
Universiteit Leiden

Computer Science

Efficient Secure Regression Protocols

to predict growth curves

of children

Name: L.A.J. van der Beek

Date: 14/11/2017

1st supervisor: Dr. C.J. Veenman
2nd supervisor: Prof. dr. ir. W. Kraaij
ext. supervisor: Dr. ir. P.J.M. Veugen (TNO)

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Predicting growth curves of children is usually done by child con-
sultation clinics, who base their prediction on the whole population,
to provide parents with a general prediction of how their child will de-
velop. However, when only taking into account data of similar children
when predicting the growth curve of a specific child, a more accurate
prediction can be given. Since growth data of children is considered
privacy-sensitive, we obtain such a prediction using secure regression.

We looked at four different protocols for obtaining such predic-
tions, three of which we implemented ourselves. Some protocols make
use of garbled circuits and some protocols make use of homomorphic
encryption. We compared them based on their speed, accuracy and
degree of security, so we could find the most efficient protocol that
can predict growth curves based on growth data of children. In order
to improve the accuracy of the predictions, we also considered four
different regression methods in our protocols.

After performing some experiments, we came to the conclusion
that a garbled circuits method with the point-and-permute technique,
free XOR-gate and garbled row reduction adaptations, and with an
adaptation that all multiplexer gates are evaluated through use of a
boolean circuit, is the best protocol to use in this setting.

Contents

1 Introduction 1
1.1 Secure Regression . 1

1.1.1 Homomorphic Encryption 3
1.1.2 Garbled Circuits . 3

1.2 The SMOCC dataset . 4
1.3 Problem Description . 4
1.4 Objective . 5
1.5 Overview . 6

2 Previous Work 7
2.1 General Work . 7
2.2 Methods Used . 8

2.2.1 Curve-Matching . 9
2.2.2 Garbled Circuits General Method 9
2.2.3 Garbled Circuits Adaptations 10
2.2.4 Oblivious Transfer . 12
2.2.5 Homomorphic Cryptosystems 13
2.2.6 The ABY Framework 15

2.3 Contributions of this Work . 16

3 Protocol Description 18
3.1 General Setting . 18
3.2 Original Protocol . 20
3.3 Garbled Circuits Protocol . 24
3.4 Alternative Homomorphic Encryption Protocol 32
3.5 Modified Garbled Circuits Protocol 35

4 Results 38
4.1 Comparison of Speed . 38
4.2 Comparison of Accuracy . 40
4.3 Comparison of Security . 44

5 Conclusions 49
5.1 Preferred Protocol . 49
5.2 Future Work . 50

6 References 52

7 Appendix 55
7.1 Regression . 55

7.1.1 General terms . 55
7.1.2 Linear Regression . 56
7.1.3 Piecewise Linear Regression 57
7.1.4 Slope-based regression 58

7.2 Arithmetic shares . 58
7.3 Simple Garbled Circuits Protocol 59
7.4 Slope-based Garbled Circuits Protocol 66
7.5 Linear Garbled Circuits Protocol 67
7.6 Modified Simple Garbled Circuits Protocol 69
7.7 Modified Slope-based Garbled Circuits Protocol 70
7.8 Modified Linear Garbled Circuits Protocol 70
7.9 Alternative Simple Homomorphic Encryption Protocol 71
7.10 Alternative Linear Homomorphic Encryption Protocol 76
7.11 Alternative Slope-based Homomorphic Encryption Protocol . . 78
7.12 Specifications Hard- and Software 78

1 Introduction

Security keeps becoming more and more important in the current age, con-
sidering the amounts of privacy-sensitive data that are generated and stored.
In order for these data to be more useful, institutions that possess such data
want to perform analyses, such as regression, on it. Ideally, they would like
to perform those analyses on as much data as possible, not just on their own
data. However, since these data are privacy-sensitive, they don’t want to
share their data with different institutions, and vice-versa. An example of
such a situation is determining the influence of a certain drug on the devel-
opment of a disease, when the drug is used by multiple hospitals (especially
for rare diseases). Some other examples of situations where this is the case
are given in [28].

Another example, at which we will look extensively in this thesis, is the pre-
diction of growth curves of young children. There, parents of young children
want to know how their child is expected to grow, without sharing the growth
data of their children.

In general, to enable institutions to perform analyses, such as the ones we
mentioned, on large amounts of privacy-sensitive data, which come from
different owners, a secure protocol is needed, which does not leak any data
from one institute to another, but does provide each institute with the result
(for example, a predicted growth curve for the child) of the analysis in the
end. There exists a collection of such secure protocols for regression analysis,
which is known as “secure regression” [15]. In the next sections, we will look
briefly at some basic concepts of secure protocols and at what we aim to
achieve in this thesis.

1.1 Secure Regression

There are a few different settings in which secure regression is discussed.
Firstly, we can look at different kinds of regression (for example, linear re-
gression, which is discussed along with the other types of regression that we
use in Section 7.1, ridge regression [14] and LASSO [26]), which each can be
expressed differently in a secure protocol. In our setting, we will only look
at (variants of) linear regression.

Secondly, the partitioning of the data can differ: we either have data that
is horizontally partitioned [24], which means that different parties have data
about different entities with the same attributes (for example, patient records

1

from different hospitals), or we have data that is vertically partitioned [24],
which means that different parties have data about the same entities with
different attributes (for example, different government agencies that have
different kinds of information, such as employment information, education
information or health information, about the same individuals). We give an
example of a horizontally partitioned database in Figure 1 and an example
of a vertically partitioned database in Figure 2. The partitioning of the
database influences the way in which a secure protocol is designed.

Finally, there are two main methods that are commonly used to achieve the
security in these secure regression protocols, namely homomorphic encryp-
tion [12] and garbled circuits, also known as Yao’s circuits [32].

Figure 1: An example of a horizontally partitioned database

Figure 2: An example of a vertically partitioned database

2

1.1.1 Homomorphic Encryption

Homomorphic encryption is a special kind of encryption, which enables the
execution of certain mathematical operations on encrypted data in such a
way that when the result is decrypted, it is the same as when the mathe-
matical operation would have been performed on the unencrypted data. For
example, in additively homomorphic encryption, two original data samples
can be added in encrypted form, and when the result is decrypted, the result
will be equal to the sum of the original data samples. In addition to additively
homomorphic encryption, there also exists multiplicatively homomorphic en-
cryption, and fully homomorphic encryption [3], the latter allows for arbi-
trary computations on encrypted data (that will match the result of the same
computations performed on the unencrypted data when decrypted). Fully
homomorphic encryption does cost a significant amount of time complexity
to execute, which causes it to be too inefficient to apply to larger datasets
(at the moment). Additively homomorphic encryption and multiplicatively
homomorphic encryption are called “partially homomorphic cryptosystems”.
There exist different kinds of partially homomorphic cryptosystems, for ex-
ample, the Paillier cryptosystem [21] and the ELGamal cryptosystem [8], and
different kinds of fully homomorphic cryptosystems, for example, Gentry’s
cryptosystem [10] and Brakerski’s scale-invariant cryptosystem [5]. These
cryptosystems differ in the specific encryption that is used and in the types
of computations they support on encrypted data (which depends on the type
of cryptosystem that is implemented).

1.1.2 Garbled Circuits

Garbled circuits are a cryptographic protocol, which mainly makes use of per-
muted logic gates, and which is often used to perform secure computations
between multiple parties, such as secure regression. We will describe how
they work later, in Section 2.2.2. Garbled circuits are not usable as a kind
of homomorphic encryption, since it is not possible to perform a mathemat-
ical operation on the encrypted data within the garbled circuits, decrypt the
data, and then have the same result as when you would have performed the
mathematical operation on the unencrypted data. Instead, garbled circuits
enable one to convert a boolean circuit, which performs some computation,
to a garbled version of that same circuit, which performs the same compu-
tation within the encrypted domain given encrypted inputs. The types of
computations that can be performed are limited by what types of computa-
tions can be represented in a boolean circuit, and by the types of boolean

3

gates that a certain garbled circuits method can convert.

1.2 The SMOCC dataset

In order to be able to compare the performance of different secure regression
protocols, we used the Social Medical survey Of children attending Child
health Clinics (SMOCC) [13] dataset to test these protocols. The SMOCC
dataset consists of health data of children, such as gender, weight at birth and
weight after a certain number of months, from their pre- and perinatal period
up to their second birthday. Some data of the mothers of these children is also
taken into account, such as their age at delivery and their level of education.
These data were collected by 21 child health clinics in the Netherlands.

1.3 Problem Description

In this thesis, we want to predict growth patterns for children, of whom
we have no data in the SMOCC dataset, based on the data within this
dataset. In general, the parents of these children don’t want to reveal the
data of their children, therefore a secure protocol is used to predict the growth
patterns for the children. A global outline of the scenario within this kind
of protocol is given in Figure 3. In most cases, the prediction of the growth
patterns will be done with a secure regression protocol, which makes sure
that the party comparing the data can’t access these data. The goal is to
find the best protocol out of some existing and some newly introduced secure
protocols.

We can see that we are looking at a horizontally partitioned problem, since
we have different parties (the parents and the party managing the SMOCC
dataset) that each have their own set of data on disjoint individuals, with
the same attributes. We will assume that the parties are both semi-honest,
which means that they do follow the protocol correctly, but may try to derive
additional information from the messages they receive. Since the used data
is longitudinal, which means that there are repeated measurements over time
of the same subjects (in this case, children), we have to take this into account
in our analysis. Therefore, we average the measurements for the considered
subjects out of the SMOCC dataset at each time step in all our analyses, in
order to get an accurate prediction. A complete description of our analyses
is included in Chapter 3.

4

Figure 3: A global outline of the scenario within the protocols

To reach our goal, we do the following: first, we will have to look for protocols
with which we can predict the growth curve of an individual in a secure way
(Chapter 3), and compare them based on their degree of security and speed
(Chapter 4). Thereafter, we will have to look at the problem of how to get the
most accurate prediction of a growth curve of a child outside of the SMOCC
dataset with the help of data from the SMOCC dataset (Chapter 3).

1.4 Objective

Given the problem sketched in the previous section, we want to compare
some protocols based on garbled circuits to some (partly existing) protocols
based on homomorphic encryption. We expect that the protocols based on
garbled circuits will yield a faster protocol, which makes use of fewer external
semi-trusted parties than the protocols based on homomorphic encryption.
This conjecture stems from the fact that the protocol based on homomorphic
encryption makes use of two external semi-trusted parties, and from the fact
that the largest part of the time complexity of a garbled circuits protocol is
in the preprocessing, while for a homomorphic encryption protocol this lies
within the communication and computation of complex operations [20]. In
this thesis, we test experimentally whether this conjecture is true, in addition
to trying to find the most accurate model for the protocols to use in the
prediction of the growth curve.

5

1.5 Overview

In the next Chapter, we will look at previous work that was done in the area
of secure regression, and at what this thesis will add to that. In Chapter 3,
the new protocols we developed will be described in detail, and some existing
protocols, to which we will compare the new protocols later, will be described
as well. Chapter 4 will describe the results of the experiments we performed
on the SMOCC dataset, and in Chapter 5 we will draw our conclusions.
Chapter 6 will consist of the references, and finally Chapter 7 contains the
appendices, such as the source code of our new protocols.

6

2 Previous Work

In this chapter, we will present some work that has been done on the topic
of secure regression, and some work that has been done in relation to the
SMOCC dataset. Thereafter, we will mention the aspects in which this
thesis is innovative.

2.1 General Work

First and foremost, we will mention a study on which the protocols in this
thesis are mainly based, namely the PRANA-DATA project [29], in which
the setting was (almost) the same as in this project: based on the data from
the SMOCC dataset, growth patterns of individuals outside of the dataset
were predicted. The largest difference with respect to this project is that
in the PRANA-DATA project, no (secure) regression was performed in or-
der to predict the growth patterns, but a recently developed method called
”curve matching” [27]. This method was specifically developed to help with
the interpretation and prediction of growth curves of individuals. We pro-
vide a short example of curve matching here: given some features of the first
6 months of growth of a child outside of the dataset (for example, length
and weight over the first 6 months), search in a secure way for a fixed num-
ber of children within the dataset that have similar features in their first 6
months of growth. Then, we can predict the growth after 6 months of the
child outside of the dataset based on the data of the children with similar
features, whose information about their growth after 6 months is included in
the dataset.

Considering work that has been done in the area of secure regression, we give
a short overview of the development in this area, referring to appropriate
papers in the process. One of the first occurrences of a technique related to
secure regression (although this was not published in the context of secure
regression), was in [31]. In this article, the goal is to solve the so called
”millionaires’ problem”: there are two millionaires who want to know who is
richer without revealing additional information about either person’s wealth
to the other. A protocol is presented in order to achieve this, which is one of
the first secure protocols to compute sums and products, and this lies in the
foundation of garbled circuits. Somewhat later, the first version of what later
would be called the garbled circuits protocol was presented in [32].

Regarding homomorphic encryption, one of the first articles mentioning some-

7

thing related to this was [23]. In this article, a problem is presented for which
a few different solutions are given, each having their own downside. As a fi-
nal solution, so-called ”privacy homomorphisms” are presented, which are
the first forms of homomorphic encryption. The application of the privacy
homomorphisms presented in this article was limited, but over time, more
and more homomorphic cryptosystems were presented, which also became
applicable in more cases.

For a detailed overview of the development of the (fully) homomorphic en-
cryption schemes, we refer to [2].

An interesting method that makes use of both garbled circuits and homomor-
phic encryption in different parts of the protocol, in order to achieve more
speed, is presented in [20].

The basic idea is that the protocol is divided in two phases: in the first
phase, only additively homomorphic encryption is used (in this article Pail-
lier is used) in order to encrypt the data in such a way that the amount of
encrypted data is independent of the number of users, and to do the linear
operations required for the regression on the encrypted data. This is done
with additively homomorphic encryption because it can handle linear op-
erations, such as addition and multiplication, on large datasets faster than
garbled circuits.

In the second phase, garbled circuits are applied to do some heavy non-linear
computations that are required for the regression, since this would be a lot
slower, if homomorphic encryption had been used. The resulting protocol is
quite fast, but this speed comes at a price, since two external parties (parties
that are not providing any data in the protocol and don’t obtain a plain
result in the protocol), which are never allowed to cooperate according to
the protocol, are needed (if they would cooperate, the protocol wouldn’t be
secure). This is a questionable assumption, since as it stands it already is
hard to find one semi-trusted party in practice, let alone two. Therefore, we
will take into account when evaluating a protocol whether it uses an external
semi-trusted party or not. Preferably, we want to avoid using such parties in
the protocols we use.

2.2 Methods Used

We will now highlight a few articles that present methods on which we base
the protocols that we performed in this thesis. We have already discussed a
few of these methods to some degree, namely the curve-matching, the garbled

8

circuits and the homomorphic encryption. We will look at some of them in
more detail, in order to clarify the specific implementation of those methods
in this thesis. We will also mention the framework we used to implement our
protocols.

2.2.1 Curve-Matching

Regarding the curve-matching, we referred to Stef van Buuren’s article on
the matter [27] for a description of the standard curve-matching method.
However, in the protocol we will use in this thesis, as presented in [29], a
slightly different assumption regarding the obtaining of matches is used. In
the description of the standard curve-matching method, the goal is to predict
a single value to use as a comparison metric for all children (the length of a
child that currently is three months old, is predicted for when that child has
reached the age of fourteen months), based on multiple values (the length
of the child at birth and at the age of one, two and three months respec-
tively, and some covariates, such as the sex of the child and the height of
the parents). This is then achieved by making a linear regression model out
of this information, and predicting the length of every child in the dataset
at the age of fourteen months based on this regression model. In the de-
scription of the protocol that we will use in this thesis, we assume that this
comparison metric is already known for all children and is also included in
the database. This saves computation time when trying to obtain matches
in the protocol.

2.2.2 Garbled Circuits General Method

Within the garbled circuits protocol, we have two different parties: the gar-
bler, who can generate a garbled gate [25] and send it to the other party,
which is the evaluator, who can evaluate this garbled gate. By a garbled
gate we mean a certain logic gate (for example, an AND-gate), from which
the inputs of the truth table are obscured and the outputs of the truth table
are encrypted. For example, for an AND-gate, we can see the normal rep-
resentation of its truth table in Figure 4, and the garbled representation of
its truth table in Figure 5. In the garbled representation, the subscripts of
k represent the wire (also known as input variable) it corresponds to, and
the superscript describes the semantic value of the wire, corresponding to
the original AND-gate. Usually, the rows of a truth table of a garbled gate
are randomly permuted before they are sent to the evaluator, in order to

9

prevent the evaluator from learning too much about the gate from the order
of the cipher texts. Also, we assume that the evaluator only knows two of
the input keys, so he can only decrypt one output of the garbled table, as
intended. Using these garbled gates, a garbled circuit can be constructed by
combining gates, using the output of some gates as the input of other gates.
Depending on the functionality that you want the circuit to have, a combi-
nation of gates is selected, so that you get the desired result when executing
the garbled circuit. For a more detailed description of garbled circuits along
with some more advanced techniques and applications of garbled circuits, the
reader is encouraged to take a look at [30].

Figure 4: The truth table of a normal AND-gate

Figure 5: The truth table of a garbled AND-gate

2.2.3 Garbled Circuits Adaptations

Considering the garbled circuits method we used in this thesis, in addition
to the standard garbled circuits method as described in Section 2.2.2, we
mention a few adaptations that improve the efficiency of the garbled circuits
that we will use.

Firstly, we use the point-and-permute technique, which was proposed in [4].
This method enables the evaluator to only have to decrypt one of the cipher
texts instead of all four of them, despite the fact that the cipher texts are
garbled. It achieves this by generating two select bits for each wire, k0 and k1.
For i ∈ {0, 1}, ki represents i

⊕
r, where r ∈ {0, 1} is a bit chosen at random

by the garbler. In this way, ki is different for each i and does not uncover
any information about i to the evaluator. The select bit k for every wire is

10

obtained together with the wire label, through oblivious transfer if the wire is
an input wire, or through decryption otherwise. Then, the evaluator is able
to use the input bits corresponding to the input wires when he evaluates
a gate, to find out which cipher text he should decrypt. Therefore, using
this method reduces the number of decryptions you have to try by a factor
four.

Secondly, we apply the free-XOR technique as described in [17], which causes
the computation of XOR-gates to be free (in terms of computation and com-
munication required for creation, transfer and evaluation of the garbled ta-
bles). This is achieved by making a restrictive relationship between the input
wires of a XOR gate: let the input wires be Wa and Wb, and let the out-
put wire be Wc. Then the wire values are garbled as follows: the garbler
chooses a random R ∈ {0, 1}, and picks each label w0

i individually at ran-
dom. Thereafter, he combines both to obtain w1

i = w0
i

⊕
R. Finally, we set

w0
a

⊕
w0

b = w0
c . This results in a system where the garbled gate outputs can

be obtained by XOR-ing the garbled gate inputs:

w0
a

⊕
w0

b = w0
c ,

w1
a

⊕
w0

b = (w0
a

⊕
R)

⊕
w0

b = w0
c

⊕
R = w1

c ,
w0

a

⊕
w1

b = w0
a

⊕
(w0

b

⊕
R) = w0

c

⊕
R = w1

c and
w1

a

⊕
w1

b = (w0
a

⊕
R)

⊕
(w0

b

⊕
R) = w0

a

⊕
w0

b = w0
c .

