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Abstract

Robots find application in contexts as diverse as re-
tail, factory work and elderly care. In a social context,
it is important that robots can communicate with hu-
mans and adapt their behaviour to a changing environ-
ment. We raised the question whether we can adapt a
robot’s gesture behaviour based on the effectiveness of
its communication towards humans. We developed a
system that made use of an interactive evolutionary al-
gorithm to develop gestures for a virtual robot. In addi-
tion, we investigated if and how interactive evolution-
ary algorithms can be suitable for the development of
gestures for robots. In the experiment we performed
(N=16), we found indications that it may well be possi-
ble to develop gestures that can be interpreted by other
people this way. Additionally, a majority of participants
indicated to perceive improvements in the gestures over
successive generations of the evolutionary algorithm.
However, improvements of the system are necessary, as
well as more experiments to confirm the results. To in-
vestigate whether gestures that are based on the inter-
action of multiple people with the system are easier to
interpret than gestures developed by an individual, we
propose an experiment in which gestures are developed
by multiple people by means of a transmission chain ex-
periment.

1 Introduction

Robots are developed for tasks as diverse as building houses
(Fastbrick Robotics), keeping track of stock in retail stores [73]
and supporting children with diabetes [59]. As they can per-
form physically heavy and dangerous tasks, they are increas-
ingly employed in factories and warehouses, and their use in
disaster response is investigated. The TRADR1 project investi-
gates the exploration of disaster areas by human-robot teams
of unmanned aerial and ground vehicles and the humans that
teleoperate them [44]. Amazon expanded its use of robots that
work alongside its 230 000 human employees to 45000 in 2016
[72].

Robots no longer operate solely behind fences in facto-
ries. In these new situations, whether it is in a human-robot
team or in the context of social robotics, it is important that
robots can communicate with humans, indicate that they un-
derstood messages and adapt their behaviour to new situa-
tions.

The effectiveness of social interactions can be quite re-
duced when mediated by naïve technological interfaces. We
are already familiar with technologies that mediate our social
interactions. We send each other messages via our mobile
phones and e-mail. However, the affective expressiveness of
messages sent this way is greatly reduced, compared to speak-
ing to each other face to face.2 Likewise, a limited set of re-
sponses in a robot will make long-term interaction less inter-
esting [45].

Robot faces are often designed in a humanoid fashion, as
they can give us affective feedback in a way we are already
used to. In a sense, they afford interaction [7]. Smiling means

something to us immediately. When a robot communicates a
certain affective state to humans, humans can recognize the
mood that is being communicated and the affective commu-
nication can have an effect on human task performance [87].

A number of existing models for affective social robot feed-
back contain a limited number of iconic expressions, for in-
stance happiness, anger and surprise [7, 53]. These expres-
sions are often based on a two- or three-dimensional affective
space with dimensions such as valence, arousal and stance.
However, not all emotions can be convincingly expressed by
a limited number of facial expressions. Additionally, the way
expressions are interpreted depends on the context. Hard-
coding every single possible interaction is not practical.

Body language and gestures can aid the understanding of
a message by (human) interaction partners. Gestures can take
on a language-like role when it is performed by itself. Gestures
that accompany speech can convey additional or different in-
formation, thereby enriching communication [31].

Learning from humans by imitation is a possible solution
that could help accommodate the expression of complex so-
cial information. Breazeal and Scassellati describe imitation
as a powerful tool for social learning in robots [10]. However,
this implies a humanoid or android body, and these have their
problems. Humanoid robots and androids are costly and com-
plex to develop. The uncanny valley hypothesis poses that hu-
manoids and androids can appear a bit off, or even downright
frightening, as their realism approaches their human model
[56]. Modelling a robot on the human form also poses many
restrictions and brings up expectations and requirements for
the way the robot can and is supposed to move and interact.

Is it necessary to model robots after humans? Much sim-
pler robots could also be effective. Humans tend to project
complex intentions and behaviours onto machines that are
not human-like at all. The simple vehicles Braitenberg de-
scribes serve as an illustration of these projective inclinations
[8]. Human beings tend to ascribe characteristics such as be-
ing able to feel emotions to non-human animals and even ob-
jects or moving shapes [71].

What should the shape of such a simple robot be? What are
the modalities that it can use to communicate? If a robot could
not only alter its behaviour, but adapt its capabilities and body,
based on the success or failure of its attempts at communi-
cation, these questions could be explored by the robot itself,
in context. Additionally, if robots could evolve behaviours in
the context of interacting with humans, this might create be-
haviour that is more “meaningful”: behaviour that is grounded
in interaction. The change of interaction over time would give
the human and the system a shared history, and behaviour
could become personalized.

In humans, language acquisition takes place in the con-
text of interaction, as well as the conversational use of lan-
guage. Another motivation for letting communicative be-
haviours adapt and evolve within the context of interaction, is
that work on human-human communication shows that cul-
tural transmission can lead to increased structure and trans-
missibility of language. The language can appear designed,

1TRADR is an acronym for Long-Term Human-Robot Teaming for Robot Assisted Disaster Response.

2Attempts have been to mediate affective content in the form of emoticons and emoji. However, interpretations tend to vary within- and across-platforms [52].
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without conscious interference of a designer [42].
This raises the following questions. How can we create the

embodiment and behaviour of a robot without directly mod-
elling these on humans? Would using a system that can adapt
its behaviour result in more engaging interaction in the long
term? Could we adapt a robot’s behaviour based on the effec-
tiveness of its communication towards humans?

We will try to answer this last question by developing a sys-
tem that makes use of an interactive evolutionary algorithm
to suggest gestures to a human experiment participant, and
to subsequently adapt those gestures. We will first review the
literature on current designs of (social) robot embodiments
and potential shortcomings. We will describe some effects
of robot motion and behaviour, and discuss ways these have
been achieved within a “social” context, in which robots can
learn from one another. An approach is proposed that in-
volves adapting a robot’s gestures based on interaction with
humans. We describe the development of a system that in-
tends to achieve this, and an experiment in which the devel-
oped system is tested. Developing suitable gestures is not the
only goal of the system. We will also consider the way hu-
man participants interact with the developed system. From
this we hope to infer what the requirements are for a system
that makes use of an interactive evolutionary algorithm to de-
velop gestures. The terminology used in this paper is clarified
in the Appendix.

2 Literature Review: Designing
Robots for Interaction

2.1 Embodiment design of social robots

2.1.1 Anthropomorphic designs

Anthropomorphism is a frequently applied strategy when it
comes to designing a social robot’s embodiment or behaviour.
Humanoid social robots can share human physical character-
istics and behaviours, varying from more realistic to more ab-
stract. Examples of humanoid social robots are the NAO and
Pepper robots by Aldebaran robotics [2, 3], MIT Media Lab’s
Nexi and Kismet [53, 54], Honda’s ASIMO [37] and Waseda Uni-
versity’s KOBIAN [85]. Androids are developed to be as similar
to humans as possible, and are often modelled after individ-
ual human beings. Robot Nadine from Nanyang Technologi-
cal University Singapore was developed to take on the role of
a receptionist [57]. Geminoids have also been developed by
Hiroshi Ishiguro [35] and Hanson Robotics [36].

Robots that were not intended as social robots are also fre-
quently designed using humanoid forms. This can allow for
more intuitive control by human operators. Stanford´s diver
robot Ocean One can give touch feedback to the hands of
a remote human teleoperator based on objects touching the
robot’s hands [13]. Most of the robots that competed in the
2015 DARPA robotics challenge were humanoid. The robot
Handle, which was recently developed by Boston Dynamics,
has been described as a chimera merging the human form
with wheels [74].

An argument for anthropomorphism is an increase in fa-
miliarity and as a result being able to relate to the robot and

understand the actions it performs. However, anthropomor-
phic embodiments in social contexts may create large expec-
tations in users, which can lead to disappointments if these
expectations are not met [19].

Another risk factor is that anthropomorphic designs can
be perceived as uncanny or threatening. The concept of the
uncanny valley is a nonlinear relationship proposed by Mori
between the human likeness of an entity (f.e. a robot, zombie
or prosthetic hand) and the affinity humans feel for the en-
tity. Humans tend to feel more affinity when a design has some
human characteristics. However, when the human likeness of
an entity reaches human levels, the affinity drops and humans
can start to feel uncomfortable around the entity. According to
Mori, this feeling of uncanniness likely stems from an instinct
to avoid proximal sources of danger such as different species
and corpses [56].

Broadbent et al. discuss that mixing human and robotic
features may increase the perceived sense of eeriness, if done
poorly. In an experiment with a Peoplebot healthcare robot,
they compared a condition in which it showed a humanlike
face on its display to a condition in which the face was made
silver coloured, and a condition without a displayed face. Par-
ticipants preferred the humanlike face most, and rated the
robot with the silver face on its display as most eerie [12].

Ferrari et al. propose a related thesis to explain the fear of
humanoid social robots: the threat to distinctiveness hypoth-
esis. Social robots that are perceived as very similar to hu-
mans might be seen as damaging to the identity of humans
and of humans as a group. In two studies they found that
people perceive robots with a more anthropomorphic appear-
ance as more threatening than robots with no anthropomor-
phic features. Androids were rated as most anthropomorphic
and potentially most threatening to human identity, followed
by humanoid robots and then mechanical ones. They suggest
designing expressions that are familiar yet not threatening to
the psychological distinctions that humans construct between
robots and themselves [26].

A possible explanation for the uncanny valley phe-
nomenon, based on neural activity in response to action per-
ception, was suggested by Saygin et al. They performed func-
tional magnetic resonance imaging (fMRI) while experiment
participants watched short clips of a robotic agent, an android,
and a human. They found stronger suppression effects for the
android. They speculated that this could indicate that an in-
crease in prediction error occurs when the brain perceives a
human form that displays non-biological, unfamiliar move-
ment [70].

Mori predicted that “it is possible to create a safe level of
affinity by deliberately pursuing a nonhuman design” [56]. In-
stead of trying to approach biological human movement with
a humanoid or android robot, we could start with a body that
does not raise expectations of close-to-human behaviour, and
develop behaviour from the ground up. Familiarity can arise
in different ways than one-to-one modelling.

A lot can be gained from developing humanoid and an-
droid robots in terms of knowledge and building an infras-
tructure for robot development, and benefits for specific target
groups and to specific contexts. However, Veruggio and Op-
erto expect that the high cost of humanoid robots will mean
that they will be deployed in situations where the human form
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is necessary to the task, such as in elderly care, child care, or in
sensitive military operations. Concerns have been expressed
about deploying humanoid robots in these contexts, ranging
from possible development of psychological problems in hu-
mans, such as problems of attachment, to displacement of hu-
mans in the work force, and robots being used to manipulate
and control people [83]. We should take care to engage in dis-
cussion around these topics when it comes to the deployment
of these robots, so potential benefits outweigh the costs and
risks.

Perhaps we should not aim to create social robots that are
perfectly modelled on humans. Rather, we could create possi-
bilities for interactive technologies to develop and adapt. If a
robot were to “learn” how to communicate based on interac-
tion with a human, it could develop a way of communicating
that is not modelled on existing (human) behaviour, yet un-
derstandable for humans. This is not to say that the behaviour
and body that will develop will not be humanoid at all, per-
haps they will be. But in that case we have more reason to be-
lieve that the humanlike characteristics that have developed,
are sufficient and suitable to the interaction capabilities of the
system. Expanding even further the idea of creating an adap-
tive system: perhaps there is a way to design social robots that
would redefine them as their own species, with their own ways
of communicating. After all, we are perfectly capable of inter-
acting with dogs and horses, provided they were raised by hu-
mans.

