
Universiteit Leiden

Opleiding Informatica

Combined Neural Networks

for Movie Recommendation

Name: Ruben Buitelaar

Date: 24/08/2015

1st supervisor: Dr. M.S. Lew
2nd supervisor: Dr. E.M. Bakker

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Combined Neural Networks

for Movie Recommendation

Ruben Buitelaar

Liacs, Leiden University,
Niels Bohrweg 1, Leiden, The Netherlands

Abstract. Movie Recommendation is something millions of people make
use of everyday. Predictions are made by various sophisticated data min-
ing and artificial intelligence techniques. In this thesis we propose an
original method for predicting movie ratings. This method is based on
combining neural networks. Basic neural networks predictors are trained
individually on training data, and their results are used as input for other
neural networks. This combination could provide a better rating than the
individual network. We look at the setup of the basic neural network,
together with the design decisions faced during the building of this net-
work. We compared the predictions made by this method to a baseline
predictor. The baseline we use is k-Nearest Neighbors, a data mining al-
gorithm. The original approach did not show improvement compared to
the k-Nearest Neighbor algorithm. The basic neural network performed
slightly worse than using the average rating of the movie as a prediction.

Table of Contents

Combined Neural Networks for Movie Recommendation 1
1 Introduction . 3
2 Relevant Work . 3
3 Data set . 4

3.1 Characteristics . 4
3.2 Train & Test Set . 5

4 Measuring the Accuracy . 5
Mean Absolute Error (MEA) . 5
Root Mean Squared Error (RMSE) . 5
Correctness . 6

5 k-Nearest Neighbors . 6
6 Neural Network . 7

6.1 Filling in the inputs . 8
Only Known Inputs . 8
Average Rating . 8
k-Nearest Neighbor Rating . 9

6.2 Momentum . 9
6.3 Probability Distributions . 9

Random Chance . 10
Max Value . 10
Average Value . 10
Average Value from Squared Probability . 10
Testing the different functions . 11

7 Combining Neural Networks . 11
8 Results . 12
9 Conclusion . 15
10 Future Work . 15

3

1 Introduction

With the advancement of the internet, it has become a reality that we have a lot
of different choices at our disposal. As the number of options grows, it becomes
harder to choose. This is especially true for online video distributors as Netflix
and YouTube, who have thousands of hours of video available for the user.

In recent years recommender systems have found numerous ways into our
lives. Recommender systems are software systems which recommend a subset of
items to the user, based on previously exhibited behavior. The user now has an
easier time making a choice, because the system has identified the taste of the
user. To make a subset of items, the system predicts how much the user will
like the item. For example a movie recommender system will predict the rating
a user would hypothetically give to a movie. In this research we will be making
our own original recommender system, which attempts to correctly predict the
ratings a user gives to movies.

There are two primary techniques used in recommender systems. Content-
based filtering is using information about the similarity of items to make pre-
dictions. If you have liked action movies in the past, the system will recommend
you other action movies. You are matching items to items. Content-based filter-
ing can work well when you do not have a lot of data generated by the users,
because you only work of the information (meta data) of items.

Collaborative filtering is the concept of using data generated by other users
to make a prediction for a specific user. You are matching users to users. Many
different data mining techniques can be used to achieve this. Collaborative filter-
ing works well when you have sufficient data generated by the users. This also
requires that the user you are making a prediction for, has generated enough
data to compare with other users.

A hybrid approach involves combining these two techniques to make a predic-
tion. This combination usually yields the best results in real-world applications,
because both techniques have different advantages and can supplement each
others weak points.

In this thesis, we are going to compare an original approach to a frequently
used and easy to implement data mining algorithm, k-Nearest Neighbors. The
original approach is based on a network of neural networks. We are going to
elaborate on the design decisions faced during the construction of the neural
network.