Since this principle works for all XOR gates, their computation becomes
free.

Finally, we incorporate the concept of garbled row reduction, as described in
[19]. This should not be confused with the garbled row reduction introduced
in [22], which reduces more rows, but is incompatible with the free-XOR
technique. The garbled row reduction we use eliminates one cipher text for
each gate, which results in gates with three cipher texts instead of four. This
is achieved by picking a wire label in such a way that its corresponding cipher
text is 0. Because of the select bits, this will always be the top cipher text
(the select bits are the least significant bits of the cipher text).

The garbled row reduction may sound conflicting with the point-and-permute
technique, however, since we know that the garbled row reduction method
still includes a wire label for the eliminated cipher text, we can still obtain a
wire label and a select bit for every wire for all four cipher texts corresponding
to a gate. The only difference to when we only use the point-and-permute
technique is that for one cipher text, the mapping of the select bits is changed
such that they map to zero instead of to the original cipher text. Since we
know which cipher text corresponds to zero because of the wire label, we can

11

combine the garbled row reduction and the point-and-permute technique to
reduce the amount of computation that has to be performed in a garbled
circuits protocol.

2.2.4 Oblivious Transfer

In addition to these techniques which improve the performance of the garbled
circuits, we discuss a protocol which is essential to be able to implement
garbled circuits: Oblivious Transfer (OT), which is mentioned in [9]. This
protocol consists of two parties, the sender (A) and the receiver (B), where
the sender wants to send one out of two values to the receiver, which the
receiver can pick beforehand. However, the sender should not be able to
learn which value was learned by the receiver, and the receiver should not be
able to learn anything about the other value that the sender has. Intuitively,
this might seem strange, but this can be achieved by using the protocol that
is described below in Protocol 2.1.

12

Protocol 2.1 The Oblivous Transfer protocol

Party Input Output
A m0,m1, d, e, x0, x1 -
B b, k mb

1. A has two secret messages, m0,m1, she generates two random messages
x0, x1, and she generates a RSA key pair (d, (e,N)) in the following way:
she chooses two distinct large prime numbers, p and q, multiplying them
to obtain N = p ∗ q, then chooses an integer e with 1 < e < φ(N),
where e is relatively prime to φ(N) = (p − 1) ∗ (q − 1). Finally, she
calculates d such that e ∗ d ≡ 1 mod (p− 1) ∗ (q − 1). Then, she sends
N, e, x0 and x1 to B.

2. B then chooses a b ∈ {0, 1} and generates a random message k. Using
these values in addition to the received values from A, B computes
v = (xb + ke) mod N , where ke represents the encryption of k, and
sends v to A.

3. A then decrypts the following values using d: k0 = (v − x0)
d and

k1 = (v − x1)d. One of these is equal to k, but A does not know which
one. A then constructs two messages: m′0 = m0+k0 and m′1 = m1+k1,
and sends them to B.

4. B now computes mb = m′b−k, and thus obtained a message without A
knowing which one he received, and without learning anything about
the other message, since B doesn’t know k1−b.

2.2.5 Homomorphic Cryptosystems

Looking at the homomorphic encryption systems we employed, we only use
partially homomorphic encryption in this thesis. We discuss two different
cryptosystems here: the Paillier cryptosystem and the Damg̊ard, Geisler and
Krøigaard (DGK) cryptosystem. It should be noted that some knowledge of
group theory is needed to completely understand the descriptions of these
cryptosystems, however, since this knowledge is not needed to understand
the work we’ve done, we encourage the interested reader to read [16] for a
description of the basics of group theory.

The Paillier cryptosystem, as described in [21], is an additively homomorphic
cryptosystem which makes use of multiplication modulo the square of the

13

product of two large prime numbers. If we set the product of the two prime
numbers (public key) to be n and the base to g, then a message m with
0 ≤ m < n is encrypted with this system as E(m) = gmrn (mod n2), with
r a uniformly random number in Z∗n2 (this denotes the multiplicative group
of integers modulo n2). The homomorphic property of this system is the
following: E(m1) ·E(m2) = (gm1rn1)(gm2rn2) (mod n2) = gm1+m2(r1r2)

n (mod
n2) = E(m1 + m2). So by multiplying encrypted messages, we obtain the
encryption of the sum of the original messages.

The DGK cryptosystem, which was proposed in [6], is also an additively
homomorphic cryptosystem. We describe this cryptosystem following the
explanation found in [18]. First and foremost, the DGK cryptosystem is
based on the Strong RSA Subgroup Assumption, which is the following as-
sumption:

Let K be a key generation algorithm that produces a “RSA subgroup pair”
(N, g). The Strong RSA Subgroup Assumption for this key algorithm is that
it is infeasible to find u,w ∈ Z∗N and d, e > 1 such that g ≡ uwe (mod N)
and ud ≡ 1 (mod N)

The DGK cryptosystem uses two of these subgroups, with one of the sub-
groups being contained in the other one. This causes the message space to
become smaller; in the original paper the message space is reduced to only
16 bits. In order to generate keys, the DGK cryptosystem needs three pa-
rameters, a, b, c with a > b > c. Here, a is the size of the RSA modulus, N ,
in bits, b is the size in bits of two small primes sp and sq, and c represents the
size of the message space in bits. Key generation can then be done within
the DGK cryptosystem as follows: We construct two b-bit primes sp and sq,
and two distinct primes p and q of the same bit length such that sp|p−1 and
sq|q− 1. Then, we choose a c-bit prime u and an element g ∈ Z∗N with order
uspsq and choose h to have order spsq. We find these g and h by making use
of a subgroup of hidden order of Z∗N [11]. The public key is then (N, g, h, u)
and the private key is (p, q, sp, sq). Also, an auxiliary table is generated in
which tuples (gspsq)i for 0 ≤ i ≤ u along with i itself are stored.

The encryption is then performed as follows: a random value r is generated
(for each encryption a new value is generated), given the message m, the
ciphertext will then be ciph = gmhr (mod N).

Finally, the decryption can be done using the auxiliary table: ciphspsq is
looked up in the auxiliary table, the corresponding index number i is the
message m.

This system works because of the following: we choose a message m, with

14

m < u and a uniformly random value r ∈ ZN . The decryption of ciph
is ciphspsq ≡ (gmhr)spsq (mod N) ≡ (gm)spsq(hr)spsq (mod N). Since h by
definition has order spsq, (hr)spsq = 1. This leaves (gspsq)m (mod N), and
since the auxiliary table contains tuples of {(gspsq)i, i} for 0 ≤ i ≤ u, we are
able to find the corresponding message of gspsqm.

2.2.6 The ABY Framework

In order to implement the garbled circuits protocols which we will present
in the next chapter, we had to use a framework which provided ways to
implement garbled circuits, as well as some additional secure computations.
After trying some frameworks which turned out not to be sufficient for our
protocols, we ultimately found a framework which did suit our needs: the
Arithmetic sharing, Boolean sharing and Yao’s garbled circuits framework
(ABY), which is described in [7].

We will now briefly take a look at the Arithmetic sharing and the Boolean
sharing, which we have not yet discussed. The Yao sharing boils down to
a garbled circuits implementation similar to the one we discussed earlier in
the previous chapter, also making use of the optimizations discussed in this
chapter. The descriptions we provide are based on [7]. Since we don’t make
use of the Arithmetic sharing in our protocols, we refer to Section 7.2 in the
Appendix for its description.

In Boolean sharing, a XOR-based secret sharing scheme is used to share a
variable x. This is always done bit by bit, so shares of a bit x are defined
in such a way that 〈x〉1 ⊕ 〈x〉2 = x, here a value between 〈〉 denotes a
Boolean share. In order to implement a multiplexer gate, we make use of
R-OT (random oblivious transfer). For reference, a multiplexer gate takes
two values and a boolean as input. When the boolean is true, the multiplexer
returns the first value and when it is false, the multiplexer returns the second
value. In a random oblivious transfer, the sender has no input messages
and obtains two random messages (s0, s1). Then the protocol proceeds like
the original OT protocol, which is described earlier in this section. The
multiplexer gate can then be implemented using two parallel R-OT’s on l-
bit strings, which is easier than implementing the multiplexer gate using l
AND gates, for which we would need 2l parallel R-OT’s on 1-bit strings.
Computationally speaking, the latter is more expensive, which causes us to
prefer to use Boolean sharing for multiplexer gates when trying to find the
fastest protocol.

15

In the ABY framework for garbled circuits, the three mentioned techniques,
which improve the performance of garbled circuits, are all implemented. In
addition to that, an optimization based on the type of gates that we use can
be performed: MUL (multiplication) gates can be executed most efficiently
within Arithmetic shares, which are optimized for such computations, MUX
(multiplexer) gates can be executed most efficiently within Boolean shares,
since the size and evaluation of those gates is constant in such shares, and
CMP (compare) gates can be executed most efficiently within Yao shares,
since the Boolean shares require a logarithmically scaling time to evaluate
such gates, while in Yao shares, this can be done in constant time (Arith-
metic shares can only perform arithmetic operations barring division in this
framework, thus no CMP or MUX gates can be evaluated with them). The
conversion between these types of shares is almost free within this framework,
therefore we expect that converting between the types of shares will yield a
faster protocol.

Since the ABY framework is implemented in C++, we expect it to be faster
than similar protocols in Python. For the sake of a fair comparison, we also
implemented a homomorphic encryption protocol in C++. Based on that
implementation, we reason whether we expect the protocol that is imple-
mented in Python to do better than the garbled circuits protocol, if it were
implemented in C++.

We have now seen a large part of the existing methods that are used in
some way in this thesis. Before moving on to the more formal descriptions
of the protocols, we first look briefly at what this thesis adds to the existing
literature.

2.3 Contributions of this Work

First and foremost, we present a new secure regression protocol, which has
a better performance regarding speed, and a similar performance regarding
security in comparison to the existing methods. In this protocol, we will
make use of garbled circuits with some optimizations applied to it, which we
will present in the next chapter, in addition to boolean circuits, which can be
more efficient for certain operations within the secure domain. After defining
this protocol theoretically, we will implement it.

We will also test this protocol against some other, partly existing protocols,
by doing some experiments on the SMOCC dataset for each protocol, and
comparing the results based on speed and degree of security. There are very

16

few articles that perform such comparisons for secure regression methods,
therefore we think that this will be a welcome addition to the existing liter-
ature.

Furthermore, we will try to change the way in which the regression is done
in comparison to the way it was done in the PRANA-DATA project [29],
in order for our predictions to become more accurate in this regard. Some
attention to the difference in the results of those methods will be given in
the fourth chapter.

17

3 Protocol Description

Our research setting is mainly based on the PRANA-DATA project [29].
Our baseline is the protocol included in that project, which we will describe
here, along with the other protocols we used. These other protocols are
all adaptations of the baseline protocol, changing only the security related
steps in most cases. However, this can still lead to fundamentally different
protocols, as we will see below.

3.1 General Setting

Since the setting will be the same for each protocol, we describe this once
in this chapter. In addition, we look at the inputs for the protocols, which
should also be very similar, if not equal, in order to have a fair compari-
son.

In these protocols, we have two parties: the individual (IND) and the insti-
tute managing the dataset (DAT). DAT has access to a large collection of
historic child growth data of their first two years of life: in the dataset it
manages, there are 17329 records of 2151 unique children, with each record
being a measurement of a certain child at a certain age. Such a measurement
involves among its 295 attributes the length and weight of the child, but also
the background of the child, with things like the level of education of the
mother, and the age of the mother at the delivery of the child. An example
of (part of) such a record is given in Table 1. In this table, the terms that
consist of a k followed by a number represent certain attributes, for example
the first three k terms represent respectively the birth year, month and day
of the child, while the terms named “year”, “month” and “day” right before
that represent the date on which the measurement was performed. Out of the
295 attributes however, we will only use 8 in these protocols: the identifying
number of a child, its date of birth, the dates on which a measurement was
performed on this child, and the length of this child. The other attributes
that we didn’t consider here represent the outcomes of certain tests that the
child participated in, such as whether the child performs certain actions while
playing a game, or represent complications that the child has experienced,
such as certain diseases.

IND only has access to the growth data of its own child (we assume an
individual has only one child), who is not included in DAT’s dataset and
who is only one year old. There are four to seven measurements for such a

18

pnr year month day k101617 k101415 k101213 k1018 k10257 k102832 k103336 k103739 k1040 k1041
10001 88 5 2 88 4 2 Meisje 100 4050 556 378 Geen Wel

Table 1: Part of a record out of DAT’s database

child, depending on how often a check up was performed for the child. The
goal of the protocols is to predict the growth data of the child of IND in
its second year (for example, the length by month), using the growth data
of all children in the first two years. The result of the protocols does not
necessarily have to be made available to DAT, but does need to be learned
by IND, since the goal of the protocols is for the parents of a child to learn
its predicted growth pattern.

We employ the semi-honest adversary model, which assumes that each ad-
versary will not deviate from the protocol, but will try to derive as much as
possible from the information they do receive while following the protocol.
We use this model because in this situation, both parties are discouraged to
break the protocol in order to learn more about the data of the other party
because of the risk this represents: if DAT would break the protocol and
this would be noticed, its position as an institute which manages datasets
containing privacy-sensitive data would become unsustainable, and if IND
would break the protocol and this would be noticed, they would have to face
charges based on invasion of privacy. Under this model, the protocols we
present will be proven secure later in this chapter. This is a weaker notion
of security than the malicious adversary model, in which adversaries may ar-
bitrarily deviate from the protocol, but the semi-honest model is considered
sufficient in a number of practical settings, including the one presented here,
because of the risks of deviating from the protocol as mentioned above.

The inputs for the protocol are the so-called “comparison metrics” (CM) of all
children: these are a single element out of the growth data of each individual
child, including the child of IND, for example their length at twelve months,
which is the CM that will be used in most of our protocols. These comparison
metrics could in principle be any data or attribute, which is known for most
children, but they are chosen in such a way that they are not considered
sensitive information, so that the growth data of the children can not be
derived from them. If they were chosen to be sensitive information, we
would need to process them in the encrypted domain, which would cause our
protocols to be computationally more expensive and thus slower (we expect
this would cause an increase in processing time of 20-30%), therefore we chose
them in such a way that they are considered non-sensitive information. The

19

CM’s are used to determine what children are the most similar to the child of
IND, so that an accurate prediction of the growth curve of the child of IND
can be made using data from children out of DAT. In our case only a general
distribution of the lengths of children at a certain age can be derived from
the comparison metrics, which is already known based on DAT. Therefore
we can precompute these comparison metrics. It should be noted that in the
actual protocols, generally not all of the 2150 children whose data is in DAT
are considered: this is because for some children, too few measurements are
available to be able to compute a comparison metric reliably.

We define CM0 as the comparison metric of the child of IND, and CM1 to
CMn as the comparison metrics of the children in DAT, where n is the number
of children whose growth data is in DAT. The growth data as a whole is
represented for the parties by DATAIND and DATADAT respectively. Using
these definitions, we can say that IND uses DATAIND and CM0 as input,
and DAT has DATADAT and {CM1, ..., CMn} as input.

3.2 Original Protocol

We will describe the protocol which was used in the PRANA-DATA project,
based on [29]. Before providing this description, we present a global outline
of the protocol below. In this protocol, q denotes the query sent by IND (i.e.
“What will the growth of my child look like in the next year?”), kp denotes
the public key, res denotes the result of the regression which is performed
by ANA, and kd denotes the decryption key. In the protocol, we will denote
that values are encrypted by enveloping them within squared braces: i.e. [b]
indicates that the variable b is encrypted.

20

Protocol 3.1 A protocol similar to the one presented in PRANA-DATA,
which makes use of homomorphic encryption

Party Input Output
IND CM0, q res
DAT {CM1, ..., CMn}, kp and [DATADAT] -
ANA - -
DEC kd -

1. DATADAT is encrypted by DAT using kp, so the data can be used in
the protocol.

2. IND sends CM0 and q to ANA, who then sends CM0 to DAT. DAT
then finds the five children in [DATADAT] with closest CM to CM0

and sends their records, [Ri,j], back to ANA.
3. Based on q, ANA performs regression on the [Ri,j] and sends [res] to

IND.
4. IND computes [res∗] = [res]+[r], where r is an uniformly random num-

ber between 0 and 100000, and sends it to DEC, who decrypts [res∗]
using kd, and sends the decrypted res∗ back to IND, who computes
res∗ − r = res to obtain the result.

We will now give a more detailed description of the protocol we just presented:
in part (a) we will look at the assumptions that we made and at the roles of
the different parties that participate in the protocol, step 1 of Protocol 3.1 is
part of what is described there. In part (b), we describe the communication
that precedes the analysis in order to get the data in the right place to
analyze it, this corresponds to step 2. Then in part (c), the actual analysis
is described, including the methods we use to deal with having to compute
an average, step 3 is highlighted in this part. Finally, in part (d), the result
is decrypted by DEC and obtained by IND, corresponding to what happens
in step 4.

(a) Setup: In this protocol, in addition to IND and DAT, we have two
other parties: the Analysis server (ANA) and the Decryption server
(DEC). These parties are named quite intuitively, and later in the pro-
tocol we will see what roles they perform exactly. ANA is introduced
in order to keep the query, which IND wants to do, hidden from DAT
(in our case this is not so relevant, since we perform the same query
each time the protocol is run, but in the original paper, different kinds
of queries are suggested). DEC is introduced so no party can decrypt

21

the encrypted data and obtain the plain data of another party, DEC
itself can not obtain the plain data of any party either, since it only
obtains the encrypted results of the analysis performed by ANA (with
some added noise). We also assume that all data in DAT is homomor-
phically encrypted using Paillier [21] by a known public key kp, which
cannot be used to decrypt any data. The decryption key kd is only
known by the decryption server. Finally, we consider whether there is
a record for a certain child in a certain month to be public information.

(b) Communication: First, IND sends CM0 to ANA, in addition to the
query q he wants to be answered by the protocol. ANA will then
request all records describing the length from the five children from
DAT with comparison metric closest to CM0, by sending CM0 to DAT
(with “closest” we mean min(|CM0 − CMi|, ∀i ∈ [1, n]). We define
these records as Ri,j, i ∈ [1, 5], j ∈ [1, 24], where i represents the child
to which a record belongs, and where j represents the month of life of
the child in which the record was measured. If there is no record for
child i in month j, Ri,j = 0. Whether Ri,j is equal to zero or not will
be considered public information. This reveals some information about
the child data, but this enables us to compute the average length of
the children for each month in a swift way.