2.1.2 Alternative designs

Zoomorphic embodiment designs have been applied to social
robots, for instance the iCat robot, robotic seal PARO, robot
dog AIBO and Leonardo by MIT. It is suggested that the animal
form of these robots evoke lower levels of expectations in hu-
mans than anthropomorphic ones [45]. However, one could
argue that the iCat robot and some of the other zoomorphic
robots are in a sense quite humanoid the ways they commu-
nicate, for example by means of certain facial expressions.

Rather than making robots more and more humanlike, we
could develop robots based on a different paradigm. De Rooij
et al. propose an approach they call abstract expressions of
affect. They propose an alternative to the commonly chosen
approach of mimicking human and animal forms when de-
signing social robots. Instead, we could adopt features from
abstract art. This frees up some of the technological require-
ments that come with a humanoid body. Such an approach
could merge affect and technological design on a more funda-
mental level. Rather than designing expressions similar to ex-
isting ones, we can choose ones that are effective instead [65].

Another possibility is to take the approach of capitalizing
on the communicative potential some readily available tech-
nologies already possess. Song and Yamada discuss the de-
sign of multimodal affective expressions for an expression-
constrained robot. Designing affective expressions with hu-
manoid robots can be costly and technically complex. There-
fore, they chose to investigate a more low cost, simple ap-
proach. They combined colour, sound and vibration to con-
vey the emotions happiness, sadness, anger and being relaxed.
They found that using multiple modalities conveys the emo-
tions better than single modalities, and especially the colour

modality helps [76].
Duffy argues for rendering interaction with a social robot

“transparent”, by facilitating the interaction to the point peo-
ple are no longer aware of the interface. Rather than trying
to make robots all-purpose, or approach human-likeness as
close as possible, Duffy suggests applying only those capa-
bilities that facilitate social interaction and using already fa-
miliar communication cues. Additionally, he suggests that
robots could gather information about us and their environ-
ment through sensors we do not possess, thereby diverging
from the course of being designed more like humans [22].

2.2 Adding the time dimension: robot
motion

Blow et al. describe a design space for social robot faces, from
more realistic to more iconic and abstract, adapted from the
design space of faces for comics by Scott McCloud [7]. We
would like to extend this design space to include the time di-
mension as well. Movement and shape change add informa-
tion. We argue here that in addition to focusing on visual char-
acteristics and similarities to existing models and systems, we
should take gesture and behaviour into account as well. The
quality and type of movement are important characteristics
when it comes to communication.

Rasmussen et al. describe expressive parameters for
shape-changing interfaces, such as orientation, form and
volume. Kinetic parameters (speed, tempo, frequency) can
change the perception of the interface, as well as direction. Ex-
pressive parameters can be used to describe such an interface.
Contrast for instance fast movements and slow, flowing move-
ments [64]. A study by Saerbeck and Bartneck provides indi-
cations that humans perceive affective signals in robot motion
and the perception of affect holds across the different embod-
iments they tested [67].

Salem et al. carried out an experiment with robot ASIMO
(the Honda humanoid robot). They compared the conditions
in which the robot gave verbal instructions accompanied by
congruent co-verbal gesture to a condition with no gesture
and a condition with incongruent co-verbal gesture. As they
had anticipated, people in the co-verbal gesture condition
perceived the robot as more likable and more humanlike. They
scored higher on measures of having a sense of shared real-
ity with the robot, as well as the intention to have contact
with it in the future. Surprisingly, in the incongruent co-verbal
gesture condition these measures were rated even higher, al-
though task performance was lower. The researchers discuss
this could be the result of the unpredictability of the robot be-
haviour being perceived as more alive or humanlike. Lower
task performance is not desirable in situations in which task
performance is vital. At the same time, imperfection can be
perceived as more likeable [69].

The results by Salem et al. suggest that humans attribute
perceptions of affect to robot motion. This was also found
by Saerbeck and Bartneck, who investigated the perception
of affect of robot motion for the iCat and Roomba robots. By
varying the acceleration and curvature of robot movements,
they found that the acceleration parameter can convey differ-
ent levels of arousal for both embodiments. They also found a
relationship between valence and the combination of acceler-
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ation and curvature [67].

2.3 From motion to behaviour

Instead of having a human designer predetermine a robot’s
embodiment and behaviour, it is possible to evolve a robot to
fit a task it is supposed to fulfil. This was investigated in aLife
contexts before.

In a now classic paper, Sims describes the evolution of
three-dimensional virtual creatures. Their fitness was deter-
mined by competition over a resource. He suggests it might
be easier to evolve systems that appear to display intelligent
behaviour, rather than attempting to design this behaviour
[75]. Lund et al. argue for making the entire morphology of
a robot evolvable, including control system, sensors, motors
and physical structure, as performance is not only influenced
by the control circuit, but by the body plan as well [47]. Cheney
et al. describe an approach in which they evolved soft three-
dimensional virtual robots that were made up of voxels of dif-
ferent materials. Their fitness was evaluated based on loco-
motion speed in four environments with different restrictions
[14].

These examples show that it is possible to evolve based on
fitness. In the examples given before, fitness is based on abili-
ties such as locomotion. In the context of Human-Robot Inter-
action (HRI), fitness could be determined by the robot’s com-
municative abilities towards humans. In the field of HRI, the
effects of implementing specific behaviours in robots to facili-
tate interaction have been studied extensively. Effects of non-
verbal communication on human task performance by robots
have been found [11, 40]. Ende et al. found that participants
in their experiment could infer instructions from gestures per-
formed by a humanoid robot and even a single arm manipu-
lator (SAM) [24]. Indications have been found that people ex-
perience social interaction with a robot as more meaningful,
enjoyable and engaging if the robot performs gestures while
talking [41].

2.4 Social learning

Quinn argues for allowing communicative behaviours to
evolve from existing functional behaviours, rather than im-
plementing isolated communication channels in Artificial Life
agents. This would allows us to better study the origins of com-
municative behaviour [62].

The emergence of communication behaviour between
robots has been investigated in the contexts of Artificial Life
and evolutionary robotics research [34, 49]. For example, Flo-
reano et al. found that the communication behaviour of sig-
nalling close to a source of food arises in genetically similar
populations. When unrelated individuals that performed best
were selected across populations, deceptive behaviours devel-
oped, such as signalling away from the food, which attracted
non-related robots [27]. Marocco et al. found that when the
agents in their study established communication from parents
to offspring, the language that emerged increased fitness [49].

Social learning in robot-robot interaction scenarios has
also been used to investigate the emergence of vocabulary. In
a Talking Heads experiment, two agents play a language game
in which they have to indicate a shape within their visual field

with a linguistic utterance. Over time, a linguistic structure
emerges. Agents start using certain words to indicate specific
shapes more and more often.

Steels and his team performed this experiment with two
robots equipped with pan-tilt cameras. The listening robot
had to decipher which one of the coloured geometric figures
the speaker robot was trying to indicate. One agent points out
an object to another, accompanied by an utterance, such as
“pargalup". The other agent will then associate the object with
that specific word. The robots were connected to the internet
and people could create agents that could play the game on-
line. During a period of three months, agents played almost
half a million games together and developed a contextual core
vocabulary consisting of 300 words [78]. Spranger describes a
more recent implementation of a language game in robots. He
describes a scenario in which two robots engage in a spatial
language learning task [77]. This development of vocabulary
is interesting because it suggests that we could develop ver-
bal and gestural vocabularies in robots, which obtain a mean-
ing in the context of human-robot and robot-robot interaction
scenarios.

2.5 Key findings

Here, we briefly summarize key findings from the literature re-
view. These findings inform the project that is described in the
next sections.

F1 Pursuing a social robot design that is nonhuman, or hu-
manoid only to a certain extent, is likely to help people
feel affinity for the robot, and not feel threatened by it
[22, 26, 56].

F2 We can design multimodal robot behaviour by using ex-
isting technologies [76].

F3 We can choose to implement only those behaviours and
expressions that are functional, instead of trying to model
all behaviours and peculiarities of humans and the inter-
actions between them [22, 65].

F4 Instead of designing behaviour that appears intelligent,
we can evolve behaviour that appears intelligent from the
ground up [27, 49, 62, 75, 78].

F5 Evolving a robot’s morphology can improve task perfor-
mance [14, 47, 75].

F6 A robot’s nonverbal communication has an impact on
human task performance [11, 40].

F7 If a robot performs co-verbal gesture, human interaction
partners can experience the interaction as more mean-
ingful, enjoyable and engaging, [41] and rate the robot as
more likeable [69].

F8 People can infer instructions from robot gesture [24].

F9 People attribute perceptions of affect to robot movement
[67].
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3 Problem Statement

As we have seen, giving robots designs that are nonhuman or
humanoid only to a certain extent may increase the affinity
people feel for them [Finding F1]. Instead of designing be-
haviour that appears intelligent, we can evolve it [F4]. A robot’s
nonverbal communication has an effect on human task per-
formance [F6], and human interaction partners can infer in-
structions [F8] and affective signals [F9, F7] from robot ges-
tures. If we could adapt or evolve a social robot’s embodiment
and its social interaction behaviour based on interaction with
humans, it may be possible to create a robot that humans per-
ceive as likeable, not threatening, and that improves task per-
formance in human-robot teams, without hard-coding every
possible interaction. We could end up with new effective ways
of communication between robots and humans that do not
stem from the mind of a human designer but from what users
find convenient forms of communication. Personalization of
behaviour becomes an option as well. Alternatively, we could
assist a human designer by making different parts of the search
space apparent to the designer.

In this paper, we will focus on the development of a system
in which a virtual robot performs gestures. We have two main
research questions:

Research Question 1. Can we develop a system in which a
robot (simulation) adapts its nonverbal (gesture) behaviour
based on human feedback, in such a way that humans not fa-
miliar with the robot can obtain information the robot has ac-
cess to?

Research Question 2. Is it feasible to develop gestures using an
interactive system, and what are requirements for such a sys-
tem?

3.1 Approach

We propose to create gestures for a virtual robot that are the
result of an adaptation process. The adaptation process takes
place based on interaction with humans. We will run experi-
ments during which human experiment participants will pro-
vide feedback to the robot’s gestures. The robot, which is sim-
ulated on screen, will use the feedback to adapt its gestures.
The aim is to improve the gesture behaviour over successive
interactions. The idea is that the way a robot can perform ges-
tures has a large effect on the way it will be perceived and on
the way its body will be designed. Therefore, we will start with
simple gesture behaviour that the robot can perform by mov-
ing its “limbs”. The addition of other modalities that are part
of the adaptive body and behaviour may follow later.

From now on, we will refer to the simulated robots used in
the experiment as bots. We suppose that the label bot commu-
nicates that the robot we are talking about could in principle
be digital or simulated. The bot is made up of joints and con-
necting limbs, and is able to move. We see this as an oppor-
tunity for nonverbal communication by the bot. The bot can
communicate with its body only, by means of gestures.

Hypothesis 1. It is possible to adapt a simulated robot’s ges-
tures or movement patterns based on human feedback that in-
dicates whether instructions were correctly conveyed, in such a

way that the adapted movement patterns are easier to under-
stand by humans.

This study is intended as a proof of concept. It does not
include developing a full perceptual system or construction of
visual categories by the robot. The body and behaviour that
will be developed, will likely only suit the context of the exper-
iment task described here. It is possible that it cannot be gen-
eralized to different contexts. The requirements for the design
of the gesture system are suitability to the context of the exper-
iment task. We will now describe methods that have been em-
ployed for design problems before, which are suitable to the
context of our experiment.