2 Relevant Work

There has been a lot of research into recommender systems. Recommender sys-
tems are essentially predicting human behavior, and this is something that has
great commercial value. Companies like Amazon[1] and YouTube[2] do a lot of
research on recommender systems. A lot of different approaches for recommender
systems have been researched[3, 4]. Because of their predicting power through
learning, neural networks have been used since the beginning of recommender

4

systems[5]. In an effort to improve their own recommender, Netflix promised a
1 million dollar prize[6] for the team that could come up with a system that
would improve Netflix’ recommender by 10 percent. This reignited a search for
better working models[7]. After almost three years, the 10 percent increase was
realized. This shows how much effort was needed to further increase the accuracy
of the predictions. The winning team was an ensemble of three teams, banding
together at the final moments to ensure victory. It consisted of Team BellKor[8],
Team BigChaos[9] and Team Pragmatic Theory[10]. In annual progress reports
the participating teams explained their intermediate results. All teams achieve
good results by blending the results of different predictors. Accurately blend-
ing the results is explained in this[11] paper by the same people from Team
BigChaos. Neural networks are also used in predicting the ratings, a form of
neural networks called Restricted Boltzmann Machines[12] have been used with
great success in collaborative filtering. Our approach is based on a simple form of
neural network, the multilayer perceptron with back-propagation[13]. The goal
is to chain these simple networks, combining their knowledge to improve results.
Chaining neural networks to improve classification has been done[14, 15], but
not in the same way we propose.

3 Data set

The data is provided by the GroupLens Research Group[16], a research group at
the University of Minnesota. Different data sets are made available for research.
For this research the MovieLens 1M data set[17] is used. The set consists of
1,000,209 ratings of 3 elements; a user, a movie, and a rating value from 1
to 5 (whole numbers only). The 1,000,209 ratings are made by 6040 users on
approximately 3900 movies.

3.1 Characteristics

A quick look shows that 1,000,209 ratings, 3900 movies, and 6040 users results
in an average of 256 ratings/movie or 166 ratings/user. For our intended use,
we would like to make the data set denser. Movies with a low amount of ratings
are weakly connected and cannot be trained properly. Reducing the amount of
movies would also greatly reduce the computational costs for training the neural
networks. We chose to only use the movies with more than 200 ratings. This
allowed us to train the networks faster, but is still a large part of the original
set of ratings.

Rating 1 2 3 4 5

Frequency (%) 5.6161 10.7534 26.1156 34.8883 22.6266
Table 1. Frequency of different ratings

5

n 1+ 50+ 100+ 200+ 300+ 400+ 500+

Movies 3592 2499 2006 1419 1052 796 616

Ratings 999886 976884 940727 854146 763706 674443 593583
Table 2. Movies with more than n ratings.

3.2 Train & Test Set

After we have reduced the set to 1419 movies with each more than 200 ratings
we split the data set into a training set and a test set. The training set consists
of the ratings the recommender systems knows the outcome of, these are the
known ratings. The test set consists of ratings the system has no knowledge of.
For these ratings we can compare the prediction made by the system to the
outcome that is known to us but not to the predictor. The data set is split
80% to 20% between training set and test set, respectively. This split is done
beforehand and kept, so the Neural Networks can train on the training set and
save their configuration, without rebuilding the next time.

4 Measuring the Accuracy

The performance of different recommender systems has to be compared. Choos-
ing performance criteria will be always be subjective. We could favor a predictor
which will be spot on most of the time but will be off by a large margin in some
cases. Or we could favor a predictor which will be slightly off all the time. Even
the stability[18] of the ratings could be used as a criteria. We introduce three
methods of measuring the accuracy.

ei = |targeti − predictedi|

Mean Absolute Error (MEA)
This error is the average of the absolute errors, the absolute error being the
difference between the outcome and the prediction.

MAE =

∑n

i=1
|ei|

n

Root Mean Squared Error (RMSE)
This error is the root of the Mean Squared Error, which is the average of the
squared errors.

RMSE =

√

∑n

i=1
(ei)2

n

6

Correctness
This error is the percentage of cases correctly predicted. This can only be done
if the predictor outputs an integer.

It is important to note that different methods produce different results. The
RSME relatively favors smaller differences (<1) and punishes bigger differences
(>1) because of the squaring of the error. A predictor which produces a high
correctness does not necessarily produce a low RSME, because one big error will
be punished heavily. We will use all these predictors, with the most important
being the RMSE. This performance criteria was also used for the Netflix Prize.