(c) Analysis: Having received the homomorphically encrypted full (con-
taining all attributes) records, ANA performs the analysis that was
requested by IND, which in this case consists of regression-like analysis
on the records, obtaining an encrypted prediction for the development
of the length of the child of IND. The analysis can be described as
follows (everything what follows happens within the homomorphically
encrypted domain): first, piecewise linear regression is performed for
each child, obtaining curves predicting their length in the first two
years of life. This regression method is described in its regular form
in Section 7.1, the calculations that are performed in the homomorphi-
cally encrypted domain are described in Section 3.4. Then, using these
curves, curve matching [27] is performed. This imputes the previously
missing Ri,j values, causing every child to contribute to every month
for the average that we compute in order to predict the growth of the
child of IND.

Then, the following is done: first, the records which are measured in
the same month of life are aggregated and averaged, so for month j:
SUMj =

∑5
i=1Ri,j and AV Gj = 1∑5

i=1(Ri,j 6=0)
SUMj, if

∑5
i=1(Ri,j 6=

0) 6= 0, otherwise AV Gj = 0, which means that there are no measure-

22

ments for month j. Since we know that in this case we have a mea-
surement for each child in each month, we can compute the average
multiplied by five for each month in the secure domain (by adding the
measurements for each child in each month), and then when decrypted
divide the plain value by five again to obtain the average. Every party
knows that the averages will be computed in this way, so when IND
receives the final AV Gj, he can obtain the real averages by dividing the
decrypted AV Gj by five. When AV Gj = 0, the prediction for LENj

is based on AV Gj−1 and AV Gj+1, since there are no measurements for
month j. After computing the SUMj and the AV Gj, regression is per-
formed on the AV Gj: LENj = βjAV Gj + ε, where LENj represents
the predicted length of the child of IND in month j, βj represents the
regression coefficient for the child in month j and ε represents the inter-
cept. The βj can be constructed based on the measurement in month
j and in month j − 1, for j ∈ [1, 24], and ε is defined as the average
measurement for month 0.

The regression coefficient changes each month since we try to model
the growth of the child of IND using linear regression, which is an
acceptable approximation when we do a separate regression for each
period of one month. We can see this from the existing graphs (for
example, Figure 6) modeling the growth of children in the first two years
of life, and also see that this is likely not an appropriate approximation
when looking at the whole period of two years at once. The encrypted
prediction that is obtained by following this protocol is an encryption of
the result of the regression, i.e. the βj, LENj and AV Gj, ∀j ∈ [1, 24].

(d) Decryption: The encrypted prediction [res] is sent back to IND, who
can add some noise [r] to the prediction before sending it to DEC,
obtaining [res∗] = [res] + [r], in order to prevent DEC from learning
the plain prediction. This noise can be some encrypted random number
(known by IND), a new random number should be generated each time
the protocol is executed though, to prevent DEC from learning the
random number in some way, which would allow DEC to also obtain
the plain predictions. DEC then is able to decrypt [res∗], but because
of the noise that was added by IND, nothing about the prediction is
learned by DEC.

Finally, the decrypted result res∗ is sent back to IND, and IND re-
moves the noise r (since the data was homomorphically encrypted, it
is possible to add encrypted noise to the encrypted data and remove
the same noise in decrypted form from the decrypted data), to obtain

23

Figure 6: An example of a graph which represents a prediction on the growth
of boys in their first 15 months of life, the blue points represent the actual
length of an individual.

res∗ − r = res. Then he divides the averages by five (and multiplies
the βs by five), obtaining the result of the analysis done by ANA. This
result contains the prediction of the growth data for the child of IND
in its first two years of life, and since the child is one year old, the
prediction of the growth data for the first year can be compared to
the actual growth of the child in this period to measure how accurate
the obtained prediction will be. We call this part of the prediction the
“control group”.

3.3 Garbled Circuits Protocol

In the previous section, we described the original protocol which was used
in [29], changing only the curve-matching, which was performed there to
predict the growth data of the child of IND, for regression. The main goal
of this thesis is to develop a novel protocol to predict the growth data of the
child of IND based on garbled circuits, and to compare this protocol to a few
other protocols considering speed and degree of security. In order to build
towards this goal, we present a basic garbled circuits protocol which predicts

24

the growth data of the child of IND in the given setting. Since no garbled
circuit protocol existed for this setting, this protocol is a contribution to the
field. Just like the previous protocol, we will describe this protocol step by
step, providing as much details as possible, but before that, we once again
provide a general outline of the protocol. In this outline, res denotes the
result of the regression which is performed, and kp and kd denote the public
key and the decryption key respectively. Also, we will denote that values are
garbled by enveloping them within double squared braces: i.e. [[b]] indicates
that the variable b is garbled.

Protocol 3.2 A basic Garbled Circuits protocol in the given setting

Party Input Output
IND (Garbler) CM0, kp, kd and DATAIND res

DAT (Evaluator) {CM1, ..., CMn} and DATADAT -

1. IND sends CM0 to DAT, who determines the five comparison metrics
closest to CM0 among the ones he possesses (CMi). Then, DAT selects
the corresponding children (CHILDi) out of DATADAT , so their data
can be used in the protocol.

2. IND prepares an encrypted version of the Boolean Circuit (BC) that
the parties want to evaluate, creating a Garbled Circuit (GC) which
performs regression, taking the garbled versions of [[CHILDi]] and
[[CHILD0]] as inputs (CHILD0 is the child corresponding to CM0,
whose data is in DATAIND). IND garbles DATAIND to obtain
[[GARBIND]]. The GC is then sent to DAT, together with the
[[GARBIND]].

3. DAT now still needs his own garbled input data to evaluate the GC. He
obtains [[GARBDAT]] by means of an oblivious transfer protocol with
IND involving the CHILDi, and then evaluates the GC, obtaining
[[res]].

4. DAT sends [[res]] to IND, who decrypts it, obtaining res.

We will now give a more detailed description of the protocol we just presented:
in part (a), we discuss the roles of both parties, and give a general outline
of how a boolean circuit that represents a regression should be constructed.
In part (b), we describe the communication that is done before the analysis
to get the data to the right party, so we can analyze it, this corresponds to
what is done in step 1 of Protocol 3.2. In part (c), we describe the way in
which the boolean circuit is garbled, corresponding to step 2. Then in part

25

(d), the evaluation of the circuit is shown, which corresponds to steps 3 and 4
of Protocol 3.2. Part (e) provides details on the way in which the regression
is performed within the garbled circuits, shedding light on some decisions we
made to avoid having to do divisions within the garbled circuits. In part (f),
we argue that our protocol indeed is secure in the semi-honest sense. Part
(g) mentions an alteration that could be made to the protocol to allow both
parties to learn the results of the protocol, while remaining secure. Finally,
part (h) describes how our protocol could be used to predict growth curves
with a different regression method, which makes use of a different comparison
metric than we used until then.

(a) Setup: Since we employ garbled circuits in this protocol, one of the
parties needs to be the Garbler, who generates and encrypts the gar-
bled circuits, and one of the parties needs to be the Evaluator, who
evaluates the garbled circuits and obtains the results. In this protocol
we don’t need two additional parties, because garbled circuits work in
a whole different way than homomorphic encryption. Even without
those parties, we can still guarantee the same security aspects that
were achieved in the homomorphic encryption protocol by using the
additional parties: by having IND construct the circuit, DAT learns
nothing about the query, he can only see the types of the gates that
are being used, and because IND has the decryption key and DAT eval-
uates the circuit, there is no encrypted data available to IND for which
he has the decryption key that he isn’t allowed to see in plain text.

Since we only need IND to learn the results, we choose IND to be the
Garbler, and DAT to be the Evaluator, because the Evaluator obtains
encrypted results, which have to be sent to the Garbler to be decrypted
into the final results. Therefore, if we pick IND to be the Garbler,
this saves one messaging step in which the decrypted results would
be sent to the Evaluator from the Garbler. Furthermore, a Boolean
Circuit (BC), which represents the linear regression function that the
parties want to be computed securely, should be constructed by IND
beforehand, so DAT learns no relevant information about the query.

Such a boolean circuit can be constructed in the following way: first, we
look at a description of the regression for which we want to construct
a boolean circuit. Then, we do the following: for each addition in the
regression, we represent it by one or more circuits that each add two
integers together, for each comparison in the regression, we represent
it by one or more circuits that each compare two integers, and for
each scalar multiplication in the regression, we represent it by one or

26

more circuits that multiply an integer with a scalar. Furthermore, the
inputs of the boolean circuit are the length measurements, including
the month in which they were performed, of all six children on which
the regression is performed. The outputs of the boolean circuit are the
predicted regression coefficients for the growth of the child of IND, and
the party who receives this output is IND. Some implementations of
boolean circuits of this type can be found in Sections 7.3 and 7.5 of the
Appendix.

(b) Communication: Before we get to the secure part of the protocol,
we first determine the five closest comparison metrics to CM0 in DAT,
in order to get a prediction which is focused on DATAIND instead of
just looking at the general curve obtained by considering all data in
DATADAT . As noted before, the comparison metrics are not consid-
ered sensitive information, so we can do the comparison of the CMi,
i ∈ {1, n} to CM0 in plaintext. We do this by sending CM0 to DAT,
who can then locally determine the children that have the closest com-
parison metric to CM0. These children can be identified by DAT by
the identifier of their corresponding comparison metric (which is the
same as their identifier in the measurement database), their data will
be the input of DAT in the garbled circuits part of the protocol. We
denote each of these children by CHILDi, where i is the subscript of
the corresponding comparison metric of the child. Only DAT knows
the data of these children, since they are privacy-sensitive data.

(c) Garbling the Boolean Circuits: Now we have the input of each
party for the garbled circuits, we can move on to the secure part of
the protocol. First, IND prepares an encrypted version of the BC in
the following way: for each wire j of the circuit, IND associates two
random cryptographic symmetric keys w0

j and w1
j with it, where w0

j

encodes a 0-bit and w1
j encodes a 1-bit. These encodings do not reveal

any information about its plain value, since they both are randomly
generated. Then, for each binary gate gm in BC, helper information
in the form of garbled tables Tm is created by IND, which allows the
decryption of the output key (and nothing more) given a gates’ input
keys. A garbled table is the garbled version of the binary table of a
gate. The garbled tables of all gates together form the garbled circuit,
GC = {T1, ..., Tp} (where p is the number of gates), which is sent to
DAT.

(d) Evaluating the Garbled Circuits: In order to evaluate this circuit,
DAT needs the garbled input values of himself and IND (GARBIND

27

and GARBDAT). The GARBIND are by definition encrypted (because
they are garbled), so they can be sent to DAT. However, DAT does
not know how to garble his own input values, and does not want IND
to learn them. Therefore, an oblivious transfer protocol [9] is used to
obtain GARBDAT , bit by bit. For a description of such a protocol, we
refer to Section 2.2. After this, DAT has obtained GARBDAT as well
as GARBIND, and evaluates GC on these values. DAT then obtains
the garbled output values (GARBOUT), which he sends to IND, who
then decrypts the output.

(e) Regression: The output consists of the result of a type of regression,
which depends on the test setting and which is performed on the five
children from DAT who have the closest comparison metrics to the child
from IND and the child of IND itself. This regression is performed as
follows: first, we take a look at the exact input of the circuit. For each
child on which the regression is performed, all length measurements
are included, including the month in which they were performed. For
IND this is data of one child (CHILD0), for DAT this is data of five
children (CHILDi, with i ∈ [1, 5]).

Then, using this data, we perform a moderately different regression
protocol than in the original protocol: first, the records which are mea-
sured in the same month of life are aggregated and averaged, over
all 6 children (the child of IND is also taken into account). So, for
month j we have: SUMj =

∑5
i=0Ri,j and AV Gj = 60∑5

i=0(Ri,j 6=0)
SUMj

if
∑5

i=0(Ri,j 6= 0) 6= 0, otherwise AV Gj = 0, where the variables have
the same meaning as they have in the original protocol, the only dif-
ference is that i ∈ [0, 5].

If we would want to compute the average this way in the secure do-
main, we would need to be able to do arbitrary divisions on data
within garbled circuits. Since this is not possible, we present a method
which corrects for the number of children who contributed to the av-
erage value of length in a certain month by multiplication with in-
tegers: we use the least common multiple (LCM) of {1, 2, 3, 4, 5, 6},
which is 60. So, we multiply each sum by 60∑5

i=0(Ri,j 6=0)
(this is always

an integer when
∑5

i=0(Ri,j 6= 0) 6= 0, since
∑5

i=0(Ri,j 6= 0) ∈ [0, 6],
and LCM(1, 2, 3, 4, 5, 6) = 60) to obtain the average multiplied by
60: AV Gj = 60∑5

i=0(Ri,j 6=0)
SUMj if

∑5
i=0(Ri,j 6= 0) 6= 0, otherwise

AV Gj = 0. Because the data is within the garbled circuits here, these
additions and scalar multiplications are done using the appropriate gar-

28

bled boolean circuits.

After computing the AV Gj, the regression is performed as follows: with
the help of these averages and the corresponding months, we do some
computations corresponding to the type of regression, and obtain an
approximation for the length of the child of IND in the first two years of
life. For the ‘simple’ regression, we do piecewise linear regression, which
comes down to taking each two points that are closest to each other
regarding in which month they were measured, and then constructing
a line between those two points.

For the linear regression, we determine the slope and intercept of the
resulting line using the following formulas:

intercept =

∑
j(AV Gj) ∗

∑
j(j

2)−
∑

j(j) ∗
∑

j(j ∗ AV Gj)

n ∗
∑

j(j
2)− (

∑
j(j))

2
(1)

slope =
n ∗

∑
j(j ∗ AV Gj)−

∑
j(j) ∗

∑
j(AV Gj)

n ∗
∑

j(j
2)− (

∑
j(j))

2
(2)

Here, j is the month of life a child is in and n is the total number of
different months in which we have measurements. Some more details
about how these regression methods work can be found in Section 7.1.

Since performing fractions within our garbled circuits framework would
be computationally expensive, hard to implement, and does not hide
significant additional information, we compute the nominator and de-
nominator separately within the garbled circuits, and perform the frac-
tion after decryption. This does not leak any data from which any
party can derive more than that which can be derived from the result,
and thus does not influence the degree of security of our protocol.

After the regression, DAT obtains the garbled output of the circuit,
which is the AV Gj and the relevant regression coefficients, which to-
gether form the prediction of the growth of the child of IND. Since
DATAIND is only available for the first year, we can see that part of
the regression as a “control group” (just like was described in the end
of the original protocol), which indicates how accurate our prediction
of the second year will be, if we compare that part of the regression to
DATAIND (which IND can do privately when he has the results).

(f) Ensuring Privacy: Since the circuit that will be evaluated in the
protocol is known by both parties, we see that DAT shouldn’t get the
plain results, since he could do the same kind of regression as used in

29

the protocol on just the five children with the closest comparison metric
out of his database (CHILDi, with i ∈ [1, 5]), which he knows since
the closest comparison metrics were determined publicly, then compare
the result of this regression (β′j, LEN

′
j and AV G′j) to the result which

he got from the protocol (βj, LENj and AV Gj), and then find (part
of) DATAIND by imputation. This imputation can be done easily by
computing ((

∑5
i=1(Ri,j 6= 0)) + 1)AV Gj − (

∑5
i=1(Ri,j 6= 0))AV G′j: if

this is equal to AV Gj, then AV Gj = AV G′j, and thus there either is
no value measured in month j for the child of IND, or its value is equal
to AV Gj. In the first case, AV Gj is a good approximation of the value
of the child of IND and in the second case, AV Gj = R0,j, thus AV Gj

is equal to the value of the child of IND in month j.

If ((
∑5

i=1(Ri,j 6= 0)) + 1)AV Gj − (
∑5

i=1(Ri,j 6= 0))AV G′j 6= AV Gj,
then there is a value measured in month j for the child of IND, and
we have that R0,j = ((

∑5
i=1(Ri,j 6= 0)) + 1)AV Gj − (

∑5
i=1(Ri,j 6=

0))AV G′j since ((
∑5

i=1(Ri,j 6= 0)) + 1)AV Gj is the number of children
that were considered in the regression for whom a value was measured
in month j, times the average length of all children in that month,
which is equal to the sum of the lengths all children in that month, thus
((
∑5

i=1(Ri,j 6= 0)) + 1)AV Gj = (
∑5

i=0(Ri,j 6= 0))AV Gj =
∑5

i=0Ri,j.
The part behind the minus, (

∑5
i=1(Ri,j 6= 0))AV G′j, is equal to the

number of children that were considered in the regression ànd that
were in DAT, for whom a value was measured in month j, times the
average length of those children in that month, which is equal to the
sum of the lengths of those children in that month, thus (

∑5
i=1(Ri,j 6=

0))AV G′j =
∑5

i=1Ri,j. Thus, when we substract the second part from
the first part, we obtain the measured length of the child of IND in
month j, since clearly

∑5
i=0Ri,j −

∑5
i=1Ri,j = R0,j. All operations we

did would be allowed according to the semi-honest adversary model,
since DAT does follow the protocol in this case, he just computes some
extra information in order to be able to derive DATAIND.

(g) Possible alteration: An alternative protocol in which DAT can be al-
lowed to obtain the results without being able to find (part of)DATAIND

would involve obtaining the five children from DAT who have the clos-
est comparison metrics to the child from IND in an oblivious way (so
without DAT knowing which children exactly were selected, and with-
out IND learning anything about the other children from DAT), but
since DAT does not have to get the results in our case, we will not go
into detail about such a protocol.

30

(h) Alternative Regression: Another regression method that we con-
sidered was the ‘slope-based’ regression, of which a description can be
found in Section 7.1. For this method, we use a different comparison
metric than for the methods we described before, namely the slope of
the curve describing the length of a child at 12 months, instead of the
actual length of the child. The reason we chose this comparison metric
is rather than the actual length is that intuitively, it makes sense for
children that grow with similar speed at the same age to keep growing
with similar speed. When we tried to validate this using the data from
the SMOCC-dataset, we came to the conclusion that on average, the
speed with which the children grow will indeed remain roughly within
the same range, with a margin that varies between 1.5 and 3.

Using this comparison metric, we find the five children out of DAT
with the closest comparison metric to the child of IND. We denote the
children once again by CHILD0 (the child of IND) and CHILDi with
i ∈ [1, 5] (the five children out of DAT). Then, for each month, we
compute the average slope of the curves of the CHILDi, so IND can
later apply that slope in the corresponding month to construct the pre-
diction of the development of the length of CHILD0. Only the slopes
from months later than the month in which the final measurement of
CHILD0 was measured are applied, since that is the part for which
we want to predict the length of CHILD0. Since the slopes are not
necessarily integers, we need to scale them before averaging them in
the secure domain, because we can only process integers within our
garbled circuits.