3.1.1 Interactive evolutionary algorithms

Interactive evolutionary algorithms allow users to select solu-
tions interactively, based on what they perceive as solutions
with high fitness. Evolutionary algorithms with humans in the
loop have advantages in situations that do not have a clear fit-
ness function. Search ability can be improved, and exploration
and diversity increased [23]. Takagi provides an overview of
the diverse applications of interactive evolutionary algorithms
[81]. Suga et al. implemented an interactive evolutionary al-
gorithm in robot WAMOEBA-3. They encoded the connection
weights between motor control agents into a genome, which
allowed people interacting with the robot to adapt the strength
of a set of predefined reactive behaviours [79].

The possible drawbacks of the use of interactive evolution-
ary algorithms are the limited attention span of humans and
the development of fatigue. Quick improvements are impor-
tant to strive for, instead of evaluating large populations over
thousands of generations. Expectations are also likely to rise
as humans are confronted with more successful solutions. Us-
ing a surrogate fitness function can help reduce the number of
cycles that require human feedback [23]. An example of a sur-
rogate fitness function is a neural network that learns from hu-
mans, and estimates which instruction humans would choose
for a particular embodiment and behaviour.

3.1.2 Developing social skills for robots

Dautenhahn argues for social intelligence as a key aspect to
making robot behaviour appear smarter, based on the social
intelligence hypothesis. This hypothesis suggests that primate
intelligence arose as a response to socially complex situations.
Rather than first focusing on other skills such as navigating,
planning and reasoning, we could treat social skills as just as
fundamental to intelligent behaviour [21].

Dautenhahn proposes a model in which robots are social-
ized in three phases. First, background knowledge on partic-
ular tasks and social behaviour appropriate for specific envi-
ronments is gathered. Next, a prototype robot is developed
in the laboratory, and general behavioural parameters are set.
During the third phase, the robot interacts with a human and
behaviour is personalized [20]. Personalization of robot be-
haviour can make a robot’s behaviour more suitable for a par-
ticular context and interaction with specific individuals. Per-
sonalization has been implemented by Mason and Lopes, who
describe the development and testing of a robotic system that
is able to learn personal profiles of desirable world states [48].
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One way to get more grip on a design problem is by de-
composing it. Wang and Terpenny describe a method for engi-
neering design, which they call interactive evolutionary design
synthesis. It enables human designers to complement their in-
tuitive sense of correct solutions with the storage and genera-
tive possibilities of computers. With this approach, the design
problem is decomposed into subproblems, thereby reducing
the complexity of the design task [84].

We will look at a way to decompose our design problem
into sub problems in section 4.2 and run a user test with this
system. In section 4.4 we will describe an interactive evolu-
tionary system. The aim is to develop personalized gestures
with this system, and to find out what the requirements are for
such a system. Before we do those things, we will take Dauten-
hahn’s advice to gather background knowledge on our partic-
ular task: we will look at gesture in more detail. This will allow
us to simplify our problem and to specify parameters that will
describe the most relevant parts of gesture.

3.2 Describing gesture

It has been hypothesized that the origins of human language
lie in gesture, and we can conceptualize speech as a gestu-
ral system [16]. In animals (including humans), behaviour by
other animals may function as a signal even if it is not intended
to be one, such as attack-response behaviour.

How can we describe gesture? McNeill argues for the thesis
that gesture and speech share the same psychological basis:
they are components of the same psychological process. He
distinguishes iconic gestures, metaphoric gestures and beats.
Iconic gestures show similarity to the linguistic concept that
is expressed by the speaker who is performing the gesture
cotemporally. For example, an iconic gesture could be the
speaker’s hand moving up diagonally, accompanying the sen-
tence “He was walking up the hill”. Metaphoric gestures have a
more indirect relationship to the linguistic meaning of the sen-
tence. Examples are mathematics gestures, referring to math-
ematical concepts, and conduit metaphors (e.g. holding the
hand as if holding something, while talking about an abstract
concept). As metaphoric gestures refer to abstract concepts,
not every culture shares the same types of metaphoric ges-
tures. Beats serve a pragmatic function. They can, for exam-
ple, indicate that what the speaker is talking about is not the
main topic [51].

Mitra and Acharya note that a gesture’s meaning can be
influenced by its affective, symbolic and spatial informa-
tion, as well as by its path. They distinguish gesticulation,
language-like gestures, pantomimes, emblems and sign lan-
guages. Gesticulation is movement that occurs spontaneously
during speech. Language-like gestures can take the place of a
word in a sentence. Pantomimes depict objects or actions vi-
sually. Emblems are particular, culturally-bound signs, while
sign languages are entire systems on themselves. These cate-
gories have different levels of spontaneity and are regulated by
culture to a different extent [55].

Salem et al. describe the organization of the production
of speech and gestures in successive chunks. Gesture can be
organized in phases: preparation, stroke, retraction and hold.
One gestural phrase can contain one or more of such phases
[68]. When developing robotic gesture behaviour, it could be a

good idea to organize this behaviour in different chunks. The
way a gestural phrase is interpreted, is highly dependent on its
organization. Compare a gesture in which you first move your
hand forward, pause, then stretch out your fingers, to a ges-
ture that involves moving your hand forward and stretching
out your fingers at the same time. The second one can appear
more urgent than the first.

Here, we will focus on iconic gestures without co-
occurring speech, which are described as language-like ges-
tures in Mitra and Acharya’s classification [55]. Existing ges-
ture annotation schemes can help shed a light on how other
researchers have classified and described gesture for practical
purposes. These schemes are likely to include the items that
describe the most informative aspects of gesture. Those fea-
tures of gesture will help people communicate and infer infor-
mation from the gesture. Gesture annotation schemes are de-
signed in such a way that after encoding, the (essence of) the
gesture can be reproduced. This could help us specify which
features are most important to describe, and to build a gesture
language from the selected elementary building blocks.

Various gesture annotation schemes have been developed,
such as FORM, CoGesT, and MURML. Annotation systems for
sign languages exist as well, such as HamNoSys (the Ham-
burg Notation System for Sign Languages), SignWriting and
the Stokoe notation.

3.2.1 Gesture annotation schemes

The annotation scheme FORM describes kinetic information
of gestures with different tracks. One track contains Location,
Shape and Orientation, the other track contains descriptions
of Movement [50].

CoGesT is a transcription scheme for hand and arm ges-
tures. Gestures are encoded in so-called Simplex Gestures,
which are described by feature vectors that consist of the start
and target locations, shape of the hand and movement, size of
the gesture and speed during the gesture [29, 82].

In MURML, gesture is described by its stroke, which is de-
fined by three features for a hand or arm configuration: loca-
tion and orientation of the wrist and the shape of the hand.
If the gesture is dynamic, constraints for the start and end
time and the moment of peak velocity have to be described.
Complex trajectories can be described by assigning descrip-
tors “linear”, “curve” or “circle” to segments of the trajectory
[43].

3.2.2 Sign language annotation schemes

HamNoSys (the Hamburg Notation System for Sign Languages)
is based on the Stokoe notation. It was designed with the aims
of being suitable for international use, iconic in form and ex-
tensible. A sign is encoded by describing initial posture and
actions changing the posture. Posture consists of nonman-
ual features, and the shape, orientation and location of the
hand(s). Path movements, in place movements and nonman-
ual movements are combined sequentially or co-temporally in
actions. Path movements can be described by straight, curved
or zigzag lines, circles and other forms. Posture and actions are
quantized with steps of 45 degrees, and can be visualized from
three perspectives to adequately capture their 3D orientation
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and trajectory [33].
SignWriting was developed by Valerie Sutton in 1974. The

aim of the writing system is to represent the gestures in sign
languages as they are perceived visually. Sign-boxes contain
icons that may for example refer to hands, the head, move-
ments and facial expressions [60]. Movement takes place
in the “Wall Plane” or the “Floor Plane”. Movement can
be expressed by directions away from the body and towards
the body. An example of a specification of movement that
takes place in both dimensions is the icon for “Up-Forward-
Diagonal”. Differently shaped arrows can be used to indicate
the shape of the movement (zigzag, curved, circular, axial,
etc.), as well as their speed. Movement Dynamics are small
symbols that express characteristics of the movement, such as
fast, slow, tense, or relaxed [80].

3.2.3 Takeaways

We intend to develop simplified bots that are only made up of
limbs and joints. Therefore, it is not necessary or possible to
include such features as facial expressions and hand shapes.
Most of the described annotation systems contain possibil-
ities for encoding location, start and target rotation, move-
ment, and speed of the gesture, as well as path characteris-
tics (moving in a straight line, versus curved or zigzag shaped
paths). The use of steps of 45 degrees is convenient to reduce
the number of possible visualisations.

Movement in the SignWriting system is described as move-
ment away from and towards the body, which captures one of
the aspects of gestural communication: it is performed by an
individual, a sender, and hence movement takes place in the
space relative to the body of this sender. We could capitalize
on this in our encoding of gesture.

3.3 Gesture lexicon

Aigner et al. investigated gestures for HCI. They departed from
the notion that we should first classify which effects the ges-
tures supposedly seek, and then look for a gesture that best
supports achieving the desired effect [1]. This is the approach
we will follow. We will first define a gesture lexicon. During
the experiment we will describe later, a virtual bot will per-
form gestures. The aim is to adapt the bot’s gestures in such
a way, that they will better fit the instruction based on partici-
pant feedback.

The instructions the bot provides to human participants
is based on the gesture lexicon developed by Ende et al [24].
They developed a gesture lexicon based on human-human in-
teractions and tested a subset for a SAM (single arm manipu-
lator), by showing a video of a SAM to participants via an on-
line survey. Some of their results are included in Table 1. They
compared these results to a human arm and a humanoid robot
arm performing the same gestures.

Instructions “Come here!” and “Come closer!” could be in-
terpreted as very similar to each other. “This one!”, “From here,
to there!”, “Display object!”, “To give something!”, and “Give it
to me!” imply access to an existing object at a shared location.
We chose to only include those instructions for which Ende et
al. obtained an identification rate of at least 30%, which did
not imply an existing object, and could not be easily confused

with a different instruction. This leaves us with the following
subset of instructions:

• Wave one’s hand!
• Come here!
• Go away!
• No!
• Caution!
• Stop!

We will refer to items in the set of instructions as gesture
classes. Because the gesture lexicon has already been tested,
we will be able to compare our results to scores obtained by
Ende et al. [24].

3.4 Key findings

Here, we summarize the key findings from this section.

F10 Interactive evolutionary algorithms can be used to select
solutions interactively, which can improve search ability,
exploration and diversity of solutions [23].

F11 Systems that use human feedback should be designed in
a way that limits the required human feedback, to avoid
the development of fatigue in the person giving feedback
[23].

F12 A surrogate fitness function can be used to estimate the
choices a person interacting with the system would make,
thereby reducing the amount of feedback that is neces-
sary from the person [23].

F13 Gesture can be organized in phases: preparation, stroke,
retraction and hold. One gestural phrase can contain one
or more of such phases [68].

F14 Common ways to describe gesture in gesture and sign
language annotation schemes include location, rotation,
movement, speed of the gesture, and path characteristics.
See sections 3.2.1 and 3.2.2.

F15 Dividing the space in steps of 45 degrees when depicting
gestures is a convenient means to reduce the number of
possible visualisations [33, 60].

F16 Gesture movement can be described as movement away
from and towards the body, which captures one of the as-
pects of gestural communication: it is performed by an
individual and movement takes place in the space rela-
tive to the body of this sender [60].

F17 Determining a gesture lexicon can aid in classifying the
desired effect of gestures and looking for a gesture that
best supports achieving the desired effect [1, 24].
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Stop! 92%
From here, to there! 90%
Go away! 84%
This one! 84%
To give something! 71%
Caution! 68%
Display object! 63%
No! 58%
Come here! 47%
Give it to me! 39%
Wave one’s hand! 30%
Come closer! 26%
No idea! 17%
Slow down! 04%

Table 1: Experimental results obtained by Ende et al. of the recognition rate of gestures executed by a single arm manipulator by human experi-
ment participants (N=40) [24]

.