5 k-Nearest Neighbors

The k-Nearest Neighbors algorithm is the predictor we use to create a baseline
for comparison to our original approach. The algorithm works by comparing a
user to all the other users and calculating the distance between them. The k users
that are the closest to the user and have rated the movie you are predicting for
are the k nearest neighbors. The average rating for the movie from the neighbors
is the resulting prediction. The distance is between users p and q is defined by
calculating the difference in ratings both users have rated:

d(u1, u2) =

∑n

v=1
|r(u1, v)− r(u2, v)|

n

r(u, v) is the rating of user u on movie v

n is the set of movies both users have ratedv

Where n is the number of movies both users have rated. This results in every
user having having a distance to another user. The k-nearest are the k users
having the shortest distance to the user. The size of k influences the result. A
low k gives the users that are the closest to the user, but a small set is also more
prone to fluctuations. If k were infinite, the result would be the same as the
average rating of a movie. The rating for user u on movie v predicted by k-NN
is defined by:

r(u, v) =

∑k

i=1
r(ni, v)

k

r(u, v) is the rating of user u on movie v

ni is the i-th neighbor that has rated movie v

We have to optimize the prediction by finding the right value for k. Here is
a plot of the results:

7

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4
1.5

5 10 15 20 25 30 35 40 45 50

E
rr
or

k

K-Nearest Neighbors from 0 to 50 k

K-Nearest Neighbors (RMSE)
K-Nearest Neighbors (MAE)

Movie Rating Average (RMSE)
Movie Rating Average (MAE)

We can see in this plot that for very low values of k the predictions are
sub-optimal. The average of the few neighbors is not consistent enough. Around
k = 5 the predictions get better than the average movie rating. The RMSE
continues to drop and stalls around k = 20. This value is still easy to compute
so we will compare our approach to 20-Nearest Neighbors.

6 Neural Network

In machine learning, neural networks (NN’s or nets) have been used to solve
problems that are hard to solve using rule-based programming. NN’s learn by
repeating a lot of training problems. Each time the net will attempt to produce
the output from the input. The produced output is compared to the actual out-
put and weights of the network are adjusted according to the back-propagation
algorithm. Each cycle of the above is called an epoch. The supervised learning
makes the network strong at learning more complex and non linear behavior.
Because of these characteristics neural networks are successfully used by recom-
mender systems. The winner of the Netflix Prize for predicting movie ratings,
BellKor’s Pragmatic Chaos, successfully employed a variant of neural networks
called Restricted Boltzmann Machines as one of their prominent predictors. They
also used NN’s to blend the predictions made by the many different predictors
they used. Our neural network will be based on a multilayer perceptron, which
is a feed-forward network mapping the input data on a set of outputs. For every
movie we create a separate neural network. This network will act as a predictor
for that specific movie. All nets are trained separately with the training data

8

available for that movie. The input layer consists of the set of all movies except
the movie of the network. Each movie input is represented by a probability dis-
tribution. Because the amount of inputs is over one thousand, we cannot afford
to use a large number of hidden nodes. Both the number of calculations and
the memory needed to store all the weights would become unfeasible. Different
configurations were tried and showed 10 to be a sufficient number of hidden
nodes. The output layer of is formed by 5 nodes. These nodes correspond to a
probability distribution from 1 to 5.

Fig. 1. From left to right; input layer, hidden layer and output layer.

6.1 Filling in the inputs

The input set consists of the ratings from a user for all the movies. Because a
user has not rated all the movies the known rating set is only a subset of the
required input set.

RatingSetuser ⊆ InputSetnetwork

A couple of options to fill in the inputs were explored and tested.

Only Known Inputs
Only using the known inputs, leaving the unrated movies unpopulated. This is
a very simple option, essentially ignoring the unrated movies. However, this can
produce odd behavior as the network is trained with only subset of the inputs
filled, which is not the normal way for training neural networks.

Average Rating
The unknown inputs are filled in by taking the average movie rating. The idea

9

is to take an approximation of how the user would have rated that movie. The
problem here would be that because a large part of the inputs are filled with
approximated values, the known input of the user has less of an effect on the
whole.

k-Nearest Neighbor Rating
The unknown inputs are filled by doing a simple k-NN algorithm on the user.
The same idea of using an approximation of a user’s rating applies here. It also
has the same issue of using approximations next to known ratings. We chose to
use the average rating to fill in the unknown input. This gave better results than
using only the known inputs, but is still very simple. Using the k-NN required
more complexity and did not seem to improve the results.

6.2 Momentum

Back-propagation is used to train the neural network. To accelerate convergence,
a momentum term is introduced. The momentum adds a fraction of the the pre-
vious weight update to the current. This prevents the network from converging
to a local minimum in the early stages of training. The momentum is updated
by combining the weight update with the last momentum.