Then, within the garbled circuits, we apply the same principle as with
the other regression methods and scale with the least common multiple
(LCM) of {1, 2, 3, 4, 5}, which is 60. Note that since a continuous graph
has a slope in every month, we get an average slope for each month from
the final measurement we have for CHILD0, which was not necessarily
the case with the other regression methods, since those looked at the
average of the measurements for the closest children out of DAT, and
these measurements did not occur in every month. Thus, by evaluating
the garbled circuits, DAT obtains the encrypted average slopes for each
month, which he sends to IND, who can decrypt those and apply them
to find a prediction of the development of the length of CHILD0.

31

3.4 Alternative Homomorphic Encryption Protocol

In this section, we describe a different homomorphic encryption protocol than
the one presented in Section 3.2. Its structure is different, since we built this
protocol ourselves rather than using an existing protocol, and the cryptosys-
tem used is also different: in this protocol we use the Damg̊ard, Geisler and
Krøigaard (DGK) cryptosystem. We tried to use similar operations to the
ones used in the garbled circuits, in order to keep the comparison between
the cryptosystems as fair as possible. Without any further ado, we present a
general outline of the protocol, before describing the protocol in more detail.
In this outline, res denotes the result of the regression which is performed,
kp denotes the public key and kd denotes the decryption key (note that the
keys for this protocol consist of multiple different values, this representation
is a simplification for the sake of clarity). Also, we will denote that values
are encrypted by enveloping them within squared braces: i.e. [b] indicates
that the variable b is encrypted.

Protocol 3.3 A homomorphic encryption protocol which uses the DGK
cryptosystem in the given setting

Party Input Output
IND CM0, kp, kd and DATAIND res
DAT {CM1, ..., CMn}, kp and DATADAT -

1. IND sends CM0 to DAT, who determines the five comparison metrics
closest to CM0 among the ones he posseses (CMi). Then, DAT selects
the corresponding children (CHILDi) out of DATADAT , so their data
can be used in the protocol.

2. IND encrypts CHILD0 (the data of his child) and DAT encrypts
CHILDi, both using kp, and IND sends [CHILD0] to DAT.

3. DAT then performs the regression, obtaining the correct scale, sj, to
use for each month j by checking in the encrypted domain whether
the measurement for [CHILD0] is zero or not, and adding the result
to the number of measurements that the [CHILDi] contribute to that
month. This value is then decrypted, so that the encrypted average for
that month can be scaled with the scalar sj = 60/nj, where nj is the
number of children contributing a measurement in month j.

4. The result of the regression is sent to IND, who then decrypts it to
obtain res.

32

Now, we give a more detailed description of the protocol we just presented:
in part (a), we describe the roles of the parties that participate in the proto-
col. Part (b) discusses the communication that is done before the analysis,
which ensures that each party has the correct data to perform its part of the
analysis, this corresponds to step 1 and 2 of Protocol 3.3. In part (c), we
look at how the actual analysis is performed, and what methods are applied
to allow us to perform regression using homomorphic encryption, what we
describe here corresponds to step 3 and 4. Finally, in part (d), we shed some
light on the way in which we calculate the components of the result of the
linear regression for homomorphic encryption, and argue that this indeed is
secure in the semi-honest setting.

(a) Setup: In this protocol, other than in the original protocol, we don’t
have two parties in addition to IND and DAT. We pay a small price
for this, since the function that IND wants to perform on the data will
be known to DAT in this scenario. However, since we always want
to do regression in the protocol in our setting, this is not a problem.
Despite this, we should still take into consideration that the original
protocol does conceal the function in our analysis. Furthermore, DAT
gets to know the number of children that contribute to the average
measurement each month in this protocol, from which he can derive in
which month the child of IND has a measurement. This is necessary
because we can’t compute the product of two encrypted integers in
this framework. Since DAT doesn’t get to see the plain results, this
knowledge does not reveal anything about the data values of the child
of IND, and therefore this does not negatively influence the degree of
security of the protocol. Finally, IND has access to the decryption
key in this protocol, but since he doesn’t get to see any encrypted
data that he isn’t allowed to see in plain text (since DAT performs the
regression), and since IND is semi-honest, the fact that IND holds the
decryption key doesn’t impair the security of the protocol. We use the
DGK cryptosystem here, implemented in C++ through the SeComLib
framework [1].

(b) Precomputation: In preparation of the secure part of the protocol,
we send CM0 from IND to DAT, so DAT can find the five children
with comparison metric closest to CM0. Since the comparison metrics
are not considered privacy-sensitive information, this comparison can
be done in plaintext. Continuing, DAT extracts the data of the afore-
mentioned children from DATADAT in order to encrypt it and use it as
input for the protocol. IND does the same with the data for his child,
and then the protocol can be initiated.

33

(c) Analysis: First, IND and DAT encrypt the data of their respective
children, then IND sends the encrypted data of his child to DAT, so
that DAT obtains Ri,j for i ∈ [0, 5] and j ∈ [0, 23], where i represents
the child of which the length data was measured (0 for the child of IND,
1-5 for the children of DAT), and j represents the month in which a
measurement was performed. Then, DAT checks for each month which
children have a measurement for that month, and adds these measure-
ments together within the secure domain. This is possible because
DGK is an additive homomorphic cryptosystem, so secure additions
are possible.

Since not every month has the same number of children with a mea-
surement, the sums obtained by adding the measurements for each
month need to be scaled in order to get the average measurement
value for each month. However, it is not possible to do division within
the encrypted domain with the DGK framework we use. Therefore,
we use the least common multiple of the possible numbers of chil-
dren that can have a measurement in a certain month, this gives us
LCM(1, 2, 3, 4, 5, 6) = 60. In order to achieve this, we want to scale
the sums of measurements in month j with 60/nj, where nj is the num-
ber of children that contributed a measurement in month j. Because
we cannot do comparisons between encrypted values in our framework,
we need to decrypt nj, compute 60/nj and then multiply the encrypted
average by the obtained scalar.

This is done as follows: DAT checks for each j whether R0,j is equal to
0, this is possible in the encrypted domain in our framework and only
reveals whether there is a measurement for CHILD0 in month j, which
is exactly the information DAT needs. By adding whether there is a
measurement in for CHILD0 in month j to the number of measure-
ments for CHILDi in month j where i ∈ [1, 5], DAT obtains the total
number of measurements in month j, nj. Then, DAT computes 60/nj

and multiplies the average of month j by this scalar in the encrypted
domain, obtaining the encrypted average value for month j scaled with
60. After obtaining these values, DAT sends them to IND, who then
can decrypt them. This way IND obtains the results of the piecewise
linear regression.

(d) Secure Linear Regression: If we want to perform linear regression
within the homomorphic encryption protocol, we want to determine the
slope and the intercept using the same formulas as in the garbled cir-
cuits protocol, namely formulas (1) and (2). Some more details about

34

these regression methods can be found in Section 7.1. The calculation
of these values in the encrypted domain proved difficult, since no values
greater than 217 could be stored in the encrypted domain. Therefore,
DAT constructs each sum in the encrypted domain (multiplying is done
by taking the encrypted value to the power of the public value, sub-
traction is done by multiplying one encrypted value with the inverse
value of the other encrypted value):

interceptnum = [
∑
j

(AV Gj)]
∑

j(j
2) ∗ ([

∑
j

(j ∗ AV Gj)]
∑

j(j))−1

slopenum = [
∑
j

(j ∗ AV Gj)]
n ∗ ([

∑
j

(AV Gj)]
∑

j(j))−1

interceptden = slopeden = [n]
∑

j(j
2) ∗ ([

∑
j

(j)]
∑

j(j))−1

Here, j ∈ [0, 23] represents the months, and n represents the total
amount of months in which there is a measurements for at least one
child that was taken into account in the protocol. The sums for the
numerators were split into two parts by first considering their formulas
for j ∈ [0, 11], and then for j ∈ [12, 23]. Then, these values are sent
to IND who computes the intercept and slope in the plain domain,
by decrypting each sum and them combining them according to the
formulas given for the slope and the intercept. This does not reveal
any additional privacy-sensitive information to IND, since only part of
the combined sums of the average measurements and the contributing
months are revealed, but without information about the largest part of
the individual measurements, no privacy-sensitive information can be
derived from this. Having obtained this slope and intercept, IND can
create a curve representing the predicted growth of his child.

3.5 Modified Garbled Circuits Protocol

In Section 3.3, we described a basic version of a garbled circuits protocol
applied to the PRANA-DATA use case. Here, we will describe a slightly
modified version of this protocol, which we expect to be faster than its pre-
decessor. We will describe only the differences of this protocol compared to
the previous garbled circuits protocol, since they are very similar. Before
that, we once again provide a general outline of the protocol. In this outline,
res denotes the result of the regression which is performed. Also, we will

35

denote that values are garbled by enveloping them within squared braces:
i.e. [[b]] indicates that the variable b is garbled.

Protocol 3.4 A modified Garbled Circuits protocol in the given setting

Party Input Output
IND CM0, kp, kd and DATAIND res
DAT {CM1, ..., CMn}, kp and DATADAT -

1. IND sends CM0 to DAT, who determines the five comparison metrics
closest to CM0 among the ones he possesses (CMi). Then, DAT selects
the corresponding children (CHILDi) out of DATADAT , so their data
can be used in the protocol.

2. IND prepares an encrypted version of the Boolean Circuit (BC) that
the parties want to evaluate, creating a garbled circuit. Also, a sepa-
rate boolean circuit is created, which is used together with the garbled
circuit to perform regression. The garbled circuit takes the garbled
versions of the children’s data, [[CHILDi]] and [[CHILD0]] as in-
puts (CHILD0 is the child corresponding to CM0, whose data is in
DATAIND), and the boolean circuit converts intermediate values to
calculate MUX gates more efficiently. IND garbles DATAIND to ob-
tain [[GARBIND]]. The [[GC]] is then sent to DAT, together with the
[[GARBIND]].

3. DAT now still needs his own garbled input data to evaluate the [[GC]].
He obtains [[GARBDAT]] by means of an oblivious transfer protocol
with IND involving the CHILDi, and then evaluates the [[GC]], ob-
taining [[res]].

4. DAT sends [[res]] to IND, who decrypts it, obtaining res.

We will now look at the differences of the protocol we used here compared
to the one we presented in Section 3.3. The functionality of both protocols
is the same, however we expect this protocol to be faster, since we perform
the MUX (multiplexer) gates in a boolean circuit. A description of these
gates can be found in Section 2.2 This is done by converting the input values
(shares) of the MUX gate to boolean shares, then performing the MUX
gate, and then converting the output values back to garbled shares. We do
this several times throughout the protocol, but the general structure of the
protocol remains unchanged compared to the description of the other garbled
circuits protocol.

36

This conversion also has little negative impact on the security of our proto-
col, since the conversion is done in the secure domain and from one secure
representation to another secure representation, thus the disadvantages of
this are that a possible adversary now could try to break either of the two
secure representations or that the conversion between two secure representa-
tions possibly isn’t secure. However, since both representations are secure in
the semi-honest sense, this doesn’t impact the degree of security of the pro-
tocol. Regarding the conversions, we refer to the article in which the ABY
framework was presented [7] for proof that this indeed does not compromise
the security of the protocol. Another possible optimization would be to use
an Arithmetic circuit to perform MUL gates, but the conversion of garbled
circuits to Arithmetic circuits proved to be not yet possible without failure
in the ABY framework (at least for our application), thus applying these
circuits could be a future improvement.

37

4 Results

In this chapter we discuss the experiments we performed on the protocols,
which were described in the previous chapter, and their results. There are
three main aspects that we look at when comparing these protocols: their
speed when we vary the number of children that are considered out of DAT
and the type of regression we perform, their accuracy, which depends on the
type of regression we perform, and their security, specifying which variables
are kept secret by the protocol, and whether the security is computational
(breakable by a sufficient amount of computational power) or unconditional
(secure independent of computational power of an adversary).

4.1 Comparison of Speed

We compared the speed of the different methods with each other, also consid-
ering which regression method was used since this influences the amount of
computation that has to be done. We looked at different numbers of children
that should be extracted from DAT using the CM’s: any number between one
and twenty children. We expected that considering more children would lead
to a slower method. Looking at Table 2 and Figure 7, we see that on average
this is indeed the case for each method. We also see that the protocols which
perform a full linear regression, indicated in the table by ‘(linear)’, rather
than a piecewise linear regression, indicated in the table by ‘(simple)’, are a
bit slower. This can be explained by the fact that piecewise linear regression
is a simplification of full linear regression, in the garbled circuits protocols
the circuit which does the linear regression is even built on the circuit which
does the piecewise linear regression.

We also see that the protocols which perform a ‘slope-based’ regression, in-
dicated in the table by ‘(slope)’, rather than a piecewise linear regression,
are a bit faster, this can also clearly be seen in Figure 8. This can be ex-
plained by looking at the source code for both methods, which can be found
in Section 7.3 and Section 7.4: there we see that the protocol that performs
the ‘slope-based’ regression is almost identical to the protocol that performs
the piecewise linear regression. The difference in speed between the two is
caused by an additional required sanity check, as is explained in Section 7.4.
Therefore, it makes sense for the former protocol to be a bit faster than the
latter protocol.

When comparing the speed of the different types of protocols, we see in Fig-

38

ure 7 that the protocols that are based on garbled circuits outperform the
protocols that are based on homomorphic encryption by a notable difference.
For example, when comparing the linear regression protocol of the regular
garbled circuits to the original protocol, there is an average difference in
speed of more than fifteen seconds (which corresponds to a factor of seven
to eight), regardless of the number of children that should be selected out of
DAT. This can partially be explained by the fact that the original protocol
is implemented in Python and the regular garbled circuits protocol in C++,
since the latter is faster in general. This is illustrated by the fact that the
average difference in speed between the regular garbled circuits protocol and
the alternative homomorphic encryption protocol, which is implemented in
C++, is between six and seven seconds (which corresponds to a factor of
three to four). Since the operations that are performed in the original pro-
tocol and the alternative homomorphic encryption protocol are similar, we
estimate the influence of the fact that the original protocol is implemented in
Python rather than in C++ on the speed to be eight to nine seconds, which
corresponds to a factor two if we compare the speed of the two protocols
which make use of homomorphic encryption.

The final difference between the two protocols which could explain the dif-
ference in speed is the fact that one protocol makes use of garbled circuits,
while the other one makes use of homomorphic encryption. The main differ-
ence between these two protocols regarding their speed lies in the point that
for garbled circuits, most time is needed in order to build the circuits (thus
the preprocessing takes up more time), while for homomorphic encryption,
most time is needed in order to perform operations and data transfers in
runtime. Since we work with preprocessed data here, the large difference in
speed could be explained.

Regarding the modified garbled circuits protocol, which is depicted in Ta-
ble 2 under the term ‘modGC’, we see that, compared to the regular garbled
circuits protocol, the methods are a bit faster in each case, which was the pur-
pose of the modification. This can clearly be seen in Figure 8. The increase
in speed lies between the 10% and 20% in each case, which is reasonable
considering the modifications we made: the modifications were performed on
a small part of the protocol and therefore we did not expect a major increase
in speed.

Summarizing, we found that the garbled circuits protocols were faster than
the homomorphic encryption protocols, that the modified garbled circuits
protocol was the fastest protocol, and that the slope-based method was the
fastest method.

39

of
chil-
dren

Original
Pro-
tocol
(Python)

GC
Pro-
tocol
(sim-
ple)
(C++)

GC
Pro-
tocol
(linear)
(C++)

GC
Pro-
tocol
(slope)
(C++)

modGC
Pro-
tocol
(sim-
ple)
(C++)

modGC
pro-
tocol
(linear)
(C++)

modGC
Pro-
tocol
(slope)
(C++)

Alt HE
Proto-
col(simple)
(C++)

Alt HE
Pro-
tocol
(linear)
(C++)

Alt HE
Pro-
tocol
(slope)
(C++)

5 17,75 2,16 2,71 2,04 1,93 2,29 1,84 8,74 8,85 8,72
10 18,65 2,28 2,92 2,11 2,00 2,47 1,92 9,16 9,31 9,10
15 19,14 2,63 3,05 2,40 2,35 2,59 2,13 9,33 9,42 9,20

Table 2: The speed in seconds with which a protocol is performed, averaged
over 10 runs.

4.2 Comparison of Accuracy

In order to compare the accuracy of the different protocols, we removed
one third of all children from the SMOCC dataset one by one to use as
test individuals. We then performed every protocol on each of these test
individuals, and compared the results in order to draw conclusions about the
accuracy of the methods. In Figure 10, we see the results of the protocols
for one test individual, and in Figure 11, we see the average results of the
protocols for 634 different test individuals. What should be kept in mind
when looking at this comparison is that the original method, which is based
on homomorphic encryption, does not take the measurements of the length
of the child of IND other than its comparison metric into account, while the
methods, that make use of Garbled Circuits and the alternative homomorphic
encryption protocol, do take these measurements into account up until the
first year of life of that child. This is the case because that information was
not taken into account in the original protocol, while we thought it could lead
to better predictions. Also note that we make no distinction between the
modified garbled circuit protocols, the alternative homomorphic encryption
protocols and the garbled circuits protocols in Figure 10 and Figure 11.
This is because the methods we developed all perform the same calculations,
changing only the efficiency with which some calculations are processed and
the exact methods that are used to perform some calculations. We include
the predictions of the original protocol separately in our graph, since the
calculations performed in the original protocol are slightly different than the
calculations that are performed in the other protocols, therefore we expect
its prediction to be different.

Since we want our methods to predict the length of the child after one year,
we value the predictions of our protocols in that period higher than good

40

Figure 7: A graph depicting the average speed of all different protocols,
considering the number of children that were taken into account based on
the CM.

predictions before that point in time (the predictions before that point in
time only serve as verification that our methods work correctly, since we
can compare them to the actual measurements of the child). Looking at
Figure 11, we see that both the ‘slope-based’ and the ‘simple’ method give
an accurate prediction of the actual development of the length of the child in
this case. We see that for the slope-based method, we only have a prediction
from twelve months and onwards. This is the case because we pick the
closest children to the child of IND based on the slope of the curve describing
their length at twelve months, thus we only predict the slope here for each
month from twelve months and onwards. We therefore suspect that the
accurate results for the slope-based method can be explained by the theory
that children that grow with similar speed at twelve months will on average
continue to grow with similar speed. Regarding the ‘simple’ method, we
see that up to twelve months, it approximates the child growth accurately.
However, after twelve months, this prediction becomes less accurate (but still
more accurate than the other methods). We suspect this is influenced by the
fact that the records of the child of IND up to twelve months are taken into
account for this method, and the records afterwards are not.