4 Design of an Interactive Gesture
System

As described in section 3.1, we aim to adapt a virtual bot based
on interaction with humans. The bot’s gestures are adapted
with the aim of developing gestures that better fit the gestures
from the gesture lexicon. During each interaction cycle, the
human-robot team executes a task. In order to avoid the de-
velopment of fatigue in the human participants in the exper-
iment, the amount of information presented to them and the
duration of the session should be limited [F11]. One way to
limit the required amount of information is to develop a sur-
rogate fitness function [F12].

We can identify the following task decomposition:

1. Definition of the embodiment and gesture behaviour of
the bot. These need to be limited in terms of complexity.

2. Definition of the ways embodiment and behaviour can
be adapted.

3. Implementation of the embodiment and behaviour.
4. Development of an interface that provides a means to

respond to the bot’s gesture behaviour.
5. A means of generating new solutions based on previ-

ously provided feedback.
6. Development, implementation and training of a surro-

gate fitness function that can be used to take over the
role of the human experiment participant for cycles of
the evolutionary algorithm.

7. Running experiments and finding solutions.
8. Evaluation of the solutions.

Tasks 1 to 5, task 7 and task 8 fall within the scope of this
paper. Section 4.1 describes an implementation of task 1. In
section 4.1.2, a way of defining gesture behaviour based on [F-
13]-[F16] is described. Here, we choose to write an implemen-
tation in C# for Unity. The human experiment participant will
need to interact with the system for quite some time. There-
fore, the amount of information that is displayed to the human
interacting with the bot should not further exhaust the partici-
pant. Different ways of presenting information are tested dur-
ing the user test described in section 4.3 and the experiment
described in section 5. During the user test, chosen solutions

are adapted by varying predetermined parameters. The exper-
iment makes use of an implementation with an evolutionary
algorithm.

4.1 Embodiment and behaviour of bots

We will describe one bot as a tuple of structure and behaviour:

bot := (str uctur e,behavi our )

4.1.1 Structure

The bot’s structure resembles a tree structure. Because we ex-
pect the reader to be familiar with the terminology that is com-
monly used to describe tree structures, we will use that termi-
nology to describe the bots.

Bots consist of three-dimensional simulated objects. One
bot is an interconnected structure of three-dimensional
node and edge objects, which could also be described as
“joints” and “limbs”. See Figure 1 for reference. One of the
nodes, the start node, has a fixed position in world space to
ensure the visibility of the performed gestures. We will refer to
this node object as the root node. Edges are cuboid-shaped,
whereas nodes will be depicted by spheres. An edge is a con-
necting element between two nodes. Node objects can move
and rotate and thereby move the connecting edge objects. If
a node object does not have any children, we will refer to this
joint as a leaf node object. This leaf node object consists of a
sphere that is bigger than other node objects, for purposes of
making the 3D orientation of the bot more visible to experi-
ment participants. The larger sphere makes it easier to esti-
mate the simulated distance of the virtual bot relative to the
viewer.

The simulation of the bot can be adapted by changing one
of the nodes so the structure of the body changes. We will limit
the maximum number of edges, and the maximum number of
edges that can be attached to one node. During the experi-
ment, the structure of the bot will consist of the root node ob-
ject, an edge object, a node object, an edge attached to this
node, and a leaf object at the end of it (as displayed in Figure
1A). For more complicated bots, another edge object or sub
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Table 2: The relative target positions we will consider, converted from spherical (θ,ϕ,r )-coordinates (r = 1) to (x, y, z) coordinates

tree of two edge objects can be connected to the root node.
A limited number of node objects will be selected (minimum
1, maximum 2). For these node objects, the behaviour scripts
can change the target positions.

If desired at a later stage, the width, height and length of
the cuboid segments as well as the radii of the spherical seg-
ments and other parameters, can be adapted to give the bot
the impression of, for example, having a body with limbs.

Figure 1: A 2D sketch of some possible bot structures. The red dot
denotes the root node object. During the user test (section 4.3) and
the experiment (section 5), bot A is displayed and adapted.

Figure 2: A 3D sketch of some of the possible target locations the bot
can reach.

4.1.2 Gesture behaviour

We propose to describe the gesture behaviour of the bots by
the following properties:

• Leaf node object that will be moved.
• Target position of the leaf node object, conceptualized

as position relative to the root node object, described by
spherical coordinates.

• Speed of moving from one position to the next.

The target positions are stored as positions on the half-
sphere with radius r around the bot’s root node object ori-
ented towards the viewer. See Figure 2. Not every position
on this half-sphere can be reached: they are separated by 45
degree rotations of a point that lies on one of the x, y, z−axes
at a fixed distance r from the root node around each axis. See
Table 2. During the experiment, we will only consider φ and
θ values ranging from π

4 to 3π
4 . This yields a total of 9 possible

target positions. This allows us to easily propose sufficiently
diverse solutions, thereby limiting the number of solutions we
need to present to the participant. We include one extra posi-
tion: the start position of the leaf node object, which is located
closer to the root node of the bot.

Gesture behaviour is described by the leaf node object(s)
that will be moved, the target position(s) of these limbs, and
the speed of movement. In case one limb can be moved, it can
be described the following way.

gestureclass 1 := (ox , v1, t1, v2, t2, · · · , vn , tn) for n ≥ 1

Here n denotes the number of target positions for the gesture
behaviour associated with one leaf node object and ox indi-
cates the leaf node object that will be moved. Vector vi de-
notes a (θ,ϕ) vector, which will be converted to a (x, y, z) vec-
tor so Unity can perform the translation, and ti denotes the
time to move from vi to vi+1 (or to v0 in the case of vn).

The Unity Engine will linearly interpolate between the cur-
rent position and the target position.3

4.1.3 Limitations

We realize that the design space has its limitations. Despite
the aim of limiting human design choices, a number of design
assumptions were made in the process of defining and pro-
gramming the bot. We will name some of them. The bot was
supposed to:

• exist in 3D space

3Because the bot’s structure is interconnected, this will alter the position and rotation of each of the bot’s node and edge objects on the shortest path from the
root node object to the leaf node object, with exception of the root node. Objects that are connected to other moving objects, will move as well, unless the mass of
other connecting objects that do not move is too high.



12

• have fixed-length, fixed-width, fixed-height edge objects
• be able to move
• consist of components that are rigid bodies
• exist of node objects that are connected by edge objects
• have one root node object that is fixed in its connection

to the world, for purposes of visibility and ability to com-
municate information from one spot

• have a limited number of node and edge objects

Because calculations for moving between gesture positions are
left to the Unity Physics Engine, gestures may at times seem
unpredictable or unnatural. However, we expect that this will
not be too large of an issue, as the embodiment is unlikely to
evoke expectations of biological human or animal likeness in
terms of its movement at the start of the interaction.

4.2 Generating bots and behaviour

We started by building a system that generates and adapts ges-
tures. We will refer to a gesture that has been developed for a
gesture class as a solution.4

The fitness of a solution can, in our case, be described as
the preference of the human designer for a particular solution.
For the user test described later, gestures are generated based
on participant choices and on the functions that the system
has at its disposal to generate new combinations.

4.2.1 Initialization

First, we will perform an initialization step in our experiment.
A bot first displays simple behaviour: it moves towards a cer-
tain target position, and then it moves back. The participant
is asked to indicate on a scale from 1 to 5 how strongly s/he
associates the movement with each of the six gesture classes.
See section 4.3. These ratings are stored in an array containing
9 scores for associated (θ,ϕ) target positions.

Using the array, a gesture design agent can select target po-
sitions that score well for the simple task, combine them and
propose the new combination to the participant for evalua-
tion. The participant then evaluates how well each of the pro-
posed gestures fits the current gesture class. The participant
now evaluates gestures for one gesture class at a time. The next
section describes the adaptation possibilities we implemented
in the system.

4.2.2 Adaptation

The participant can select one of three gestures, based on how
well the gesture conveys the instruction belonging to a partic-
ular gesture class. Gestures are constructed and adapted ac-
cording to the following steps:

A Three different gestures are created by:

1. Combining the target positions from the highest-
scoring subspace. 5

2. Combining the target positions from the second-
highest scoring subspace

3. Combining the two highest scoring target positions in
a gesture

B Two additional gestures are created by varying the speed of
movement of the gesture chosen at A.

C Two additional gestures are created by combining a subset
of the target positions of the gesture chosen at B.

D Two additional gestures are created by adapting the gesture
chosen at C:

1. A gesture with the same target positions as the gesture
chosen at C, in reversed order

2. A gesture that repeats the gesture chosen at C

Steps A-D are repeated for each gesture class. The gesture
that has been selected by the participant at step A is displayed
again at step B. Similarly, the selected gesture at step B is
shown again at step C, and so forth.

Displaying the current best choice has been mentioned as
a tactic to reduce frustration in participants, as doing other-
wise may induce participants to feel as if the system is forget-
ting their choices [23] (p.216). By displaying three bots, the
gestures can be varied while hopefully not overwhelming the
participant with information.

The participant evaluates 9 initial gestures, and 4x3 ges-
tures (or 3+2+2+2 unique gestures) for each of the six gesture
classes. This yields a total of 81 gestures that need evaluation.

4.3 User test

4.3.1 Aim

A test with one user was carried out as part of the design pro-
cess. The user test was intended as a run-through of the sys-
tem with someone other than the system designer.

The aim of the user test was to test whether the amount of
information presented was manageable for the participant, or
if solutions that move across the screen place too much of a
cognitive burden on the participant. Additional aims were to
get an indication of how the bot is perceived, and whether the
interface is easy to navigate. The system was tested with one
participant.

4Mainly for reasons of brevity. One could also refer to a gesture as a sub solution. A complete solution would then be a bot and one or more gestures for each of
its gesture classes.

5Add up the scores for moving towards a position in different parts of the space. The previously described (θ,ϕ) array contains scores for moving towards single
target positions. Sum up the scores along the rows, columns and diagonals of the 3x3 array. This way, we can construct scores for horizontal movement across
the top, middle and lower part of the space, as well as vertical movement across the left, right, and middle of the space. We can also construct scores for diagonal
movement across the space, and movement restricted to one of the corners of the space.

The row, column or diagonal with the highest normalized sum gives an indication in which subspace the movement was most successful, for example horizontal
movement in the top part of the space. In that case, target positions for horizontal movement in the top part of space are combined in different ways, and options
are presented to the participant.
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4.3.2 Method

The participant is seated in front of a laptop and receives an
explanation on the system. The participant can see a bot move
on screen and a menu that contains the instructions from the
gesture lexicon as described in section 3.3.

During the first phase, the bot moves from a starting posi-
tion to one of the target positions and back. The participant is
asked to rate the applicability of this movement for each of the
gesture classes on a scale from one to five. This is repeated for
the other 8 possible target positions. See figure 3. The ratings
are used to construct gestures during the next phase.

Figure 3: Interface during initialization phase.

Figure 4: Interface during adaptation phase.

During the second phase, the participant is presented with
three bots that each carry out a different gesture. The partici-
pant is asked to choose the bot s/he thinks is most suitable to
the current gesture class. See figure 4. When the participant
chooses a particular gesture as most suitable, this gesture is
adapted. The chosen gesture is subsequently displayed on the
left, and two adapted versions are displayed in the middle and
on the right of the screen.

This way of offering feedback allows for a direct way to se-
lect an appropriate gesture from multiple examples and sub-
sequently adapt the selected bot. It is a common way in which
interaction is offered in systems that make use of interactive
evolutionary algorithms: the human in the loop can for ex-
ample select solutions for the next generation [47]. A differ-
ent option would be to ask the participant which gesture the
bot was performing, and offering a choice between gesture
classes. This second option could result in conflicts, if a par-
ticipant would feel a gesture describes multiple gesture classes
equally well.

