
of the ForceAtlas2 algorithm, during a single iteration. Fractions, relative to all components,
are given between braces. Results are averaged over the first 500 iterations of the algorithm and
obtained using two GPUs on BigEye.

70

Bibliography

[1] Josh Barnes and Pete Hut. A hierarchical o(n log n) force-calculation algorithm. Nature,
324:446–449, 1986.

[2] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An open source soft-
ware for exploring and manipulating networks. In Proceedings of the Third International
Conference on Weblogs and Social Media, 2009.

[3] Jeroen Bédorf, Evghenii Gaburov, Michiko S. Fujii, Keigo Nitadori, Tomoaki Ishiyama, and
Simon Portegies Zwart. 24.77 pflops on a gravitational tree-code to simulate the milky way
galaxy with 18600 gpus. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 54–65. IEEE Press, 2014.

[4] Thijs Beuming, Lucy Skrabanek, Masha Y. Niv, Piali Mukherjee, and Harel Weinstein.
Pdzbase: a protein-protein interaction database for pdz-domains. Bioinformatics, 21(6):827–
828, 2005.

[5] David Blythe. Rise of the graphics processor. In Proceedings Of The IEEE, pages 761–778,
2008.

[6] OpenMP Architecture Review Board. Openmp application program interface, version 4.0
- july 2013. http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf, 2013. Ac-
cessed: 30-07-2018.

[7] Govert G. Brinkmann. Project page - interactive visualization of large networks on a tiled
display system. https://govertbrinkmann.nl/mthesis. Accessed: 30-07-2018.

[8] Govert G. Brinkmann, Kristian F. D. Rietveld, and Frank W. Takes. Exploiting gpus for
fast force-directed visualization of large-scale networks. In 46th International Conference
on Parallel Processing, pages 382–391, 2017.

[9] Martin Burtscher and Keshav Pingali. An e�cient CUDA implementation of the tree-based
Barnes Hut n-body algorithm. In Wen mei W. Hwu, editor, GPU Computing Gems Emerald
Edition, chapter 6, pages 75–92. Morgan Kaufmann, 2011.

[10] Sangwon Chae. HD-GraphViz: Highly Distributed Graph Visualization on Tiled Displays.
PhD thesis, University of California, Irvine, 2013.

[11] Sangwon Chae, Aditi Majumder, and M. Gopi. Hd-graphviz: highly distributed graph
visualization on tiled displays. In The Eighth Indian Conference on Vision, Graphics and
Image Processing, ICVGIP ’12, Mumbai, India, December 16-19, 2012, page 43, 2012.

71

[12] Adrien Douady. Julia Sets and the Mandelbrot Set, pages 161–174. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1986.

[13] CORPORATE The MPI Forum. MPI: a message passing interface. In Proceedings Super-
computing ’93, Portland, Oregon, USA, November 15-19, 1993, pages 878–883, 1993.

[14] Yaniv Frishman and Ayellet Tal. Multi-level graph layout on the GPU. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1310–1319, 2007.

[15] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed
placement. Software - Practice and Experience., 21(11):1129–1164, 1991.

[16] Michael Garland and David B. Kirk. Understanding throughput-oriented architectures.
Communications of the ACM, 53(11):58–66, 2010.

[17] James Gettys, Robert W. Scheifler, Chuck Adams, Vania Jolobo↵, Hideki Hiura, Bill McMa-
hon, Ron Newman, Al Tabayoyon, Glenn Widener, and Shigeru Yamada. Xlib - c language
x interface. https://www.x.org/releases/X11R7.7/doc/libX11/libX11/libX11.pdf,
2002. Accessed: 30-07-2018.

[18] Jim Gettys and Keith Packard. The x resize, rotate and reflect extension. https://cgit.
freedesktop.org/xorg/proto/randrproto/tree/randrproto.txt, 2015. Accessed 16-03-
2018.

[19] Helen Gibson, Joe Faith, and Paul Vickers. A survey of two-dimensional graph layout
techniques for information visualisation. Information Visualization, 12(3-4):324–357, 2013.

[20] Apeksha Godiyal, Jared Hoberock, Michael Garland, and John C. Hart. Rapid multipole
graph drawing on the GPU. In Graph Drawing, 16th International Symposium, GD 2008,
Heraklion, Crete, Greece, September 21-24, 2008. Revised Papers, pages 90–101, 2008.

[21] Apeksha Godiyal, Jared Hoberock, Michael Garland, and John C. Hart. Rapid multipole
graph drawing on the GPU. In Graph Drawing, 16th International Symposium, GD 2008,
Heraklion, Crete, Greece, September 21-24, 2008. Revised Papers, pages 90–101, 2008.

[22] Khronos OpenCL Working Group. Opencl specification. https://www.khronos.org/

registry/OpenCL/specs/opencl-2.2.pdf, 2017. Accessed: 30-07-2018.

[23] Yi Gu, Chaoli Wang, Jun Ma, Robert J. Nemiro↵, and David L. Kao. igraph: a graph-
based technique for visual analytics of image and text collections. In Visualization and Data
Analysis 2015, San Francisco, CA, USA, February 9-11, 2015, page 939708, 2015.

[24] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dy-
namics, and function using networkx. In Proceedings of the 7th Python in Science Conference
(SciPy2008), pages 11—-15, 2008.

[25] David Herrmann. Xwiimote - open-source nintendo wii / wii u device driver. https:

//dvdhrm.github.io/xwiimote/. Accessed: 30-07-2018.

[26] Yifan Hu and Lei Shi. Visualizing large graphs. Wiley Interdisciplinary Reviews: Compu-
tational Statistics, 7(2):115–136, 2015.