In Table 3, we give the squared residuals of the average prediction using the

41

Figure 8: A graph depicting the average speed of the garbled circuits proto-
cols, considering the number of children that were taken into account based
on the CM.

same individuals as used to create Figure 11. We tried varying the number
of children extracted from DAT using the CM’s, this can be seen in Figure 9.
There we can see that the error tends to go down until we have ten selected
children, from then on it stays roughly the same. We expect the error to
increase again when we select a large part of the dataset, since we would then
resemble the method from which we are trying to improve, where for the child
of the individual all children in the database are considered when predicting
its growth curve, instead of only the ones with a comparison metric close to
the comparison metric of the child of the individual. For efficiency reasons
(mainly because of the speed of the protocols), we decided to stick with
the original number of children that are selected based on the comparison
metrics, namely five. For a setting where accuracy is the primary objective
however, we strongly encourage that ten children would be selected based on
the comparison metric. We see in Figure 9 that when considering five or more
children, on average the ‘simple’ method gives the most accurate predictions,
and when considering less than five children, both the ‘simple’ and ‘slope-
based’ method on average give the most accurate predictions.

Looking at the linear method in Figure 11, we see that the prediction is worse
than that of the simple and slope-based method, this corresponds to what we

42

Figure 9: A graph showing the difference in scaled average squared residuals
for the three methods we constructed, when varying the number of selected
children.

Original Simple Linear Slope-based
4063 297 3152 869

Table 3: The average squared residuals of the different methods in their
predictions of the lengths of different children after the age of one year.

saw in Table 3. Since the growth curve of a child in its first two years is not
linear (but can be close to linear), it is not surprising that the linear method
does not yield the best prediction. Also, we saw in some individual cases
that their was a strong non-linear correlation between their measurements,
which is hard to approximate with the linear method.

Finally, we looked at the original method in Figure 11. We see that it gives
a prediction that is too conservative from 6 months and onward. This could
be explained by the difference in input values, but also by the difference
in method, since the original method makes use of curve matching [27] to
predict the growth of the child.

When we looked at other test individuals, we saw a similar trend to the one
illustrated in Figure 11: the predictions of the ‘simple’ and ‘ slope-based’

43

methods we developed are fairly accurate, while the prediction of the orig-
inal protocol is somewhat conservative from the sixth to ninth month and
onwards, and the prediction of the ‘linear’ method also is less accurate than
that of the other two methods we developed. This leads us to strongly pre-
ferring the ‘simple’ and ‘slope-based’ methods we implemented accuracy wise
over the original method, between these two methods there is a slight pref-
erence for the ‘simple’ method, since in general its predictions are somewhat
closer to the actual measurements.

Figure 10: An example graph depicting the accuracy of predictions of a
specific child’s length generated by different protocols.

4.3 Comparison of Security

We compare the security of our protocols by comparing what variables are
kept secure by the respective protocols (we will only mention variables that
are not kept secure by a protocol, thus if a value is not mentioned here it
means that it is secure in each protocol), and by stating whether a protocol
has computational or unconditional security.

Firstly, we consider the original protocol. The most notable variables that
are available in plaintext here are the comparison metrics, but as discussed

44

Figure 11: A graph depicting the average accuracy of predictions of a child’s
length generated by different protocols.

in Section 3.1, these variables reveal no additional privacy-sensitive informa-
tion about the data, and thus do not impair the security of the protocol.
Other protocols that we use do also make use of unencrypted comparison
metrics. This is the only variable that is available to all parties unencrypted
in this protocol. Furthermore, the decryption server obtains the noisy result,
but since only IND knows what the noise is, this reveals nothing about the
data. Finally, the security achieved by using Paillier is computational, if an
adversary would be able to find the prime factorization of the public key, he
would be able to derive the private key. There are no more variables in this
protocol that are available in plaintext, therefore we move on to the next
protocol, the ‘simple’ garbled circuits protocol.

In the ‘simple’ garbled circuits protocol, all ‘auxiliary’ variables that are used
as input for the protocol are available in plaintext to both parties. This in-
cludes the least common multiple of {1, 2,, n}, where n is the number of
children considered in the protocol. Since the number of children that is se-
lected from DAT is decided upon beforehand by both parties, this number can
be derived by both parties, and therefore isn’t considered privacy-sensitive
information. For the rest, general information that is needed in garbled form
for the protocol is available in plaintext to both parties, such as a number

45

for each month and the least common multiple divided by 1, 2, ..., n respec-
tively. The result multiplied by the least common multiple of {1, 2,, n}
is only plainly available to IND, which is the intention of the protocol. If
the result would also be available to DAT, he could derive the values of the
child of IND using the measurements of the children that were taken into the
account in the protocol out of DAT. To prevent this, the plain result is not
made available to DAT. Regarding the security that is achieved by using the
“simple” garbled circuits protocol, we can say that it is computational, since
the semi-honest security model for our garbled circuits method imposes a
computational bound on adversaries, without which our protocols wouldn’t
be secure in the semi-honest sense.

For the ‘slope-based’ garbled circuits protocol, the same variables are used
as in the ‘simple’ garbled circuits protocol, thus its security is also the
same.

Looking at the ‘linear’ garbled circuits protocol, we see that the same vari-
ables as in the ‘simple’ garbled circuits protocol are available in plaintext to
both parties. As mentioned above, this is not a problem. Furthermore, for
this method, IND obtains both the numerator and denominator of the slope
and the intercept of the line that predicts the length of the child of IND
in plaintext, since we chose to not do division within the garbled circuits
because of its computational cost, and because it doesn’t hide significant
additional information. From these values, he then constructs the slope and
intercept himself by dividing the numerators by the corresponding denomi-
nators. Since IND does not know the measurements of the children out of
DAT that are used in the protocol, he cannot derive any additional informa-
tion out of the numerators and denominators of the slope and intercept that
he couldn’t have derived from the slope and intercept themselves. Since the
garbled circuits method that is used is the same as in the ‘simple’ garbled
circuits protocol, the security that is achieved by using this method is also
computational.

Considering the modified versions of the ‘simple’, ‘slope-based’ and the ‘lin-
ear’ garbled circuits protocols, we see that the same variables are available
in plaintext to both parties as in the ‘simple’ and ‘linear’ garbled circuits
protocols respectively. In addition to that, the number of children that have
a measurement in a certain month, and information on whether any child
has a measurement in a certain month or not, are converted to another se-
cure representation, boolean circuits. Since this secure representation is also
secure in the semi-honest sense, the protocols as a whole stays secure in the
semi-honest sense. The security we achieve using this protocol is computa-

46

tional, since we still make use of the same garbled circuits method as in the
two previous protocols in the most (vital) parts of our protocols.

It should be noted that theoretically, it would be possible to design gar-
bled circuits for these methods that are secure against malicious adversaries,
however this would cost a considerable amount of time complexitywise, and
would also make the circuits much harder to construct. Furthermore, since
this is not supported by the framework we currently use to implement the
garbled circuits, we did not attempt to construct such circuits, but this could
be an improvement in future work.

Finally, we look at the alternative homomorphic encryption protocols. In the
‘simple’ protocol, the most notable variables that are available in plaintext
are the least common multiple of {1, 2, ..., n} and nj, where nj is the amount
of children in month j that contributed a measurement to the average length.
both are available to DAT. As we discussed before, the least common mul-
tiple of {1, 2, ..., n} can be derived by both parties because the number of
children that is selected by DAT is decided upon beforehand. Therefore,
this isn’t considered privacy-sensitive information. Regarding the nj, we see
that DAT can derive in which month the child of IND has a measurement.
However, since DAT doesn’t get access to the plain results of the protocol, he
cannot derive anything about the actual values of the measurements of IND
from this, and thus this does not reveal any privacy-sensitive information to
DAT.

In the ‘linear’ protocol, we have access to the same variables in plaintext as in
the ‘simple’ protocol, in addition to the sums of which the denominator and
the numerator for the slope and intercept are built: the sum of the averages,
the sum of the contributing months, the sum of the squared contributing
months, the sum of the contributing months multiplied by their correspond-
ing average and the number of contributing months. These sums are only
available in plaintext to IND, who uses them to construct the numerator and
denominator for the slope and the intercept. IND can’t derive any additional
privacy-sensitive information from these sums, since he only knows the data
of his own child. Therefore, he can derive something about in which months
there are measurements for some of the children of DAT, but he can’t derive
the values of those measurements, and thus the security of this protocol is
not impaired by this information being available in plaintext to IND.

Regarding the security of these two protocols, we can say that it is compu-
tational, since the security of the DGK cryptosystem is based on the strong
RSA subgroup assumption, as described in Section 2.2. Therefore, given a
RSA subgroup pair (N, g), if it would be possible to find u,w ∈ Z∗N and

47

d, e > 1 such that g ≡ uwe (mod N) and ud ≡ 1 (mod N). Currently,
this is infeasible, but this is based on the amount of computational power
that currently can be generated in a reasonable time, thus this security is
computational.

48

5 Conclusions

In this chapter, we present the conclusions we obtained from our research
as presented in the previous two chapters. First, we will look at which
protocol is the preferred protocol in our setting and what implementation is
its preferred implementation, based on the comparisons we performed in the
previous chapter. Then, we present a few directions in which future research
in this area could be done.

5.1 Preferred Protocol

Considering the comparisons we performed in the previous chapter, we have
seen that the security is similar for the different protocols: the way in which
the security is achieved differs from protocol to protocol, but its strength
is computational in each case. There is a difference in what information
exactly is available to each party in plaintext, but since there is no sensitive
information available in plaintext in every case, and there also is no sensitive
information that can be derived from the information that is available in
plaintext, this is only a small factor when deciding between protocols and
implementations.

Regarding the accuracy of the methods, we saw that the simple regression
protocols provided the most accurate results on average, therefore this would
lead us to the conclusion that this protocol should be used if only regarding
accuracy. However, since other factors are also taken into account, this is
not necessarily the case. It should be noted though that the accuracy of the
protocol is a very important factor in determining the preferred protocol,
since the preferred protocol should provide us with good predictions for the
growth curve that we want to predict, and this is dependent on the accuracy
of the protocol.

Finally, we take the speed of the protocols into account. We saw that when
using the same implementation, the ‘slope’ protocols were always the fastest,
then the ‘simple’ protocols, then the ‘linear’ protocols and finally the ‘orig-
inal’ protocol. However, the relative difference in speed between the first
three methods was small for each implementation, as can be seen in Table
2.

When considering all these factors, we came to the conclusion that for our
setting, the ‘simple’ regression protocols were optimal: they provided the best

49

accuracy of the methods that we looked at, and given the difference in accu-
racy and the difference in speed between the two types of protocols that were
the best candidates (the ‘simple’ regression method and the ‘slope’ regression
method), we concluded that the relatively larger difference in accuracy out-
weighs the difference in speed between the two methods. However, it should
be noted that in a setting where we would value speed much higher than
accuracy, the ‘slope’ regression method could be preferred over the ‘simple’
regression method.

When determining what implementation of the ‘simple’ regression protocol
would be preferred, we once again take a look at the comparisons that are
performed in the previous chapter: regarding the security, we see that for the
alternative homomorphic encryption protocols, more variables are available
in plaintext than for the garbled circuit protocols. However, since the data
in these variables is not privacy-sensitive, this has limited influence on what
method we prefer.

Considering the accuracy of the protocols, we implemented each protocol in
the same way regarding the calculations that are performed, only the way in
which they are done within the secure domain differs. Therefore, each pro-
tocol which implements the ‘simple’ regression has the same accuracy.

Looking at the speed of the protocols, we see in Table 2 that the modified
garbled circuits provide the fastest implementation of the ‘simple’ regression.
Since the other two factors are similar for all implementations, we prefer the
modified garbled circuits implementation over the other implementations of
‘simple’ regression.

Thus, the preferred protocol in our setting is the ‘simple’ regression protocol
we presented, implemented using modified garbled circuits.

5.2 Future Work

Throughout this thesis, we have mentioned some possibilities that we did
consider but didn’t implement or didn’t look at in detail, we summarize
those possibilities here along with some suggestions that we didn’t mention
before, in order to guide future research within this subject.

When we created the modified garbled circuits, which are designed to be
faster than the regular garbled circuits, there was another optimization that
we couldn’t get to work, but which according to the ABY-framework we used
should be possible to do, namely the usage of arithmetic circuits to compute

50

the MUL-gates. We expect that this would improve the speed of our modified
garbled circuit protocols by about ten percent, but applying and testing this
is left as a future improvement.

It would also be possible to construct the garbled circuits in such a way that
they would be secure against malicious adversaries rather than just semi-
honest adversaries. Since our main concern was the speed of the protocols
while preserving a certain level of security, and since this modification would
certainly slow our protocols, we didn’t consider it here, but it is certainly an
interesting direction for future work.

Another direction that could be explored further is the different regression
protocols that are considered. Here, we considered four different types of
protocols, but there exist many more: a future direction could be to explore
whether other promising regression protocols for our setting yield a better
performance than our current best performance. It is important to note that
in order to get comparable results, the setup for the experiments should be
similar. To that end, we provide the specifications of the hard- and software
that we used in Section 7.12.

It could also be interesting to try and optimize the methods while putting
a higher importance on the accuracy of the obtained predictions instead of
on the speed of the protocols. If this would be done, we suggest based
on Figure 9 that ten children should be selected based on the comparison
metrics, instead of the five children that we select here, because the accuracy
we gain would in that setting be worth the speed of the protocols that we
lose.

Finally, as mentioned in Section 3.3, a protocol could be constructed in
which DAT also could be allowed to receive the results without revealing
any privacy-sensitive information. This could be done by sharing the data of
the children from DAT in an oblivious way, so DAT doesn’t know what chil-
dren were selected and thus can’t reproduce the experiment without the data
of IND’s child and then compare the result to the result of the experiment
with all the data. However, this is by no means the only way to achieve this.
For our setting it was not necessary to share the result with both parties,
but in a different setting this could be desirable, therefore it could be an
interesting direction for future work.

51

6 References

[1] Secomlib. https://mihaitodor.github.io/SeComLib/.

[2] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A sur-
vey on homomorphic encryption schemes: Theory and implementation.
arXiv preprint arXiv:1704.03578, 2017.

[3] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen,
Angela Jäschke, Christian A Reuter, and Martin Strand. A guide to fully
homomorphic encryption. IACR Cryptology ePrint Archive, 2015:1192,
2015.

[4] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complex-
ity of secure protocols. In Proceedings of the twenty-second annual ACM
symposium on Theory of computing, pages 503–513. ACM, 1990.

[5] Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical gapsvp. In CRYPTO, volume 7417, pages 868–
886. Springer, 2012.

[6] Ivan Damg̊ard, Martin Geisler, and Mikkel Krøigaard. Efficient and
secure comparison for on-line auctions. In Australasian Conference on
Information Security and Privacy, pages 416–430. Springer, 2007.

[7] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY-a frame-
work for efficient mixed-protocol secure two-party computation. In
NDSS, 2015.

[8] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE transactions on information theory,
31(4):469–472, 1985.

[9] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized
protocol for signing contracts. Communications of the ACM, 28(6):637–
647, 1985.

[10] Craig Gentry et al. Fully homomorphic encryption using ideal lattices.
In STOC, volume 9, pages 169–178, 2009.

[11] Jens Groth. Cryptography in subgroups of Z∗N . In Theory of Cryptog-
raphy Conference, pages 50–65. Springer, 2005.

[12] Rob Hall, Stephen E Fienberg, and Yuval Nardi. Secure multiple lin-
ear regression based on homomorphic encryption. Journal of Official
Statistics, 27(4):669, 2011.

52

https://mihaitodor.github.io/SeComLib/

[13] WP Herngreen, JD Reerink, BM van Noord-Zaadstra, SP Verloover-
Vanhorick, and JH Ruys. Smocc: Design of a representative cohort-
study of live-born infants in the netherlands. The European Journal of
Public Health, 2(2):117–122, 1992.

[14] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased esti-
mation for nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

[15] Alan F Karr, Xiaodong Lin, Ashish P Sanil, and Jerome P Reiter. Se-
cure regression on distributed databases. Journal of Computational and
Graphical Statistics, 14(2):263–279, 2005.

[16] Sam Kennerly. A crash course in group theory, part 1: Finite groups.

[17] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit:
Free xor gates and applications. In International Colloquium on Au-
tomata, Languages, and Programming, pages 486–498. Springer, 2008.

[18] M.X. Makkes. Efficient implementations of homomorphic cryptosys-
tems. 2010.

[19] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auc-
tions and mechanism design. In Proceedings of the 1st ACM conference
on Electronic commerce, pages 129–139. ACM, 1999.

[20] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan
Boneh, and Nina Taft. Privacy-preserving ridge regression on hundreds
of millions of records. In Security and Privacy (SP), 2013 IEEE Sym-
posium on, pages 334–348. IEEE, 2013.

[21] Pascal Paillier et al. Public-key cryptosystems based on composite
degree residuosity classes. In Eurocrypt, volume 99, pages 223–238.
Springer, 1999.

[22] Benny Pinkas, Thomas Schneider, Nigel P Smart, and Stephen C
Williams. Secure two-party computation is practical. In International
Conference on the Theory and Application of Cryptology and Informa-
tion Security, pages 250–267. Springer, 2009.

[23] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data
banks and privacy homomorphisms. Foundations of secure computation,
4(11):169–180, 1978.

[24] Aleksandra B Slavkovic, Yuval Nardi, and Matthew M Tibbits. ” secure”
logistic regression of horizontally and vertically partitioned distributed

53

databases. In Data Mining Workshops, 2007. ICDM Workshops 2007.
Seventh IEEE International Conference on, pages 723–728. IEEE, 2007.

[25] Ben Terner. A survey of garbled circuit techniques. 2014.

[26] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological), pages
267–288, 1996.

[27] Stef Van Buuren. Curve matching: a data-driven technique to im-
prove individual prediction of childhood growth. Annals of Nutrition
and Metabolism, 65(2-3):227–233, 2014.

[28] Thijs Veugen. Gevoelige informatie delen, zonder de vo-
ordeur open te zetten. https://time.tno.nl/nl/artikelen/

gevoelige-informatie-delen-zonder-de-voordeur-open-te-zetten/,
2018.

[29] Thymen Wabeke and Wessel Kraaij. Da.3 proof of principle of an ap-
proach based on bringing the algorithms to the data – patient setting.
2017.

[30] Sophia Yakoubov. A gentle introduction to Yao’s garbled circuits. 2017.

[31] Andrew C Yao. Protocols for secure computations. In Foundations of
Computer Science, 1982. SFCS’08. 23rd Annual Symposium on, pages
160–164. IEEE, 1982.

[32] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foun-
dations of Computer Science, 1986., 27th Annual Symposium on, pages
162–167. IEEE, 1986.