4.3.3 Results

The participant was able to carry out the task as instructed.
During the first phase, the participant expressed that she

found the task difficult, because she could imagine different
situations in which the gestures would fit a number of the ges-
ture classes, although the gesture classes referred to very dif-
ferent concepts. She noted that she found it complicated, be-
cause one gesture could mean a number of different things.

Interestingly, the participant asked the following question
during one of the gestures: “How is this anatomically pos-
sible?” Later during the experiment, the participant asked
"Should I look at this as if the person is looking at me?" This
indicates that the participant anthropomorphized the bot.

After the experiment, the participant indicated that she
found the task difficult, because the bot was quite abstract and
she had to infer a "mood" from it. The participant did think
the interface was clear. When asked about the gestures, the
participant indicated that they seemed random, and that she
did not perceive improvements during the progression of the
experiment.

The participant noted that the gesture the bot made was
slightly different each time. We acknowledge that this was the
case, because only the target position of the large sphere at the
end of the bot structure was controlled.

4.3.4 Discussion

The user test indicates that presenting three bots to a partic-
ipant at the same time, each of them making a slightly differ-
ent gesture, presents somewhat of a challenge to the experi-
ment participant. The participant noted that she found it “dif-
ficult to translate the movement of a sphere on two sticks". This
sounds like a large mental effort on the side of the participant,
rather than a more intuitive context of a human teacher and a
robot student. Presenting two instead of three bots on screen
at the same time might make it easier to distinguish between
gestures and counter fatigue. The participant would only need
to make one comparison between two bots, instead of three. A
trade-off between memory use and concentration on multiple
gestures at a time by the participant could take place in this
case: if bots are displayed on different pages, participants will
need to remember if gestures seen on previously visited pages
were suitable.

The participant did not perceive improvements during the
progression of the experiment. Indeed, improvements did not
necessarily occur during the user test: the gesture of the bot
was varied based on previously made choices.

In the tested system, gestures were developed for one ges-
ture class at a time: the gesture was adapted a number of
times, before the next gesture class was presented. We hypoth-
esize that it might be more rewarding for a participant to adapt
the gestures for a particular gesture class one by one: from
an initial, seemingly random gesture to one that seems more
appropriate for the gesture class. After finishing one gesture
class, it could be interesting to present the participant with an
initial and the final gesture. Otherwise, improvements might
not me noticed if improvement occurred very gradually, which
could give the participant less of an incentive to keep engaging
with the process. If improvement occurred, this could provide
an incentive to engage in a similar process for the next gesture
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class. Of course, there is a risk if the final gesture is perceived as
similar or worse in quality than the original one. An additional
advantage of only working on one gesture class at a time, is
that the participant does not have to imagine all the different
contexts in which a gesture could be suitable for every gesture
class.

4.4 Adaptations after the user test: inter-
active evolutionary design system

After the user test, the movement of the bot was made more
uniform based on participant feedback. Necessary improve-
ments included controlling the node object between the two
edge objects as well: leaving the movement free results in no-
ticeable differences between what should be similar gestures,
and likely in differences in the interpretation of those gestures.

The generation of solutions will now be changed as de-
scribed below, with the aim of finding better solutions dur-
ing the progression of the experiment. Previously described
strategies for constructing gestures will be replaced by first a
randomly generated population of gestures and subsequent
adaptation by an evolutionary algorithm. Then, the system
is tested for one gesture class at a time: every participant will
evaluate bots for a single gesture class (see section 5).

Interactive evolutionary design systems generally consist
of a phenotype definition, a genotype representation, a de-
coder (mapping from genotypes to phenotypes), a solution
evaluation facility (so the user can perform selection), and
an evolutionary algorithm that recombines and mutates so-
lutions ([23], p. 220). Here the phenotype of a solution is a
gesture, which is applied to the bot that was also used during
the user test. The genotype is a list/string of properties:

gx := ((v0, t0), (v1, t1), (v2, t2), · · · , (vn , tn))

with n ≥ 1. Vector vi denotes a (θ,ϕ) vector for the target po-
sition, which will be converted to a (x, y, z) vector so Unity can
perform the translation, and ti denotes the time to move from
vi to vi+1 or to v0 in the case of vn . Vector v0 is the same for all
gestures, and will be kept fixed.

Ten solutions are generated by combining between one
and four target positions, which are randomly selected from
the nine possible target positions. Speed of moving from one
target position to the next is set to be a random value between
10 and 20 frames, at a frame rate of 30 frames per second.

One-point crossover is chosen as the recombination oper-
ator. Mutation occurs by random resetting of a value to a ran-
domly selected one from the set of possible target positions
and speeds. We choose to implement two mutation operators
that have different parameter adjustments over time.

The following loop takes place while an experiment par-
ticipant interacts with the system to adapt a gesture for one
single gesture class:

A Evaluation of candidate solutions by human participant.
The participant evaluates 10 solutions, which are displayed
in pairs. A counter indicates the number of solutions that
has been selected by the participant in the current genera-
tion. The participant is asked to select three solutions s/he
deems to fit the gesture class best.

B The solutions that were selected are recombined. Recom-
bination is performed with single-point crossover on the
three selected solutions. The point at which crossover oc-
curs is selected randomly for each string, because strings
differ in length. The string can get longer or shorter. Each
parent is combined with every other parent 4 times, result-
ing in 24 children. The solution that was selected first or the
solution that has been selected multiple times is kept in the
population. The other parents and solutions that were not
selected are discarded.

C Mutation is applied to all the offspring. Mutation operator
M1 changes target position to different ones, mutation op-
erator M2 changes t values. The mutation rate of M1 starts
at one per offspring for the first generation, and decreases
to one per generation at the tenth generation. The mutation
rate of M2 starts at one per generation for the first genera-
tion, and increases to one per offspring by the 10th genera-
tion. The mutation operators are changed this way to first
vary the target positions. Once suitable target positions are
found, the speed of movement in varied more so the partic-
ipant is able to fine-tune the gesture.

D 9 children are selected randomly as survivors for the next
generation. Those solutions that only consist of the initial
target position are discarded, as well as duplicates. In that
case, different children are selected instead.

E The 9 children plus one solution from the previous round
are presented to the participant. The solution from the pre-
vious round is presented last.

Loop A-E takes place 9 times (generations). Including the first
randomly generated population of solutions, this means that
every participant evaluates 10 generations of bots.

Because of the replace-worst strategy we took for fitness-
based replacement (the worst 9 solutions are replaced), the
small population size and the possibility to select solutions
multiple times, there is a risk of premature convergence: the
population is quickly dominated by a few solutions that were
ranked above the others in the beginning. There is a possibility
that we miss out on good solutions that could be found in a dif-
ferent part of the search space. However, converging quickly
has an advantage in interactive evolutionary algorithms: as
good solutions are kept in the population and varied, the per-
son interacting with the system will likely feel as if the sys-
tem is converging quicker on good solutions. We implement
a no-duplicates policy: the human evaluator’s time is valu-
able, so we do not want to waste his/her time evaluating mul-
tiple copies of the same individual. This also avoids the entire
(small) population from being filled with copies of the same
individual, which lessens the risk of premature convergence.

Parameter control here is deterministic (for instance, mu-
tation rate is not co-evolved). In the future, it could be inter-
esting to make this adaptive, f.e. based on ratings of quality by
the participant. Alternatively, the user could be allowed to set
the mutation rate and thereby influence whether the search
process is taking an explorative or exploitative turn (i.e. look-
ing for new solutions in a different part of the search space, or
varying current good solutions slightly).
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5 Experiment: Adapting Gestures
with an Interactive Evolutionary
Algorithm

5.1 Aim

The developed system was tested with 16 participants. Ges-
tures were developed for the gesture classes Wave one’s hand!,
Come here!, and Go away!. The aims of the experiment were
the following:

• Check if participants can use the interface. Measures:
can participants complete the task? Can they navigate
the interface? This is measured by observation and ask-
ing participants to think aloud, which will hopefully in-
cite them to voice any difficulties they encounter.

• Find out if participants experience the task as difficult.
Measures: an open question about the difficulty of the
task, measuring the time it takes to fulfil the task.

• Check how participants perceive the bot after interact-
ing with it. Do they anthropomorphize the bot? Do they
need more humanlike characteristics to fulfil the task?

• Find out if the developed gestures are idiosyncratic; that
is, does the interaction result in gestures that only make
sense to those people who interacted with the system
to develop them, or can the resulting gestures be inter-
preted by other people?

• Do participants have the sense that the gestures that are
proposed by the bot improve? Measures: open question,
asking participants to rate the first gesture they selected
and the last gesture they selected.

5.2 Method

5.2.1 Participants

We recruited 16 participants, of which 8 female and 8 male (6
Dutch, 2 Chinese, 2 Spanish, 1 Azerbaijani, 1 British, 1 Finnish,
1 Greek, 1 Portuguese, 1 Serbian/Canadian/Dutch), with an
average age of M=26.9 (SD=5.1) from Leiden University, Uni-
versidade Católica do Porto and the Royal Academy of Art in
The Hague. The average of their self-reported computer skills
on a scale from 1(=very poor computer skills) to 5 (=very strong
computer skills) had a value of M=3.75 (SD=0.68). For the
multiple choice question “Do you have any experience with
robots?”, 7 participants checked the box “No”, 6 checked the
box “Yes, some” and 3 checked the box “Yes, I have carried out
research with one or multiple robots/I have built and/or pro-
grammed one or more robots”. We note that the participant
group included a set of students who may to some extent be fa-
miliar with concepts from artificial intelligence, HRI, HCI, and
affective computing.

5.2.2 Task

Participants are seated at a table, with a laptop in front of
them, in quiet surroundings. The participants are told that
the aim of the experiment is to choose gestures that are per-
formed by a simulation of a robot, based on how well the ges-

ture matches the textual instruction that is displayed at the top
of the screen.

Each participant is assigned to one of the conditions
“Come here!", “Wave one’s hand!" and “Go away!". Six partic-
ipants were assigned to the condition “Come here!", five to the
condition “Wave one’s hand!" and five to the condition “Go
away!". First, the participant is asked to read the informed
consent form and fill out the initial questionnaire. Participants
1 to 3 directly continued with the main part of the experiment.
Participants 4 to 16 are first presented with three videos of the
virtual robot. The first video demonstrates the bot and the way
it can move from its resting position to other positions. Then,
the participant is presented two videos that show two of the
results of the first three participants (for example, if the as-
signed condition is “Come here!", the participant is shown the
results of the first participants who were assigned the condi-
tions “Wave one’s hand!" and “Go away!". The participant is
asked to write down what s/he thinks the virtual robot is try-
ing to express.

Next, the main part of the experiment starts. The re-
searcher demonstrates how the participant can select ges-
tures, and which actions are allowed. It is allowed to select
the same gesture multiple times. The participant is asked to
“think aloud" during the experiment. Participants evaluate 10
generations of 10 bots. The evolutionary algorithm described
in section 4.4 generates 10 new solutions for each generation.
The embodiment of the bot is kept fixed, whereas the gesture
behaviour is varied. Figure 5 shows the interface that partic-
ipants interacted with. Two bots are displayed on screen at a
time. Participants can click buttons to move to the next page
and the previous page, in order to see all ten bots belonging to
one generation. Participants can click a button with the label
“This one" to select a gesture. Upon clicking one of the buttons
labelled “This one", the counter at the top left of the screen
is increased. After selecting three gestures, a different screen
is shown (Figure 6) for approximately two seconds. After 10
generations have been evaluated by the participant, the par-
ticipant is presented with the first gesture s/he selected during
the first and during the tenth generation, and asked for feed-
back on a 5-point scale (Figure 7).