Wij = (α ∗ inputj ∗ (∆Outi ∗ (1−mFactor) +mi ∗mFactor))

mi = mi ∗ 0.8 +∆Outi ∗ 0.2

∆Oi is the output delta

mi is the momentum for output i

mFactor is the variable for the influence of the momentum

In the beginning the momentum factor should be bigger, this allows the
training to be more exploratory, as opposed to settling in a local minimum. The
momentum is decreased during training, so the system will eventually settle in
the minimum found.

6.3 Probability Distributions

Probability distributions allow us greater flexibility and provide more informa-
tion than an ordinary number value. Distribution A: The probabilities of ratings
{1, 2, 3, 4, 5} are {0.3, 0.1, 0.2, 0.1, 0.3}. A holds more information then an aver-
age value of 3 would, because it also shows there is a higher probability of 5
and 1 opposed to the rest. A distribution also allows us greater flexibility in
calculating a value from a distribution. The distributions form a integral part of
the constructed neural network. The function to determine the actual value re-
sulting from a distribution is very influential in the performance of the network.
The function is first used to get a usable value as input to the network. It is im-
portant because the output of the network is also a probability distribution. We

10

calculate the overall performance using this output, so it is necessary we have a
good translation function in order for the output value to be be as accurate as
possible. We created and evaluated multiple functions.

Random Chance
This method is based on random chance. A random integer is picked according to
the probability it has to be correct. Let distribution A be {0.5, 0.2, 0.2, 0.1, 0.0}
for {1, 2, 3, 4, 5}. If we would run this function the odds of returning 1 is 50%,
for 2 it is 20% etc. This function does not work very well because if we look at
distribution A it still has a 10% chance of returning 4 while that would make no
sense according to the distribution.

Max Value
This is a very simple deterministic function that returns the integer with the
highest probability. The reasoning is that the highest probability is the most
likely to occur. This does not take into account that this could also result in a
high error if the highest probability does not occur. LetA be {0.3, 0.3, 0.0, 0.0, 0.4}
for {1, 2, 3, 4, 5}. The Max Value function will always return 5 for this distribu-
tion. We can see this will result in a large error because in 60% the result will
be 1 or 2, which both are far from 5. The behavior of this function can therefore
be described as optimistic.

Average Value
The Average Value function is a simple deterministic function that returns the
weighted average of the probabilities. If we would let A be {0.2, 0.2, 0.2, 0.2, 0.2}
the average would be 3.0. We can take B {0.1, 0.1, 0.1, 0.2, 0.5} which results in

1 ∗ 0.1 + 2 ∗ 0.1 + 3 ∗ 0.1 + 4 ∗ 0.2 + 5 ∗ 0.5 = 3.9

This function generally works good because it has a very cautious nature, it
always takes all the probabilities into account. The downside is that this function
is not very optimistic. Is the 10% chance in B realistic or is it just noise left from
the neural network?

Average Value from Squared Probability
A variation on the Average Value function, this function is a more optimistic
attempt. Instead of taking the probability at face value, it is instead squared first
before being add together. The effect of this is that a 0.1 probability becomes
0.01, and 0.5 becomes 0.25. The 0.1 loses 90% of its weight, while 0.5 loses only
50%. The same distribution B {0.1, 0.1, 0.1, 0.2, 0.5} from above results in

0.12 ∗ 1 + 0.12 ∗ 2 + 0.12 ∗ 3 + 0.22 ∗ 4 + 0.52 ∗ 5

0.12 + 0.12 + 0.12 + 0.22 + 0.52
= 4.59375

This function is thus more optimistic by adding weight to higher probabilities
and marginalizing lower probabilities.

11

Testing the different functions
The different functions are tested by comparing the error rate over a large
amount of predictions. For this test we compared the error rate on trained neural
networks for over 100000 predictions.

Random Chance Max Value Average Value Average Value Squared

RMSE 1.50852 1.65905 1.01336 1.01637

MAE 1.15067 1.30292 0.81594 0.79605
Table 3. Comparing different functions

We can clearly see the average value and average value squared functions
result in the the lowest error rates. The RMSE is lower for the average value and
the MAE is lower for the average value squared. It is interesting to see the differ-
ent functions being the best for different performance criteria. The correctness
is not measured here because the average and average squared are not rounded.
The best correctness was found by rounding the average value squared. The con-
clusion we can draw from this test is that the average value squared function
makes riskier prediction than the average value function, because the RMSE is
higher but the MAE is lower. In further tests we will use the average value for
the RMSE and the average value squared for the MAE. For the correctness we
will use the rounded average value squared.