[27] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D. Kirchner,
and James T. Klosowski. Chromium: a stream-processing framework for interactive render-
ing on clusters. In Proceedings of the 29th Annual Conference on Computer Graphics and
Interactive Techniques, pages 693–702, 2002.

72

[28] The Khronos Group Inc. Khronos native platform graphics interface. https://www.

khronos.org/registry/EGL/specs/eglspec.1.4.pdf, 2013. Accessed: 30-07-2018.

[29] Intel Corporation. Intel(r) 64 and ia-32 architectures software developer’s manual. https:
//software.intel.com/en-us/articles/intel-sdm, 2018. Accessed: 30-07-2018.

[30] Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian. Forceat-
las2, a continuous graph layout algorithm for handy network visualization designed for the
Gephi software. PLoS ONE, 9(6):1–12, 2014.

[31] Ryoichi Jingai, Yoshiyuki Kido, Susumu Date, and Shinji Shimojo. Research note: A
high resolution graph viewer for multi-monitor visualization environment. The Review of
Socionetwork Strategies, 9(1):19–27, Jun 2015.

[32] KONECT. Pdzbase network dataset – konect, april 2017. http://konect.uni-koblenz.

de/networks/maayan-pdzbase. Accessed: 30-07-2018.

[33] Jérôme Kunegis. KONECT – The Koblenz Network Collection. In Proceedings WWW,
pages 1343–1350, 2013.

[34] Jason Leigh, Andrew E. Johnson, Luc Renambot, Tom Peterka, Byungil Jeong, Daniel J.
Sandin, Jonas Talandis, Ratko Jagodic, Sungwon Nam, Hyejung Hur, and Yiwen Sun.
Scalable resolution display walls. Proceedings of the IEEE, 101(1):115–129, 2013.

[35] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
https://snap.stanford.edu/data, June 2014. Accessed: 30-07-2018.

[36] Peng Mi, Maoyuan Sun, Moeti Masiane, Yong Cao, and Chris North. Interactive graph
layout of a million nodes. Informatics, 3(4):23, 2016.

[37] Christopher Mueller, Douglas P. Gregor, and Andrew Lumsdaine. Distributed force-directed
graph layout and visualization. In Eurographics Symposium on Parallel Graphics and Visu-
alization, EGPGV 2006, Braga, Portugal, pages 83–90, 2006.

[38] Govind Mukundan. Drawing anti-aliased circular points using opengl/webgl
- a circular reference. https://www.desultoryquest.com/blog/

drawing-anti-aliased-circular-points-using-opengl-slash-webgl/.

[39] NVIDIA Corporation. Appendix b. x config options. https://download.nvidia.com/

XFree86/Linux-x86_64/390.42/README/xconfigoptions.html. Accessed: 30-07-2018.

[40] NVIDIA Corporation. Chapter 11. specifying opengl environment variable set-
tings. https://download.nvidia.com/XFree86/Linux-x86_64/390.42/README/

openglenvvariables.html. Accessed: 30-07-2018.

[41] NVIDIA Corporation. Chapter 12. configuring multiple display devices on one
x screen. https://download.nvidia.com/XFree86/Linux-x86_64/390.42/README/

configtwinview.html. Accessed: 30-07-2018.

[42] NVIDIA Corporation. Chapter 32. o✏oading graphics display with randr 1.4. https:

//download.nvidia.com/XFree86/Linux-x86_64/390.42/README/randr14.html. Ac-
cessed: 30-07-2018.

[43] NVIDIA Corporation. Cuda toolkit documentation. https://docs.nvidia.com/cuda/.
Accessed: 30-07-2018.

73

[44] NVIDIA Corporation. Github - nvidia/nvidia-settings: Nvidia driver control panel. https:
//github.com/NVIDIA/nvidia-settings. Accessed: 30-07-2018.

[45] NVIDIA Corporation. Profiler user’s guide. https://docs.nvidia.com/cuda/pdf/CUDA_

Profiler_Users_Guide.pdf. Accessed: 30-07-2018.

[46] NVIDIA Corporation. Programming guide :: Cuda toolkit documenta-
tion. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#

graphics-interoperability. Accessed: 30-07-2018.

[47] NVIDIA Corporation. Glx nv swap group specification. https://www.khronos.org/

registry/OpenGL/extensions/NV/GLX_NV_swap_group.txt, 2008. Accessed: 18-03-2018.

[48] NVIDIA Corporation. Ext swap control specification. https://www.khronos.org/

registry/OpenGL/extensions/EXT/EXT_swap_control.txt, 2011. Accessed: 18-06-2018.

[49] Robert W. Scheifler. X window system protocol x consortium standard x version 11, release
6.7. https://www.x.org/docs/XProtocol/proto.pdf, 2004. Accessed: 30-07-2018.

[50] Mark Segal and Kurt Akeley. The opengl graphics system: A specification. https://www.
khronos.org/registry/OpenGL/specs/gl/glspec41.core.pdf, 2017. Accessed: 30-07-
2018.

[51] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information vi-
sualizations. In Proceedings of the 1996 IEEE Symposium on Visual Languages, Boulder,
Colorado, USA, September 3-6, 1996, pages 336–343, 1996.

[52] Frank W. Takes and Eelke M. Heemskerk. Centrality in the global network of corporate
control. Social Network Analysis and Mining, 6(1):97:1–97:18, 2016.

[53] Chris Wellons. Mandelbrot set with simd intrinsics. https://nullprogram.com/blog/

2015/07/10/, 2015. Accessed: 30-07-2018.

[54] xcb.freedesktop.org. The x protocol c-language binding. Accessed: 30-07-2018.

74