Figure 5: Interface during the experiment.
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Figure 6: Interface between generations.

Figure 7: Interface after ten generations.

After completing the interaction with the bot, participants
are be asked to fill out the Godspeed questionnaire series and
a questionnaire with open questions. See Appendix B for the
questionnaire form used in the experiment. The Godspeed
questionnaires measure five HRI concepts on semantic dif-
ferential scales: anthropomorphism, animacy, likeability, per-
ceived intelligence, and perceived safety [6]. The question-
naires were developed for evaluating robots. We will consider
whether the questionnaires translate well to our virtual bot.
As it is hard to determine a ground truth for any of the mea-
sures, it would likely be more informative to have two robot
conditions and compare the results of the questionnaires for
both conditions. We use them here to get a rough indication
of the way participants perceive the bot. We expect to find a
low value for anthropomorphism. A high value for animacy
could indicate that participants perceive the bot as lifelike and
responsive, perhaps in the sense of an animal. A high value
for perceived intelligence could indicate that participants feel
the bot responds to their choices. We measure likeability to
determine if participants find the bot pleasant to interact with
and/or find the movement of the bot pleasant.

After running the experiment with the first three partic-
ipants, the following changes were made: the screen would
show a black flash after a gesture was finished, based on a
suggestion that it would be easier to determine whether a ges-
ture had finished. As mentioned before, participants 4-16 were
shown two videos with the results of the previous participants.
The videos displayed the gestures belonging to the conditions
the current participant was not assigned to. Participants were
asked to interpret what the virtual robot was trying to indicate,
given two examples (“Give it to me!", “Slow down!"). We do not
have reason to believe that these changes influenced the re-
sults in some way, except possibly making the task slightly eas-
ier. As measuring task performance was not the aim of this ex-
periment, we will therefore not consider differences between
the first three and last thirteen participants.

5.3 Results

5.3.1 Task completion

After initial explanation by the researcher, participants ex-
pressed that they understood the task. All participants could
complete the task and made use of provided means of inter-
acting with the interface (buttons to select bots and navigate
to other pages, star toggles to rate the first and last selected
bot). One of the participants initially misunderstood the task
that needed to be completed with the interface. After more ex-
planation and restarting the system, the participant was able
to complete the task. Participants interacted in different ways
with the system, and interaction also varied between genera-
tions. Some participants would watch all 10 gestures in a gen-
eration before making a decision, while others would at times
choose one or more gestures after watching the first two. Ad-
ditionally, we note that the way individual participants inter-
acted with the system changed from generation to generation.

5.3.2 Perception of task difficulty

To the open question "Was it difficult to select gestures?" on
the final questionnaire, thirteen participants reported some
kind of difficulty, for different reasons. The remaining three
participants reported no difficulty. Four participants noted
that it was difficult to choose between similar gestures. How-
ever, one other participant noted that it was easier to choose
between options that were more similar, and another noted
that even similar gestures have differences in details, which
made choosing easy. One participant remarked that there
were too many options. Another noted that the task got more
difficult towards the end of the experiment, while three others
noted that the task was more difficult at the beginning. This
was neatly summed up by one participant, who remarked that
the task was difficult “at first, because they were so different and
near the end because they were so similar!”

One participant felt she had to get used to it to understand
the message. Initially, it was hard to relate the abstract form to
a humanlike expression such as “Go away!”. Over time she be-
came more familiar with it. Two participants remarked that it
was hard to perceive the movement in 3D space, one of them
reporting personal difficulties. One participant mentioned she
found it hard to focus on the movement, as there were two bots
making gestures on screen at the same time. One participant
noted that it was hard to compare gestures on different pages.
One participant asked for a piece of paper to note down the
gestures he found interesting, as a memory aid.

Participants took on average 134.4 seconds (SD=65.4 s,
min=36 s, max=356 s) to complete the task of selecting three
gestures from the 10 gestures available in one generation. Ta-
ble 3 shows an overview of the time taken per generation. Fig-
ure 8 shows a graphical overview of the average time taken,
as well as the minimum and maximum time taken, per gen-
eration. The average, minimum and maximum time taken
appear to decrease from the 1st to the 10th generation. For
the first generation, the average time taken was 174.6 sec-
onds (SD=74.5) and for the 10th generation 119.1 seconds
(SD=71.5). A two-tailed paired t-test (N=16) revealed a signifi-
cant difference (p=0.029) between the 1st and 10th generation.
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Generation Mean Standard deviation Minimum Maximum
1 174.6 74.5 89 356
2 161.3 75.8 71 332
3 145.5 52.0 66 244
4 140.8 67.4 65 304
5 123.2 68.7 36 307
6 118.2 63.0 43 284
7 128.6 59.5 39 275
8 107.0 50.9 38 207
9 125.6 65.8 63 275
10 119.1 71.5 53 272

Table 3: Time taken (in seconds) to complete the task of selecting three gestures from 10 gestures available within one generation (N=16).

Figure 8: Average, minimum and maximum time taken (in seconds)
to complete the task of selecting three gestures from 10 gestures avail-
able within one generation (N=16).

5.3.3 Perception of the bot

The results of the Godspeed questionnaires can be found in
Table 4. Although the Godspeed questionnaires were devel-
oped for (physical) robots, the categories Animacy, Likeabil-
ity and Perceived Intelligence yielded values of Cronbach’s al-
pha that indicated at least an acceptable internal consistency.
This means that the questionnaire items appear to be asking
the participant questions about the same concept. The cat-
egories Anthropomorphism and Perceived Safety resulted in a
questionable internal consistency. The questionable internal
consistency of the Perceived Safety category could be due to
the virtual nature of the bot: physical and virtual robots likely
differ in when they are considered safe to interact with. For the
Anthropomorphism category, the value for Cronbach’s alpha
might be explained by the limited humanoid nature of our bot:
at times it was interpreted as a human arm, but said to miss the
body the arm was supposedly attached to. The Anthropomor-
phism measure from the Godspeed questionnaires was based
on a study by Powers and Kiesler, in which they asked partici-
pants for ratings of a robot on these measures [61]. The partic-
ular robot had humanoid facial characteristics, which was not
the case for the bot in our experiment.

As it is hard to determine a ground truth for any of the
measures, it would likely be more informative to have two
robot conditions. Because we do not consider two different
conditions here, we will compare the results to the average
score of 3 that can be obtained with the questionnaire, in or-

der to get a rough indication of the way participants perceive
the bot. The measure for Anthropomorphism, as expected, re-
sulted in a value below average (M=2.81, SD=0.70). The mea-
sure for Animacy or lifelikeness resulted in a value around av-
erage (M=3.02, SD=0.76). The Likeability measure resulted in
a value above average (M=3.66, SD=0.63). For Perceived intel-
ligence, the measured value was a bit above average (M=3.16,
SD=0.75). We conclude from the questionnaire that partici-
pants generally perceived the bot as likeable, not very human-
like, and somewhat lifelike and intelligent.

Most participants made comments or wrote down answers
to the open questions on the final questionnaire that indi-
cated that choices made were related to human movements.
Some participants interpreted the bot as having the shape of
a human arm, whereas one participant saw it as some kind
of worm. Eight participants explicitly responded to the open
questions on the final questionnaire that they made their se-
lection based on similarity to human gestures: gestures they
themselves or other people would perform. Some participants
described movements in terms of how "humanlike" or "natu-
ral" they were. Others assigned labels such as aggressive, re-
laxed, lifelike, empathic and kind to the gestures. Three par-
ticipants remarked that the bot moved too slowly for them.

5.3.4 Gesture selection

We looked at which gestures participants would select, based
on the order in which gestures were displayed. Each gen-
eration, ten gestures were displayed on five different pages,
which participants could view by pressing navigation buttons
on screen. Figure 9 shows a graph in which the number of
times a gesture was selected is shown, relative to the position
they were displayed at. For example, the gesture displayed
at the 9th position was selected 32 times in total (on average
M=2.0 (SD=2.0) times per participant). The gesture displayed
at the 10th position was selected 66 times in total (on aver-
age M=4.1 (SD=2.6) times per participant). A two-tailed paired
t-test revealed significant difference between the number of
times gestures at the 9th and 10th position were selected, with
p = 0.045 (N=16).
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Anthropomorphism Animacy Likeability Perceived intelligence Perceived safety

Cronbach’s

alpha 0.68 0.85 0.85 0.70 0.67

Internal

consistency Questionable Good Good Acceptable Questionable

M 2.81 3.02 3.66 3.16 3.54

SD 0.70 0.76 0.63 0.75 0.80

Table 4: Godspeed Questionnaire results (N=16). Measured on a scale from 1 to 5.

Figure 9: Number of times gestures were selected based on the order
in which they were displayed.

Looking at the number of times a gesture is selected rela-
tive to the position it is displayed at, it appears the rate of se-
lection decreases, with the exception of the gesture at the 10th
position. We remind the reader that the gesture displayed at
the 10th position was one of the gestures selected by the par-
ticipant during the previous generation, except for the gesture
displayed at the 10th position of the first randomly generated
population. We see it as positive that the gesture displayed at
the 10th position was selected this many times: although the
rate of selection decreases, the high selection rate of the last
gesture appears to indicate that participants at least watched
the final gestures most of the time.

The number of times gestures were selected based on their
position appears to decrease. We can link this effect to one
observed by Zhou et al., who note that the position of a video
on the related video list on YouTube has an effect on the click
through rate(CTR): the video on the first position has a CTR of
5.9%, while the video on the 20th position has a CTR of 1.0%
[88].6

5.3.5 Perceived improvement

One of the open questions asked on the final questionnaire
was "Did the quality of the gestures that were presented to you
get better or worse, or did they stay the same? (Quality here
means that the gesture represented the instruction written at
the top of the screen well)". Thirteen out of sixteen participants
explicitly noted that gestures got better or improved. One par-
ticipant noted that there were good and bad representations.
One participant noted that at times the robot appeared to "get

tired" and that gestures seemed more apathetic. One partici-
pant noted that they stayed roughly the same. In combination
with remarks by participants (such as "You can really see they’re
adapting, it’s really cool.", we conclude that a majority partic-
ipants felt that the proposed gestures improved over time, or
at least that their choices were taken into account to some ex-
tent.

We also included another measure to determine whether
participants felt the gestures were qualitatively better during
the later cycles. A gesture that was selected during the first
generation was presented to the participant, as well as a ges-
ture that was selected during the 10th generation. The pre-
sented gesture was the first selected gesture of the three that
participants could select each generation. If a participant had
selected the same gesture as his/her second and third choice,
this gesture would be presented instead. Participants were
asked to rate the quality of these gestures on a scale from one
to five, with "quality" referring how appropriate the gesture
was for signifying the instruction assigned to them.

The gestures were presented side-by-side, so they could be
compared by the participant. The gesture selected during the
first generation received a score of M=2.3 (SD=1.0) on a scale
from 1 to 5. The gesture selected during the 10th generation
received a score of M=3.8 (SD=1.0). Shapiro-Wilk tests reveal
that the current data set is not normally distributed. There-
fore, we will apply the sign test as described by Gibbons and
Chakraborti [30]. The null hypothesis is H0 : MD = 0 and the
alternative is H1 : MD > 0 where MD is the mean of the dif-
ferences of ratings of gestures selected during the 10th gen-
eration minus the ratings of gestures selected during the 1st
generation. The number of positive differences is 12, whereas
2 are negative, and 2 times the differences are zero. The differ-
ences are zero when gestures received exactly the same rating
by experiment participants. We will treat half of the zero differ-
ences as positive and half as negative. This results in 13 posi-
tive and 3 negative differences, which is a more conservative
estimate than removing the measurements with zero differ-
ences entirely from the calculation in this case. The right tail p-
value for N=16 with 13 positive differences is p = 0.0106, which
means we can reject H0 at significance level p = 0.05. This in-
dicates that participants seem to prefer the gesture selected
during the 10th generation over the gesture selected during
the 1st generation.