7 Combining Neural Networks

When we have our basic neural networks we can chain them together. If one
neural network can make reasonable predictions for a movie given the user’s input
set, then combining their knowledge could result in a even better prediction. The
thought is that if the network can make predictions based on partially known
input it would make better predictions with the whole input known. So we could
use the predictions made by network A to fill in the rating for movie A in network
B, if you were to make a prediction for movie B.

Fig. 2. Simplified schema of basic neural network, input left and output right.

12

Fig. 3. Combined Neural Network, note that the ratings for B and D are known.

The network for movie A only uses the ratings from the users that have rated
movie A. Using chained neural networks would allow us to make prediction using
information from all the ratings. Chaining the networks this way should improve
the predictions over using a single network. However, the prediction made by a
single network should be a good approximation of the user’s unknown rating. If
this is not the case, the final network will work on badly approximated ratings,
which will have a negative influence on the result.

8 Results

In this section we compare the different predictors to each other. All predictors
have the same training set as known knowledge, and make predictions for the
same test set. The predictors are tested by making large number of predictions
and calculating their error rate. The performance criteria are the RMSE, MAE
and correctness. The outcome of the tests can also be seen in table 2.

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

AMR NN CNN kNN

R
M
S
E

Comparison of predictors on Root Mean Squared Error

Average Movie Rating
Neural Network

Combined Neural Network
k-Nearest Neighbor (k=20)

In this plot we can see the RMSE for the predictors. The k-NN algorithm per-
forms the best, with a RMSE of 0.91424. The Average Movie Rating performs
slightly better than the Neural Network predictor. The Combined Neural Net-
works performs slightly worse than the NN predictor.

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

AMR NN CNN kNN

M
A
E

Comparison of predictors on Mean Average Error

Average Movie Rating
Neural Network

Combined Neural Network
k-Nearest Neighbor (k=20)

In this plot we can see the MAE for the predictors. The predictors perform rel-
atively the same on this metric. The differences between the predictors are a bit
smaller, but small differences in MAE usually compare to bigger differences in
RMSE.

AMR NN CNN k-NN (k=20)

RMSE 0.98218 1.01212 1.02370 0.91424

MAE 0.78165 0.78782 0.79120 0.71321

Correctness (in %) 37.932 36.309 36.760 43.672
Table 4. Comparison of predictors

We can see in the results that the k-NN algorithm has the best performance
overall. It proves to have a better RMSE, MAE and correctness. The other
three predictors are almost equal in performance, but the AMR is a slightly
better predictor than the neural network. The CNN approach is comparable
in performance to the NN. It has a slightly higher RMSE and MAE, but a
better correctness. However, this difference is so small that we cannot draw any
conclusions. Based on the performance of the NN compared to the AMR, it is
expected that the CNN performs worse than the NN. This is because the CNN
works on ratings generated by the NN. The NN itself works on ratings provided
by the AMR. In these results we can see the NN produces worse output than
the AMR, and therefore the CNN has worse input than the NN.

15

9 Conclusion

After analyzing the results conclusions can be drawn. The Neural Network pre-
dictor does not perform as well as the k-Nearest Neighbor algorithm. It even
performs slightly worse than taking the average rating of a movie. In theory the
network should be trained to the point where it knows which ratings on spe-
cific movies correlate to a rating for the network’s movie. This is currently not
noticeably happening. A possible explanation for this is lack of training data.
Because the NN’s are split on movie, we are essentially also splitting the data
set. The reduced training set consists of 682705 ratings. The reduced movie set
has 1419 movies, thus 1419 neural networks are created which on average only
have 481 different input sets as training. Because not every movie is in the input
set, the network is not trained often enough on every movie.

The combined neural network is based on the same neural network, only with
different input values used. Because the performance of the basic network is not
good enough, the combined network will not produce results better than the
basic network. The effectiveness of linking the output of one neural network to
the input of the other can only be properly tested when the output of one neural
network is better than the standard input used. This is not the case because the
NN performs worse than the AMR.

A neural network in the form used here would likely not be able to improve
on existing methods. The difference in the RMSE (≈ 0.1) is too big to close with
simple optimizations. Even with a larger data set it is not likely that this neural
network based approach would succeed in besting k-NN. Most likely a change in
set-up of the neural network is needed to improve beyond other methods.