54

https://time.tno.nl/nl/artikelen/gevoelige-informatie-delen-zonder-de-voordeur-open-te-zetten/
https://time.tno.nl/nl/artikelen/gevoelige-informatie-delen-zonder-de-voordeur-open-te-zetten/

7 Appendix

In this chapter, we provide part of the source code that we used to imple-
ment the garbled circuit protocols, and present some theory that is either
considered preliminary or extra. We also provide the specifications of the
setup we used to do our experiments.

7.1 Regression

In this section, we shed some light on the types of regression and the related
terms we use in our work.

7.1.1 General terms

Throughout this thesis, we talk about a few different variations of regression.
In this subsection we define what we mean by regression, and shed some light
on a few regression related terms we used.

We define regression in the following way: it is a method to fit a curve
through a set of points (measurements) using some criterion to measure how
well a curve fits to the points. The criterion we use depends on the type of
regression we do, and the end result of a regression function is the curve that
fits best to the points following the criterion we use. The criterion is chosen
based on what form we expect the relation to take: if we expect it to be
linear, we do some kind of linear regression, if we expect it to be quadratic,
we do some kind of quadratic regression, and so forth.

Within this thesis we use some other regression related terms that might be
unknown to the reader, we discuss the specific regression methods we mention
in their own subsections, and explain two general terms here using Figure
12. Looking at this figure, we see a line, of which the equation is given to be
y = ax+ b. We see that b is the intersection between the line and the y-axis,
this is defined to be the intercept. We also see in the figure that when the
x-coordinate of the line increases by one, the line goes up in the y-direction
by a. The difference in the y-direction that the line goes through when it
traverses a distance of one in the x-direction, a, is defined to be the slope of
the line. Given the slope and the intercept of a line, we can plot it like we
did in Figure 12.

55

Figure 12: An example of a graph with its equation included, to introduce
the terms ‘slope’ and ‘intercept’

7.1.2 Linear Regression

Now that we have defined some basic terms, we can take a look at what linear
regression consists of. In general, we have a number of measurements spread
through time, and want to model the relationship between a dependent vari-
able and one or more explanatory variables. This model will take the form
of a line in a n-dimensional space, where n is the amount of variables in the
model, which predicts future measurements that are done in the same set-
ting. Since we want to find the best fitting line based on the measurements
that we have, we want to minimize the distance between each measurement
and the line which predicts the future measurements. This can be done by
a few different estimators, which try to minimize the sum of the squares of
the distance of the measurements to the line in some way. In our protocol,
we do this by using the following formulas:

b = intercept =

∑
j(AV Gj) ∗

∑
j(j

2)−
∑

j(j) ∗
∑

j(j ∗ AV Gj)

n ∗
∑

j(j
2)− (

∑
j(j))

2
(3)

a = slope =
n ∗

∑
j(j ∗ AV Gj)−

∑
j(j) ∗

∑
j(AV Gj)

n ∗
∑

j(j
2)− (

∑
j(j))

2
(4)

56

Here, j is the month of life a measurement is made in and n is the total
number of different months in which we have measurements.

7.1.3 Piecewise Linear Regression

Another regression method we perform that is similar to linear regression
is piecewise linear regression, we do a specific variant of this method which
we call ‘pairwise’ linear regression. This method consists of doing multiple
instances of linear regression, between each two following measurements re-
garding x-coordinate (assuming we only have one explanatory variable and
one dependent variable). An example of applying this method can be found
in Figure 13. We see that between every two closest points, linear regres-
sion is done. Since linear regression between two points always generates
a line between those two points (since that is the line that minimizes the
least squared errors between the measurements and the line to 0), we get a
graph where each two following points are connected by a straight line. Since
we perform this method using average measurements in our protocols, this
yields a reasonable prediction, which we talk about in more detail in Section
4.2.

Figure 13: An example of the piecewise (pairwise) linear regression we per-
form in our ‘simple’ protocol

57

7.1.4 Slope-based regression

Here, we look at a regression method which is based on the availability of
curves about similar objects to the one for which we are trying to construct
a curve here. Since it is based on the slopes of those curves, we call this type
of regression ‘slope-based’ regression. It can be done as follows: we select
curves of similar objects out of a large set of such curves using a criterion
determining how close the development of an object is to the development
of the object we are trying to construct a curve for. Then, we take small
steps, averaging the slope of all selected curves in each step, and applying the
obtained slope in the same time step where it was obtained while constructing
the curve. Our starting point is the latest measurement which we have for
the object we are trying to construct a curve for. This is illustrated in Figure
14: there we see green points, which represent the measurements we have for
the object for which we are trying to construct a curve here. The black curve
and the brown curve represent curves of similar objects that were selected
to base the slope of the curve we want to construct on. This curve is then
constructed by averaging the slopes of the black and brown curve in every
time step, this is depicted as the green curve. Thus, we see we can construct
a curve in this way, given that we have curves of similar object available, and
given that we have a way to determine whether an object is similar to the
object for which we want to construct a curve.

7.2 Arithmetic shares

Here, we provide a description of the Arithmetic sharing out of the ABY
framework. In Arithmetic sharing, a k-bit value x can be shared additively
in the ring of integers modulo 2l as the sum of two values: x = 〈x〉1 + 〈x〉2,
where a value between 〈〉 denotes an arithmetic share. Assume now that we
want to compute 〈z〉 = 〈x〉 ∗A 〈y〉, where 〈x〉, 〈y〉 are shared between party 1
and 2 (they have 〈x〉1, 〈y〉1 and 〈x〉2, 〈y〉2 respectively), and ∗A denotes the
multiplication of two arithmetic shares. This multiplication is then computed
with the help of a precomputed Arithmetic multiplication triple: 〈c〉 = 〈a〉∗A
〈b〉. This is done as follows: each party Pi sets 〈e〉i = 〈x〉i − 〈a〉i and 〈f〉i =
〈y〉i − 〈b〉i. Both parties then perform reconstruction for both 〈e〉 and 〈f〉,
which consists of them sending their part of 〈e〉 and 〈f〉 to the other party,
so they can construct e and f . Then, each Pi sets 〈z〉i = (i− 1) ∗ e ∗ f + f ∗
〈a〉i + e ∗ 〈b〉i + 〈c〉i, which can be mutually reconstructed by both parties to
obtain 〈z〉.

58

Figure 14: An example of the slope-based regression we perform in our ‘slope’
protocol

7.3 Simple Garbled Circuits Protocol

Here we provide the source code of the ‘simple’ garbled circuits, since all other
protocols use the same structure in their test circuit function, we will only
include the functions in which they differ in their respective sections.

/∗∗
\ f i l e GC test . cpp
\ author Laurens van der Beek
\ copy r i g h t ABY − A Framework f o r E f f i c i e n t Mixed−p ro t o co l Secure Two−par ty

Computation Copyright (C) 2015 Engineer ing Cryptographic Pro toco l s
Group , TU Darmstadt . This program i s f r e e so f tware : you can
r e d i s t r i b u t e i t and/or modify i t under the terms o f the GNU
Affero General Pub l i c License as pub l i s h ed by the Free Sof tware
Foundation , e i t h e r ve r s i on 3 o f the License , or (at your opt ion)
any l a t e r ve r s i on . This program i s d i s t r i b u t e d in the hope t ha t
i t w i l l be u s e fu l , but WITHOUT ANY WARRANTY; wi thout even the
imp l i ed warranty o f MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Affero General Pub l i c License f o r more
d e t a i l s . You shou ld have r e c e i v ed a copy o f the GNU Affero
General Pub l i c License a long wi th t h i s program . I f not , see
<h t t p ://www. gnu . org / l i c e n s e s />.

\ b r i e f Implementation o f the c h i l d l e n g t h p r e d i c t i on pro toco l , which
uses ga r b l e d c i r c u i t s , us ing ABY Framework .

59

∗/

#include ” GC test . h”

i n t 3 2 t t e s t G C t e s t c i r c u i t (e r o l e ro l e , char∗ address , u i n t 1 6 t port ,
s e c l v l s e c l v l , u i n t 3 2 t nvals , u i n t 3 2 t b i t l en , u i n t 3 2 t nthreads ,
e mt gen a lg mt alg , e s h a r i n g shar ing) {

/∗∗
Step 1 : Create the ABYParty o b j e c t which d e f i n e s the b a s i s o f a l l

the opera t i ons which are happening . Operat ions performed are on the
b a s i s o f the r o l e p layed by t h i s o b j e c t .
∗/
// the amount o f c h i l d r en cons idered in the p ro t o co l
int n c = 6 ;
ABYParty∗ party = new ABYParty(ro l e , address , port , s e c l v l , b i t l en ,
nthreads , mt alg) ;

/∗∗
Step 2 : Get to know a l l the shar ing t ype s a v a i l a b l e in the program .
∗/

vector<Sharing∗>& shar ing s = party−>GetSharings () ;

/∗∗
Step 3 : Create the c i r c u i t o b j e c t on the b a s i s o f the shar ing type
be ing inputed .
∗/
C i r c u i t ∗ c i r c = sha r ing s [shar ing]−>GetCircu i tBui ldRout ine () ;

/∗∗
Step 4 : Creat ing the share o b j e c t s − s IND l , s IND m , s DAT i l and
s DAT i m which are used as input to the computation funct ion ,
s 0 to s 6 which s t o r e the va l u e s wi th which measurements shou ld be
s ca l e d depending on how many measurements t h e r e are f o r a c e r t a i n
month . Also s ou t which s t o r e s the output .
∗/
u i n t 3 2 t b i n s i z e = 24 ;
share ∗ s IND l , ∗ s DAT 1 l , ∗ s DAT 2 l , ∗ s DAT 3 l , ∗ s DAT 4 l ,
∗ s DAT 5 l , ∗ s 0 , ∗ s 1 , ∗ s 2 , ∗ s 3 , ∗ s 4 , ∗ s 5 , ∗ s 6 , ∗ s c l 0 , ∗ s c l 1 ,
∗ s c l 2 , ∗ s c l 3 , ∗ s c l 4 , ∗ s c l 5 , ∗ s c l 6 ;
share ∗∗ s ou t = (share ∗∗) mal loc (s izeof (share ∗) ∗ b i n s i z e) ;
/∗∗
Step 5 : I n i t i a l i z e the input o f IND and DAT.
∗/

int a ;

60

u i n t 3 2 t b = 0 , c = 0 , d = 0 ;
u i n t 3 2 t output [2 4] = {} ;
/∗∗ The months in which a measurement i s performed i s s t o r ed in m, the
l e n g t h measurements are s t o r ed in l . We have 6 rows s ince the r e are 6
ch i l d r en to be cons idered . The f i r s t c h i l d i s the c h i l d o f IND.
∗/
u i n t 3 2 t l [n c] [2 4] = {} ;

s td : : f s t ream myf i l e (”GC/common/ RelevantChi ldren . txt ” , std : : i o s b a s e : : in) ;
s td : : map<int , u in t8 t> ch i ldID ;
while (my f i l e >> a)
{

/∗∗ We i d e n t i f y the meaning o f a number from the f i l e by i t s
p o s i t i o n and proces s i t a c co rd ing l y . Each l i n e has 3 va lues , the
f i r s t o f which i s the ch i l d ID .
∗/
i f (b % 3 == 0){

// I f the ch i l d ID has not been mapped ye t
i f (ch i ldID . f i n d (a) == chi ldID . end ()){

ch i ldID . i n s e r t (std : : pa ir<int , u in t8 t >(a , c)) ;
c += 1 ;

}
}
/∗∗ We know the second entry i s the month in which the measurement
was performed , thus we s t o r e i t in an array corresponding to
the c h i l d the measurement i s from .
∗/
i f (b % 3 == 1){

/∗∗ We know from preproce s s ing t ha t the maximum month
va lue i s 24 and the minimum va lue i s 0 , t h e r e f o r e we
map the 25 th month to the 24 th month , as i s in tended .
∗/
i f (a !=24){

d = a ;
}
else {

d = 23 ;
}

}
/∗∗ We know the t h i r d entry i s the measurement o f the l en g t h
o f the c h i l d wi th ch i l d ID c−1 performed in month d . In
the rare case t ha t we have two measurements in the same
month f o r one ch i l d , we average them to ob ta in the
c on t r i b u t i on f o r t ha t c h i l d to the p r e d i c t i on o f the va lue
f o r the c h i l d o f IND in t ha t month .
∗/
i f (b % 3 == 2){

i f (l [c−1] [d] != 0){
l [c−1] [d] = (l [c−1] [d] + a) / 2 ;

61

}
else {

l [c−1] [d] = a ;
}

}
b += 1 ;

}
/∗∗
Step 6 : Copy the month and l en g t h o f the measurements in t o the
r e s p e c t i v e share o b j e c t s us ing the c i r c u i t o b j e c t method
PutSIMDINGate () , wh i l e mentioning who i s shar ing the o b j e c t .
∗/
s IND l = c i r c−>PutSIMDINGate (24 , l [0] , b i t l en , SERVER) ;
s DAT 1 l = c i r c−>PutSIMDINGate (24 , l [1] , b i t l en , CLIENT) ;
s DAT 2 l = c i r c−>PutSIMDINGate (24 , l [2] , b i t l en , CLIENT) ;
s DAT 3 l = c i r c−>PutSIMDINGate (24 , l [3] , b i t l en , CLIENT) ;
s DAT 4 l = c i r c−>PutSIMDINGate (24 , l [4] , b i t l en , CLIENT) ;
s DAT 5 l = c i r c−>PutSIMDINGate (24 , l [5] , b i t l en , CLIENT) ;
/∗∗ Techn i ca l l y speak ing t h e s e va l u e s are not pr i vacy s e n s i t i v e and
known to both pa r t i e s , so they are shared input , however we
de f i n e t ha t the s e r v e r inpu t s them in to the p ro t o co l .
∗/
u i n t 3 2 t s0 = 0 , s1= 1 , s2 = 2 , s3 = 3 , s4 = 4 , s5 = 5 , s6 = 6 , s c l 0 = 0 ,
s c l 1 = 60 , s c l 2 = 30 , s c l 3 = 20 , s c l 4 = 15 , s c l 5 = 12 , s c l 6 = 10 ;
s 0 = c i r c−>PutINGate (s0 , b i t l en , SERVER) ;
s 1 = c i r c−>PutINGate (s1 , b i t l en , SERVER) ;
s 2 = c i r c−>PutINGate (s2 , b i t l en , SERVER) ;
s 3 = c i r c−>PutINGate (s3 , b i t l en , SERVER) ;
s 4 = c i r c−>PutINGate (s4 , b i t l en , SERVER) ;
s 5 = c i r c−>PutINGate (s5 , b i t l en , SERVER) ;
s 6 = c i r c−>PutINGate (s6 , b i t l en , SERVER) ;
s c l 0 = c i r c−>PutINGate (s c l 0 , b i t l en , SERVER) ;
s c l 1 = c i r c−>PutINGate (s c l 1 , b i t l en , SERVER) ;
s c l 2 = c i r c−>PutINGate (s c l 2 , b i t l en , SERVER) ;
s c l 3 = c i r c−>PutINGate (s c l 3 , b i t l en , SERVER) ;
s c l 4 = c i r c−>PutINGate (s c l 4 , b i t l en , SERVER) ;
s c l 5 = c i r c−>PutINGate (s c l 5 , b i t l en , SERVER) ;
s c l 6 = c i r c−>PutINGate (s c l 6 , b i t l en , SERVER) ;

/∗∗
Step 7 : Ca l l the b u i l d method f o r b u i l d i n g the c i r c u i t f o r the
problem by pass ing the shared o b j e c t s and c i r c u i t o b j e c t .
Don ’ t f o r g e t to type ca s t the c i r c u i t o b j e c t to type o f share
Since we know tha t we have to perform the same opera t ion f o r
each month , we programmed one c i r c u i t which we b u i l t f o r each
month .
∗/
u i n t 3 2 t va l [2 4] [1] = {{0} ,{1} ,{2} ,{3} ,{4} ,{5} ,{6} ,{7} ,{8} ,{9} ,{10} ,{11} ,
{12} ,{13} ,{14} ,{15} ,{16} ,{17} ,{18} ,{19} ,{20} ,{21} ,{22} ,{23}} ;

62

for (int i =0; i < 24 ; i ++){
s ou t [i] = Bu i ldReg r e s s i onC i r cu i t (s IND l , s DAT 1 l , s DAT 2 l ,
s DAT 3 l , s DAT 4 l , s DAT 5 l , s 0 , s 1 , s 2 , s 3 , s 4 , s 5 ,
s 6 , s c l 0 , s c l 1 , s c l 2 , s c l 3 , s c l 4 , s c l 5 , s c l 6 ,
(Boo leanCircu i t ∗) c i r c , va l [i]) ;

}

/∗∗
Step 8 : Modify the output r e c e i v e r based on the r o l e p layed by
the s e r v e r and the c l i e n t . This s t ep wr i t e s the output to the
shared output o b j e c t based on the r o l e .
∗/
for (int i = 0 ; i < 24 ; i ++){

s ou t [i] = c i r c−>PutOUTGate(s out [i] , SERVER) ;
}

/∗∗
Step 9 : Execut ing the c i r c u i t us ing the ABYParty o b j e c t e va l ua t e the
problem .
∗/
party−>ExecCircu i t () ;

/∗∗
Step 10: Only IND has acces to the output , and can do something wi th
t ha t output .
∗/
i f (r o l e==SERVER){

ofstream f i l e ;
/∗∗ Each time we run the program , we want to s t a r t wi th an empty
f i l e .
∗/
f i l e . open (”GC/common/ resultsGC . txt ” , std : : o f s tream : : out |
std : : o f s tream : : trunc) ;
for (int i = 0 ; i < 24 ; i ++){

output [i] = (s out [i]−>g e t c l e a r v a l u e <u int32 t > ())/60 ;
i f (output [i] != 0){

/∗∗ A ch i l d can only grow , thus i f we would ob ta in
a month in which a decrease in l en g t h compared to
a prev ious month occurs , f o r example because o f the
averag ing between mu l t i p l e d i f f e r e n t ch i l d ren , we
don ’ t take the l e n g t h in t ha t month in t o account .
∗/
i f (i >= 1){

for (int j = 0 ; j < i ; j++){
i f (output [i] > output [j]) {
i f (j == i −1){
cout <<
”The pred i c t ed l ength o f the c h i l d in month ”

63

<< i << ” i s :\ t ” << output [i] << ”\n” ;
f i l e << i << ”\ t ” << output [i] << ”\n” ;
}
}
else {

continue ;
}
}

}
else {
cout << ”The pred i c t ed l ength o f the c h i l d in month ”
<< i << ” i s :\ t ” << output [i] << ”\n” ;
f i l e << i << ”\ t ” << output [i] << ”\n” ;
}

}
}

f i l e . c l o s e () ;
}
f r e e (s ou t) ;
delete party ;
return 0 ;