We note that the first selected gesture during the 10th cycle
is not necessarily the gesture participants would themselves
indicate as the “best” gesture during that generation. We also
note that participants could be biased to rate the quality of

6Zhou et al. do not make explicit whether the ranking of YouTube’s video suggestions at the time was completely random or not.
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the gesture they selected during the 10th generation as higher
than the one selected during the first generation, because they
have just seen that gesture.

5.3.6 Developed gestures

The genotype encodings of the gestures selected during the
10th generation were recorded for 12 participants. See Table
5. More experiments would need to be done to see whether
similar results would hold across a larger pool of participants.

When we look at the genotypes of gestures developed for a
particular gesture class, we can see that there is little consen-
sus among participants about target vectors that belong to a
particular gesture. Only two vectors of the “Wave one’s hand”
condition are part of one or more of the gestures for every par-
ticipant. However, it is difficult to make any substantive claims
on the genotype only: a movement towards one target position
and back may be interpreted the same way as a movement to-
wards a slightly different target position.

5.3.7 Gesture interpretation

Participants 4 to 16 were asked to interpret two of the gestures
developed by the first three participants. One participant had
misinterpreted the question and will be excluded from our dis-
cussion. Of the remaining 24 interpretations, six appear to be
in line with the instruction. Instruction "Wave one’s hand!"
was interpreted correctly five times as waving or greeting. See
Table 6 for details. “Go away" was once interpreted as “You, go
over there!", and once as “You must move over there”. Both in-
terpretations refer to asking a person to go to a location that is
at some distance from the sender, but do not quite match the
intent or affective content of the expression “Go away!”.

The remaining interpretations showed little to no similar-
ity to the actual instruction, or even opposing meanings (e.g.
“Go away!" being interpreted as “follow me"). Although this
does not offer conclusive evidence, this gives an indication
that it is difficult for participants to correctly identify gestures
developed by other people using this system.

5.4 Discussion

5.4.1 Interaction with the system

As we have seen, participants could complete the task, yet
most experienced it as difficult. All participants reported some
kind of difficulty in interpreting the gestures before select-
ing the ones of their choice. Participants reported different
reasons for this difficulty. Some participants mentioned they
found it difficult to interpret the gestures because they were
presented in an isolated way. The form of the bot is rather ab-
stract. Some participants noted they missed the body that the
"arm" was supposedly attached to.

The task took on average 134.4 seconds per generation to
complete, with one participant taking almost six minutes to
choose three bots in one of the generations s/he evaluated.
The type of interaction we consider desirable would place less
of a cognitive burden on the participant, and take less time to
complete. The number of choices that have to be made in the
current system make the participant’s required effort rather

large.
We mentioned before that a surrogate fitness function can

be used to reduce the number of required interactions with the
system by human participants. A very simple surrogate fitness
function that reduces the number of solutions that need to be
evaluated by the participant, can be achieved by showing only
those solutions most different from each other, and estimating
the results for the solutions that have not been displayed. This
requires the development of a distance measure.

Some people did not finish watching every gesture before
making a decision or moving on to different gestures. We al-
ready adapted the system to show a short black flash when a
gesture is finished. A counter or timer could help give them
an indication of when the gesture will be completed, so they
realize whether they miss information if they move on to eval-
uating different gestures. Reducing the number of bots that
need to be evaluated by the participant could also help. Ad-
ditionally, the speed at which gestures are performed can be
altered. The range of speeds that is possible now may be wider
than required, resulting in a high number of gestures that are
performed at a low speed, which can be perceived as annoying
by participants. We could also think of allowing participants to
set the speed manually during the first generations, and mak-
ing it co-evolve during later generations.

One participant mentioned she would repeat the instruc-
tion “Come here!" in her head while she was watching the bot
making the movement. The duration of repeating the instruc-
tion in her mind and the bot making the movement would
often mismatch. This once again stressed the importance of
considering the timing and duration of gestures: how long
should the gesture take in total to match a spoken utterance
or the urgency of the request?

In the current experiment, participants were not told in
advance they were dealing with an evolutionary algorithm,
or that the decisions they made could alter or improve the
gestures that would be displayed next. Due to the computer
science background of some participants, some were able to
guess that this was the case. It is possible that it makes a differ-
ence to the end result if participants are aware they can steer
the process, and how they can do so. The amount of infor-
mation needed to steer the process might not necessarily be
that great. Lund et al. performed an experiment in which chil-
dren could evolve robot controllers, and they found that the
behaviours that were developed, such as obstacle avoidance,
did not differ much from those developed before in the field of
evolutionary robotics [47].

The amount of information displayed to participants is an-
other issue. Currently, gestures run at the same time. Lund et
al. take an approach in which the paths robots take on a 2D
plane are displayed one by one, and path trajectories are vi-
sualized when the movement is completed [47]. The current
set-up might benefit from such an approach.

Another downside of the current system is that gesture
movement is highly simplified: only 9 target positions can be
reached from the starting position. Additionally, the middle
joint is restricted in its movement. This is convenient in lim-
iting the number of possibilities, thereby reducing the search
space, but also results in movement that does not satisfy some
participants’ desires for the movement, as was remarked by
two participants. One of them also remarked that the move-
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Condition Wave one’s hand! Come here! Go away!
Number of recorded gestures 9 15 12
Mean number of target vectors in genotype of a gesture M=10.3 (SD=5.9) M=4.5 (SD=1.7) M=5.3 (SD=3.1)
Minimum number of vectors in genotype 5 3 3
Maximum number of vectors in genotype 23 9 13
Number of unique vectors (excluding start position) 5 5 5
Number of vectors shared by all participants (excluding start position) 2 0 0
Number of vectors used by only one participant 2 2 3

Table 5: Data on the genotype encodings of gestures in the final generations of 12 participants.

Condition Wave one’s hand! Come here! Go away!
Recognition rate 62.5% 14 % 0%
Interpretations marked as correct “Greeting” “You, come over here” -

“Hello”
“Hi”
“Waving, saying hello”
“Hello, I’m here”

Correct interpretation 5 out of 8 1 out of 7 0 out of 9
Interpretations marked as having some similarity - “I’m here” “You, go over there”

“You must move over there”

Table 6: Recognition rates of the three instructions.

ment seemed “boxed-in”. This is due to the limited number
of target positions that are located at a fixed distance from the
bot’s root node.

The current system shows rather jumpy movements in
straight lines. Rather than bouncing back and forth between
target positions, we could make this appear smoother. One
solution is to make the bot follow Bézier curves. Initial explo-
ration with rational Bézier curves resulted in smoother move-
ment. If the weights of the rational Bézier curves are part of the
genome, the curvature of the movement between target posi-
tions could co-evolve.

5.4.2 Results of interaction with the system: de-
veloped gestures

Not all gestures developed by the first three participants were
interpreted correctly by the last 13 participants. The gesture
that was developed by one of the first three participants for
condition “Wave one’s hand!” was interpreted correctly most
often, and achieved a recognition rate of 62.5% for our lim-
ited sample of 8 participants who were asked to interpret this
gesture. This is higher than the 30% rate achieved by Ende et
al. for this gesture, although the system they developed the
gesture for was of course wholly different. We need perform
more experiments in which a higher number of different ges-
tures are evaluated, if we want to make claims about how well
people can recognize developed gestures.

We might explain the high recognition rate by looking at
the type of gesture that achieved it. Emblematic gestures are
gestures for which a certain convention exists. An example of
such a gesture is the peace sign, and waving one’s hand to greet
someone may also be described as an emblematic gesture. It
is possible that emblematic gestures present a stronger men-
tal model to the participant who is adapting the gesture than
other gestures. This could make it easier to know what one is
looking for while making a selection. The phrase “Wave one’s

hand!” also implicitly indicates the shape the gesture should
take. We did not instruct participants to see the bot as an arm,
but it was the way most participants interpreted the bot, based
on their answers to the questionnaire and their remarks. Com-
bined with the type of instruction, this may have presented a
clearer goal for the participant modelling the gesture for ges-
ture class “Wave one’s hand!”.

Eight out of sixteen participants explicitly mentioned that
they made decisions based on how they themselves or other
humans would perform gestures. This indicates that they
started out by choosing gestures that conformed to a mental
model they had of human gestures. We think the interaction
has the potential to change over time, as two participants in-
dicated that they started to choose based on the communica-
tion abilities of the bot after interacting with the system after
a while. In line with this, we pose that gestures developed by
interacting with the current system can become idiosyncratic,
due to the fact only one individual interacts with the system
for an extended period of time.

The gestures that resulted from interacting with the system
could be described as personalized rather than general. This
could be different if participants only interact with the system
for two cycles per gesture class, and continue with the results
of the previous participant. Will this result in gestures that can
be interpreted correctly by people not familiar with the sys-
tem?
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6 Experiment Proposal

During the experiment in section 5 we saw that gestures that
were developed by an individual participant were not inter-
preted correctly by other participants most of the time. We
propose an experiment in which we investigate whether ges-
tures that are developed by multiple people are easier to inter-
pret by others than gestures developed by an individual who
interacts with the system for an extended period of time.

Garrod et al. carried out a series of experiments in which
participants repeatedly engaged with the same interaction
partner through the use of drawings. The interaction part-
ner could choose which meaning out of a set of meanings the
drawer was trying to indicate. When the feedback between
participants was allowed to be more direct, they found that
the graphical complexity of the drawings reduced over subse-
quent interactions. They pose that iconic graphical signs can
evolve over the course of the interaction into more symbolic
graphical signs. Garrod et al. found that people who were not
part of the interaction were significantly less accurate at iden-
tifying the meaning of the drawings than those part of the in-
teraction [28].

We expect that gestures developed by an individual inter-
acting with the system for multiple generations have the pos-
sibility to become idiosyncratic or particular to the interaction
between that individual and the system, whereas gestures de-
veloped by a larger pool of participants could potentially be-
come more universal in the sense that they are easier to inter-
pret by other people who are familiar with the culture of those
who developed them. We propose to let gestures be developed
by multiple people. This could take the shape of a transmis-
sion chain experiment during which each participant inter-
acts with the system for one generation per gesture class. For
example, if 4 participants take part in one transmission chain
experiment, participant 2 continues with the results of partic-
ipant 1, participant 3 continues with the results of participant
2, and participant 4 continues with the results of participant 3.

In order to be able to compare the gestures developed this
way, we would need to carry out a number of separate trans-
mission chains. This would allow us to compare the recog-
nition rates of gestures and make sure a result is not a lucky
hit (or miss). Kirby et al. describe two diffusion chain exper-
iments in which they observed increased structure and trans-
missibility in the artificial languages that were learned and re-
produced by participants. The diffusion chain started out with
an artificial language with a random structure. The first partic-
ipant had to memorize and reproduce this language. Each of
the remaining participants would memorize the artificial lan-
guage produced by the previous participant, and attempt to
reproduce it. Both experiments involved four separate diffu-
sion chains of ten participants each [42]. The interaction with
the system we developed is different from a language learning
task, but we could use a similarly structured experiment. We
could take a similar approach, and ask participants to inter-
act with the system for one generation each, for a number of
different gestures classes from the gesture lexicon.