10 Future Work

Despite this neural network testing worse than other methods, NN’s cannot be
written off. Other forms of neural networks have been proven to work for collab-
orative filtering. This setup, with a network per movie, does not seem to be a
good recommender. It is possible that with a change in structure and/or training
it would work better, allowing the network to really understand the underlying
logic. Further improvements can be made by analyzing the ratings. People rate
movies in a different way, some people are more likely to rate movies only 1’s or
5’s and other rate more subtle 2’s or 4’s. Does one user’s 5 compare to another
user’s 5? Analyzing the rating pattern of a user can determine the quality of
a rating. This can then be accounted for by adjusting the input ratings. These
so called global effects can be partially accounted for[19]. Hybrid systems, using
both rating information as information about the movies, are very interesting.
Could meta information be incorporated into the structure of the neural net-
work?

16

References

1. G. Linden, B. Smith and J. York. Amazon.com Recommendations: Item-to-item

Collaborative Filtering. IEEE Internet Computing 7, pages 7680, (2003)
2. J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He,

M. Lambert, B. Livingston, and D. Sampath. The YouTube video recommendation

system. In Proceedings of the fourth ACM conference on Recommender systems,
ACM, pages 293-296, (2010)

3. G. Adomavicius and A. Tuzhilin.Toward the next generation of recommender sys-

tems: A survey of the state-of-the-art and possible extensions. Knowledge and Data
Engineering, IEEE Transactions on, Vol. 17, Iss. 6, pages 734-749, (2005)

4. X. Su and T.M. Khoshgoftaar. A survey of collaborative filtering techniques. Ad-
vances in artificial intelligence, 2009, Vol. 4, Iss. 13, (2009)

5. M. Rocha, P. Cortez and J. Neves. Evolution of neural networks for classification

and regression. Neurocomputing, Vol. 70, Iss. 16, pages 2809-2816, (2007)
6. Website of the Netflix Prize, http://www.netflixprize.com/
7. H. Zhou and K. Lange. Rating Movies and Rating the Raters Who Rate Them.

The American Statistician, Vol. 63, Iss. 4, pages 297-307, (2009)
8. Y. Koren. The BellKor Solution to the Netflix Grand Prize. Netflix

prize documentation, http://www.netflixprize.com/assets/GrandPrize2009_

BPC_BellKor.pdf(2009)
9. A. Töscher and M. Jahrer. The BigChaos Solution to the Netflix Prize. Netflix

prize documentation, http://www.netflixprize.com/assets/GrandPrize2009_

BPC_BigChaos.pdf (2008)
10. M. Piotte and M. Chabbert. The Pragmatic Theory Solution to the Net-

flix Grand Prize. Netflix prize documentation, http://www.netflixprize.com/

assets/GrandPrize2009_BPC_PragmaticTheory.pdf

11. A. Töscher, M. Jahrer and R. Legenstein. Combining Predictions for Ac-

curate Recommender Systems. http://www.commendo.at/UserFiles/commendo/

File/kdd2010-paper.pdf (2010)
12. R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted Boltzmann Machines for

Collaborative Filtering. In ICML, pages 791-798, (2007)
13. D.E. Rumelhart, G.E. Hinton and R.J. Williams. Learning Internal Representa-

tions by Error Propagation. http://www.cs.toronto.edu/~hinton/absps/pdp8.
pdf (1986)

14. K. Zaamout and J.Z. Zhang. Improving Neural Networks Classification through

Chaining. LNCS, Vol. 7553, pages 288-295, (2012)
15. D. Mitchell and R. Pavur. Using modular neural networks for business decisions.

Management Decision, Vol. 40, Iss. 1, pages 58-63, (2002)
16. GroupLens Research Group, http://grouplens.org/
17. MovieLens Data Set, http://grouplens.org/datasets/movielens/
18. G. Adomavicius and J. Zhang. Stability of recommendation algorithms. ACM

Transactions on Information Systems. Vol. 30, Iss. 4, Art. 23, (2012)
19. R. M. Bell and Y. Koren. Scalable collaborative filtering with jointly derived neigh-

borhood interpolation weights. In Data Mining, ICDM 2007, Seventh IEEE Inter-
national Conference on, pages 43-52, (2007)