}

share ∗ Bui ldReg r e s s i onC i r cu i t (share ∗ s IND l , share ∗ s DAT 1 l ,
share ∗ s DAT 2 l , share ∗ s DAT 3 l , share ∗ s DAT 4 l , share ∗ s DAT 5 l ,
share ∗ s 0 , share ∗ s 1 , share ∗ s 2 , share ∗ s 3 , share ∗ s 4 , share ∗ s 5 ,
share ∗ s 6 , share ∗ s c l 0 , share ∗ s c l 1 , share ∗ s c l 2 , share ∗ s c l 3 ,
share ∗ s c l 4 , share ∗ s c l 5 , share ∗ s c l 6 , Boo leanCircu i t ∗bc ,
u i n t 3 2 t ∗ month) {

share ∗ out , ∗ c 0 , ∗ c 1 , ∗ c 2 , ∗ c 3 , ∗ c 4 , ∗ c 5 , ∗ gtcheck 0 , ∗ gtcheck 1 ,
∗ gtcheck 2 , ∗ gtcheck 3 , ∗ gtcheck 4 , ∗ gtcheck 5 , ∗sum , ∗mult ;
/∗∗ We need to s t o r e the a r ray ind i c e s f o r the SubsetGate in the manner
below , to comply wi th the expec ted input o f PutSubsetGate .
∗/
u i n t 3 2 t v a l s o u t = 1 ;
/∗∗ check ing whether t he r e i s a measurement f o r c h i l d i in the current
month , i f so , i t i s s t o r ed in c i , o the rw i s e 0 i s s t o r ed in m i j .
∗/
c 0 = bc−>PutSubsetGate (s IND l , month , v a l s o u t) ;
g tcheck 0 = bc−>PutGTGate(c 0 , s 0) ;
c 1 = bc−>PutSubsetGate (s DAT 1 l , month , v a l s o u t) ;
g tcheck 1 = bc−>PutGTGate(c 1 , s 0) ;
c 2 = bc−>PutSubsetGate (s DAT 2 l , month , v a l s o u t) ;
g tcheck 2 = bc−>PutGTGate(c 2 , s 0) ;
c 3 = bc−>PutSubsetGate (s DAT 3 l , month , v a l s o u t) ;
g tcheck 3 = bc−>PutGTGate(c 3 , s 0) ;
c 4 = bc−>PutSubsetGate (s DAT 4 l , month , v a l s o u t) ;
g tcheck 4 = bc−>PutGTGate(c 4 , s 0) ;

64

c 5 = bc−>PutSubsetGate (s DAT 5 l , month , v a l s o u t) ;
g tcheck 5 = bc−>PutGTGate(c 5 , s 0) ;
// sum i s the amount o f measurements performed in t h i s month
sum = bc−>PutADDGate(gtcheck 0 , gtcheck 1) ;
sum = bc−>PutADDGate(sum , gtcheck 2) ;
sum = bc−>PutADDGate(sum , gtcheck 3) ;
sum = bc−>PutADDGate(sum , gtcheck 4) ;
sum = bc−>PutADDGate(sum , gtcheck 5) ;
/∗∗ we now check how l a r g e sum 0 is , and s c a l e the va l u e s from month 0
based on i t .
∗/
gtcheck 0 = bc−>PutGTGate(sum , s 0) ;
mult = bc−>PutMUXGate(s c l 1 , s c l 0 , g tcheck 0) ;
g tcheck 1 = bc−>PutGTGate(sum , s 1) ;
/∗∗ i f sum 0 was l a r g e r than s 1 , we know tha t t h e r e were at l e a s t 2
measurements in the current month , thus we s e t mult to the
corresponding s c a l e . Whenever sum 0 i s equa l to s i , the
corresponding GTGate w i l l output 0 , and thus the MUXGate w i l l s e t
mult equa l to i t s e l f , t h e r e f o r e the co r r e c t s c a l e i s ob ta ined by
f o l l ow i n g t h i s procedure 6 t imes .
∗/
mult = bc−>PutMUXGate(s c l 2 , mult , g tcheck 1) ;
g tcheck 2 = bc−>PutGTGate(sum , s 2) ;
mult = bc−>PutMUXGate(s c l 3 , mult , g tcheck 2) ;
g tcheck 3 = bc−>PutGTGate(sum , s 3) ;
mult = bc−>PutMUXGate(s c l 4 , mult , g tcheck 3) ;
g tcheck 4 = bc−>PutGTGate(sum , s 4) ;
mult = bc−>PutMUXGate(s c l 5 , mult , g tcheck 4) ;
g tcheck 5 = bc−>PutGTGate(sum , s 5) ;
mult = bc−>PutMUXGate(s c l 6 , mult , g tcheck 5) ;
/∗∗ now we have the s c a l i n g f a c t o r t ha t shou ld be app l i e d to t h i s month ,
thus we app ly i t .
∗/
c 0 = bc−>PutMULGate(c 0 , mult) ;
c 1 = bc−>PutMULGate(c 1 , mult) ;
c 2 = bc−>PutMULGate(c 2 , mult) ;
c 3 = bc−>PutMULGate(c 3 , mult) ;
c 4 = bc−>PutMULGate(c 4 , mult) ;
c 5 = bc−>PutMULGate(c 5 , mult) ;
/∗∗ we have now ob ta ined the s ca l e d measurements f o r t h i s month (t e s t
output) . When we d i v i d e t h i s by 60 , we w i l l o b ta in the a c t ua l mean
va lue independent o f the amount o f measurements we had f o r t h i s month ,
because o f the way we s e cu r e l y s c a l e our va l u e s .
∗/
sum = bc−>PutSUBGate(sum , sum) ;
sum = bc−>PutADDGate(c 0 , c 1) ;
sum = bc−>PutADDGate(sum , c 2) ;
sum = bc−>PutADDGate(sum , c 3) ;
sum = bc−>PutADDGate(sum , c 4) ;

65

out = bc−>PutADDGate(sum , c 5) ;
return out ;

}

7.4 Slope-based Garbled Circuits Protocol

The source code of the ‘slope-based’ garbled circuits is almost the same as
the source code of the ‘simple’ garbled circuits which we saw in the previous
section. The only difference between the two (apart from the fact that dif-
ferent comparison metrics are used, but this only affects the preprocessing
and does not impact the code for the garbled circuits), is in step ten of the
main method (test GC test circuit), where we don’t have to perform a sanity
check which ensures that each month, the prediction for the length of a child
can only rise compared to the previous month, since children can only grow,
not shrink. Since we look at how rapid a child grows each month here, and
not at the value of the length of the child in a certain month, this sanity
check is not needed (and even unwanted). Below, we include only step ten
of the main method, since the rest of the code is the same as in the previous
section.

/∗∗
Step 10: Only IND has acces to the output , and can do something wi th
t ha t output .

∗/
i f (r o l e==SERVER){

ofstream f i l e ;
// Each time we run the program , we want to s t a r t wi th an empty f i l e .
f i l e . open (”/home/ lvdbeek /ABY/ s r c / examples /rcGC/common/ resultsGC . txt ” ,
std : : o f s tream : : out | std : : o f s tream : : trunc) ;
for (int i = 0 ; i < 24 ; i ++){

output [i] = (s out [i]−>g e t c l e a r v a l u e <u int32 t > ())/60 ;
i f (output [i] != 0){

/∗ A ch i l d can only grow , thus i f we would ob ta in a month
in which a decrease in l en g t h compared to a prev ious
month occurs , f o r example because o f the averag ing between
mu l t i p l e d i f f e r e n t ch i l d ren , we don ’ t take the l en g t h in
t ha t month in t o account . ∗/
cout << ”The pred i c t ed l ength o f the c h i l d in month ” << i
<< ” i s :\ t ” << f loat (output [i]) / 1 2 << ”\n” ;
f i l e << i << ”\ t ” << f loat (output [i]) / 1 2 << ”\n” ;

}
}

f i l e . c l o s e () ;
}
f r e e (s ou t) ;

66

delete party ;
return 0 ;

7.5 Linear Garbled Circuits Protocol

For the ‘linear’ Garbled Circuits Protocol, we only provide the source code of
the function which constructs the linear circuit, all the code from Section 7.3
is also used in the protocol (since the linear circuit is built upon the simple
circuit). We cannot use a for-loop here because each secure variable needs
to be declared explicitly as such.

share ∗ Bui ldL inea rReg r e s s i onC i r cu i t (share ∗m 0 , share ∗m 1 , share ∗m 2 ,
share ∗m 3 , share ∗m 4 , share ∗m 5 , share ∗m 6 , share ∗m 7 , share ∗m 8 ,
share ∗m 9 , share ∗m 10 , share ∗m 11 , share ∗m 12 , share ∗m 13 , share ∗m 14 ,
share ∗m 15 , share ∗m 16 , share ∗m 17 , share ∗m 18 , share ∗m 19 , share ∗m 20 ,
share ∗m 21 , share ∗m 22 , share ∗m 23 , share ∗ s 0 , share ∗ s 1 , share ∗ s 2 ,
share ∗ s 3 , share ∗ s 4 , share ∗ s 5 , share ∗ s 6 , share ∗ s 7 , share ∗ s 8 ,
share ∗ s 9 , share ∗ s 10 , share ∗ s 11 , share ∗ s 12 , share ∗ s 13 , share ∗ s 14 ,
share ∗ s 15 , share ∗ s 16 , share ∗ s 17 , share ∗ s 18 , share ∗ s 19 , share ∗ s 20 ,
share ∗ s 21 , share ∗ s 22 , share ∗ s 23 , Boo leanCircu i t ∗bc , u i n t 3 2 t ∗ value ,
share ∗ s 012){

share ∗ out , ∗sum y , ∗sum x , ∗xy , ∗sum xy , ∗x2 , ∗ x2contr ib , ∗x2sum ,
∗gtcheck , ∗ contr ib , ∗n , ∗ a t , ∗ab n , ∗b t , ∗ s012 ;
u i n t 3 2 t v a l s o u t = 1 ;
// F i r s t we compute the sum of the average l e n g t h s in each month
sum y = bc−>PutADDGate(m 0 , m 1) ;
sum y = bc−>PutADDGate(sum y , m 2) ;
sum y = bc−>PutADDGate(sum y , m 3) ;
sum y = bc−>PutADDGate(sum y , m 4) ;
sum y = bc−>PutADDGate(sum y , m 5) ;
sum y = bc−>PutADDGate(sum y , m 6) ;
sum y = bc−>PutADDGate(sum y , m 7) ;
sum y = bc−>PutADDGate(sum y , m 8) ;
sum y = bc−>PutADDGate(sum y , m 9) ;
sum y = bc−>PutADDGate(sum y , m 10) ;
sum y = bc−>PutADDGate(sum y , m 11) ;
sum y = bc−>PutADDGate(sum y , m 12) ;
sum y = bc−>PutADDGate(sum y , m 13) ;
sum y = bc−>PutADDGate(sum y , m 14) ;
sum y = bc−>PutADDGate(sum y , m 15) ;
sum y = bc−>PutADDGate(sum y , m 16) ;
sum y = bc−>PutADDGate(sum y , m 17) ;
sum y = bc−>PutADDGate(sum y , m 18) ;
sum y = bc−>PutADDGate(sum y , m 19) ;
sum y = bc−>PutADDGate(sum y , m 20) ;

67

sum y = bc−>PutADDGate(sum y , m 21) ;
sum y = bc−>PutADDGate(sum y , m 22) ;
sum y = bc−>PutADDGate(sum y , m 23) ;
/∗∗ Then , we compute the amount o f months which c on t r i b u t e a measurement ,
the sum of the months , the sum of the months mu l t i p l i e d wi th the l e n g t h
f o r each month , and the squared sum of the months . Gtcheck determines
whether t he r e i s a c on t r i b u t i on from month i to the r e s u l t , i f so we
take i t s va l u e s in t o account us ing con t r i b and x2con t r i b .
∗/
gtcheck = bc−>PutGTGate(m 0 , s 0) ;
n = bc−>PutADDGate(s 0 , gtcheck) ;
gtcheck = bc−>PutGTGate(m 1 , s 0) ;
c on t r i b = bc−>PutMUXGate(s 1 , s 0 , gtcheck) ;
sum x = bc−>PutADDGate(s 0 , c on t r i b) ;
xy = bc−>PutMULGate(contr ib , m 1) ;
sum xy = bc−>PutADDGate(s 0 , xy) ;
x2 = bc−>PutMULGate(s 1 , s 1) ;
x2contr ib = bc−>PutMUXGate(x2 , s 0 , gtcheck) ;
x2sum = bc−>PutADDGate(s 0 , x2contr ib) ;
n = bc−>PutADDGate(n , gtcheck) ;
gtcheck = bc−>PutGTGate(m 2 , s 0) ;
c on t r i b = bc−>PutMUXGate(s 2 , s 0 , gtcheck) ;
sum x = bc−>PutADDGate(sum x , cont r i b) ;
xy = bc−>PutMULGate(contr ib , m 2) ;
sum xy = bc−>PutADDGate(sum xy , xy) ;
x2 = bc−>PutMULGate(s 2 , s 2) ;
x2contr ib = bc−>PutMUXGate(x2 , s 0 , gtcheck) ;
x2sum = bc−>PutADDGate(x2sum , x2contr ib) ;
n = bc−>PutADDGate(n , gtcheck) ;
// S imi lar opera t i ons are done f o r s 3 − s 22
. . .
. . .
. . .
. . .
. . .
gtcheck = bc−>PutGTGate(m 23 , s 0) ;
c on t r i b = bc−>PutMUXGate(s 23 , s 0 , gtcheck) ;
sum x = bc−>PutADDGate(sum x , cont r i b) ;
xy = bc−>PutMULGate(contr ib , m 23) ;
sum xy = bc−>PutADDGate(sum xy , xy) ;
x2 = bc−>PutMULGate(s 23 , s 23) ;
x2contr ib = bc−>PutMUXGate(x2 , s 0 , gtcheck) ;
x2sum = bc−>PutADDGate(x2sum , x2contr ib) ;
n = bc−>PutADDGate(n , gtcheck) ;

// numerator f o r the i n t e r c e p t
a t = bc−>PutMULGate(sum y , x2sum) ;
con t r i b = bc−>PutMULGate(sum x , sum xy) ;
a t = bc−>PutSUBGate(a t , c on t r i b) ;

68

// denominator f o r both the i n t e r c e p t and the s l o p e
ab n = bc−>PutMULGate(n , x2sum) ;
con t r i b = bc−>PutMULGate(sum x , sum x) ;
ab n = bc−>PutSUBGate(ab n , con t r ib) ;
// numerator f o r the s l o p e
b t = bc−>PutMULGate(n , sum xy) ;
con t r i b = bc−>PutMULGate(sum x , sum y) ;
b t = bc−>PutSUBGate(b t , c on t r i b) ;
/∗∗ Since we can ’ t output more than one va lue at a time , we output the one
corresponding wi th a va lue : f o r 0 i t i s a t , f o r 1 i t i s ab n and f o r 2
i t i s b t .
∗/
s012 = bc−>PutSubsetGate (s 012 , value , v a l s o u t) ;
gtcheck = bc−>PutGTGate(s012 , s 0) ;
out = bc−>PutMUXGate(s 0 , a t , gtcheck) ;
gtcheck = bc−>PutGTGate(out , s 0) ;
out = bc−>PutMUXGate(out , ab n , gtcheck) ;
gtcheck = bc−>PutGTGate(s012 , s 1) ;
out = bc−>PutMUXGate(b t , out , gtcheck) ;
return out ;

}

7.6 Modified Simple Garbled Circuits Protocol

Here, we only show the modified part of the source code from the Buil-
dRegressionCircuit function, without the declaration of the boolean circuit,
since this happens in the same way as the declaration of the garbled cir-
cuit. The modifications consist of the conversions from garbled circuits to
boolean circuits and back (the “PutY2BGate” and “PutB2YGate”), and
of the execution of MUX-gates within the boolean circuits instead of in
the garbled circuits (this is indicated by “boolc→PutMUXGate” replacing
“bc→PutMUXGate”).

/∗∗ We now check how l a r g e sum 0 is , and s c a l e the va l u e s from month 0
based on i t .
∗/
gtcheck 0 = bc−>PutGTGate(sum , s 0) ;
g tcheck 0 = boolc−>PutY2BGate (gtcheck 0) ;
mult = boolc−>PutMUXGate(s c l 1 , s c l 0 , g tcheck 0) ;
g tcheck 1 = bc−>PutGTGate(sum , s 1) ;
g tcheck 1 = boolc−>PutY2BGate (gtcheck 1) ;
/∗∗ i f sum 0 was l a r g e r than s 1 , we know tha t t h e r e were at l e a s t 2
measurements in the current month , thus we s e t mult to the corresponding
s c a l e . Whenever sum 0 i s equa l to s i , the corresponding GTGate w i l l
output 0 , and thus the MUXGate w i l l s e t mult equa l to i t s e l f , t h e r e f o r e
the co r r e c t s c a l e i s ob ta ined by f o l l ow i n g t h i s procedure 6 t imes .

69

∗/
mult = boolc−>PutMUXGate(s c l 2 , mult , g tcheck 1) ;
g tcheck 2 = bc−>PutGTGate(sum , s 2) ;
g tcheck 2 = boolc−>PutY2BGate (gtcheck 2) ;
mult = boolc−>PutMUXGate(s c l 3 , mult , g tcheck 2) ;
g tcheck 3 = bc−>PutGTGate(sum , s 3) ;
g tcheck 3 = boolc−>PutY2BGate (gtcheck 3) ;
mult = boolc−>PutMUXGate(s c l 4 , mult , g tcheck 3) ;
g tcheck 4 = bc−>PutGTGate(sum , s 4) ;
g tcheck 4 = boolc−>PutY2BGate (gtcheck 4) ;
mult = boolc−>PutMUXGate(s c l 5 , mult , g tcheck 4) ;
g tcheck 5 = bc−>PutGTGate(sum , s 5) ;
g tcheck 5 = boolc−>PutY2BGate (gtcheck 5) ;
mult = boolc−>PutMUXGate(s c l 6 , mult , g tcheck 5) ;
mult = bc−>PutB2YGate (mult) ;

7.7 Modified Slope-based Garbled Circuits Protocol

The modified ‘slope-based’ garbled circuits have the same source code as the
modified ‘simple’ garbled circuits protocol, with the same change as specified
in Section 7.4.