After creating gestures for the gesture lexicon this way, we
propose to test whether the gestures developed using this ap-

proach are easier to interpret by other people than gestures
developed by individual participants. Such an interpretation
test could take a similar shape to the interpretation questions
used in the experiment in section 5. When this interpretation
test is carried out with a larger pool of participants, a measure
for similarity of linguistic interpretations to each of the ges-
ture classes should be defined, and the interpretations should
be analyzed by two researchers who can compare their results.
Alternatively, the interpretation test could take the shape of a
multiple choice test in which participants can indicate a ges-
ture class after watching a video of a gesture.

We hypothesize that gestures developed by multiple peo-
ple will be easier to interpret by people who did not interact
with the system, than gestures that were developed over the
course of a longer interaction with the system by a single par-
ticipant. When gestures are developed by multiple people, we
propose to only let them select bots for one generation per ges-
ture class. In order to compare the individually developed ges-
tures to the gestures developed by multiple people in an ap-
propriate way, we would need to develop gestures for the indi-
vidual condition for the same number of gesture classes as the
transmission chain experiment.7 If the gestures that are devel-
oped by individuals are to be compared across gesture classes,
a much larger sample of participants would be needed for the
development of the gestures than the sample of sixteen partic-
ipants in the current paper.

Developing gestures for the gesture lexicon that is de-
scribed in section 3.3 would already provide material for com-
parison. Reconsideration of the gesture classes and ensuring
the chosen gesture classes cover a wide enough range of dif-
ferent instructions could improve the validity of the results ob-
tained with the proposed experiment.

7 Conclusion

Our aim was to create body language in the context of inter-
action between humans and a virtual robot. We defined an
embodiment for a virtual robot and described the parameters
that could be changed so the virtual robot could perform ges-
tures. In order to investigate our research questions, a sys-
tem was developed that allowed for interactive selection of
gestures via a user interface, and subsequent adaptation of
the gestures with an evolutionary algorithm. The system was
tested with sixteen participants. The present task was expe-
rienced as difficult by a majority of experiment participants.
Thirteen out of sixteen participants noted they experienced
improvement in the gestures over ten subsequent generations.
Gestures selected during the tenth generation were preferred
over gestures selected during the first generation. Three ges-
tures that were developed by the first three participants have
undergone initial evaluation by the last thirteen experiment
participants. The solutions have achieved recognition rates of
62.5% (N=8), 14% (N=7) and 0% (N=9) respectively for the ges-
ture classes "Wave one’s hand!", "Come here!" and "Go away!",
but more evaluations are needed to confirm that these results
hold across a larger population.

The developed system needs to be improved and more re-

7Preferably with a system that is improved and allows for more possibilities for the gestures.
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search needs to be done to confirm Hypothesis 1. We pro-
posed a transmission chain experiment in which gestures are
developed by different participants over subsequent genera-
tions. We hypothesize that this may lead to gesture language
that is more recognizable than gestures that are developed by
a single participant.

This paper began by raising the question whether we can
adapt a robot’s gestures based on the effectiveness of its com-
munication towards humans. The process of developing a sys-
tem that aims to do just that, emphasized the complexity of
this topic. Not only did we need to define an embodiment
and a way to encode gestures, we also needed to develop an
algorithm and an interface for participants to interact with.
All of the choices that have been made in the process influ-
ence how people who interact with the system make decisions.
The way parameters of the evolutionary algorithm have been
set determines how gestures are adapted. Choosing a particu-
lar genotype encoding influence the phenotype, determining
such properties as the speed of the gesture. This in turn has an
effect on the interpretation of the gesture by participants. Hu-
man participants are limited in terms of their attention span,
and interact with the system in their own particular ways. We
would like to encourage more research on the interaction be-
tween these variables, so we may one day arrive at robotic sys-
tems that successfully adapt the way they communicate in the
context of interaction with humans.

8 Future work

The bot’s gestures are currently only evolved virtually, not
physically. If it would be desirable to implement gestures
developed with the system, each instance would need to be
tested subject to real-world conditions. For example, point-
ing at a particular spot is likely perceived differently in the 3D
world than in the simulated 3D world on a 2D screen. A par-
tial solution to this could be to use a Virtual Reality environ-
ment during the initial design process. Another possibility is
to run the gesture adaptation system on hardware, with some
changes. Physical embodiments bring along new dimensions
that have an impact on the interaction between humans and
robotic systems. Rae et al. investigated the impact of height of
a telepresence system on the dominance participants in their
experiment exhibited [63]. By rendering a virtual or physical
model of the bot at different scales, we can investigate if there
is a difference in the impression the bot makes on an interac-
tion partner.

The system can also be improved to make the task easier
for the participant. Reducing the number of gestures a par-
ticipant needs to review will help counter fatigue. This could
be achieved by developing a surrogate fitness function in the
form of a distance function, which is used to ensure that only
the most different solutions need human evaluation. Another
type of surrogate fitness function we may consider are deci-
sion trees or other classifiers, which attempt to mimic human
choices. The strategies that were previously described for the
user test could serve to inform the attributes for the construc-
tion of decision trees. The interface can be improved on fur-
ther, by adding an overview page with all gestures per gener-
ation and a counter that indicates how long the currently dis-
played gesture will take to complete.

We can consider changing the nature of the task. At the
moment, gestures are directly selected by the participant, pre-
sumably based on how well a gesture matches the partici-
pant’s mental model of the way the gesture should be exe-
cuted. Instead, the task could be more focused on interpreting
the bot’s gestures. An example would be to ask the participant
to choose which instruction the bot is trying to convey out of
a number of possibilities.

Additionally, the current system allows for a limited range
of possibilities in the way the bot is rendered. More possibil-
ities to adapt the gestures may be considered. Participants
could be given more control over the mutation rate or speed
of movement. The effect of allowing participants to determine
these properties by themselves needs yet to be determined.
Another option is to add more target positions, or to introduce
another type of mutation that allows for slightly different tar-
get positions. At the moment, the middle joint’s movement is
restricted, and only allowed to bend in a certain way to ensure
movement is replicated the same way each time it is executed.
Allowing more freedom could result in different, more suitable
gestures. The bot’s morphology could be made evolvable. The
effect of adding a “body” or torso can be investigated as well.
Lastly, we may also consider adding different modalities to the
interaction, for example in the form of sound, smells, coloured
light, or screen based visuals.
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Appendix A: Terminology

Robots

The definition of a robot varies widely depending on the source. The Cambridge English dictionary speaks of “a machine controlled
by a computer that is used to perform jobs automatically” [15] while the Oxford English Dictionary describes a robot as ”A machine
capable of automatically carrying out a complex series of movements, esp. one which is programmable”. They also refer to software
robots in the entry: “A program for automatically performing a task (esp. on the Internet) without continuous human intervention"
[58]. ISO (the International Organization for Standardization) defines a robot as an “actuated mechanism programmable in two or
more axes with a degree of autonomy, moving within its environment, to perform intended tasks" [39].

In summary, these definitions describe a robot as a programmable machine that can carry out certain actions (semi-)autonomously,
which can move within its environment. This does not describe the actual environment the entity could be in: the definitions could
also apply to a virtual space. Internet bots are an example of (ro)bots in virtual space.

We will take a working definition of robots as acting agents. These agents are entities that could in principle exist in physical
space, the same space we inhabit as humans, and act on this environment. It is possible and practical to model those (physically
realized) robots in virtual space. We acknowledge that this approach will likely result in discrepancies between the virtual model
and how it can be realized in practice. However, it can be beneficial to first create a virtual model.

Social robots

Dautenhahn characterizes social robotics by agents that are embodied individuals with histories, that can communicate with other
members of the heterogeneous group they belong to. Communication between agents obtains meaning as a result of agents sharing
a context, interacting with each other and imitating each other [18].

Bartneck and Forlizzi propose the following definition of social robots: “A social robot is an autonomous or semi-autonomous
robot that interacts and communicates with humans by following the behavioral norms expected by the people with whom the robot
is intended to interact." They suggest this implies that the social robot should have an embodiment. They propose a framework for
classifying social robots along the dimensions form, modality, social norms, autonomy and interactivity. Worth noting is that they
write about social norms: “As social norms can be defined by the interactions between people, we assert that they can be defined by the
interactions between people and robots” [5]. This suggests that norms in social HRI could be different than those that exist between
humans. The aspect of norms as described by Bartneck and Forlizzi is approached differently by Dautenhahn. She does not speak of
norms, but of “meaning[, which] is transferred between two agents by sharing the same context” [18]. Dautenhahn’s approach, which
allows for meaning to come forth out of a shared contexts, seems preferable to setting behavioural norms preceding the interaction,
if a robot is to be developed that can adapt its behaviour to a (new) context. Predefining norms would also require thorough study
of every possible (cultural) context that a robot is to be deployed in. If norms can be negotiated between the human and the robotic
agent, this would provide more flexibility. Of course, it is likely that people who engage in interaction with a robot, have certain
expectations of the subsequent interaction. Violating expectations, for example by very unpredictable, dangerous movement by the
robot, is likely to have negative effects on the attitude of the human towards the robot.

Embodiment

We should be careful when talking about robots as embodied systems. Ziemke and Wilson argue that we should disentangle notions
around embodied cognition [86, 89]. According to Ziemke, who bases his discussion on Searle’s 1980 paper, we should be careful
to consider robots as embodied AI, because merely running a computer program in a body does not automatically make the robot
behave intentionally, which is characteristic of human (embodied) cognition [90]. In the current paper, the word embodiment
merely refers to the physical appearance of the robot and is used interchangeably with the term morphology, which describes the
entire body plan of a robot, including sensors and motors. We note that sensors and motors are not considered in the experiment
that is described later.

Interaction

Interaction in an HRI context implies some form of communication between robots and humans. Goodrich and Schultz classify
HRI interactions as either proximate or remote. For remote interactions, we can think of teleoperated robots. Social robots usually
take part in proximate interactions with social, cognitive and emotive elements. If we take a programming-based approach, we can
say that even fully autonomous systems involve some form of interaction, as humans design algorithms for the robot, as well as
reprogram and maintain it if necessary [32]. In the current paper, interaction refers to the situation in which (at least) two agents
engaging in communication, thereby affecting one another’s actions. The term agent can refer to a human, machine or software
program, for instance. An example is the case of an interaction in which one agent sends a signal to the other agent, and the other
agent adjusts their behaviour upon reception, as in the work of Steels [78].
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Appendix B: Questionnaire

Fake 1 2 3 4 5 Natural

Dead 1 2 3 4 5 Alive

Like 1 2 3 4 5 Dislike

Competent 1 2 3 4 5 Incompetent

Relaxed 1 2 3 4 5 Anxious

Machinelike 1 2 3 4 5 Humanlike

Lively 1 2 3 4 5 Stagnant

Conscious 1 2 3 4 5 Unconscious

Agitated 1 2 3 4 5 Calm

Organic 1 2 3 4 5 Mechanical

Unfriendly 1 2 3 4 5 Friendly

Ignorant 1 2 3 4 5 Knowledgeable

Lifelike 1 2 3 4 5 Artificial

Inert 1 2 3 4 5 Interactive

Foolish 1 2 3 4 5 Sensible

Unkind 1 2 3 4 5 Kind

Moving rigidly 1 2 3 4 5 Moving elegantly

Pleasant 1 2 3 4 5 Unpleasant

Intelligent 1 2 3 4 5 Unintelligent

Apathetic 1 2 3 4 5 Responsive

Awful 1 2 3 4 5 Nice

Responsible 1 2 3 4 5 Irresponsible

Quiescent 1 2 3 4 5 Surprised

1. How did you select gestures? (F.e. based on certain characteristics or certain goals?)

2. Did the quality of the gestures that were presented to you get better or worse, or did it stay the same? (Quality here means that
the gesture represented the instruction written at the top of the screen well)

3. Was it difficult to select gestures?

4. Do you have any final remarks?