7.8 Modified Linear Garbled Circuits Protocol

For this protocol, we made the same modification as in the previous sec-
tion, in addition to the modifications to the ‘BuildLinearRegressionCircuit’
function that are presented here:

/∗∗ then , we compute the amount o f months which c on t r i b u t e a measurement ,
the sum of the months , the sum of the months mu l t i p l i e d wi th the l e n g t h
f o r each month , and the squared sum of the months . Gtcheck determines
whether t he r e i s a c on t r i b u t i on from month i to the r e s u l t , i f so we
take i t s va l u e s in t o account us ing con t r i b and x2con t r i b .
∗/
gtcheck = bc−>PutGTGate(m 0 , s 0) ;
n = bc−>PutADDGate(s 0 , gtcheck) ;
gtcheck = bc−>PutGTGate(m 1 , s 0) ;
n = bc−>PutADDGate(n , gtcheck) ;
gtcheck = boolc−>PutY2BGate (gtcheck) ;
c on t r i b = boolc−>PutMUXGate(sb 1 , sb 0 , gtcheck) ;
c on t r i b = bc−>PutB2YGate (con t r i b) ;
sum x = bc−>PutADDGate(s 0 , c on t r i b) ;
xy = bc−>PutMULGate(contr ib , m 1) ;
sum xy = bc−>PutADDGate(s 0 , xy) ;

70

x2 = bc−>PutMULGate(s 1 , s 1) ;
x2 = boolc−>PutY2BGate (x2) ;
x2contr ib = boolc−>PutMUXGate(x2 , sb 0 , gtcheck) ;
x2contr ib = bc−>PutB2YGate (x2contr ib) ;
x2sum = bc−>PutADDGate(s 0 , x2contr ib) ;
gtcheck = bc−>PutGTGate(m 2 , s 0) ;
n = bc−>PutADDGate(n , gtcheck) ;
gtcheck = boolc−>PutY2BGate (gtcheck) ;
c on t r i b = boolc−>PutMUXGate(sb 2 , sb 0 , gtcheck) ;
c on t r i b = bc−>PutB2YGate (con t r i b) ;
sum x = bc−>PutADDGate(sum x , cont r i b) ;
xy = bc−>PutMULGate(contr ib , m 2) ;
sum xy = bc−>PutADDGate(sum xy , xy) ;
x2 = bc−>PutMULGate(s 2 , s 2) ;
x2 = boolc−>PutY2BGate (x2) ;
x2contr ib = boolc−>PutMUXGate(x2 , sb 0 , gtcheck) ;
x2contr ib = bc−>PutB2YGate (x2contr ib) ;
x2sum = bc−>PutADDGate(x2sum , x2contr ib) ;
// S imi lar opera t i ons are done f o r s 3 − s 22
. . .
. . .
. . .
. . .
. . .
gtcheck = bc−>PutGTGate(m 23 , s 0) ;
n = bc−>PutADDGate(n , gtcheck) ;
gtcheck = boolc−>PutY2BGate (gtcheck) ;
c on t r i b = boolc−>PutMUXGate(sb 23 , sb 0 , gtcheck) ;
c on t r i b = bc−>PutB2YGate (con t r i b) ;
sum x = bc−>PutADDGate(sum x , cont r i b) ;
xy = bc−>PutMULGate(contr ib , m 23) ;
sum xy = bc−>PutADDGate(sum xy , xy) ;
x2 = bc−>PutMULGate(s 23 , s 23) ;
x2 = boolc−>PutY2BGate (x2) ;
x2contr ib = boolc−>PutMUXGate(x2 , sb 0 , gtcheck) ;
x2contr ib = bc−>PutB2YGate (x2contr ib) ;
x2sum = bc−>PutADDGate(x2sum , x2contr ib) ;

7.9 Alternative Simple Homomorphic Encryption Pro-
tocol

Here, we provide the source code for the alternative ‘simple’ homomorphic
encryption protocol. We make use of DGK encryption rather than Pail-
lier encryption here, and this protocol is implemented in C++ rather than
in Python, where the original homomorphic encryption protocol was imple-

71

mented. In the source code, we can see similarities to the garbled circuits
protocols in the way that the data is preprocessed, however the calculation
part is fundamentally different for both methods, as is expected.

/∗
SeComLib
Copyright 2012−2013 TU De l f t , Informat ion Secur i t y & Privacy Lab
(h t t p :// i s p l a b . t u d e l f t . n l /)

Contr i bu tor s :
Ina ld Lagendi jk (R.L . Lagendijk@TUDelft . n l)
Mihai Todor (todormihai@gmail . com)
Thi j s Veugen (P. J .M. Veugen@tude l f t . n l)
Zeker iya Erkin (z . e r k i n@ tud e l f t . n l)

Licensed under the Apache License , Version 2.0 (the ”License ”) ;
you may not use t h i s f i l e excep t in compliance wi th the License .
You may ob ta in a copy o f the License at

h t t p ://www. apache . org / l i c e n s e s /LICENSE−2.0

Unless r e qu i r ed by a p p l i c a b l e law or agreed to in wr i t ing , so f tware
d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or imp l i ed .
See the License f o r the s p e c i f i c language governing permiss ions and
l im i t a t i o n s under the License .
∗/
/∗∗
@f i l e r e g r e s s i on /main . cpp
@br ie f Regress ion method f o r the PRANA−DATA se t t i n g , us ing dgk .
@author Laurens van der Beek
∗/

#include ”main . h”

gmp randstate t s t a t e ;

/∗∗
App l i ca t i on entry po in t .

Usage : Accepts one op t i ona l parameter : the f u l l path to the
con f i g u ra t i on f i l e . Otherwise , i t t r i e s to f i nd ” con f i g . xml”
in the current d i r e c t o r y .

@param argc number o f command l i n e arguments
@param argv array con ta in ing the command l i n e arguments
@return The process e x i t s t a t u s
∗/
int main () {

72

try {
// Number o f c h i l d r en t ha t are cons idered .
int n c = 6 ;
CpuTimer t ;
int a ;
B ig Intege r con t r ib [2 4] ;
DgkCiphertext n , s c a l e ;
Dgk : : Ciphertext sumMonth [2 4] = {} ;
u i n t 3 2 t b = 0 , d = 0 , e = 0 ;
int l [n c] [2 4] = {} ;
B ig Intege r dec [n c] [2 4] = {} ;
DgkCiphertext c [n c] [2 4] = {} ;
B ig Intege r output [2 4] = {} ;
// Pr iva te key , on ly a v a i l a b l e to the key s e r v e r
Dgk PrivateCryptoProvider (true) ;
Pr ivateCryptoProvider . GenerateKeys () ;
/∗ Pub l i c key , a v a i l a b l e to a l l p a r t i e s and the computation
s e r v e r ∗/
Dgk Publ icCryptoProvider (Pr ivateCryptoProvider . GetPublicKey ()) ;
DgkCiphertext zero = Publ icCryptoProvider . EncryptInteger (0) ;
DgkCiphertext one = Publ icCryptoProvider . EncryptInteger (1) ;

s td : : f s t ream myf i l e (
”/home/ lvdbeek /ABY/ s r c / examples /dupGC/common/ RelevantChi ldren . txt ”
, std : : i o s b a s e : : in) ;
s td : : map<int , u in t8 t> ch i ldID ;
while (my f i l e >> a)
{

/∗ we i d e n t i f y the meaning o f a number from the f i l e by
i t s p o s i t i o n and process i t a c co rd ing l y . Each l i n e has
3 va lues , the f i r s t o f which i s the ch i l d ID ∗/
i f (b % 3 == 0){

// i f the ch i l d ID has not been mapped ye t
i f (ch i ldID . f i n d (a) == chi ldID . end ()){

ch i ldID . i n s e r t (std : : pa ir<int , u in t8 t >(a , e)) ;
e += 1 ;

}
}
/∗ we know the second entry i s the month in which the
measurement was performed , thus we s t o r e i t in an array
corresponding to the c h i l d the measurement i s from . ∗/
i f (b % 3 == 1){

/∗ we know from preproce s s ing t ha t the maximum
month va lue i s 24 and the minimum va lue i s 0 ,
t h e r e f o r e we map the 25 th month to the 24 th month ,
as i s in tended ∗/
i f (a !=24){

d = a ;
}

73

else {
d = 23 ;

}
}
/∗ we know the t h i r d entry i s the measurement o f the
l en g t h o f the c h i l d wi th ch i l d ID c−1 performed in
month d . In the rare case t ha t we have two measurements
in the same month f o r one ch i l d , we average them to
ob ta in the con t r i b u t i on f o r t ha t c h i l d to the p r e d i c t i on
o f the va lue f o r the c h i l d o f IND in t ha t month . ∗/
i f (b % 3 == 2){

i f (l [e−1] [d] != 0){
l [e−1] [d] = (l [e−1] [d] + a) / 2 ;

}
else {

l [e−1] [d] = a ;
}

}
b += 1 ;

}
for (int i =0; i<n c ; i++)
{

for (int j =0; j <24; j++)
{
c [i] [j] = Publ icCryptoProvider . EncryptInteger (l [i] [j]) ;
}

}

for (int j =0; j <24; j++)
{

n = zero ;
sumMonth [j] = zero ;
for (int i =0; i<n c ; i++)
{
i f (Pr ivateCryptoProvider . IsEncryptedZero (c [i] [j]) == 0)
{

n = n + one ;
sumMonth [j] = sumMonth [j] + c [i] [j] ;

}
}
/∗ Sca le the sum of a month based on the amount o f
c h i l d r en c on t r i b u t i n g to the va lue . ∗/
cont r i b [j] = PrivateCryptoProvider . DecryptInteger (n) ;
i f (con t r i b [j] != 0)

sumMonth [j] = sumMonth [j] ∗ (60/ cont r ib [j]) ;
}

std : : o f s tream f i l e ;
/∗ Each time we run the program , we want to s t a r t wi th an

74

empty f i l e . ∗/
f i l e . open (
”/home/ lvdbeek /Downloads/SeComLib/ r e g r e s s i o n / r e s u l t s R e g r e s s i o n . txt ”
, std : : o f s tream : : out | std : : o f s tream : : trunc) ;
for (int j = 0 ; j < 24 ; j++){

output [j] = PrivateCryptoProvider . DecryptInteger (
sumMonth [j]) / 6 0 ;
i f (output [j] != 0){

/∗ A ch i l d can only grow , thus i f we would ob ta in
a month in which a decrease in l en g t h compared to
a prev ious month occurs , f o r example because o f
the averag ing between mu l t i p l e d i f f e r e n t ch i l d ren ,
we don ’ t take the l en g t h in t ha t month in t o
account . ∗/
i f (j >= 1){

for (int i = 0 ; i < j ; i ++){
i f (output [j] > output [i]) {
i f (i == j −1){
std : : cout <<
”The pred i c t ed l ength o f the c h i l d in
month ” << j << ” i s :\ t ” <<
output [j] . ToString (10) << ”\n” ;
f i l e << j << ”\ t ” <<
output [j] . ToString (10) << ”\n” ;
}
}
else {

continue ;
}
}

}
else {

std : : cout <<
”The pred i c t ed l ength o f the c h i l d in
month ” << j << ” i s :\ t ” <<
output [j] . ToString (10) << ”\n” ;
f i l e << j << ”\ t ” <<
output [j] . ToString (10) << ”\n” ;

}
}

}
f i l e . c l o s e () ;

s td : : cout << ”Runtime o f the p ro to co l = ” << t . ToString ()
<< std : : endl ;

}
catch (const std : : runt ime e r ro r &except ion) {

std : : cout << except ion . what () << std : : endl ;

75

}
catch (const std : : except ion &except ion) {

std : : cout << except ion . what () << std : : endl ;
}
/∗ i t won ’ t ca tch low l e v e l excep t ions , l i k e d i v i s i o n by 0 ,
produced by GMP. . . ∗/
catch (. . .) {

std : : cout << ”Unexpected except ion occured . ” << std : : endl ;
}

p r i n t f (”\n \n pre s s ENTER to e x i t .\n”) ;
while (! getchar ()) ;
return 0 ;

}

7.10 Alternative Linear Homomorphic Encryption Pro-
tocol

For the alternative ‘linear’ homomorphic encryption protocol, the same goes
as for the ‘linear’ garbled circuits protocols: it is built onto the code for the
corresponding ‘simple’ protocol, thus in this case the code for the alterna-
tive ‘simple’ homomorphic encryption protocol, which was presented in the
previous section. It extends this code by adding some variables to store the
denominator and numerator for the slope and the intercept, and by adding
some operations to compute these variables. These extensions can be found
in the code below:

DgkCiphertext sum = zero ;
DgkCiphertext nMonth = zero ;
DgkCiphertext sumNMonth = zero ;
DgkCiphertext sumSQMonth = zero ;
DgkCiphertext sumMonthLength = zero ;
B ig Intege r num i , den i s , num s , reg a , reg b ;

for (int j = 0 ; j <24; j++)
{

i f (output [j] !=0)
{

/∗ A ch i l d can only grow , thus i f we would ob ta in a month in
which a decrease in l en g t h compared to a prev ious month
occurs , f o r example because o f the averag ing between mu l t i p l e
d i f f e r e n t ch i l d r en , we don ’ t take the l e n g t h in t ha t month in t o
account .

76

Here we b u i l d the v a r i a b l e s we need in order to do l i n e a r
r e g r e s s i on ∗/
i f (j >= 1){

for (int i = 0 ; i < j ; i ++){
i f (output [j] > output [i]) {
i f (i == j −1){
/∗ nMonth i s the amount o f months t ha t c on t r i b u t e an
average to the l i n e a r regre s s i on , sumNMonth i s the sum
of the numbers o f the c on t r i b u t i n g months , sumSQMonth
i s the sum of the squared numbers o f the c on t r i b u t i n g
months , sumMonthLength i s the sum of the c on t r i b u t i n g
months mu l t i p l i e d by the average measured l en g t h in
t ha t month and sum i s the sum of the average measured
l e n g t h s in each month . ∗/
nMonth = nMonth + one ;
sumNMonth = sumNMonth +
Publ icCryptoProvider . EncryptInteger (j) ;
sumSQMonth = sumSQMonth +
Publ icCryptoProvider . EncryptInteger (j ∗ j) ;
/∗ Sca lar mu l t i p l i c a t i o n wi th 0 i s not w e l l d e f i ned wi th in
the homomorphical ly encrypted domain . ∗/
i f (j !=0){

sumMonthLength = sumMonthLength +
Publ icCryptoProvider . EncryptInteger (output [j]) ∗ j ;

}
sum = sum + Publ icCryptoProvider . EncryptInteger (output [j]) ;
}
}
else {

continue ;
}
}

}
else {

nMonth = nMonth + one ;
sumNMonth = sumNMonth +
Publ icCryptoProvider . EncryptInteger (j) ;
sumSQMonth = sumSQMonth +
Publ icCryptoProvider . EncryptInteger (j ∗ j) ;
/∗ Sca lar mu l t i p l i c a t i o n wi th 0 i s not w e l l d e f i ned wi th in
the homomorphical ly encrypted domain . ∗/
i f (j !=0){

sumMonthLength = sumMonthLength +
Publ icCryptoProvider . EncryptInteger (output [j]) ∗ j ;

}
sum = sum + Publ icCryptoProvider . EncryptInteger (output [j]) ;

}

}

77

}
// Numerator f o r the i n t e r c e p t :
num i = PrivateCryptoProvider . DecryptInteger (sum) ∗
PrivateCryptoProvider . DecryptInteger (sumSQMonth) −
PrivateCryptoProvider . DecryptInteger (sumMonthLength) ∗
PrivateCryptoProvider . DecryptInteger (sumNMonth) ;
// Numerator f o r the s l o p e :
num s = PrivateCryptoProvider . DecryptInteger (sumMonthLength) ∗
PrivateCryptoProvider . DecryptInteger (nMonth) −
PrivateCryptoProvider . DecryptInteger (sum) ∗
PrivateCryptoProvider . DecryptInteger (sumNMonth) ;
// Denominator f o r both the i n t e r c e p t and the s l o p e :
d e n i s = PrivateCryptoProvider . DecryptInteger (sumSQMonth) ∗
PrivateCryptoProvider . DecryptInteger (nMonth) −
PrivateCryptoProvider . DecryptInteger (sumNMonth) ∗
PrivateCryptoProvider . DecryptInteger (sumNMonth) ;
// Resu l t o f the r e g r e s s i on
r eg a = num i / d e n i s ;
r eg b = num s / d e n i s ;
f i l e << r eg a . ToString (10) << ”\ t ” << reg b . ToString (10) << ”\n” ;
std : : cout << ”The i n t e r c e p t i s : ” << r eg a . ToString (10) <<
” and the s l ope i s : ” << reg b . ToString (10) << ”\n” ;
f i l e . c l o s e () ;

s td : : cout << ”Runtime o f the p ro to co l = ” << t . ToString () << std : : endl ;

7.11 Alternative Slope-based Homomorphic Encryp-
tion Protocol

Our source code for the alternative ‘slope-based’ homomorphic encryption
protocol is the same as the source code for the alternative ‘simple’ homo-
morphic encryption protocol, with the same relative change as mentioned in
Section 7.4.

7.12 Specifications Hard- and Software

Here, we provide the specifications of the machine and programs we used in
our experiments, in order to enable future researchers of this topic to do com-
parable experiments with other protocols or to reproduce our experiments.
First, it is important to note that we used a virtual machine which ran on
Ubuntu 16.04 and had 2 GB of memory assigned to it to run all our proto-
cols. The host machine we used has as processor an Intel Core i5-6300 CPU

78

with 2.40 GHz and 2 core, and as graphical card an Intel HD graphics 520,
has 8 GB of physical RAM, 12,9 GB of virtual RAM and runs on windows
10 enterprise.

Regarding the software we used, a ‘docker container’ structure was used for
the original protocol, the ABY-framework for both types of garbled circuit
protocols, and SeComLib for the alternative homomorphic encryption pro-
tocols. SeComLib has some dependencies, of which we used the following
versions: GMP (6.1.2), Boost (1.53.0) and MPIR (2.5.2). The original pro-
tocol is implemented in Python, and the rest of the protocols are implemented
in C++.

79

	Introduction
	Secure Regression
	Homomorphic Encryption
	Garbled Circuits

	The SMOCC dataset
	Problem Description
	Objective
	Overview

	Previous Work
	General Work
	Methods Used
	Curve-Matching
	Garbled Circuits General Method
	Garbled Circuits Adaptations
	Oblivious Transfer
	Homomorphic Cryptosystems
	The ABY Framework

	Contributions of this Work

	Protocol Description
	General Setting
	Original Protocol
	Garbled Circuits Protocol
	Alternative Homomorphic Encryption Protocol
	Modified Garbled Circuits Protocol

	Results
	Comparison of Speed
	Comparison of Accuracy
	Comparison of Security

	Conclusions
	Preferred Protocol
	Future Work

	References
	Appendix
	Regression
	General terms
	Linear Regression
	Piecewise Linear Regression
	Slope-based regression

	Arithmetic shares
	Simple Garbled Circuits Protocol
	Slope-based Garbled Circuits Protocol
	Linear Garbled Circuits Protocol
	Modified Simple Garbled Circuits Protocol
	Modified Slope-based Garbled Circuits Protocol
	Modified Linear Garbled Circuits Protocol
	Alternative Simple Homomorphic Encryption Protocol
	Alternative Linear Homomorphic Encryption Protocol
	Alternative Slope-based Homomorphic Encryption Protocol
	Specifications Hard- and Software

